

Food purchasing choices, stress and mental health

Beatrice Biondi & Mario Mazzocchi Department of Statistical Sciences

January 3rd, 2025

AAEA @ ASSA Annual Meeting 2025, San Francisco
Food Choices and Response to Public Policies:
New Evidence on the Behavioral Dimension

Outline

Research question

Can readily available, detailed food purchase data help predict and monitor mental health outbreaks (in specific sub-populations)?

- Background
 - Stress, anxiety & emotional food choice
 - Italian Covid-19 pandemic natural experiment
- Data: Drug sales & home scan purchase data
- Empirical models
- Findings and next steps

Background - Pandemic and food shopping

Lockdowns & food shopping

- Replace out-of-home food/drink
- Less frequent shopping, hoarding behaviours, on-line shopping
- Smart working & home cooking
- Comfort food & emotional eating/drinking

Background - Emotional eating

Emotional eating

Eating in response to negative emotions (Reichenberger et al., 2020)

Food groups

Strong evidence on the association between stress and anxiety and consumption of

- Ultra-processed, energy-dense foods, unhealthy foods (Hill et al., 2022)
- Sugar-dense foods (sweets, chocolate, desserts; Oliver et al., 2000)
- Higher consumption of savoury snacks (Tuck et al., 2023)
- Alcohol, binge drinking (Theunissen et al., 2011)

Background - Pandemic & Mental Health

Global prevalence of anxiety and depression increased by 25% during the first year of the pandemic (WHO, 2022)

- Unprecedented stress caused by social isolation
- Constraints on people's ability to work and financial worries
- Loneliness, fear of infection, suffering and death for oneself and for loved ones, grief after bereavement
- Increased sales of anxiolytics and anti-depressants

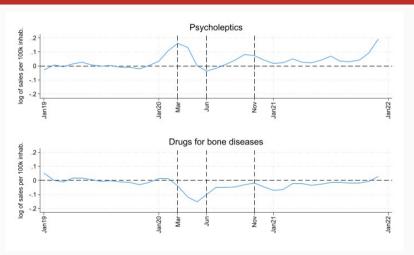
Covid-19 pandemic & movement restrictions, Italy

Period	Date	Regulation		
Baseline	January, 31	First public information campaign, start of testing and contact tracing for suspected cases		
	February, 23	Lockdown in eleven municipalities of northern Italy		
	March, 4	National school closure		
Lockdown	March, 10	National lockdown		
Post-lockdown	May, 18	Shops, restaurants and museum opened,		
		no restriction on gatherings		
	June, 3	No restriction on movements		
	September, 27	Schools open (new cases)		
New restrictions	October, 14	Restrictions on bars and restaurants		
	October, 23	Targeted restrictions on gatherings, shops, schools,		
		gyms and theatres, and curfew		
	November, 6	National curfew at 10pm and		
		regional colour zoning system implemented		
	December, 24-27,31	Italy red zone		

Pharmaceutical Sales Data

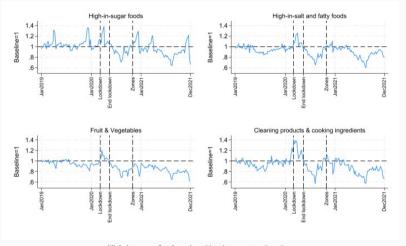
Italian Medicines Agency (AIFA) provides consumption data for medical drugs – volume (number of packages) of drugs purchased for pharmaceutical assistance under approved care regimes and those purchased by healthcare facilities managed by the Italian National Health Service (NHS)

Panel of regional monthly sales between Jan 2016 and Dec 2021


Household food purchases

YouGov Consumer Panel, all individual daily purchases (volume, expenditure, prices) for about 10,000 households in Italy, home scanned (any retail outlet type)

We use 4,985 households always in the panel between Jan 2019 and Dec 2021, recording variable weight purchases – Weekly aggregation


Monthly pharmaceutical sales in Italy, 2019-2021

Psycholeptics: antipsychotic drugs, anxiolytics, hypnotics and sedatives, antidepressants, psychostimulants, ADHD agents, and nootropics

Household purchases, 2019-2021

 $\label{thm:high-in-sugar} \textbf{High-in-sugar foods:} \ \ \text{cakes, biscuits, sweets, chocolate} \\ \textbf{High-in-salt \& fatty foods:} \ \ \text{savoury snacks, processed meat, cheese} \\$

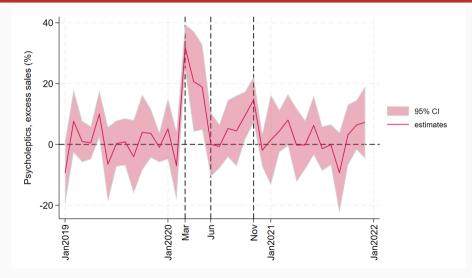
Empirical models - Pharmaceutical drugs

Regional monthly diff-in-diff model

$$D_{rtz} = \alpha_r + \sum_{i=2}^{12} \beta_i M_{it} + \sum_{i=2}^{12} \gamma_i M_{it} z + \sum_{y=2019}^{2022} \sum_{i=1}^{12} \delta_{iy} Y_{yt} M_{it} + \sum_{y=2019}^{2022} \sum_{i=1}^{12} \mu_{iy} Y_{yt} M_{it} z + \rho_0 t + \rho_1 tz + \epsilon_{rtz}$$

 D_{rtz} is the natural log of per capita sales of the drug z in region r at month t

z = 1 for psycholeptic drugs and z = 0 for bone disease drugs


Mit monthly binary variable

 Y_{yt} yearly binary variable

 μ_{iy} estimate the **differential monthly effects**, relative to the baseline period 2016-2018 and conditional on differential linear trends

Results: "Excess" sales of psycholeptic drugs

Empirical models - Household purchases

Panel model

$$V_{nt} = \alpha_n + \beta P_{rt} + \sum_{i=2}^{6} \gamma_{1i} T_{it} + \sum_{i=1}^{6} \gamma_{2i} T_{it} Y_{t \in 2020} + \sum_{i=1}^{6} \gamma_{3i} T_{it} Y_{t \in 2021} + \delta_1 C_{nt} + \delta_2 K_{nt} + \varepsilon_{nt}$$

 V_{nt} scaled purchases made by household n during week t

 T_{it} binary variable (1 for purchases is in period T_i)

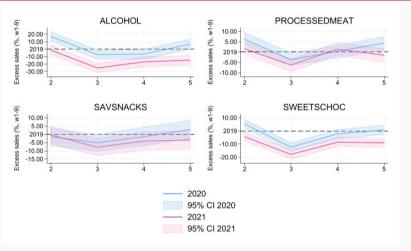
 P_{rt} is the average regional weekly price

 C_{nt} and K_{nt} (scaled) volumes purchased of cleaning and cooking goods, respectively

 γ_{2i} and γ_{3i} average changes in purchased volumes relative to the baseline

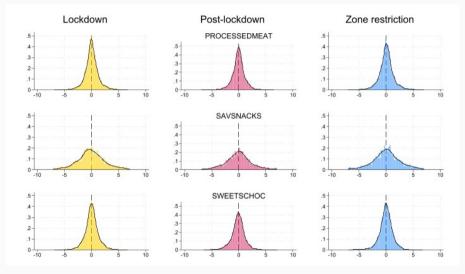
Model variations

- Monthly variables Mit instead of Tit
- Model estimated at the individual household level



Pandemic periods

Period	2019	2020	2021		
T ₁ Baseline	7 Jan – 17 Feb	6 Jan – 16 Feb	4 Jan – 14 Feb		
T ₂ Lockdown	11 Mar – 19 May	9 Mar – 17 May	8 Mar – 16 May		
T ₃ Post-lockdown	3 Jun – 1 Sep	1 Jun - 30 Aug	31 May - 29 Aug		
T ₄ Autumn	2 Sep - 3 Nov	31 Aug – 1 Nov	30 Aug – 30 Oct		
T ₅ Regional zones	4 Nov – 5 Jan 20	2 Nov - 3 Jan 21	31 Oct – 2 Jan		
T ₆ Other	Any other date not included above				


Results: "Excess" purchases, selected foods, averages by period

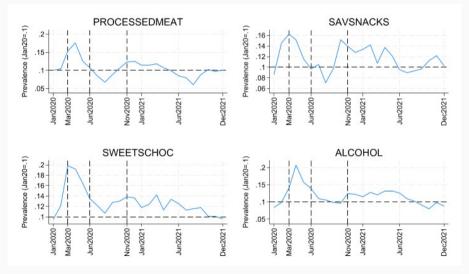
Periods: 2 = Lockdown; 3 = Post-lockdown; 4 = Autumn; 5 = Regional zones

Results: "Excess" purchases, individual household model

Prevalence of excess consumption of emotional foods

Empirical definition

- Threshold: Excess consumption, defined as the 90th percentile in January 2020.
- Prevalence: Proportion of households above the baseline threshold in subsequent months


Association between prevalence & psycholeptic drugs sales

$$H_{rt} = \alpha_r + \beta F_{rt} + \sum_{i=2}^{12} \gamma_i M_{it} + \eta_{rt}$$

 H_{rt} log of excess per capita sales of psycholeptic drugs F_{rt} prevalence of excess consumption

Results: Prevalence in excess purchases of emotional foods

Results: Associations

	Corre	lations	Elasticities		
	Contemporaneous	Lagged prevalence	Contemporaneous	Lagged prevalence	
Alcohol	0.040	-0.027	0.512	0.372	
	(0.460)	(0.628)	(0.315)	(0.326)	
Sweets & Chocolate	0.183***	0.082	1.097***	0.918**	
	(0.001)	(0.143)	(0.392)	(0.412)	
Sugary foods	0.177***	0.096	2.281***	1.760***	
	(0.001)	(0.086)	(0.633)	(0.663)	
Savoury snacks	0.218***	0.262***	0.372	0.489	
	(0.001)	(0.001)	(0.275)	(0.288)	
Processed Meats	0.229***	0.072	1.410***	-0.133	
	(0.001)	(0.195)	(0.459)	(0.480)	
Chamomile	0.127**	-0.037	0.086	-0.101	
	(0.063)	(0.596)	(0.057)	(0.058)	
Salty snacks & foods	0.320***	0.222***	1.793***	0.743	
	(0.001)	(0.001)	(0.476)	(0.507)	
Unhealthy foods	0.212***	0.154***	0.407***	0.357***	
	(0.001)	(0.006)	(0.122)	(0.129)	

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses.

Results: Associations by sub-groups

	Full sample		Worst-hit regions		Age HRP<55. North	
	Corr	Elast	Corr	Elast	Corr	Elast
Alcohol	0.040	0.512	0.398***	1.315 **	0.084	1.184 **
	(0.460)	(0.315)	(0.001)	(0.570)	(0.364)	(0.323)
Sweets & Chocolate	0.183 ***	1.097***	0.490***	2.648***	0.205 ***	1.113 **
	(0.001)	(0.392)	(0.001)	(0.620)	(0.025)	(0.405)
Sugary foods	0.177 ***	2.281 ***	0.567 ***	4.131 ***	0.319 ***	2.284**
	(0.001)	(0.633)	(0.001)	(0.858)	(0.001)	(0.636)
Savoury snacks	0.218 ***	0.372	0.471 ***	2.234 ***	0.464***	1.163 **
,	(0.001)	(0.275)	(0.001)	(0.704)	(0.001)	(0.307)
Processed Meats	0.229 ***	1.410 ***	0.435 ***	2.130 **	0.290***	1.261 **
	(0.001)	(0.459)	(0.001)	(0.858)	(0.001)	(0.436)
Chamomile	0.127 **	0.086	-0.099 ·	-0.132	0.140	0.168
	(0.063)	(0.057)	(0.505)	(0.180)	(0.242)	(0.127)
Salty snacks & foods	0.320 ***	1.793 ***	0.594***	3.173 ***	0.522 ***	2.102 **
•	(0.001)	(0.476)	(0.001)	(0.765)	(0.001)	(0.438)
Unhealthy foods	0.212 ***	0.407***	0.584***	0.869***	0.360***	0.532**
,	(0.001)	(0.122)	(0.001)	(0.177)	(0.001)	(0.110)

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses.

Final remarks

Findings and next steps

- We find an association between the prevalence of excess purchases of emotional foods and excess sales of psycholeptic drugs over the Covid years 2020-21, regional-monthly aggregation
- The association is stronger when focusing on the smaller sample of worst-hit regions
- Focusing on sub-samples of households does not improve predictions (although there are differences in the predictive power by socio-demographic groups)

Next steps - Micro-level evidence

- Mental health indicator by region-month (National Omnibus survey)
- 5-question Mental Health survey on households in our sample
- Explore alternative food aggregations

