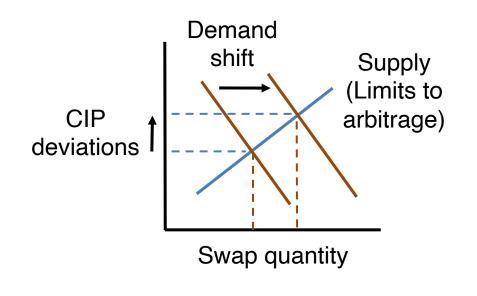
Umang Khetan, University of Iowa umang-khetan@uiowa.edu www.umangkhetan.com

Large global banks heavily rely on off-balance sheet foreign exchange (FX) swaps to "synthetically" raise US dollars.¹

I study...


- the impact of banks' synthetic dollar funding demand on asset prices (CIP deviations),²
- using transactions data to jointly analyze demand in FX swaps and wholesale funding markets.

I find that...

- 1. Banks raise dollars via swaps when money market funds reduce investment in bank debt.
- 2. This shift in demand *causes* CIP deviations to worsen,
- which raises the cost of FX hedges for nonbank investors.

My findings matter because they

- Provide a demand-based explanation for CIP deviations;
- Quantify international spillover of domestic liquidity regulations.

Global Banks' US Dollar Balance Sheet

Assets

Short-term trade credits and working capital loans; long term syndicated loans

Non-US banks (e.g, Deutsche, Barclays) hold > \$13 trillion in US dollar assets

Liabilities

On-balance sheet repos, commercial paper, certificates of deposit, bonds of \$10 trillion

Primary investors: money market funds (e.g., Vanguard); constrained by concentration limits

(1) - (2) = \$3 trillion of dollar funding gap!

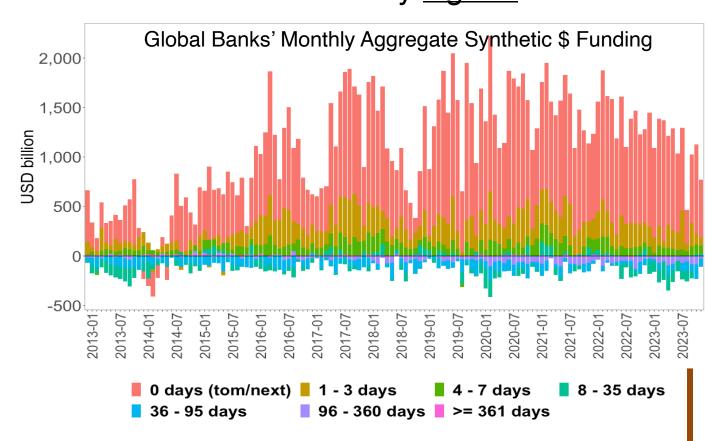
Off-Balance Sheet Synthetic Dollar Funding Market

6 Spillover impact on non-bank investors and the pricing of banks' dollar assets

NBFIs Funds Corporate low elasticity of demand to CIP deviations;

⇒ absorb ↑ hedging cost

Contribution 3: quantification of spillover effects + learn about the profitability of banks' dollar assets


Price impact: increased swap demand turns cross-currency basis more negative

First-stage	Net $\$$ Borrowing $_{C,t}$					
	(1)			(2)		
Excess wholesale funding C,t		-0.327*** (0.095)				
N	528			524		
Instrument F-statistic			10.64			
Currency FE		Υ				
Controls		Ν		Υ		
Second-stage		∆Cross-curre	ency basis $_{C,t}$			
	PC1 (1W, 1	M, 3M, 6M)	1W	1M		
Net $\$$ $\widehat{Borrowing}_{C,t}$	-0.175***	-0.149***	-0.087***	-0.131***		
	(0.061)	(0.033)	(0.020)	(0.031)		
N	528	524	524	524		
Currency FE	Υ	Υ	Υ	Υ		
Controls	N	Υ	Υ	Υ		

Contribution 2: causally identified price impact; not restricted to quarter-ends

Off-balance sheet FX swaps bridge \$ funding gap. OTC market ⇒ lack of quantities data.

I use novel data on daily signed order flow

Banks substitute from wholesale to synthetic \$\text{\$ when money market fund holdings decline}

 $\mathsf{Net} \ \mathsf{\$} \ \mathsf{Borrowing}_{C,t} = \beta \Delta \mathsf{MMF} \ \mathsf{Holdings}_{C,t-1} + \mathsf{Controls}_{C,t} + \alpha_C + \alpha_t + \varepsilon_{C,t}$

	Dollars borrowed by Global Banks				
	(1)	(2)	(3)	(4)	
Δ MMF holdings (t-1)	-4.13** (1.53)	-3.72** (1.54)	-5.04** (1.74)	-4.97*** (1.24)	
N	924	917	917	917	
Controls	Ν	Υ	Υ	Υ	
Currency FE	Ν	Ν	Υ	Υ	
Time FE	Ν	Ν	N	Υ	

Contribution 1: evidence of substitution due to quantitative constraints; economic channel distinct from cost optimization

- 1: Banks first raise a foreign currency, e.g. the euro, and then temporarily convert them into USD using an FX swap. Non-US banks are particularly reliant on this form of dollar funding (BIS, 2022).
- 2: Covered Interest Parity (CIP) deviations represent the breakdown of a fundamental no-arbitrage asset pricing condition that implies a wedge between wholesale and synthetic dollar funding costs.