Attention Capture

Andrew Koh Sivakorn Sanguanmoo (Win) MIT Economics

2025 ASSA Annual Meeting

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Some motivation

- Our consumption of information is (i) dynamic; and (ii) channeled through a designer/algorithm:
 - Search engines, social media, streaming platforms etc.
- These platforms have incentive to keep us on them:
 - 2022 Q1: 97% of Facebook's revenue, 81% of Google's revenue, and 92% of Twitter's from ads

BUSINESS + STREAMING

How Ads on Netflix Will Change the Way You Watch

Apple Finds Its Next Big Business: Showing Ads on Your iPhone

Ad infinitum: companies to unleash a deluge of digital marketing

Delivery apps, ecommerce marketplaces, mass market retailers, gaming services all target commercials for revenue

Instagram to increase ad load as Meta fights revenue decline

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• This paper: what are the limits of information to capture attention? How much commitment is required?

Outline

Setting

- Single decision marker with preferences over (actions, states, time)
- Fix a dynamic info structure (for each state, time, history of messages, specifies distribution of message) \rightarrow DM stops & acts at some random time.

Questions

- I How is attention optimally extracted?
 - We solve this using reduction principle
 - Characterize convex-order frontier and extreme points
- I How does equilibrium change if designer has commitment vs not?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- No commitment gap: for arbitrary DM & designer preferences, optimal structures have sequentially optimal modifications
- I How do we optimally extract attention & persuade?
 - We solve this for binary states/actions [Not covered today]

(Brief) Literature

1 Dynamic info design where info valuable for action.

- Knoepfle (2020); Hébert and Zhong (2022)
- Our work: nonlinear designer's value
- Saeedi et al. (2024): similar baseline model but different approaches and behavioral extensions

② Dynamic info design where info valuable for stopping.

- Ely and Szydlowski (2020); Orlov et al. (2020)
- We show that no commitment is necessary in general.
- **Info acquisition:** DM in control of info structure. Zhong (2022)
 - Also: Pomatto et al. (2018), Morris and Strack (2019) etc.
- Sequential learning/sampling. Starting from Wald (1947) and Arrow, Blackwell, and Girshick (1949).

Model 1/2

- Finite states Θ , actions A, time discrete $\mathcal{T}=0,1,\ldots$
- DM has full-support prior $\mu_0 \in \Delta(\Theta)$ and has payoff function $v : A \times \Theta \times \mathcal{T}$ from taking action *a* under state θ at time τ :

$$v(a, \theta, \tau) \coloneqq u(a, \theta) - c\tau.$$

• $I \in \Delta(\prod_{t \ge 1} \Delta(\Theta))$ is a dynamic info structure if for any μ_t and H_t ,

$$\mu_t = \int_{\mu_{t+1},m} \mu_{t+1} dI_{t+1}(\mu_{t+1}|H_t)$$

*I*_{t+1}(·|*H*_t) is cond. dist. over next period's belief
DM solves

$$\sup_{\tau,a_{\tau}} \mathbb{E}'[v(a_{\tau},\theta,\tau)]$$

 \mathbb{E}^{I} is expectation under I, and (τ, a_{τ}) are w.r.t. natural filtration. Assume tiebreak to not stop. \mathcal{I} is set of all dynamic info.

Model 2/2

- DM's optimal stopping gives map $I\mapsto d(I)\in\Delta(\mathcal{T}).$
- d ∈ Δ(T) is feasible if there exists info structure I such that d = d(I).
- Designer has preferences $f : \mathcal{T} \to \mathbb{R}$. With commitment, solves

$$\sup_{I\in\mathcal{I}}\mathbb{E}^{I}[f(\tau)]$$

- Implicit assumptions
 - Full commitment: no need for intertemporal commitment
 - Pure attention capture: platform primarily aims to extract attention not persuasion. Add persuasion aspect in paper

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Reduction Principle

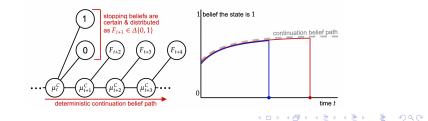
ullet The space of info structures is large \rightarrow need to narrow down

Definition

I is full-revelation with deterministic continuation beliefs if there exists a unique belief path $(\mu_t^C)_t$ such that for any H_t with prob > 0

• (Full revelation) supp $I_{t+1}(\cdot \mid H_t) \subset \{\mu_{t+1}^C\} \cup \{\delta_{\theta} : \theta \in \Theta\}$

(Obedience) For each t, DM prefers to continue at history $H_t = (\mu_s^C)_{s \le t}$ and stop at $H_t = (\mu_0, \mu_1^C, \dots, \mu_{t-1}^C, \delta_{\theta})$.



continue

full info + stop

Proposition (Reduction principle for attention)

If $d \in \Delta(\mathcal{T})$ is feasible it can be implemented by some full-revelation & obedient structure

- Quite useful for optimization, intuition related to revelation principle.
- Whenever DM stops, give her full info ↑ info value ⇒ no change in stopping time as continuation incentives are preserved

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Collapse all continuation nodes into a single node "continue"

Writing down obedience constraints explicitly

- Recall: $(\mu_t^C)_t \in \prod_{t \ge 1} \Delta(\Theta)$ is a belief path associated with full-revelation and obedient structure *I*
- Value of full info under belief μ :

đ

$$\phi(\mu) := \mathbb{E}_{\mu}[\max_{a \in A} u(a, \theta)] - \max_{a \in A} \mathbb{E}_{\mu}[u(a, \theta)]$$

"At belief µ, what's my value of learning the state vs acting now?"
Obedience at time-t requires

$$\underbrace{\phi(\mu_t^C) \ge \mathbb{E}[c\tau \mid \tau > t] - ct}_{\text{'Obedience constraint'}}$$

$$e^{\phi(\mu_t^C) \ge \mathbb{E}[c\tau \mid \tau > t] - ct}$$

$$e^{\phi(\mu_t^C) \ge \Phi(\theta)} = \Phi(\theta)$$

 $\Phi^* =$ Basin of uncertainty (beliefs that have the highest value of full info)

Full-rev. & Obedient \leftrightarrow Belief Path & Stopping Time

- So far obedience constraint: continuing is better than stopping.
- Not the only constraint: fixing τ, we're not free to pick any continuation belief.
- Boundary constraint: For every $t \in \mathcal{T}$ and $\theta \in \Theta$,

$$\mathbb{P}^{I}(au > t+1) \mu_{t+1}(heta) \leq \mathbb{P}^{I}(au > t) \mu_{t}(heta).$$

• Idea: Apply the martingale property of beliefs given $\tau > t$:

$$\mu_t(\theta) = 1 \cdot \mathbb{P}^{I}(\mu_{t+1} = \delta_{\theta} \mid \tau > t) + \mu_{t+1}(\theta) \cdot \underbrace{\mathbb{P}^{I}(\tau > t+1 \mid \tau > t)}_{\text{Prob. don't get full info}}$$

$$1 \geq \mu_{t+1}(heta) \mathbb{P}^{I}(au > t+1 \mid au > t)$$

Clearly necessary, but boundary + obedience also sufficient!

Lemma

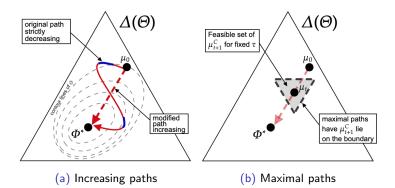
The following are equivalent:

- There exists a full-revelation and obedient information structure $I \in \mathcal{I}^{FULL}$ which induces stopping time $\tau(I)$ and belief path $(\mu_t^C)_{t \in \mathcal{T}}$.
- **2** The following conditions are fulfilled:
 - (i) (Obedience constraint) $\phi(\mu_t^c) \ge \mathbb{E}[c\tau \mid \tau > t] ct$ for every $t \in \mathcal{T}$; and
 - (ii) (Boundary constraint) $\mathbb{P}^{l}(\tau > t + 1)\mu_{t+1}^{C}(\theta) \leq \mathbb{P}^{l}(\tau > t)\mu_{t}^{C}(\theta)$ for every $t \in \mathcal{T}$ and $\theta \in \Theta$.
 - Reduced our problem to finding pair of belief paths and stopping time which satisfies obedience and boundary:

$$\begin{aligned}
f_{\mu_0}^* &:= \max_{\substack{\left(d_{\mathcal{T}}(\tau), (\mu_t^C)_t\right) \\ \in \Delta(\mathcal{T}) \times (\Delta(\Theta))^{\mathcal{T}}}} \mathbb{E}^{I}[h(\tau)] & \text{Original program} \\
\text{s.t. } \phi(\mu_t^C) &\geq \mathbb{E}[c\tau \mid \tau > t] - ct \quad \forall t \in \mathcal{T} \quad \text{(Obedience)} \\
\mathbb{P}(\tau > t+1)\mu_{t+1}^C & \mathbb{P}(\tau > t)\mu_t^C \quad \text{(Boundary)}
\end{aligned}$$

Increasing and Maximal Belief Paths

- Belief path $(\mu_t^C)_t$ is **increasing** if $(\phi(\mu_t^C))_t$ is increasing.
- Belief path (μ^C_t)_t is maximal for stopping time τ if Boundary constraints bind whenever μ^C_{t+1} ∉ Φ*, i.e., μ^C_{t+1} has not reached basin of uncertainty Φ* yet.



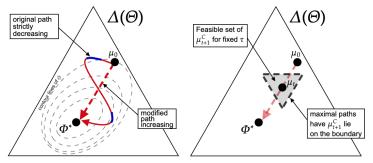
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Increasing and maximal are sufficient

Theorem

Every feasible stopping time can be implemented through full-revelation and deterministic structures with increasing and maximal continuation belief paths.

 Sufficient to consider belief path maximally steering toward basin of uncertainty → smaller space to consider to solve designer's optimum



Suppose h is concave. Obedience at time 0 implies

 $\mathbb{E}[c\tau] \leq \phi(\mu_0).$

By Jensen's inequality, need to concentrate stopping time:

 $\mathbb{E}[h(\tau)] \leq h(\phi(\mu_0)/c).$

Proposition

Suppose $\phi(\mu_0)/c$ is integer. the optimal info structure under concave to reveal full info at time $T = \phi(\mu_0)/c$ and $\tau = \phi(\mu_0)/c$ a.s.

Suppose *h* is convex.

• Obedience at time 0 gives upper bound of average stopping time $\mathbb{E}[\tau] \leq \phi(\mu_0)/c.$

Designer wants to spread stopping time as much as possible.

- Main concern: obedience constraints must hold for all times
- "Give info at time 0; otherwise, give info at very large time" violates obedience condition since DM stops paying attention if she gets no info at time 0.
- Our approach: characterize convex order frontier
 - Recall: d dominates d' in convex order, i.e., $d \succeq_{cx} d'$ if $\mathbb{E}_{\tau \sim d}[f(\tau)] \ge \mathbb{E}_{\tau \sim d'}[f(\tau)]$ for any convex function $f : \mathcal{T} \to \mathbb{R}$.

IIM distribution

Definition (Indifference, increasing, and maximal (IIM) distribution)

- $d \in \Delta(\mathcal{T})$ is an indifference, increasing, and maximal (IIM) distribution if
 - $\exists \mu^C$ s.t. (d, μ^C) is feasible, μ^C increasing and maximal + Obedience binds for all $t \geq 1$

②
$$(d,\mu^{\mathcal{C}})$$
 feasible $\Rightarrow \mu^{\mathcal{C}}$ increasing and maximal.

- Obedience binds for all *t* : DM is indifferent between continuing and stopping every period.
 - Common in literature but not sufficient to pin down structure
- + Increasing and maximal belief path
 - Help pin down optimal info structure especially binary states

This property is also a necessity condition.

Convex-order frontier

Theorem

For any feasible stopping time d, there exists an indifferent, increasing, and maximal distribution d^{IIM} for which

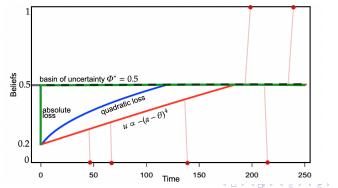
 $d^{IIM} \succeq_{CX} d.$

This implies if d is not IIM then it is not on the convex-order frontier i.e., the relation is strict.

- Best (and necessary) way to spread stopping time is
 - to make DM indifferent at every time (so that DM pays attention in longer period) while
 - $\ensuremath{\mathfrak{O}}$ to steer DM's continuation belief toward the basin of uncertainty Φ^* as much as possible

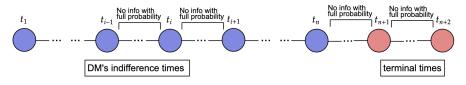
Convex-order frontier: optimal belief paths

- Recall obedience constraint: $\phi(\mu_t^{\mathcal{C}}) \geq \mathbb{E}[c\tau \mid \tau > t] ct$
- For convex frontier, it is necessary to have a wide range of stopping time
 - Steering DM's continuation belief Φ* is necessary so that value of full info becomes higher over time.
- When $|\Theta| = 2$, belief path that binds Obedience every time is uniquely pinned down by increasing and maximal conditions.



Exotic designer's preferences (If time permits)

- Designer's preference might be neither concave nor convex
 - S-shaped function: users are highly responsive to advertising at some intermediate times
- Characterize extreme points of feasible stopping times for binary actions and states: each extreme point is induced by a "block structure"
 - A "block" is a time period between two adjacent times in support.
 - Block structure: DM is indiff at a starting time of every block (except the last)
- Support of stopping time pins down block structure because of indifference + increasing and maximal belief path
 - In paper, apply block structure to solve attention capture under S-shaped function



- 日本 本語 本 本 田 本 王 本 田 本

Time-consistency

- $\bullet\,$ So far: Designer can commit future info structures $\rightarrow\,$ intertemporal commitment.
- How do results change when no intertemporal commitment power?

Definition

I is **sequentially optimal** for designer preference f if, for every history H_t with positive probability,

$$\max_{I' \in \mathcal{I} \mid H_t} \mathbb{E}^{I'} \Big[f(\tau(I')) \big| H_t \Big] = \mathbb{E}^{I} \Big[f(\tau(I)) \big| H_t \Big]$$

where $\mathcal{I}|H_t$ is the set of info structures where H_t realizes with positive probability.

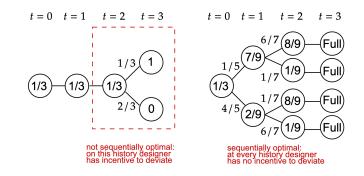
- At every history, designer has no incentive to different continuation info structure.
- If *I* is sequentially optimal, *I* is also optimal.
 - ► Existence of sequentially optimal info structure → no need for intertemporal commitment.

An intuitive example:

- $A = \Theta = \{0, 1\}$ $v(a, \theta, t) = -(a - \theta)^2 - ct \leftarrow$ waiting costly, constant per-unit $c = 1/9, \ \mu_0 := \mathbb{P}(\theta = 1) = 1/3.$
- $f(a, \tau) = \tau \leftarrow$ linear value of attention
- The DM's payoff from stopping and taking action at time t = 0 is $-\frac{1}{3}$.
- Obedience at time 0:

$$-\mathbb{E}[c\tau] \ge -1/3 \Rightarrow \mathbb{E}[\tau] \le (1/c) \cdot (1/3) = 3$$

An intuitive example: optimal info



LHS: Optimal but not sequentially optimal

 Conditional on the DM continues until t = 2, designer can deviate to reveal full info at t = 4 ⇒ DM still wants to follow.

RHS: Optimal & sequentially optimal

• Conditional on the DM continues until t = 2, designer cannot delay full info to t = 4 because optimal util under belief 8/9 is -1/9 = -c.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

No intertemporal gap

Theorem

For arbitrary DM's and designer's util functions, sequentially optimal dynamic info structures exist.

- Every optimal info structure can be modified so that it is also sequentially optimal.
 - Info must be gradually delivered
 - No longer deterministic continuation beliefs

Proof Sketch

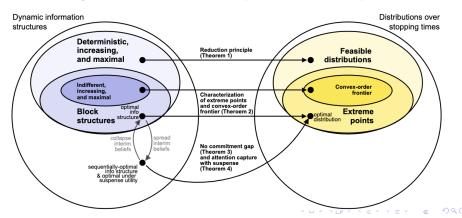
- Key step: If *I* is optimal and DM is indiff between continuing and stopping at every history, then *I* is also sequentially optimal.
- Perform surgery on optimal info structure so that DM is indiff at every history.
 - Anti-deterministic: spreading continuation beliefs

Our subsequent work (Koh et al., 2024) generalizes no-commitment gap result to arbitrary dynamic info design with optimal stopping.

Concluding remarks

- Solve optimal attention capture and show no intertemporal commitment gap
- Not covered today: Noninstrumental value of info and attention capture with persuasion motives

Figure: Connections between aspects of attention capture



References

ARROW, K. J., D. BLACKWELL, AND M. A. GIRSHICK (1949):
"Bayes and minimax solutions of sequential decision problems," *Econometrica, Journal of the Econometric Society*, 213–244.
ELY, J. C. AND M. SZYDLOWSKI (2020): "Moving the goalposts," *Journal of Political Economy*, 128, 468–506.
HÉBERT, B. AND W. ZHONG (2022): "Engagement Maximization," *arXiv preprint arXiv:2207.00685.*

KNOEPFLE, J. (2020): "Dynamic Competition for Attention," Tech. rep., University of Bonn and University of Mannheim, Germany.

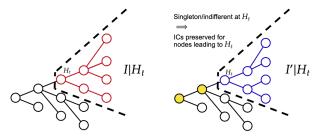
KOH, A., S. SANGUANMOO, AND W. ZHONG (2024): "Persuasion and Optimal Stopping," *arXiv preprint arXiv:2406.12278*.

MORRIS, S. AND P. STRACK (2019): "The wald problem and the relation of sequential sampling and ex-ante information costs," *Available at SSRN 2991567*.

ORLOV, D., A. SKRZYPACZ, AND P. ZRYUMOV (2020): "Persuading the principal to wait," *Journal of Political Economy*, 128, 2542–2578. POMATTO, L., P. STRACK, AND O. TAMUZ (2018): "The cost of information" arXiv proprint arXiv:1812.04211

Optimal + indiff at each time \implies sequentially optimal

- Let I be opt and DM is indiff for each time, suppose not seq. opt at H_t
- Designer can strictly do better by changing $I|H_t$ to $I'|H_t$
- If this preserves DM's stopping/continuing IC at earlier times *t*, then this contradicts the optimality of *I*!
 - For s ≤ t and connected to H_t, was previously continuation at I, still want to continue ← we need to show this!
 - Everything else remains the same:



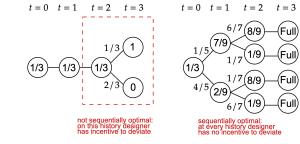
Implies overall strictly better for the designer (why?)

Still need to show continuation incentive at H_t increases

- Let $V'(H_t) := \sup_{\tau, a_\tau} \mathbb{E}'[v|H_t] \left| \mathsf{WTS} \ V''(H_t) \ge V'(H_t) \right|$
- Since DM is indifferent,

$$V^{I}(H_{t}) = \max_{a \in A} \mathbb{E}[v(a, \theta, t)] \leq V^{I'}(H_{t})$$

Key intuition: outside option of stopping & acting is a **lower bound** on DM's continuation payoff



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで