Self-Selection and the Diminishing Returns of Research

Lorenz Ekerdt (U.S. Census Bureau)[†]

Kai-Jie Wu (Penn State)

January 2025

 $^{^{\}dagger}$ Any views expressed are those of the authors and not those of the U.S. Census Bureau.

R&D productivity has fallen dramatically in the U.S.

- R&D is the engine of long-term growth (Romer, 1990)
- Massive increase in R&D , but flat/declining TFP growth
- Seen by literature as the permanent diminishing returns of R&D
 - "ideas getting harder to find" (Bloom et al, 2020)
 - $\circ~$ key for long-run prediction in semi-endogenous growth models

This paper: part of the decline is transitory

• Composition effect:

```
\begin{array}{c} \circ \ \ \text{expansion of R\&D share in laborforce} \\ \circ \ \ \text{self-selection in researchers' ability} \end{array} \end{array} \\ \end{array} \implies \ \ \text{decline in R\&D productivity}
```

- Transitional because it vanishes when R&D share ceases to rise
- Literature attribute all decline to permanent ⇒ understate long-run growth

Researchers are getting harder to find too!

Roadmap to quantify the transitional composition effect

- Construct growth model with Roy-like selection into research key: employment share of researchers increasing → composition effects
- Document facts of U.S. labor market of researchers
 microdata on workers' education, occupation, work activity, and earnings
- Estimate model using data
 infer positive selection into research, mostly through college education
- 4. **Separate transitional and permanent diminishing returns** predicted long-run growth rate nearly doubles

Related Literature

1. Growth and permanent diminishing returns in R&D

Jones (1995, 2002); Kortum (1997); Bloom et al; (2020), Peters (2022)

2. Self-Selection in higher education

Carneiro and Lee (2011); Hendricks, Schoellman (2014); Heckman, Humphries, Veramendi (2018)

3. Estimating Roy models

Roy (1951); Heckman, Sedlacek (1985); Heckman, Honoré (1990); French, Taber (2011)

4. Aggregate & policy implications of self-selected labor allocation

Lagakos, Waugh (2013); Young (2014); Hsieh et al. (2019); Akcigit, Pearce, Prato (2024)

Outline

1. Model: permanent vs. transitory diminishing returns

- 2. Empirical findings
 - Trends in U.S. researchers' labor market
 - Evidence for self-selection from NSCG panel
- Estimation
- 4. Revisiting the permanent diminishing returns

Jones' (1995) growth model with self-selected labor supply

Three types of labor:

- Low-skill production (*N*)
- High-skill production (*H*), requires college education
- Researchers (*R*), requires college education

Two production sectors: $Z_{j,t}$ efficiency unit of labor input

- Aggregate production equivalence: $Y_t = A_t G(Z_{H,t}, Z_{N,t})$
- Research: $\dot{A}_t = A_t^{\phi} Z_{R,t}$

Labor markets are competitive with log wage rate w_{jt} for each $j \in \{N, H, R\}$

Self-selection in education and sectoral labor supply

 L_t measure of workers, heterogeneous in:

- sector-neutral gain from college $e^{z_{Ci}}$
- sector-specific high-skill ability $(e^{z_{Ri}}, e^{z_{Hi}})$

Education choice $s \in \{0, 1\}$ with opportunity costs μ_C (Willis, Rosen, 1987)

$$u_i = \max_{s \in \{0,1\}} \{ s \cdot (z_{Ci} + u_{Ci} - \mu_C) \}$$

Sectoral choice $j \in \{H, R\}$ with non-pecuniary returns μ_j

$$\frac{u_{Ci}}{u_{Ci}} = \mathbb{E}\left(\max_{j \in \{R,H\}} \{z_j + w_j + \mu_j\} \mid z_{Ci}\right)$$

Permanent diminishing returns to research: $\phi \leq 1$

Idea production: $\dot{A}_t = A_t^{\phi} Z_{R,t}$

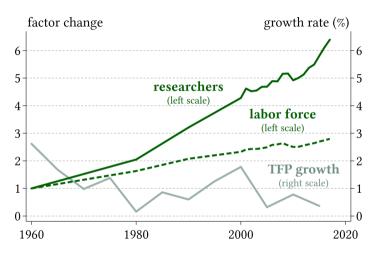
- $\phi > 0$: standing on the shoulders of giants
- ϕ < 0: fishing out of a pond

 ϕ determines predicted long-run growth rate:

$$g_A^{\mathrm{BGP}} = \left(\frac{1}{1-\phi}\right) g_{z_R}^{\mathrm{BGP}} = \left(\frac{1}{1-\phi}\right) g_L,$$

Transitional diminishing returns (composition effect)

- Define $z_{C,t}^m$ and $z_{R,t}^m(z_H)$ as ability of workers on the margin
- average researcher ability: $\overline{z}_t^R = \mathbb{E}\left[z_{Ci} + z_{Ri} \mid z_{Ci} \geq z_{C,t}^m, z_{Ri} \geq z_{R,t}^m(z_{Hi})\right]$
- Composition effect: assume z_{Ci} independent of (z_{Ri}, z_{Hi})


- Sectoral expansion lowers average ability if
 - marginal worker has lower ability than conditional average
 - call self-selection "positive" in this case
- Transitional: vanishes when sectoral composition reaches constant on BGP

Observed decline in research productivity: permanent or transitional?

Rearrange idea production function:

$$\underbrace{\Delta_k \ln(\dot{A}_t/A_t)}_{\approx 0} - \underbrace{\Delta_k \ln L_{R,t}}_{\gg 0} = (\phi - 1) \underbrace{\Delta_k \ln A_t}_{> 0} + \Delta_k \ln \overline{Z}_{R,t}$$

- Literature attribute all decline to permanent: $\phi \ll 1$ assuming $\Delta_k \ln \overline{Z}_{R,t} = 0$
- We argue: research expansion cause composition effect: $\Delta_k \ln \overline{Z}_{R,t} \neq 0$
 - Strong enough to significantly change estimated ϕ ?
 - Need to estimate the model appropriately

Outline

1. Model: permanent vs. transitory diminishing returns

2. Empirical findings

- Trends in U.S. researchers' labor market
- Evidence for self-selection from NSCG panel
- 3. Estimation
- 4. Revisiting the permanent diminishing returns

Data

National Survey of College Graduates (NSCG)

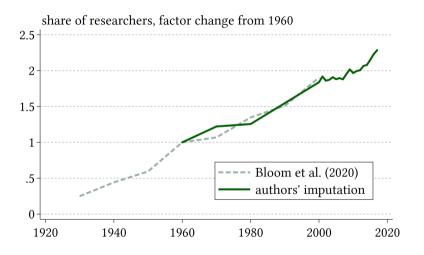
- education, occupation, earnings, (age, gender, race, etc.)
- primary work activity → R&D
- 1993, 2003, 2010, 2013, 2015, 2017

Decennial Census and American Community Survey (DC+ACS)

- education, occupation, earnings, (age, gender, race, etc.)
- nationally representative
- 1960-1990 (decennial), 2000-2017 (annual)

Outline

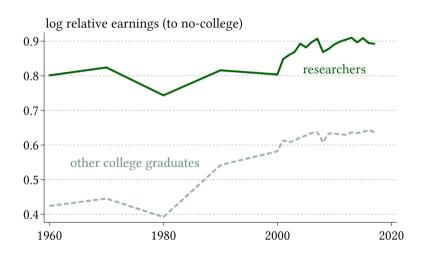
1. Model: permanent vs. transitory diminishing returns

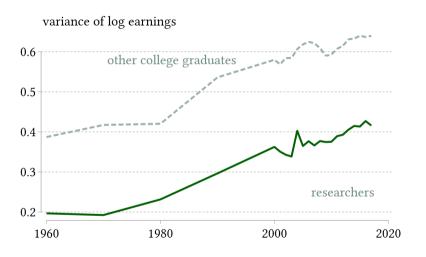

2. Empirical findings

- Trends in U.S. researchers' labor market
- Evidence for self-selection from NSCG panel
- 3. Estimation
- 4. Revisiting the permanent diminishing returns

Constructing aggregate trends of U.S. researcher's labor market

- 1. Identify researchers in the NSCG
- 2. Construct occupational researcher shares in NSCG
- 3. Impute to DC+ACS to construct moments on sectoral shares and earnings


Researcher share increases overall


But decreases among college grads

Researchers' and other college grads' relative earnings increase over time

Researchers' and other college grads' earnings increasingly disperse over time

Recap

Findings:

- increasing share of researchers ($S_R = L_R/L$) and other college grads ($S_H = L_H/L$)
- increasing rel. earnings of researchers $(E_R E_N)$ and other college grads $(E_H E_N)$
- increasing earning dispersion for researchers (V_R) and other college grads (V_H)

Implications:

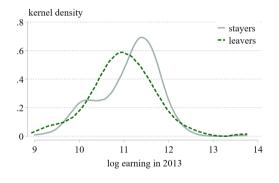
- (positive) selection from no-college (*N*) to the other two (*R* & *H*)
- but unclear for selection between researchers (R) and other college grads (H)

Outline

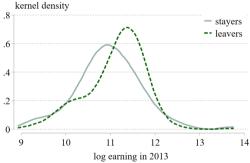
1. Model: permanent vs. transitory diminishing returns

2. Empirical findings

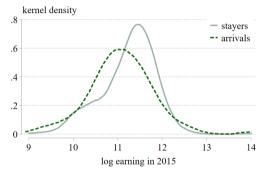
- Trends in U.S. researchers' labor market
- Evidence for self-selection from NSCG panel
- 3. Estimation
- 4. Revisiting the permanent diminishing returns

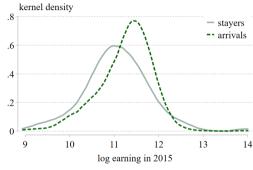

Compare earnings between sector stayers vs. movers

Recall: key determinant of selection is marginal workers vs. conditional average


- Assume movers ←→ close to margin
 - movers < stayers → positive self-selection into sector
 - stayers < movers → negative self-selection into sector
- NSCG: same respondent identifiers in the 2010, 2013, 2015 surveys

Panel moments from 2013-2015 NSCG


(a) Researchers in 2013


(b) Other college grads in 2013

(a) Researchers in 2015

(b) Other college grads in 2015

Recap

Findings:

- among researchers, stayers earn more than movers
- among other college grads, stayers earn less than movers

Implications:

- positive self-selected into research
- negative self-selected into non-research other college grads

Outline

- 1. Model: permanent vs. transitory diminishing returns
- 2. Empirical findings
 - Trends in U.S. researchers' labor market
 - Evidence for self-selection from NSCG panel

3. Estimation

4. Revisiting the permanent diminishing returns

Estimate the model by indirect inference

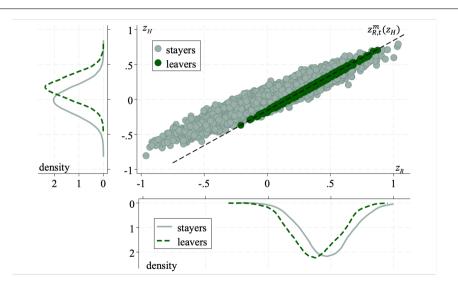
Parameters to be estimated:

- · latent ability distribution: parameterized by joint normal
- sectoral wages and costs in 1960
- changes of sectoral wages and costs between 1960-2017

Targeted moments:

- 1960 U.S. labor market moments
- 1960-2017 changes of sector shares and wage dispersion
- longitudinal moments in 2013-2015 NSCG panel

Summarize estimation results


Positive and large self-selection in college education

- result of large estimated σ_C , which mainly governed by ΔV_H and ΔV_R in data
- 1pp increase in the S_C is associated w/ 0.24% decrease in $\mathbb{E}(z_{Ci}|s_i=1)$

Positive but small self-selection from H to R

- · mainly governed by longitudinal moments
- 1pp increase in the $S_{R|C}$ is associated w/ 0.01% decrease in $\mathbb{E}(z_{Ri}|s_i=1,j_i=R)$
- → average researcher ability decline by 48% from 1960 to 2017

How panel moments identify distribution of sectoral-specific abilities

External validation for self-selection in college education

1. Counterfactual change in college wage premium w/o self-selection

• Carneiro and Lee (2011): 30% higher

• Our model: 32% higher

2. Difference in average latent ability btw college and non-college workers

• Hendricks and Schoellman (2014): 1.44 to 3.75 std dev depending on specification

• Heckman et al. (2018): 2 std dev

• Our model: **1.86** (in 2017) to **1.93** (in 1960) std dev

Outline

- 1. Model: permanent vs. transitory diminishing returns
- 2. Empirical findings
 - Trends in U.S. researchers' labor market
 - Evidence for self-selection from NSCG panel
- 3. Estimation
- 4. Revisiting the permanent diminishing returns

Separating transitory diminishing returns from permanent

• Recall permanent diminishing return:

$$\phi = 1 - \frac{\Delta \ln L_R + \Delta \ln \overline{Z}_R}{\Delta \ln A}$$

- E.g. TFP growth rate = 1.5%, population growth rate = 1%
 - assume $\Delta \ln \overline{Z}_R = 0 \implies \phi = -0.72$ and $g_A^{\text{BGP}} = 0.58\%$
 - our estimated $\Delta \ln \overline{Z}_R \Longrightarrow \phi = 0.07$ and $g_A^{\text{BGP}} = 1.08\%$ (1.85 times higher)
- fishing out → standing on the shoulders of giants

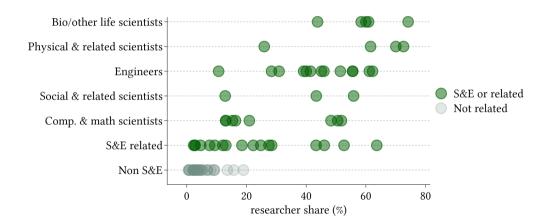
Conclusion

Part of decline in research productivity is transitional composition effect

- 1. Document facts of U.S. labor market of researchers
- 2. Quantify transitory diminishing returns by Roy model
- 3. Revisit long-run prediction in semi-endogenous growth models

Clarifying remarks

• Different from labor diminishing returns in the form of $\lambda < 1$ where


$$\dot{A} = A^{\phi} L_{R}^{\lambda}$$

- diminishing returns w.r.t. **stock** vs. **share** of researchers
- λ is permanent diminishing return
- isomorphic to ϕ in predicting long-run growth, $g \propto \lambda n/(1-\phi)$

Identifying researchers in NSCG

- Label a worker as a researcher if:
 - primary work activity (PWA) = "research" or "development"
 - occupation ∈ "scientists and engineers (S&E)" or "S&E related"
- Define **share of researchers** for each occupation *j* in NSCG:

$$s_j^{\text{NSCG}} = \left[\frac{\sum_{i \in I_j} \mathbb{1}(\text{PWA}_i = \text{R\&D})}{L_j}\right] \times \mathbb{1} \left(j \in \left\{\text{S\&E or related}\right\}\right)$$

For each occupation *j* in NSCG,

• Share of researchers' log earnings

$$s_{e,j}^{\text{NSCG}} = \left[\frac{\sum_{i \in I_j} \mathbf{e_i} \cdot \mathbb{1}(\text{PWA}_i = \text{R\&D})}{\sum_{i \in I_i} \mathbf{e_i}} \right] \times \mathbb{1} \left(j \in \left\{ \text{S\&E or related} \right\} \right).$$

Share of researchers' squared log earnings

$$s_{e2,j}^{\text{NSCG}} = \left[\frac{\sum_{i \in I_j} \mathbf{e_i}^2 \cdot \mathbb{1}(\text{PWA}_i = \text{R\&D})}{\sum_{i \in I_i} \mathbf{e_i}^2} \right] \times \mathbb{1} \left(j \in \left\{ \text{S\&E or related} \right\} \right).$$

Impute occupational researcher shares from NSCG to DC/ACS

Number of researchers

$$L_R = \sum_{j \in \mathcal{J}} L_{Cj} \cdot s_j^{NSCG}$$

where L_{Cj} is the number of college-educated workers in occupation j

Mean log earnings of researchers

$$E_R = \frac{1}{L_R} \left[\sum_{i \in C} \left(\sum_{i \in C} e_i \right) s_{e,j}^{NSCG} \right].$$

Variance log earnings of researchers

$$V_R = \frac{1}{L_R} \left[\sum_{i \in T} \left(\sum_{i \in C} e_i^2 \right) s_{e2,j}^{NSCG} \right] - E_R^2,$$

• same way define L_H , E_H , and V_H for other college grads.

Parameterize ability distribution by joint normal

sector-neutral college learning ability:

$$z_{Ci} \sim N(0, \sigma_C^2)$$

• sector-specific ability (assume independent from z_{Ci})

$$\begin{pmatrix} z_{H,i} \\ z_{R,i} \end{pmatrix} \sim N \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_H^2 & \rho \sigma_H \sigma_R \\ \rho \sigma_H \sigma_R & \sigma_R^2 \end{pmatrix} \right]$$

Remark: cannot separate mean and wage → capture composition effect only

- Goal: $\overline{Z}_R = \mathbb{E}\left[\exp(z_{Ci} + z_{Ri}) \mid s_i = 1, j_i = R\right]$
- **Key:** self-selection governed by ability distribution
 - Educational choice:

$$\mathbb{E}\left(z_{Ci} \mid s_i = 1\right) = \left(\frac{\sigma_C}{S_C}\right) \phi\left(\frac{u_C - \mu_C}{\sigma_C}\right)$$

 $\mathbb{E}(z_{Ri} \mid s_i = 1, j_i = R) = \left(\frac{\sigma_R^2 - \rho \sigma_R \sigma_H}{\theta S_{\text{NIC}}}\right) \phi \left[\frac{(w_R - \mu_R) - (w_H - \mu_H)}{\theta}\right]$

• Sectoral choice: let
$$\theta = \sqrt{\sigma_R^2 + \sigma_H^2 - 2\rho\sigma_R\sigma_H}$$

Discussion of distributional assumptions

- 1. Fully parametric: no instrument covers support for long-term implication
- 2. Other common distributions strongly restrict self-selection (e.g., extreme value)
- 3. Independence restricting education to be positively selected
 - wealth of evidence in literature: Hendricks, Schoellman (2014), Heckman et al (2018)
 - but do not restrict strength selection: largely determined by σ_C^2

Constructing longitudinal moments in the model

No gross flows in our model, instead:

- 1. Calculate change in returns that generates mover shares equal to data
- 2. Calculate moments of log earnings for movers vs. stayers generated above

Estimated ability distribution

Parameter	Description	Value			
Latent ability distribution					
σ_C	variance of ability gained from college	1.335			
σ_R	variance of ability in sector R	0.258			
σ_H	variance of ability in sector H	0.210			
ho	correlation between abilities in sector R and H	0.961			

w_R	log efficiency wage of sector R	-1.869
w_H	\log efficiency wage of sector H	-1.928
μ_C	log costs of college education	-0.252
$\mu_H - \mu_R$	log costs of becoming a researcher	0.187

Parameter

Description

 $\Delta(\tilde{w}_R - \tilde{w}_H)$ relative log wage-to-cost ratio

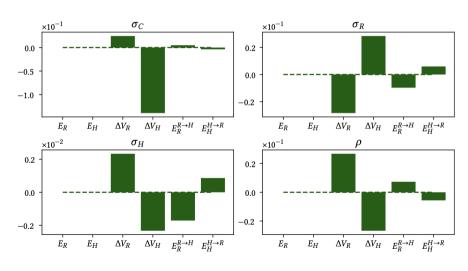
 $\Delta(u_C - \mu_C)$ mean net return of college

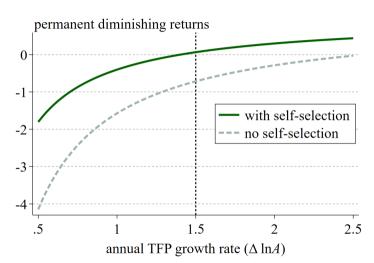
Value

-0.144

0.445

Exactly-matched moments


Moment	Notation	Data			
Initial sectoral shares in 1960					
share of college grads (%)	S_C	10.4			
share of researchers among college grads (%)	$S_{R C}$	5.63			
Changes in sectoral shares from 1960 to 2017					
share of college grads (pp)	ΔS_C	26.5			
share of researchers among college grads (pp)	$\Delta S_{R C}$	-1.98			
Longitudinal moments in 2010-2015 NSCG					
share of movers in R (%)	$S_{R o H}$	24.0			
share of movers in H (%)	$S_{H \to R}$	3.5			


Numerically-approached moments: data vs. model

Moment	Notation	Data	Model			
Initial mean log earnings in 1960						
relative mean log earnings of researchers	E_R	0.801	0.801			
relative mean log earnings of other college grads	E_H	0.372	0.372			
Changes in earnings dispersion from 1960 to 2017						
researchers	ΔV_R	0.212	0.223			
other college grads	ΔV_H	0.243	0.224			
Longitudinal moments in 2010-2015 NSCG						
mean log earnings, leavers minus stayers in R	$E_R^{R o H}$	-0.080	-0.079			
mean log earnings, leavers minus stayers in ${\cal H}$	$E_H^{H o R}$	0.180	0.172			

Sensitivity of estimated parameters w.r.t moments

Andrews, Gentzkow, and Shapiro (2017)

