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Abstract

We use plant-level data from the U.S. Census of Manufacturers to study the
short- and long-run effects of temperature on manufacturing activity. In the short-
run, high-temperature shocks significantly increase energy costs and lower produc-
tivity for small plants, while large plants are mostly unaffected. In the long-run,
commuting zones with higher increases in temperatures between the 1980s and the
2010s experience a decline in the number of plants and higher local labor market
concentration. Differences in costs per unit of energy, managerial skills, and – to a
more limited extent – hedging across locations contribute to explaining why large
firms are better able to adapt to climate change.
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I Introduction

Average global temperatures increased substantially over the 20th century and will

continue to rise (IPCC, 2021). In the continental United States, the pace of warming

started accelerating in the 1980s, with a county-level median increase in temperatures of

0.6°C from the 1980s to the 2010s and nine in ten counties experiencing higher average

temperatures over that period. Even under optimistic climate mitigation scenarios, the

average county-level number of days with maximum temperature above 30°C is expected

to increase from 60 days in the 2010s to about 90 days by the end of the 21st century,

representing a approximately 50% increase. Under worst-case scenarios, this number is

expected to increase by approximately 150%.1 These facts and projections have put the

effects of a warming climate on socioeconomic outcomes at the center of political and

academic debates.

We contribute to this debate by providing new micro-based evidence on the short-

and long-run effects of temperature on U.S. manufacturing plants. The manufacturing

sector is both economically important (11% of U.S. GDP in 2022 according to the U.S.

Bureau of Economic Analysis) and characterized by large heterogeneity in plant character-

istics, leading to considerable variation in scope for adaptation. To the extent that some

manufacturing plants are better able to adapt to higher temperatures, such as through

investments in energy-efficient machinery, better insulated buildings, or temperature con-

trol systems, manufacturing activity may reallocate towards such plants, leading to a

higher concentration in local labor markets.

We employ four decades of plant-level data from the U.S. Census Bureau (starting in

1980), as well as detailed weather data for the contiguous U.S. Three features of the Census

data make them particularly suitable to address the challenges associated with studying

responses to temperature shocks. First, the availability of detailed establishment-level

characteristics, such as energy costs and productivity, allows a comprehensive examina-

tion of the impact of temperature shocks on manufacturing activity. Second, the ability

to observe the cross-section of plants allows us to study the heterogeneous effects of tem-

perature shocks across establishments of different sizes. Third, observing annual plant

performance over four decades enables us to study how manufacturing activity responds

to long-run temperature changes.

We combine the Census of Manufacturing Firms (CMF) and the Annual Survey of

Manufacturers (ASM) to measure plants’ energy costs, productivity, and size, and use the

Longitudinal Business Database (LBD), an administrative register that tracks all business

1Statistics on past temperature trends are calculated based on PRISM Climate Group temperature
data (cleaned and made available by Wolfram Schlenker at http://www.columbia.edu/~ws2162/links.
html). Expectations for climate change over the remainder of the 21st century are derived from data
generated by Hsiang et al. (2017). See Section II.B for further details. As is common practice, we use the
term weather to refer to realizations of temperature, drawn from an underlying distribution, and climate
to refer to moments of the weather distribution (e.g., Auffhammer (2018), Dell et al. (2012)).
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establishments in the US, to identify plant entry and exit in different geographic locations.

In order to estimate the effect of temperature on manufacturing plants, we employ

two empirical strategies used in climate economics (e.g., Burke and Emerick 2016, Heutel

et al. 2021). The first strategy captures the contemporaneous response of manufacturing

outcomes to additional high-temperature days. This allows us to quantify the effect of

additional days in certain temperature bins in a given year on plant-level outcomes such

as energy costs and productivity. The second strategy captures the long-term response of

manufacturing activity (e.g., entry, exit, and concentration) to changes in average climate

experienced by U.S. commuting zones (CZs) over the last four decades.

We start by estimating a panel regression at the plant-year level, which exploits yearly

variation in temperature in the ZIP Code where the plant is located. We think of these

yearly temperature shocks as random weather draws from the climate distribution in a

given geographical area, and therefore as plausibly exogenous to the outcomes of interest

(Dell et al., 2014). Because of our focus on manufacturing, we view each U.S. ZIP code

or CZ as a small open economy and manufacturing as a tradable sector whose demand

is geographically sparse across the U.S. and the rest of the world, and thus relatively

independent from local demand shocks. Under this assumption, temperature shocks are

likely to identify supply forces, such as higher input costs or negative labor productivity

shocks, rather than any effect of temperature on local demand of the goods produced by

each plant.

Two key findings emerge from our estimates of the short-run effects of temperature

shocks on manufacturing outcomes. First, the input costs associated with temperature

management (expenditures in electricity and fuel) and productivity react to contempora-

neous temperature shocks. In particular, a higher-than-usual number of hot days results

in higher energy costs and lower plant productivity. Second, these effects are significantly

stronger in small manufacturing plants, while large establishments are mostly unaffected.

Despite these contemporaneous negative effects on small plants, we observe no signifi-

cant contemporaneous response of small plants via down-scaling (as measured by employ-

ment) or via exiting a given location. Indeed, it is plausible that key industrial decisions,

such as scaling back on the size of a plant or exiting a given market, are not driven by

abnormal weather shocks during the year, especially if such shocks are interpreted as

idiosyncratic and therefore likely to revert to normal in the following years.

We show that our results are robust to a set of additional tests designed to investigate

potential identification concerns. In particular, temperature shocks might affect local

demand in less tradable manufacturing sectors, or might affect manufacturing production

via input-output linkages with local agriculture. To deal with these concerns, we show that

our results are quantitatively similar when focusing on manufacturing sectors with high

levels of tradability, or when excluding manufacturing sectors whose production strongly

relies on inputs from agriculture.
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Next, we move to a long-run approach to study how manufacturing activity in a

geographic area responds to the cumulative effect of several years of warmer than usual

weather via the intensive and extensive margins. The rationale of this analysis is that a

series of deviations from past average temperatures might indicate a shift in the climate

distribution that warrants an adaptive response by local plants. For this analysis we use

a long differences approach as in Burke and Emerick (2016). In particular, we estimate

a U.S. CZ-level regression relating long-run changes in manufacturing activity to long-

run changes in average temperatures between the 1980s and the 2010s, controlling for

division-specific common trends and for differential trends across CZs with different initial

observable characteristics.

We find that, over the last four decades, areas where the climate got warmer at a faster

pace experienced larger declines in the number of plants but no differential change in total

employment, consistent with a reallocation of employment from small to large plants.

Indeed, we also document that higher average temperatures increased concentration of

manufacturing activity among the largest plants at the CZ-industry level. The estimates

indicate that industries in areas that, between the 1980s and the 2010s, experienced a

one standard deviation higher increase in temperatures (about 90 cooling degree days

(CDDs) above 18°C per year) saw a 0.5 percentage points larger increase in the share

of employment concentrated in the top 4 largest plants and a 3% larger increase in the

Herfindahl-Hirschman Index (HHI).2

These findings suggest that large manufacturing plants might be better equipped for

long-run adaptation to climate change than small ones. We test potential mechanisms

that may rationalize this result.

First, survey data from the Manufacturing Energy Consumption Survey (MECS)

shows that large plants face lower prices per unit of energy. This could partly attenuate the

adverse impact of higher temperatures on large plants. To test this mechanism, we inter-

act long-run changes in temperature at the CZ level with dummy capturing above-median

electricity prices (dollars per unit of energy) sourced from MECS. We document that the

effect of higher temperatures on concentration is significantly larger for industry-regions

facing higher energy costs, consistent with energy prices being a potential transmission

mechanism linking warming temperatures with industry concentration over the long run.

Second, and related to the first mechanism, large plants may be run by better trained

managers who can both understand the change in exposure to climate risk and proactively

invest in adaptation, including investment in energy-efficient machinery and equipment.

We test this mechanism by exploiting data on participation in electricity management

practices sourced from the MECS. Consistent with this mechanism, we find that higher

2A daily Cooling Degree Day (CDD) is the difference in degrees between maximum daily temperature
and 18°C conditional on the maximum daily temperature being above 18°C, see Heutel et al. (2021) or
Zivin and Kahn (2016). Yearly CDD is the sum of all daily CDDs in a given year.
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participation rates in electricity management practices leads to a lower impact of long-run

changes in temperatures on industry concentration.

Third, large plants may have better access to external finance, which allows them to

cope with weather shocks, reducing the need to downscale employment or close plants.

To test this mechanism, we exploit variation in the density of bank branches per capita

across CZs as a proxy for local financial development and ability to access bank financing

for small and medium plants. Estimates are too noisy to draw strong conclusions on the

role of this mechanism.

Finally, existing literature has shown that multi-plant firms may be naturally better

hedged to absorb weather shocks, even when shocks occur at higher frequency due to

climate change, because multi-plant firms produce output across different locations, al-

lowing them to diversify climate risk (Castro-Vincenzi, 2022; Acharya et al., 2023). This

mechanism could help rationalize the long run effects of temperature on labor market

concentration into large plants, because large plants are more likely than small plants to

be part of a multi-unit firm. We document that some of the effects of long-run changes in

temperature on industry concentration are smaller in areas where a larger share of local

small plants are part of a multi-unit firm.

Related Literature

A large literature in economics has studied the relation between climate change and

macroeconomic outcomes (see Dell et al. 2014 for a comprehensive list of outcomes studied

and methods employed in the literature). Previous studies on country-level output and

productivity have mostly focused on documenting the adverse effects of weather shocks

and climate change in developing economies, which tend to be on average more exposed

to such shocks due to their geography and the large share of agriculture in their economies

(Burke et al. 2015, Chen and Yang 2019, Colacito et al. 2019, Dell et al. 2009, Dell et al.

2012, Gallup et al. 1999, Hsiang 2010, Jones and Olken 2010).3

Our work is further related to several recent papers studying the effect of temperature

on firm outcomes. Addoum et al. (2021) show that higher temperatures affect the prof-

itability of U.S. public firms across more than 40% of industries, and Acharya et al. (2022)

show that higher temperatures lead to higher bond yields and expected returns for equity.

Addoum et al. (2020) document that higher temperatures do not significantly affect the

sales and productivity of establishments owned by U.S. public firms.4 Our contribution to

3A notable exception to the focus on developing nations are studies of the agricultural sector in devel-
oped economies. Here, short-term temperature shocks are generally found to have adverse implications
for productivity once nonlinearities are considered. See, for instance, Burke and Emerick (2016), Fisher
et al. (2012), Ortiz-Bobea et al. (2018), Schlenker and Roberts (2009) for evidence on the U.S., Lobell
et al. (2011) for global evidence, Gupta et al. (2017) and Auffhammer et al. (2006) for evidence on India.
In addition, Deryugina and Hsiang (2014) show that temperature affects income even in the U.S.

4For international evidence, Zhang et al. (2018) show that Chinese manufacturing firms exhibit an
inverted U-shape relation between temperature and total factor productivity, consistent with macro-level
evidence for developing countries. Focusing on Italian firms, Caggese et al. (2023) present a general equi-
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this literature is to use micro-data representative of U.S. manufacturing plants of all sizes,

including small standalone plants, to document how, even in a developed economy, small

plants are negatively affected by temperature shocks via energy costs and productivity.

The key novel finding is that small establishments are disproportionately more affected

by a warming climate, which–over the last four decades–has led to higher concentration

in local labor markets.

Our results are also informative for the literature on adaptation, especially the notion

that productive firms, which also contribute more to overall industry productivity, have

greater incentives to adapt (Zivin and Kahn 2016, Somanathan et al. 2021; see Samuelson

1947 and Viner 1958 for the theoretical foundations). Clients with multiple suppliers,

for instance, dynamically adjust their supplier network in response to weather shocks

(Custodio et al. 2022, Pankratz and Schiller 2021). Further, heat waves result in geo-

graphic production reallocation to unaffected locations among firms with multi-location

operations and downsizing by standalone firms (Castro-Vincenzi 2022, Acharya et al.

2023), while firms that employ outdoor workers substitute capital for labor in response

to temperature extremes and heat-related regulation (Xiao 2022).

Finally, our findings are informative for the large literature on industry concentration.

Drivers behind the increase in industry concentration observed in the U.S. over the last

decades (De Loecker et al. 2020, Grullon et al. 2019, Covarrubias et al. 2020, Kwon et al.

2023) are broadly of technological or political nature, with work focusing on channels such

as the efficient scale of operation (Autor et al. 2017, Autor et al. 2020), the decrease in

domestic competition (Gutiérrez and Philippon 2017), and the increasing importance of

globalization (Feenstra and Weinstein 2017), as well as the shift away from physical to

intangible capital (Alexander and Eberly 2018, Crouzet and Eberly 2021). We contribute

to this literature by documenting that climate change, through its adverse impact on small

firms, is an additional key driver contributing to increased local industry concentration.

We further explore potential mechanisms, including differential energy costs, managerial

skills, and access to finance.

The rest of the paper is organized as follows. In Section II, we describe the data

and offer some background information on the changes in average temperatures in the

continental U.S. in recent decades. In Section III, we present the identification strategy.

In Section IV, we discuss the results and in Section IV.C, we discuss the mechanisms

that can be employed to rationalize our findings.

librium structural framework to separate the effects of temperature on firm-level demand, productivity,
and input misallocation to examine the aggregate productivity losses caused by climate change. LoPalo
(2023) examines the productivity of interviewers across 46 countries and finds that interviewers complete
fewer interviews per hour on the hottest and most humid days.
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II Data and Background

Key to our analysis of the short- and long-run effects of temperature on U.S. manu-

facturing plants are data on U.S. manufacturing plants and detailed temperature data.

We describe each in turn and then provide an overview of temperature trends in the U.S.

II.A Data

Manufacturing Establishments. To measure manufacturing activity, we rely on three

complementary establishment-level data sets from the U.S. Census Bureau. First, we

employ the Longitudinal Business Database (LBD), an administrative register that tracks

all business establishments. The LBD provides information on establishment geographic

locations and industry classification. We employ data on the number of employees to

distinguish the establishment size. We have access to LBD data for the 1977 to 2019

period.

Second, we combine data on the activities of manufacturing establishments from the

Census of Manufacturing Firms (CMF) and the Annual Survey of Manufacturers (ASM).

Manufacturing establishments are those with 2-digit NAICS code 31, 32 or 33. The CMF

covers all U.S. manufacturing plants with at least one employee and it is carried out

every five years. The ASM provides data on non-Census years for a sample of 50,000 to

70,000 manufacturing establishments, including all establishments with more than 250

employees and a representative sample of smaller establishments. Sampling weights are

reported for all plant-years to reflect that smaller manufacturing establishments are less

likely to be surveyed relative to their large peers.5 We construct a panel at the plant-year

level in which we use plants covered by the ASM in non-Census years, and CMF plants

that are also observed in the ASM in Census years. The ASM/CMF data span from

1973 to 2018. These two datasets provide detailed industry classification, business group

affiliation, output (measured by value of shipments), energy costs, total working hours,

and employment for our analysis. We also use total factor productivity (TFP) as in

Foster et al. (2016) (see their Appendix). A mandatory reporting requirement and fines

for misreporting help to ensure the quality of the data.

Weather Data. We use two data sources to capture the weather and temperature-related

changes in climate, as well as other climate shocks, respectively. Weather data for the

contiguous U.S. over the 1950-2019 period is provided by the PRISM Climate Group. We

rely on the cleaned version provided on Wolfram Schlenker’s homepage.6 The data include

the daily minimum and maximum temperatures for 2.5-mile by 2.5-mile grids on the basis

5See Foster et al. (2016) and Ersahin et al. (2021) for further details.
6For details such as treatment of missing values and selection of underlying stations, please refer to:

http://www.columbia.edu/~ws2162/links.html.
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of a constant set of weather stations that receive a constant weight over the 1950-2019

sample period. This treatment ensures that the resulting time series of temperatures does

not vary through the birth and death of stations or missing observations (see Auffhammer

et al. (2013) for a discussion).

For our plant-level analysis, we measure plants' temperature exposure at the ZIP

Code level. In order to obtain ZIP Code-level maximum daily temperatures, we calculate

the value-weighted daily maximum temperature using grid points within a 20-mile

radius of the ZIP Code centroid and their inverse distance to the centroid as the

weight, following Heutel et al. (2021). For our CZ-level analysis, we weight all grid-level

temperature observations within a commuting zone by their inverse distance to the

geographic CZ midpoint. We obtain and process daily precipitation information using

the same method. On the basis of the resulting respective ZIP Code-day and CZ-day

temperature time series, we construct various aggregate yearly temperature measures

of interest, such as number of days within certain temperature bins, as well as Cooling

Degree Days (CDDs) and Heating Degree Days (HDDs).

We also obtain data on extreme weather events, such as droughts and floods,

heatwaves and winter weather, as well as hurricanes and tornadoes from the Spatial

Hazard Events and Losses Database for the United States (SHELDUS).7 SHELDUS

covers the 1960 to 2021 period and assigns events to CZs; underlying data are from the

National Center for Environmental Information and SHELDUS has significantly more

records of natural disaster events than alternative data provided by alternative data

sources, such as the Federal Emergency Management Agency (FEMA). We use hazards

reported by SHELDUS as controls and also to validate our temperature data.

Economic and Demographic Controls. Socioeconomic and demographic controls at

the CZ level are based on the 1980 Census and serve as controls for pre-sample period

conditions. Income per capita and population are obtained directly from the Census web-

page, and the fraction of the population above 25 years of age with a college degree is

imputed from data provided through IPUMS-NGHIS (the National Historical Geographic

Information System). Another control captures the change in exposure to import com-

petition from China over the 1990 to 2007 period and reflects exposure per worker as in

Autor et al. (2013) on the basis of UN Comtrade data. Mechanism tests also rely on

data on electricity prices and participation in electricity management practices from the

Manufacturing Energy Consumption Survey (MECS), as well as data on bank branches

from the Federal Deposit Insurance Corporation (FDIC). Table A.1 reports the definition

and data source for all variables used in the empirical analysis.

7ASU Center for Emergency Management and Homeland Security (2023). The Spatial Hazard Events
and Losses Database for the United States, Version 21.0 [Online Database]. Phoenix, Arizona: Arizona
State University. Available from https://cemhs.asu.edu/sheldus.
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II.B Background on temperature changes in the U.S.

The contiguous U.S. has experienced substantial increases in average temperature over

the 20th century. According to the climatology literature described in the IPCC (2021)

report, the significant emergence of changes in temperature relative to historical averages

occurred in North America after 1981.8 Figure 1 shows the dynamics of annual average

surface temperature anomalies across the contiguous 48 states over the 1900 to 1920

period. A temperature anomaly is the difference between the average annual temperature

and the average temperature over the 1901 to 2000 period. Figure 1 shows that after mild

increases in average temperature in the 1930s and 1940s, the 1960s and 1970s witnessed

a cooling period. In line with the IPCC (2021) report, average temperatures increased

rapidly and consistently after 1980. This trend is particularly pronounced in the 2000s and

2010s, and the 2012 to 2016 period experienced some of the highest abnormal temperatures

over the last 120 years.

Average temperatures are predicted to continue to increase for the next decades, as

shown by long-run projections of temperatures in the U.S. for the remainder of the 21st

century. In Figure A.1, we illustrate these long-run predictions using data by Hsiang

et al. (2017). These data contain binned projections of daily weather (1981-2100) for U.S.

counties using 44 different climate models. We record the number of days that fall within

1°C bins within a year (from -20°C to 40°C).9 Next, we take the average days across all

climate models for each county-year, and then calculate the mean value across all counties

in a decade.

Climate modeling generally considers four Representative Concentration Pathways

(RCPs) to describe different 21st-century pathways of greenhouse gas (GHG) emissions

and atmospheric concentrations. The RCPs include a stringent mitigation scenario

(RCP2.6), two intermediate scenarios (RCP4.5 and RCP6.0), and one scenario with very

high GHG emissions (RCP8.5, frequently referred to as “business as usual” or “worst-

case scenario”). The most pronounced pattern in Figure A.1 is the sharp spikes in the

number of extremely hot days, namely days with a maximum temperature equal or above

30°C. The average number of days in this temperature bin increases from about 60 days

in the 2010s to 85 days by the end of the 21st century under the optimistic scenario

(RCP2.6), 100 days under the intermediate scenario (RCP4.5), and about 140 days under

the worst-case scenario (RCP8.5).

Figure A.2 illustrates the geographic distribution in the U.S. of projected changes in

extremely hot days between the 1980s and the 2090s. Across all three RCPs, we observe

a prevalent increase in the number of extremely hot days, with the largest increases

8See IPCC (2021), p. 133. Historical climate averages are calculated using temperature data for the
baseline period from 1850 to 1900.

9In order to align the arguments in this section with our later analysis, we group temperature projec-
tions into coarser bins of 3°C. In particular, we create 9 bins of 3°C each, ranging from 3°C to 29°C, plus
two additional bins capturing average daily temperatures below 3°C and above 29°C.
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predicted to occur in counties in southern and central states. Notably, there is also

significant variation in projected hot days across counties within each state.

III Empirical Strategy

We employ two approaches to estimate the effect of temperature on manufacturing

outcomes. Our first approach – the panel approach – is designed to capture the contempo-

raneous response of manufacturing outcomes to short-term (yearly) temperature shocks.

Our second approach – the long differences approach – captures the long-term response

of manufacturing activity to changes in the temperature experienced by a U.S. CZ over

four decades (from the 1980s to the 2010s).10

III.A Panel approach to study the short-run effects of temperature

We examine the short-run effects of temperature on manufacturing outcomes by esti-

mating the following panel specification at the plant-year level:

yijz(s)t = αi + αjt + αst +
∑
b∈B

b ̸=[15−18C)

βbD
b
z(s)t + λXz(s)t + εijz(s)t, (1)

where i denotes manufacturing plants, j indexes industries, z(s) denotes the ZIP Code

z in state s where the plant is located, and t denotes years. Our plant-year panel spans

the time period from 1977 to 2018. The main independent variables, Db, capture the

number of days in a given ZIP Code and year whose maximum daily temperature is

within a certain bin b. Our panel specification follows the approach of Deschênes and

Greenstone (2011), which has been employed in estimating temperature impacts as it

allows arbitrary non-linear relationships between temperature and outcome variables.11

We divide the temperature distribution into 11 bins of 3°C each, ranging from strictly

below 3°C to equal to or above 30°C. In all specifications, we exclude the temperature

bin [15°C-18°C), which contains the median daily maximum temperature. The estimated

βb coefficients should be interpreted as the effect of an additional day with maximum

temperature in a certain bin relative to an additional day with maximum temperature of

15°C-18°C. To account for geographical correlation in the error term, we cluster standard

errors at the state-level in all specifications.12 In addition, when examining outcome

variables obtained from ASM/CMF (i.e., energy costs, productivity, and employment),

10See, for example, Auffhammer (2018), Burke and Emerick (2016), and Blanc and Schlenker (2017)
for a comprehensive discussion of each method, as well as their advantages and drawbacks.

11See Zhang et al. (2018) and Heutel et al. (2021) for applications of the same methodology.
12Clustering at the state level is more conservative relative to clustering at finer geographic units, such

as at the county or at the CZ level, since it allows standard errors to correlate within larger geographic
areas. All our results are robust to, and more precisely estimated, when clustering standard errors at the
county level or CZ level.
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we estimate regressions using ASM sample weights.

Because plants have a fixed location over time, the inclusion of plant fixed effects

(αi) implies that the impact of temperature on outcomes is identified by deviations from

plant-location-specific means. As such, we think of these yearly temperature shocks as

random “weather” draws from the “climate” distribution in a given geographical area,

and therefore as plausibly exogenous to the outcomes of interest (Dell et al., 2014). We

layer additional fixed effects step-by-step to absorb potential time-varying industry and

geographic dynamics that might confound our key estimates. We first include 3-digit

NAICS industry fixed effects interacted with year fixed effects to absorb any aggregate

trends at the industry-level experienced by U.S. manufacturing plants. We then add

geographical identifier fixed effects (first Census Division, then State) interacted with year

fixed effects to capture common trends in different areas of the US, which helps to ensure

that the response of manufacturing to temperature shocks is identified by idiosyncratic

local shocks.

Note that temperature shocks can affect local manufacturing activity in two ways.

First, they can affect the input costs and production processes of plants, for example by

increasing energy consumption, increasing maintenance costs of machinery and equipment

or affecting the worker productivity. We think of this set of forces as manufacturing supply

shocks. Additionally, temperature shocks can affect local consumer demand, for example

via their impact on the profitability of local agriculture (Burke and Emerick, 2016). In

the context of U.S. manufacturing, each ZIP code or CZ can be viewed as a small open

economy and manufacturing as a tradable sector whose demand is geographically sparse

across the U.S. and the rest of the world, and thus relatively independent from local

demand shocks. Under this assumption, supply forces are likely to be the major driver

of the impact of temperature on manufacturing outcomes. We test this assumption in

the data by studying how temperature shocks affect energy costs and labor productivity,

which are both observable in our data. We also present robustness tests on the role of

local demand by restricting the sample to highly tradable sectors.

Temperature shocks might be associated with precipitation or extreme weather events,

and thus affect manufacturing outcomes via this association. Figure A.3 reports the effect

of an additional day with maximum temperature within each respective bin on average

precipitation (Panel A) and the incidence of extreme weather events recorded in SHEL-

DUS (Panels B to F). Additional hot days are associated with lower average precipitation,

as well as lower probability of floods. Additional hot days are also mechanically associ-

ated with a higher probability of droughts and heatwaves, which are themselves defined

based on the prolonged occurrence of high temperature days. The effect of temperatures

on tornadoes and hurricanes are small and mostly insignificant. Given these findings, we

augment equation (1) with a set of time-varying controls Xz(s),t which include average

precipitation and the occurrence of extreme weather events that are not mechanically
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associated with temperature, mainly hurricanes and tornadoes.

III.B Long differences approach to study the effects of climate change

To study the long-run response of manufacturing activity to changes in maximum

temperatures, we aggregate data at the CZ level and estimate the following long difference

specification:

∆yc(d),2010s−1980s = αd + β1∆CDDc(d),2010s−1980s + β2∆HDDc(d),2010s−1980s

+ λXc(d) + uc(d) (2)

To estimate equation (2), we construct decadal averages of yearly data for both the

manufacturing outcome variables and the temperature variables in 1980-1989 and 2010-

2019 in each CZ c in division d.13 We calculate the long run differences by subtracting

the decadal average of 1980-1989 from the decadal average of 2010-2019.

Our choice of start- and end-point is motivated by three observations. First, as outlined

in Section II.B, the significant emergence of increases in temperature relative to historical

averages occurred after 1981. Second, previous studies examining economic adaptation to

long-run changes in temperature also focus on the post-1980 period, noting that warming

trends in the U.S. after the 1980s have been larger than those observed in earlier periods

(Burke and Emerick, 2016). Third, as explained in Section II.A, the U.S. Census LBD

data provide consistent coverage of manufacturing activity for the 1980 to 2019 period,

which is long enough to capture significant changes in the average climate of each location.

In equation (2), we use two parsimonious measures of temperature: cooling degree

days (CDD) and heating degree days (HDD). These are standard measures meant to

capture the energy required to keep temperature at a baseline level, and capture the non-

linear impact of extreme temperature variation. Daily CDD is defined as the difference

in degrees between the maximum daily temperature in a location and 18°C, which is

the baseline temperature at which no heating or cooling is necessary, conditional on the

maximum daily temperature being above 18°C.14 For each CZ, we compute CDD as

the sum of all CDDs over a year. HDDs are defined in the same way for days with a

13The U.S. Census Bureau divides U.S. states into 9 divisions: New England and Middle Atlantic in
the Northeast region, East North Central and West North Central in the Midwest region, South Atlantic,
East South Central and West South Central in the South region, and Mountain and Pacific in the West
region.

14This implies that a day with maximum temperature of 20°C will correspond to 2 CDD and a day
with maximum temperature of 12°C to 0 CDD. See, for instance, Heutel et al. (2021) or Zivin and Kahn
(2016) for applications of CDDs constructed relative to a baseline temperature of 65°F and Burke and
Emerick (2016) for a CDD-type measure adjusted to the importance of temperature deviations during
growing seasons in agriculture. See also the discussion by the National Oceanic and Atmospheric Service,
https://www.weather.gov/key/climate_heat_cool.
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maximum daily temperature below 18°C.
Equation (2) includes census-division fixed effects, which implies that the relevant

variation identifying the coefficients β1 and β2 originate from within-division differences

in climate trends across CZs. The inclusion of census-division fixed effects removes any

role of unobservable regional trends. A potential concern is whether their inclusion also

removes most of the relevant variation in long-term changes in climate. We investigate

this concern in Figures 2 and 3.

Figure 2 reports the distribution of long-run changes in decadal averages of HDD and

CDD. Panel (a) reports the distribution of these two variables in the raw data. As shown,

between the 1980s and the 2010s, most U.S. CZs experience an increase in average yearly

CDDs, or degree days above 18°C, while the changes in HDDs are mostly negative. This

is consistent with a significant warming trend in the U.S. during the last four decades.

Panel (b) reports the distribution of long run changes in decadal averages of HDD and

CDD that deviate from Census Division averages. As shown, even net of Census Division

trends, there is significant variation in degree days across CZs. For example, a standard

deviation in the raw distribution of long-run changes in CDD corresponds to about 90

degree days (see Table 1), while after removing division fixed effects, a standard deviation

in the same variable corresponds to 71.7 degree days. We rely on this variation in our

estimates of long-run effects of changes in average climate on manufacturing activity.

Figure 3 reports the geographical distribution of these long-run changes in degree days

that deviate from division-specific averages.

The key identifying assumption in equation (2) is that differential changes in degree

days observed over the last four decades in each CZ are uncorrelated with other local

trends that might also affect the outcomes of interest. Division fixed effects reduce the

role of unobservables by removing aggregate trends across macro areas of the country.

Still, a potential concern is that long-run changes in temperature might be correlated

with unobservable CZ-level trends. In support of empirical approaches similar to the one

in equation (2), previous papers in environmental economics have argued that “recent

evidence from the physical sciences suggests that the large differential warming trends

observed over the United States over the past few decades are likely due to natural climate

variability” rather than trends in local emissions or changes in local land use (Burke and

Emerick (2016), p.120). In support of this assumption, in Panel A of Table 2, we report

the correlation between long-run changes in average temperatures and CZ-level initial

characteristics, including population, per capita income, and share of college graduates

among the adult population. We find no significant correlations with population, income

per capita, or percentage of college graduates among the adult population. We also check

the correlation of long-run increases in temperature with exposure to shocks that might be

particularly important for U.S. manufacturing during our study period, such as import

competition from China (Autor et al., 2013). Here we find a negative and significant
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correlation, which indicates that areas that have experienced faster warming within each

Census Division were less affected by import competition from China in the early 2000s.

Although this correlation is likely to – if anything – ”attenuate” the negative impact of

warming on manufacturing, we include the exposure to the China shock as a control in

all our specifications.

We also test the correlation of long-run changes in temperature with long-run changes

in frequency of reported natural disasters, such as floods, droughts, heatwaves hurricanes,

and tornadoes, as well as long-run changes in average precipitation. Overall, in 2, we find

non-significant correlations between changes in temperatures and changes in the frequency

of natural disasters. As expected, we find that higher temperatures are negative correlated

with long-run changes in average precipitation. In equation (2), we include the initial CZ

characteristics reported in Panel A of Table 2, and also control for long-run changes in

the natural hazards that are not mechanically a function of temperature (hurricanes and

tornadoes) and average precipitation. We show that the magnitude of the point estimates

is stable after the inclusion of these controls.

IV Results

We now discuss the results of our estimation of the short- and long-run effects of

temperature on manufacturing plants.

IV.A Short-run response to temperature shocks

In this section, we discuss the short-run effects of temperature shocks on manufacturing

outcomes. We start by focusing on two outcomes plausibly affected by an increase in hot

days relative to the climate normally experienced in a given location: energy costs and

productivity of manufacturing plants. Next, we examine the impact of temperature shocks

on both the intensive margin (total value of shipment) and the extensive margin (exit) of

manufacturing activity.

IV.A.1 Energy Costs

Manufacturing plants use electricity for production processes (e.g., to operate machin-

ery), as well as for non-production processes (e.g., for temperature control of working

environments). According to data from the Manufacturing Energy Consumption Survey

reported in Figure A.4, around 80% of electricity consumption by U.S. manufacturers is

used in production processes and 20% is used in non-production. Figure A.4 also shows

that the majority of the electricity used in production processes is for machinery and

equipment operations, as well as for refrigeration of inputs or outputs. Non-production

electricity is used in similar shares for temperature control and lighting.
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Higher than normal temperatures can increase energy costs for both production and

non-production processes. In production, high temperatures generate higher resistance

of components in electric motors, leading to lower performance and higher electricity

consumption. They also increase the electricity needed for cooling and refrigeration of

inputs and outputs. In non-production processes, higher temperatures increase electricity

consumption for temperature control of work environments via air conditioning. Finally,

higher temperatures can negatively affect the efficiency of energy production systems and

transmission: an increase in the number of hot days implies that power plants need to

be cooled down more often or cannot operate due to lower water availability. Energy

transmission is also less efficient on hot days because electrons move slower at high tem-

peratures inside transmission lines (Bartos et al., 2016).

We start by estimating equation (1) using plant-level total energy costs as the outcome

variable. The results are reported in Table 3 columns (1)-(2) and visualized in Figure 4 (a).

We define energy costs as the monetary value of expenses in electricity and fuel, normalized

by the value of shipments at the plant level. As Table 1 shows, energy costs represent on

average about 2.2% of total value of production. With an average profit margin among

US manfucaturing firms of 10%, energy costs may represent on average about 22% of

profits.15 The point estimates should be interpreted as the effect of additional days in

a given temperature bin relative to the omitted benchmark bins experienced by a given

plant-location.

The results show that plants experiencing additional days with a maximum tempera-

ture above 18°C experience statistically significant increases in energy costs.16 The effect

is monotonically increasing in temperature bins. The magnitude of the coefficient on the

highest temperature bin implies that a one standard deviation increase in the number of

very hot days (days with maximum temperature equal or above 30°C) – which is 44.5

days – generates a 4.6% larger increase in energy costs.

In columns (3)-(4) of Table 3 we estimate equation (1) using as outcome variable

electricity costs normalized by total value of production. The results are also visualized

in Figure 4 (b). As Table 1 shows, electricity costs represent 61% of energy costs. The

effects of temperature on electricity costs are similar in sign and magnitude to those on

overall energy costs, and imply that a standard deviation larger increase in the number

of very hot days generates a 4.2% larger increase in electricity costs.

We find no significant effects of additional cold days on energy costs. The asymmetry

between the effects of additional hot days versus cold days on energy costs is prima

facie surprising. One element that contributes to explain this finding is that – despite

being less seasonal than residential or commercial energy consumption – industrial energy

15According to the 2024 Q3 US Census Quarterly Financial Report, between 2003 Q1 to 2024 Q3, the
average profit per dollar of sales for the manufacturing sector is 10.1% before tax and 8.4% after tax.

16This is consistent with previous findings documented with smaller samples in the energy literature
(Engle et al., 1986).
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consumption displays large differences between summer and winter months. Data from

the U.S. Energy Information Administration (EIA) reported in Figure A.5 (a) shows

that during the summer months, average consumption in kilowatthours has been 9.6%

higher than during the winter months in the years since 2002. Summer is also a period

of higher energy prices faced by the industrial sector in the U.S. The EIA data reported

in Figure A.5 (b) show that average electricity prices in cents per kilowatt hour for the

industrial sector have been, on average, 10.5% higher during the summer months relative

to the winter months between 2002 and 2023.17 Taken together, these facts indicate that

additional hot days during the summer generate higher marginal increases in energy costs

for U.S. industrial plants than additional cold days in the winter period.

Next, we investigate the effect of temperature shocks on the energy costs of plants

of different size. We define plant size based on the number of employees in the 1980s,

and divide the plant size distribution into quintiles. To estimate the differential effect of

temperature on the energy costs of small vs large plants, we include in equation (1) an

interaction of the number of days in each temperature bin with a dummy capturing small

plants (plants in the bottom 4 quintiles of the firm size distribution) as follows:

yijz(s)t = αi + αjt + αst +
∑
b∈B

b̸=[15−18C)

βbD
b
z(s)t +

∑
b∈B

b ̸=[15−18C)

γbD
b
z(s)t × 1(Small)

+ λXz(s)t + εijz(s)t (3)

The results of this specification are reported in Figure 5. The Figure reports both

the estimated βbs (Panel (a)), which capture the effect of temperature on large plants,

and the estimated γbs (Panel (b)), which capture the differential effect of temperature on

small plants relative to large plants. The estimates show that the effects of temperature

shocks on energy costs are concentrated among small plants. Panel (a) shows that large

manufacturing plants seem to be largely immune to the effects of temperature shocks on

energy costs. On the other hand, small plants show positive effects of temperature shocks

on energy costs that are statistically different than those of large plants. The magnitude

of the coefficient on the number of days with maximum temperature in the hottest bin

implies that a one standard deviation increase in the number of days equal or above 30

°C generates a 8% larger increase in energy costs for small firms (relative to no effect on

large firms).

There are several potential explanations for this result. For example, large plants

might be more likely to have implemented energy-saving technologies or operate with

capital (e.g., machinery, equipment, buildings) that is more energy efficient and thus less

17Calculations done by the authors based on the Electric Power Monthly dataset available at https:
//www.eia.gov/electricity/data.php. We consider June to August as summer months, January to
March as winter months.
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sensitive to temperature shocks. For example, larger plants might be better insulated or

have newer machinery and equipment used in production that are more energy efficient

and less prone to overheating, thus requiring less cooling of production spaces. Consistent

with this hypothesis, Ma et al. (2022) show that young firms, which are also smaller in size,

tend to operate with older capital. In addition, conditional on the type of industry, smaller

plants are likely to operate in smaller buildings with a higher surface-area-to-volume ratio

(AV r). A higher AV r is associated with higher exposure to heat transfer and, thus,

to outside temperatures. For example, Depecker et al. (2001) show the importance of

the relationship between building shape and energetic consumption, documenting how a

higher surface area-to-volume ratio is positively correlated with energy consumption .

IV.A.2 Productivity

Previous papers have documented a negative relationship between temperature and

labor productivity (e.g., Graff Zivin and Neidell 2014, Heal and Park 2013, Hsiang 2010,

and Somanathan et al. 2021). Rising temperatures can affect manufacturing productivity

via their effect on both the performance of workers and the productivity of machinery and

equipment. The effect of temperature on workers’ productivity can arise due to fatigue and

lower ability to focus, as well as absenteeism. Stricter safety standards have increased the

amount of protective gear necessary in manufacturing workplaces over time, amplifying

the exhaustion of performing the same task at a higher temperature. Another amplifying

effect might arise from the faster physical pace or longer shifts set to meet production goals

and remain competitive. On the other hand, direct evidence on the effects of temperature

on the performance of machinery and equipment is sparse, although Zhang et al. (2018)

show suggestive evidence that higher temperatures lower capital productivity for Chinese

manufacturers.

We examine total factor productivity (TFP ) in logs at the plant level. TFP is com-

puted as the plant-level Solow residual. The results of estimating equation (1) when the

outcome variables are log TFP are reported in Table 4 columns (1)-(2) and plotted in

Figure 6. We also examine labor productivity, defined as valued added divided by the

total number of employee-hours worked. The results for labor productivity are presented

in columns (3)-(4). As before, point estimates should be interpreted as the effect of ad-

ditional days in a given temperature bin relative to the average climate experienced at a

given plant-location.

We find that temperature has a negative and monotonic effect on both measures of

productivity, with additional days in hotter bins leading to lower productivity. The posi-

tive effects on additional cold days are small and mostly not statistically significant, while

plants experiencing additional hot days experience significant declines in productivity.

The magnitude of the coefficients implies that a one-standard-deviation increase in the

number of “hot days” in the temperature bin with maximum temperature equal or above
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30°C would generate a 1.5% decline in TFP and a 1% decline in labor productivity.18

Next, we investigate the heterogeneous effects of temperature shocks on productivity

measured by TFP across plants of different size using the estimating equation (3). The

results are reported in Figure 7. The effects of temperature shocks on the productivity

of large plants are small and non statistically significant. On the other hand, higher than

usual temperatures are associated with large and significant declines in the productivity

of small plants. As shown by the point estimates on the interaction term, the effects on

small plants’ productivity are statistically different than those on large plants.

Potential explanations for these heterogeneous effects of temperature shocks on plant

productivity include heterogeneity in the type of labor and capital used by plants of

different size. Larger plants use physical capital whose performance is less affected by

abnormal temperatures, have more advanced temperature control systems (Zivin and

Kahn, 2016), or better insulated work environments. Differences in the type of labor force

employed in large versus small plants might also play a role. For example, large plants

may have employees who are more productive, more motivated, and whose performance

may be less affected by temperature shocks.

We next discuss the relationship between the effects of temperature on energy costs

and productivity. Higher energy expenditure increases plant costs but might also help to

partly absorb the impact of temperatures on worker productivity thanks to temperature

control systems. This relationship between energy expenditure and productivity is hard to

test as we do not observe how manufacturing plants use energy.19 However, the evidence

presented in Figures 5 and 7 show that – within narrowly defined sectors – we observe both

an increase in energy costs and a decline in productivity within small plants. This suggests

that at least some small plants have less energy-efficient equipment and temperature

control systems, so that higher temperatures both increase their costs and decrease their

productivity.

18Because energy is an input in production, the increase in energy costs documented above could
mechanically generate a decline in value added, and thus in TFP or labor productivity measured as
value added per worker. We checked this potential explanation of the productivity results by estimating
equation (1) using an alternative measure of productivity in which value added is constructed without
including energy among inputs. The results of this robustness test are reported in Table A.2 columns
(3)-(4). As shown, we find similar results using this alternative measure, which indicates that the effect
of temperature shocks on productivity is not mechanically driven by the effect of temperature shocks on
energy costs.

19Data from the ASM/CMF shows that the majority of energy expenditures are in electricity rather
than fuel. In addition, data from the Manufacturing Energy Consumption Survey shows that, on average,
about 80% of electricity is used by manufacturing plants for their production process (e.g., operating
machinery and equipment, including heating, cooling and refrigeration of inputs and outputs), about 9%
is used for temperature control of work environment, and another 7% for lighting.
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IV.A.3 Intensive and extensive margin

Finally, we study whether manufacturing plants respond to temperature shocks via

the intensive margin (e.g., by increasing or decreasing their size) or via the extensive

margin (e.g., by deciding to exit certain locations). We start by studying the effect of

temperature shocks on plant size, as measured by its total value of shipment. The results

are reported in column (1) of Table A.3. We find no contemporaneous response of firm

size to additional hot days relative to what is normally experienced by a given plant, and

a positive but noisy response to additional cold days.

Next, we focus on the extensive margin as measured by plant exit from a given zip

code. To this end, we use data from the LBD described in Section II.A, which tracks

all manufacturing establishments, along with their location over time. When estimating

equation (1), we define exit in year t as a dummy equal to 1 if plant i has positive

employment in the LBD in year t but no recorded employment in year t+1. This is because

plants that operate for a fraction of a year are still recorded in the LBD for that year, so

our definition ensures that we are capturing the contemporaneous relationship between

temperature shocks and exit decisions. The results are reported in column (2) of Table

A.3. We find that the effect of temperature shocks on exit is mostly small in magnitude

and non statistically significant. The probability of exit monotonically increases with

temperature bins above 18°C but even estimates on the highest temperature realizations

are not statistically significant.

IV.A.4 Robustness Tests

There are two potential concerns with the interpretation of our results. First, tem-

perature shocks can affect local demand from consumers. Although the manufacturing

sector mostly produces tradable goods sold in the rest of the U.S. or internationally, it

is possible that the demand for some manufacturing goods is still local. To test for this

concern, in Table A.4, we replicate our analysis restricting the sample to manufacturing

sectors with high (above median) levels of tradability according to the geographical con-

centration index proposed in Mian and Sufi (2014). Results are quantitatively similar

when implementing this restriction.

Another potential concern is that extreme temperature realizations that are detri-

mental for crop yields can negatively affect manufacturing production via input-output

linkages with local agriculture. To deal with this concern, in Table A.5, we replicate our

analysis excluding manufacturing sectors for which agricultural output is a main input

in production. In particular, we exclude manufacturing sectors for which expenditures

in inputs from agriculture is 5% or more of total value of production according to the

earliest (1980) available Input-Output table from the Bureau of Economic Analysis (i.e.

manufacturing of food, beverage and tobacco products). Results are robust to this sample
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restriction.

Finally, in Table A.6 we show that the main results on short-run effects of temperature

shocks are robust to alternative definitions of temperature. In Panel A, we use bins

constructed using average daily temperatures instead of maximum daily temperatures.

In Panel B, we use a continuous measure of temperature deviations, Cooling Degree Days

(CDD) and Heating Degree Days (HDD) as defined in section III.B. As shown, the results

are robust to these alternative definitions.

IV.B Long-run response to changes in temperature

The short-run responses to temperature shocks documented in Section IV.A indicate

that small plants incur significant additional energy costs and lower productivity in hot-

ter than usual years. However, these effects do not trigger significant contemporaneous

adjustments on the intensive or extensive margin. It is plausible that key industrial de-

cisions such as reducing the size of an existing plant or exiting a given market are not

driven by yearly weather shocks, especially if such shocks are interpreted as idiosyncratic

and therefore likely to revert. On the other hand, the cumulative effect of several years

of hotter than usual weather might push managers to respond on these margins. This is

because a series of deviations from past temperatures might indicate a shift in the climate

distribution from which weather events are drawn in a given geographical area.

To investigate the response to long-run changes in average temperatures in a given

CZ, we estimate equation (2) described in section III.B. This equation relates long-run

changes in manufacturing activity to long-run changes in average temperatures between

the 1980s and the 2010s. As discussed in section II.B, the U.S. experienced a large

increase in average temperatures between the 1980s and 2010s, with substantial variation

even across CZ within the same areas of the country.

We start by studying the effect of long-run changes in temperature on number of

plants, total employment, and average plant size in a given CZ. The results are reported

in Table 5. The point estimate in column (1) indicate that CZs that have become warmer

over the last four decades experience a relative decline in the number of plants. The

magnitude of estimated coefficient implies that a standard deviation higher increase in

temperature – about 90 degree days above 18°C per year – corresponds to a 4.2% percent

larger decline in the number of manufacturing plants. We find no significant effects of

long-run temperature changes on total employment, leading to a positive – thought not

statistically significant – effect on the average plant size. Overall, these results indicate

that CZs with faster warming temperatures experienced higher exit and no significant

changes in total employment, which is consistent with a reallocation of workers towards

larger plants.

We then focus on the impact of long-run changes in temperature on local concentration

of manufacturing activity. We bring the analysis to the CZ-sector level, where sectors are
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constructed based on the NAICS 3-digit classification. We estimate a version of equation

(2) including both Census division and sector fixed effects. In terms of outcomes, we focus

on the share of employment concentrated in the top-4 largest plants and the Herfindahl-

Hirschman Index (HHI) in a given CZ-industry. We compute the HHI as the sum of

squared values of the employment shares of each plant in a given CZ-industry. The HHI

thus captures the amount of concentration in the employment share across plants, with

higher values indicating higher concentration.

The results are reported in panel A of Table 6. The point estimates indicate positive

and significant effects of long run changes in average temperatures on industrial concen-

tration. In particular, we find that manufacturing sectors in CZs that in the 2010s decade

had a standard deviation higher increase in temperature relative to the 1980s decade ex-

perienced a 0.5 percentage points larger increase in the share of employment concentrated

in the top 4 largest plants, and a 3 percent larger increase in the HHI. Overall, the results

indicate that faster warming in the last four decades has led to higher concentration of

industrial activity among larger plants within manufacturing sectors.

IV.C Mechanisms behind long-run response

The finding that faster warming led to higher concentration of manufacturing activity

among large plants suggests that such plants are better equipped for long-run adaptation

to climate change. In this section, we discuss and empirically test potential mechanisms

that can rationalize this result. To this end, we estimate a version of equation (2) at the

CZ-industry level in which the measure of long-run changes in temperature ∆CDDc(d) is

interacted with variables capturing exposure to different mechanisms. We consider four

potential mechanisms: energy prices, managerial skills, access to finance, and ability to

hedge across locations.

IV.C.1 Energy prices

The latest U.S. Manufacturing Energy Consumption Survey, which was run in 2018

on a nationally representative sample of manufacturing establishments, shows that es-

tablishments with fewer than 50 employees face electricity prices (in USD per m BTU)

that are 33% higher than those faced by manufacturing establishments with 50 employees

and above.20 The reason is that large manufacturing plants can negotiate better prices

from electricity suppliers because they use more electricity, and can receive it at higher

voltages, making electricity transmission less expensive. In addition, their demand is less

seasonal and less volatile during the day, which allows them to negotiate discounts in

exchange for lowering their energy usage during consumption peaks by retail customers

that put the electric grid under stress.

20See Table 7.5, MECS publication, released in September 2021.
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For a given increase in energy demand, higher prices per unit of energy translate

into larger cost shocks for small than for large plants. Over the long run, more hot days

can lead to a higher frequency of such cost shocks for small plants. This is a potential

mechanism behind the relative decline in both the number and the employment share of

small plants in regions that experienced faster warming during the last four decades.

To test this mechanism, we interact long-run changes in temperature at CZ level with

a dummy capturing above-median electricity prices (in dollars per unit of energy) at the

NAICS-3 industry and Census region level. As shown in Figure A.6, average electric-

ity prices per unit of energy are highly correlated with the price gap between small and

large plants at the division-year level. Notice that, although MECS reports information

on electricity prices for plants with employment above versus below 50 employees, this

information is only available aggregated at the Census division level (9 divisions), pro-

viding limited cross-sectional variation. Thus, when testing this mechanism, we exploit

variation in baseline average electricity prices, which is available at the industry-Census

region level.21

The results are reported in Panel B of Table 6. We find that long-run changes in

temperature have no effect on concentration in industry-regions facing below-median cost

per unit of energy. The effect is positive and statistically significant for industry-regions

facing higher energy costs. In particular, for a given increase in long-run temperatures,

industry-regions with above-median energy costs experience a 1.2 percentage points larger

increase in the share of employment in the top 4 largest plants and a 4.3 percent larger

increase in HHI relative to industry-regions facing below-median energy prices. There

results are consistent with energy prices being an important transmission mechanism,

linking warming temperatures to industry concentration over the long run.

IV.C.2 Managerial skills

Large plants might also have better trained managers who understand the change in

exposure to climate risk and invest in adaptation. This hypothesis relies on two findings

documented in previous studies. First, there is evidence that large firms tend to be better

managed. For example, Bloom et al. (2019) document large dispersion in management

practices across U.S. manufacturing plants, and show that the diffusion of “structured”

management practices is strongly correlated with both plant and firm size as captured by

number of employees (Figure A2 in Bloom et al. 2019).

Second, previous work also establishes that better managed firms are less energy inten-

sive and more productive (Bloom et al. 2010, Martin et al. 2012), and that more attentive

managers are able to offset some of the adverse effects of warmer temperatures on produc-

21Ideally, we would like to use a baseline measure of electricity prices faced by plants in a given industry
and region at the beginning of our sample. However, the MECS data starts in 1998, so we sort industry-
regions based on the 1998 distribution of prices per unit of energy in that year.
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tivity by means of task reallocation (Adhvaryu et al. 2022). Within our setting, examples

of investments in adaptation include the adoption of technologies that reduce the effect

of temperature on labor productivity, such as automated warehouse management sys-

tems, the updating of buildings and machinery so that they can better withstand higher

temperatures or natural disasters, and the adoption of general energy-saving technologies

such as computer systems to control major energy-using equipment.

In order to test this mechanism, we exploit data on participation in electricity manage-

ment practices at the industry-level from the Manufacturing Energy Consumption Survey

(MECS) of 1998. We sort industries by their baseline participation rate in such practices

and estimate the heterogeneous effects of long-run changes in temperatures across indus-

tries with different participation rates. The results are reported in Panel C of Table 6.

Consistent with the channel entertained in this section, we find that higher participation

rates in electricity management lead to a lower impact of long-run changes in temperatures

on industry concentration.

IV.C.3 Access to finance

Another potential mechanism linking firm size to adaptation to climate change is that

large plants might have better access to external finance. This would allow them to use

available credit lines to cope with weather shocks, reducing the need to downscale employ-

ment or close plants. For example, using data from Brazil, Albert et al. (2021) document

how access to finance helped drought-affected municipalities to insure themselves against

the negative impact of weather shocks via capital inflows from regions connected via the

bank branch network. Easier access to external finance also facilitates investments in

long-term projects necessary to make their production process less sensitive to climate

change. In the context of agriculture, Rajan and Ramcharan (2023) document that access

to bank finance facilitated the long-run adjustment to the 1949-1957 drought in the US.

They show that counties with initially better access to external finance experienced lower

out-migration, and their agricultural sector was better able to adapt via investments in

irrigation, drought-tolerant crops, and mechanization.

To test this mechanism, we exploit variation in the density of bank branches per capita

across CZs as a proxy for local financial development and ability to access bank financing

for small and medium plants. Data on bank branch locations is from the FDIC, with

the caveat that the first year for which data is available is 1994. In our test, we rely

on variation across locations (CZs) as opposed to variation across industries or industry-

locations used in the previous tests.

The results are reported in Panel D of Table 6. We find positive effects of long-run

changes in temperatures on local industry concentration in areas with below-median local

bank branch density. The coefficients on the interaction with above-median bank branch

density are negative but not statistically significant. Overall, these results are noisy – and
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our proxy of access to external finance too general to be able to draw strong conclusions

about the role of access to finance on adaptation in our setting.

IV.C.4 Hedging across locations

Large firms that operate across multiple plants in different locations might be natu-

rally better hedged to absorb weather shocks, even when they occur at higher frequency

due to climate change. For example, Castro-Vincenzi (2022) documents how car compa-

nies are able to partly absorb weather shocks, such as floods, by reallocating production

from affected plants to non-affected plants. This hedging strategy requires to keep spare

capacity in each location, which firms with multiple plants are more likely to be able to

afford. Similarly, Acharya et al. (2023) show that U.S. firms operating in multiple loca-

tions reallocate employment from counties affected by heatwaves to unaffected counties,

while single-plant firms are more likely to downsize in response to such shocks.

Data from the National Establishment Time Series (NETS) indicates that, in US

manufacturing, large plants are more likely than small plants to be part of a multi-unit

firm. In particular, 56% of plants with more than 20 employees and 67% of plants with

more than 50 employees are part of a multi-unit firm. On the other hand, only 17.5% of

plants with up to 20 employees and 21.4% of plants with up to 50 employees are part of

a multi-unit firm.

To test the potential role of hedging across multiple plants, we investigate whether

the effects of long-run changes in temperature on concentration differ depending on

whether local small plants are single-unit firms or part of a multi-unit firm. The hedging

mechanism described above would imply that small plants that are part of a multi-unit

firm should be better able to cope with the negative effects of long-run increases

in temperature, leading to a lower impact of higher temperatures on local industry

concentration. We use data from the U.S. Census Bureau and sort CZ-industries by the

share of small plants (plants in the first quintile of the size distribution) that are part of

multi-unit firms in the 1980s (decadal average). The results are reported in Panel E of

Table 6. We find the long-run effects of changes in temperature on concentration to be

partly attenuated when a larger fraction of local small plants is part of multi-unit firms.

V Conclusions

In this paper, we use plant-level data from the U.S. Census of Manufacturers to study

the short and long-run effects of temperature variation on manufacturing activity. Taken

together, the results are consistent with large plants being better equipped to adapt to

climate change. Our evidence indicates that differences in costs per unit of energy, man-

agerial skill, and – to a more limited extent – hedging across locations play an important

role. Our results highlight that recent increases in industry concentration might not
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solely be due to technological or political factors, but also to better adaptation to climate

change.

The results also raise the question of whether higher concentration of employment

within large plants is “good or bad” for the local economies more affected by a warming

climate. We do not address the welfare implications of manufacturing concentration driven

by climate change in this paper. However, some of our results speak to this debate. For

example, the presence of large plants with the means to adapt to climate change could be

an important factor in preserving employment locally and limiting out-migration. Indeed,

our results show that faster warming leads to a reallocation of employment from small

to large plants but no significant changes in the overall employment at the county level.

On the other hand, the differential effect of temperature across plants of different size

might have detrimental effects on outcomes associated with small scale firms – such as

“radical” innovations, as previous literature suggested (Prusa and Schmitz Jr, 1991) – or

even constitute a barrier to entrepreneurship in certain regions. All these are important

avenues for future research.
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Figure 1: Temperature trend in the U.S.

Notes: The figure shows annual and decadal temperature dynamics over the 1901 to 2019 period on the
basis of temperature data obtained from the National Oceanic and Atmospheric Administration (NOAA).
The underlying data covers 48 contiguous states. Annual anomalies (the bars) are defined as the difference
between the annual average temperature across the 48 states and the average annual temperature over
the 1901 to 2000 period. The moving average of the anomaly (line) is based on 10 years of anomaly
observations centered around years [-4;5].
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Figure 2: Distribution of the long-run changes in degree days above and
below 18°C

(a) Raw changes (b) Changes residualized on Census Division FE
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Notes: The figure shows the distribution of changes in heating degree days (HDD; blue) and cooling
degree days (CDDs; red) from the 1980s to the 2010s at the commuting zone level. A daily CDD is the
difference in degrees between the maximum daily temperature and 18°C conditional on the maximum
daily temperature being above 18°C, and a daily HDD is the difference in degrees between 18°C and
the maximum daily temperature conditional on the maximum daily temperature being below 18°C, see
Heutel et al. (2021) or Zivin and Kahn (2016). For each commuting zone, average daily HDDs and CDDs
are summed by year; yearly HDDs and CDDs are then averaged over the 2010s and 1980s, respectively,
from which the long-run difference is calculated. Underlying data are from the PRISM Climate Group
(we use the cleaned version of that data provided on Wolfram Schlenker’s homepage). Panel A shows
raw data, and Panel B shows the distribution after removing Census Division fixed effects.
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Figure 3: Geographic distribution of long-run changes in degree days
above and below 18°C

(a) ∆ (degree days > 18°C or CDDs)

(b) ∆ (degree days < 18°C or HDDs)

Notes: The figure shows changes in Cooling Degree Days (CDDs, Panel A) and Heating Degree Days
(HDDs, Panel B) between the 1980s and the 2010s by commuting zone relative to average Census division
changes. A daily Cooling Degree Day (CDD) is the difference in degrees between the maximum daily
temperature and 18°C conditional on the maximum daily temperature being above 18°C, and a daily
Heating Degree Day (HDD) is the difference in degrees between 18°C and the maximum daily temperature
conditional on the maximum daily temperature being below 18°C, see Heutel et al. (2021) or Zivin and
Kahn (2016). For each commuting zone, average daily HDDs and CDDs are summed by year, yearly
HDDs and CDDs are then averaged over the 2010s and 1980s, respectively, from which the long-run
difference is calculated. Underlying data is from the PRISM Climate Group (we use the cleaned version
of that data provided on Wolfram Schlenker’s homepage). Red indicates counties that have become
warmer, i.e., that experienced an increase in CDDs (Panel A) or a decrease in HDDs (Panel B) relative
to division-level changes.
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Figure 4: Short-run effect of temperature on energy costs (as a
percentage of the total value of shipments)

Panel A: Energy Costs/Total Value of Shipments
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Panel B: Electricity Costs/Total Value of Shipments)
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Notes: The figure shows the point estimates and the 90/95% confidence intervals when using the panel
data approach described in equation (1) to estimate the short-run effect of temperature on energy costs
divided by total value of shipments (Panel (a)) and electricity costs divided by total value of shipments
(Panel (b)). The analysis is at the plant-year level and the sample period comprises 1977 to 2018.
The coefficients shown along the x-axis represent the number of days of maximum temperatures in each
respective temperature bin (βb in equation (1)) in a given year in a plant’s ZIP Code. The number of days
in a temperature bin is divided by 100 for readability and the temperature bin [15°C,18°C) is used as the
reference bin and therefore omitted. Control variables include average zip code-year level precipitation,
as well as number of hurricanes and number of tornadoes at the county-year level. Plant, industry-year,
and state-year fixed effects are also included. Underlying regressions are estimated using ASM sample
weights.
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Figure 5: Heterogeneous effects on Energy Costs/Total Value of
Shipments by Plant Size

Panel A: Large Plants
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Panel B: Difference between Small and Large Plants
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Notes: The figure shows the point estimates and the 90/95% confidence intervals when using the panel
data approach described in equation (1) to estimate the short-run effect of temperature on energy costs
divided by total value of shipments on large firms (Panel (a)) and small firms (Panel (b)). The analysis
is at the plant-year level and the sample period comprises 1977 to 2018. The coefficients shown along
the x-axis represent the number of days of maximum temperatures in each respective temperature bin
(βb in equation (1)) in a given year in a plant’s ZIP Code. The number of days in a temperature bin
is divided by 100 for readability and the temperature bin [15°C,18°C) is used as the reference bin and
therefore omitted. We define plant size based on the number of employees in the 1980s, and divide the
plant size distribution into quintiles. Small plants are those in the smallest quintile; large plants are all
other plants. Control variables include average zip code-year level precipitation, as well as number of
hurricanes and number of tornadoes at the county-year level. Plant, industry-year, and state-year fixed
effects are also included. Underlying regressions are estimated using ASM sample weights.
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Figure 6: Short-run effect of temperature on productivity

Panel A: Log(TFP)
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Panel B: Log(Value-Added / Total Hours Worked)
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Notes: The figure shows the point estimates and the 90/95% confidence intervals when using the panel
data approach described in equation (1) to estimate the short-run effects of temperature on the natural
logarithm of total factor productivity (TFP). The analysis is at the plant-year level and the sample
period comprises 1977 to 2018. The coefficients shown along the x-axis represent the number of days
of maximum temperatures in each respective temperature bin (βb in equation (1)) in a given year in a
plant’s zip code. The number of days in a temperature bin is divided by 100 for readability and the
temperature bin [15°C,18°C) is used as the reference bin and therefore omitted. Control variables include
average ZIP Code-year level precipitation, as well as number of hurricanes and number of tornadoes at
the county-year level. Plant, industry-year, and state-year fixed effects are also included. Underlying
regressions are estimated using ASM sample weights.
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Figure 7: Heterogeneous short-run effects of temperature on Log(TFP)

Panel A: Large Plants
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Panel B: Difference between Small and Large Plants
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Notes: The figure shows the point estimates and the 90/95% confidence intervals when using the panel
data approach described in equation (1) to estimate the short-run effects of temperature on the natural
logarithm of total factor productivity (TFP) on large firms (Panel (a)) and small firms (Panel (b)). The
analysis is at the plant-year level and the sample period comprises 1977 to 2018. The coefficients shown
along the x-axis represent the number of days of maximum temperatures in each respective temperature
bin (βb in equation (1)) in a given year in a plant’s zip code. The number of days in a temperature bin
is divided by 100 for readability and the temperature bin [15°C,18°C) is used as the reference bin and
therefore omitted. We define plant size based on the number of employees in the 1980s, and divide the
plant size distribution into quintiles. Small plants are those in the smallest quintile; large plants are all
other plants. Control variables include average ZIP Code-year level precipitation, as well as number of
hurricanes and number of tornadoes at the county-year level. Plant, industry-year, and state-year fixed
effects are also included. Underlying regressions are estimated using ASM sample weights.
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Table 1: Summary Statistics

Variables N Mean Std. Dev.

Panel A: ASM & CMF Sample

Energy Costs/Total Value of Shipments (%) 1922000 2.20 2.91
Electricity Costs/Total Value of Shipments (%) 1922000 1.34 1.58
Log(TFP) 1922000 1.85 0.56
Log(Value-Added / Total Hours Worked) 1922000 3.47 0.91
Log(Total Value of Shipments) 1922000 9.43 1.66
T < 3°C 1922000 35.40 33.53
3°C ≤ T < 6°C 1922000 17.92 12.55
6°C ≤ T < 9°C 1922000 20.16 12.28
9°C ≤ T < 12°C 1922000 22.54 11.83
12°C ≤ T < 15°C 1922000 26.17 10.87
15°C ≤ T < 18°C 1922000 29.78 10.28
18°C ≤ T < 21°C 1922000 33.21 11.66
21°C ≤ T < 24°C 1922000 37.01 12.83
24°C ≤ T < 27°C 1922000 42.84 13.01
27°C ≤ T < 30°C 1922000 44.59 15.11
T ≥ 30°C 1922000 55.61 44.48

Panel B: LBD Sample

Exit 13590000 0.08 0.26

Panel C: LBD - Long-run diff. at the commuting zone level

∆ Degree-Days > 18°C 700 48.63 90.06
∆ Degree-Days < 18°C 700 -46.83 98.34
∆ Log(# Estab.) 700 -0.02 0.30
∆ Log(Emp.) 700 -0.22 0.54
∆ Log(Avg. Size of Estab.) 700 -0.20 0.43

Panel D: LBD - Long-run diff. at the commuting zone-NAICS 3 level

∆ Degree-Days > 18°C 11000 53.08 80.49
∆ Degree-Days < 18°C 11000 -56.81 83.18
∆ Fraction of Emp. in Top 4 Largest Estab. 11000 -0.00 0.11
∆ Log(HHI Emp.) 11000 0.00 0.54

Notes: The table shows summary statistics for the ASM and CMF sample at the
plant-year level (Panel A), the LBD sample at the plant-year level (Panel B), and
long-run differences (average in the 2010s minus average in the 1980s) for the LBD
sample at the commuting zone level (Panel C) and commuting zone-industry level
(Panel D). Variable definitions are in Appendix Table A.1.
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Table 2: Balance test for commuting zone initial characteristics

∆ Degree-days > 18 / 100 R-squared
(1) (2)

Panel A: Commuting zone initial characteristics

perc. of college grads 0.185 0.325
(0.121)

log(pop.) -0.036 0.277
(0.104)

log(per cap. income) 0.088 0.199
(0.118)

∆IPWuit -0.311*** 0.191
(0.071)

Panel B: Long-run changes in the occurrences of natural hazards

avg. precipitation -0.153 0.298
(0.154)

flood -0.095 0.076
(0.102)

drought -0.026 0.217
(0.113)

heatwave -0.009 0.135
(0.118)

hurricane -0.146 0.221
(0.099)

tornado -0.217* 0.119
(0.124)

Observations 722

Notes: Outcome variables in the regressions for columns (1)-(3) of
Panel A are commuting zone characteristics observed in 1980 Cen-
sus. The outcome variable in the regression for column (4) of Panel
A is the changes in exposure to China shock between 1991 and 2007,
as is defined in Autor et al. (2013). The last two rows in Panel A re-
port the mean and standard deviation of the corresponding outcome
variable in each column. The outcome variables in the regression
for Panel B is the difference between the occurrences of each natural
disaster in the 1980s and the 2010s. The independent variables in
both panels are the changes in the number of degree days above 18°C
from the 1980s to the 2010s. The long-run changes in degree days
below 18°C are also controlled in all specifications. The independent
variables are divided by 100 to make the table easier to read. Stan-
dard errors are reported in parentheses and clustered at the state
level. Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Short-run effect of temperature on energy costs

Energy Costs/TVS Electricity Costs/TVS

(1) (2) (3) (4)

T < 3°C 0.021 -0.0227 -0.0076 -0.0353
(0.0674) (0.1258) (0.0434) (0.0668)

3°C ≤ T < 6°C 0.0986 0.0628 -0.0095 -0.0167
(0.0632) (0.1098) (0.0459) (0.0763)

6°C ≤ T < 9°C 0.0535 0.0878 -0.0087 0.004
(0.0667) (0.0818) (0.0422) (0.0456)

9°C ≤ T < 12°C 0.0714 0.0518 0.0035 -0.0205
(0.0705) (0.0929) (0.0351) (0.0437)

12°C ≤ T < 15°C 0.0772 0.1213** 0.009 0.0343
(0.0501) (0.0537) (0.0342) (0.0384)

18°C ≤ T < 21°C 0.0629 0.0467 0.021 0.0106
(0.0520) (0.0629) (0.0353) (0.0402)

21°C ≤ T < 24°C 0.1277* 0.1027 0.0780* 0.059
(0.0690) (0.0762) (0.0440) (0.0409)

24°C ≤ T < 27°C 0.1454*** 0.1515* 0.0653** 0.0673
(0.0490) (0.0761) (0.0312) (0.0412)

27°C ≤ T < 30°C 0.1578*** 0.2025*** 0.0665** 0.0782**
(0.0520) (0.0637) (0.0317) (0.0373)

T ≥ 30°C 0.1606** 0.2255** 0.0937** 0.1277**
(0.0617) (0.0913) (0.0427) (0.0612)

Observations 1922000 1922000 1922000 1922000
R-squared 0.790 0.791 0.764 0.766
Establishment FE yes yes yes yes
NAICS3-Year FE yes yes yes yes
Extreme weather controls yes yes yes yes
Census Division-year FE yes yes
State-year FE yes yes

Notes: The table uses the panel data approach described in Equation (1) to
estimate the short-run effects of temperature on energy costs divided by total
value of shipments (Columns 1-2) and electricity costs divided by total value
of shipments (Columns 3-4). The analysis is at the plant-year level and the
sample period comprises 1977-2018. The shown coefficients of interest repre-
sent the number of days in each respective temperature bin (βb in equation
(1)) in a given year in a plant’s zip code. The number of days with maximum
daily temperature in a temperature bin is divided by 100 for readability and the
temperature bin [15°C,18°C) is used as the reference bin and therefore omitted.
All specifications control for average ZIP Code-year precipitation and include
establishment fixed effects. Further fixed effects are included as indicated. Ex-
treme weather controls include number of hurricanes and number of tornadoes,
both of which are measured at the county-year level. Regressions are estimated
using ASM sample weights. Standard errors are reported in parentheses and
clustered at the state level. Significance is indicated at the 1% (***), 5% (**),
and 10% (*) level.
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Table 4: Short-run effect of temperature on productivity

Log(TFP) Log( Value-Added
Total Hours Worked )

(1) (2) (3) (4)

T < 3°C -0.0003 0.0079 -0.0159 -0.0139
(0.0149) (0.0227) (0.0219) (0.0324)

3°C ≤ T < 6°C -0.018 -0.0126 -0.0324* -0.0458
(0.0179) (0.0225) (0.0190) (0.0307)

6°C ≤ T < 9°C -0.0066 -0.0073 0.0092 -0.0027
(0.0144) (0.0206) (0.0225) (0.0283)

9°C ≤ T < 12°C -0.0087 -0.0015 -0.0022 -0.0007
(0.0127) (0.0158) (0.0187) (0.0237)

12°C ≤ T < 15°C -0.0114 -0.0114 0.0077 0.0012
(0.0154) (0.0190) (0.0175) (0.0201)

18°C ≤ T < 21°C -0.0131 -0.0231 -0.0173 -0.0317
(0.0121) (0.0153) (0.0191) (0.0220)

21°C ≤ T < 24°C -0.0292** -0.0475** -0.0314 -0.0504**
(0.0130) (0.0187) (0.0195) (0.0239)

24°C ≤ T < 27°C -0.02 -0.0417** -0.0324* -0.0552**
(0.0127) (0.0183) (0.0184) (0.0218)

27°C ≤ T < 30°C -0.0353*** -0.0526*** -0.0503*** -0.0660***
(0.0111) (0.0152) (0.0174) (0.0211)

T ≥ 30°C -0.0346*** -0.0618*** -0.0487*** -0.0781***
(0.0104) (0.0163) (0.0158) (0.0197)

Observations 1922000 1922000 1922000 1922000
R-squared 0.777 0.778 0.779 0.78
Establishment FE yes yes yes yes
NAICS3-Year FE yes yes yes yes
Extreme weather controls yes yes yes yes
Census Division-year FE yes yes
State-year FE yes yes

Notes: The table uses the panel data approach described in Equation (1) to es-
timate the short-run effects of temperature on total factor productivity (Columns
1-2) and value added divded by total hours worked (Columns 3-4). The analysis
is at the plant-year level and the sample period comprises 1977-2018. The shown
coefficients of interest represent the number of days in each respective tempera-
ture bin (βb in equation (1)) in a given year in a plant’s zip code. The number of
days with maximum daily temperature in a temperature bin is divided by 100 for
readability and the temperature bin [15°C,18°C) is used as the reference bin and
therefore omitted. All specifications control for average zip code-year precipita-
tion and include establishment fixed effects. Further fixed effects are included as
indicated. Extreme weather controls include number of hurricanes and number of
tornadoes, both of which are measured at the county-year level. Regressions are
estimated using ASM sample weights. Standard errors are reported in parentheses
and clustered at the state level. Significance is indicated at 1% (***), 5% (**),
and 10% (*) level.
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Table 5: Long-run effects of temperature on number of plants,
employment, and plant size

∆ Log(# Estab.) ∆ Log(Emp.) ∆ Log(Avg. Size of Estab.)
(1) (2) (3)

∆ Degree-Days > 18°C -0.0465** 0.0093 0.0535
(0.0209) (0.0462) (0.0421)

∆ Degree-Days < 18°C -0.0306 0.0062 0.036
(0.0305) (0.0413) (0.0302)

Observations 700 700 700
R-squared 0.233 0.223 0.173
Census Division FE yes yes yes
Commuting zone controls yes yes yes

Notes: The table reports results obtained by estimating the commuting-zone-level long-run
specification described in equation (2). ∆ Degree-Days > 18°C is divided by 100 for readability.
In column (1), the left-hand side variable is the change in the natural logarithm of the average
yearly number of establishments between the 2010s and the 1980s. In column (2), the left-hand
side variable is the change in the natural logarithm of the average yearly number of employees
reported by establishments between the 2010s and the 1980s. In column (3), the left-hand
side variable is the change in the natural logarithm of the average number of employees per
establishment between the 2010s and the 1980s. CZ-level controls include: change in average
precipitation between the 2010s and the 1980s, percentage of population that attended at least
one year of college in 1980, log-transformed population in 1980, log-transformed income per
capita in 1980, change in exposure to the China shock between 1990 and 2007, and changes in
occurrences of hurricanes and tornadoes between the 2010s and the 1980s. Standard errors are
reported in parentheses and clustered at the state level. Significance is indicated at 1% (***),
5% (**), and 10% (*) level.
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Table 6: Heterogeneous long-run effects of temperature on
concentration

Dep. Var. ∆ Fraction of Emp. in Top 4 Largest Estab. ∆ Log(HHI Emp.)
(1) (2)

Panel A: Aggregate effect

∆ Degree-Days > 18°C 0.0053* 0.0334**
(0.0030) (0.0150)

Panel B: Interacted with above-median indicator of electricity prices

∆ Degree-Days > 18°C -0.0009 0.0111
(0.0028) (0.0143)

∆ Degree-Days > 18°C × above median 0.0134*** 0.0482**
(0.0029) (0.0185)

Panel C: Interacted with above-median indicators of electricity management participation

∆ Degree-Days > 18°C 0.0107** 0.0422**
(0.0050) (0.0193)

∆ Degree-Days > 18°C × above median -0.0111* -0.0181
(0.0056) (0.0216)

Panel D: Interacted with above-median indicator of # of branches per 1000 people

∆ Degree-Days > 18°C 0.0062 0.0440**
(0.0037) (0.0196)

∆ Degree-Days > 18°C × above median -0.0013 -0.0220
(0.0038) (0.0183)

Panel E: Interacted with above-median indicator of frac. of small plants that are multi-unit

∆ Degree-Days > 18°C 0.0069** 0.0569***
(0.0033) (0.0150)

∆ Degree-Days > 18°C × above median -0.0030 -0.0493***
(0.0024) (0.0126)

Observations 11000 11000
Census Division FE yes yes
Commuting zone controls yes yes

Notes: The table shows the main coefficients when estimating the commuting-zone-industry-level long-run spec-
ification described in equation (2) to examine the long-run implications of temperature on local manufacturing
activity. ∆ Degree-Days > 18°C is divided by 100 for readability. In column (1), the left-hand side variable is the
change in the natural logarithm of the fraction of employment in the top 4 largest establishment between the 2010s
and the 1980s. In column (2), the left-hand side variable is the change in the natural logarithm of the average
yearly Herfindahl-Hirschman Index between the 2010s and the 1980s, constructed on the basis of the number of
employees reported by establishments. Panel A shows baseline results for changes in average CDDs between the
2010s and the 1980s. Panels B-E are augmented by additional interaction terms. In Panel B, the interaction term
is an indicator for NAICS3-Census Regions with above-median electricity prices in 1998. In Panel B, the interac-
tion term is an indicator for NAICS3 industries with above-median electricity management practice participation
rates in 1998. In Panel C, the interaction term is an indicator for commuting zones with above-median number
of branches per 1000 population in 1994. In Panel D, the interaction term is an indicator for NAICS3-commuting
zones with an above-median fraction of small plants that are part of a multi-unit firm in the 1980s. Small firms are
defined as firms in the smallest size quintiole (by number of empoyees) in the 1980s. Census Division fixed effects,
NAICS-3 fixed effects and a control for the change in average precipitation between the 2010s and the 1980s at
the commuting-zone level are included throughout. All columns further include commuting-zone-level controls for
percentage of population that attended at least one year of college in 1980, log-transformed population in 1980,
log-transformed income per capita in 1980, change in exposure to the China shock between 1990 and 2007, and
changes in occurrences of hurricanes and tornadoes between the 2010s and the 1980s. Standard errors are reported
in parentheses and clustered at the state level. Significance is indicated at 1% (***), 5% (**), and 10% (*) level.
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Internet Appendix

Figure A.1: Distribution of max temperature days by bin over time

Panel A: Stringent Scenario (RCP 2.6)
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Panel B: Intermediate Scenario (RCP 4.5)
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Panel C: High Greenhouse Gas Emission Scenario (RCP 8.5)
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Notes: The figure shows decadal U.S. long-run temperature projections on the basis of big data generated
by Hsiang et al. (2017) for the 1980s to 2090s. The underlying data are based on 44 climate models. Shown
are projections under three different Representative Concentration Pathways (RCPs) used to describe
scenarios of greenhouse gas (GHG) emissions and atmospheric concentrations: a stringent mitigation
scenario (Panel A, RCP 2.6), an intermediate scenario (Panel B, RCP 4.5), and a scenario with very high
GHG emissions (Panel C, RCP 8.5). Each bar shows the average annual number of days whose maximum
temperature falls within a certain 3°C bins (x-axis) for a range of decades (color-coded bar), averaged
across U.S. counties.
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Figure A.2: Projected changes in the number of days above 29°C
between the 1980s and the 2090s

Panel A: Stringent Scenario (RCP 2.6)

Panel B: Intermediate Scenario (RCP 4.5)

Panel C: High Greenhouse Gas Emission Scenario (RCP 8.5)

Notes: The figure shows long-run temperature projections by U.S. county for the contiguous 48 states
on the basis of big data generated by Hsiang et al. (2017) for the 1980s to 2090s. The underlying data
are based on 44 climate models. Shown is the county-level change between the average projected number
of days above 29°C in the 2090s and the average number of days above 29°C in the 1980s for a stringent
mitigation scenario (Panel A), an intermediate scenario (Panel B), and a scenario with very high GHG
emissions (Panel C).
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Figure A.3: Effects of long-run changes in temperature on
precipitation and extreme weather events

(a) Average Precipitation (b) Number of Floods
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(e) Number of Hurricanes (f) Number of Tornadoes
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Notes: The figure shows the point estimates and the 95% confidence interval of county-year level re-
gressions of average precipitation (Panel a), number of floods (Panel b), number of droughts (Panel c),
number of heatwaves (Panel d), number of hurricanes (Panel e), and number of tornados (Panel f) on the
number of days in various temperature bins (x-axis), county fixed effects, and year fixed effects. Stan-
dard errors are clustered at the state level. Event data are from SHELDUS, while the temperature and
precipitation data are from the PRISM Climate Group (we use the cleaned version of that data provided
on Wolfram Schlenker’s homepage).
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Figure A.4: Electricity Usage by U.S. Manufacturing Plants

(a) production process (b) non-production process
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Notes: Data source: Manufacturing Energy Consumption Survey, all waves.
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Figure A.5: Seasonality in industrial electricity demand and prices

(a) Electricity sales, industrial sector (b) Electricity prices, industrial sector
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Notes: Data source: U.S. Energy Information Administration, Electric Power Monthly dataset available

(https://www.eia.gov/electricity/data.php).

5

https://www.eia.gov/electricity/data.php


Figure A.6: Correlation between average electricity price and the
price gap between small and large plants

0
5

10
15

20
el

ec
tri

ci
ty

 p
ric

e 
ga

p 
(s

m
al

l fi
rm

s 
- l

ar
ge

 fi
rm

s)

10 15 20 25
average electricity price

Notes: The figure shows the positive correlation between the average electricity price and the price gap
between small and large plants at the Census-Region-year level. The x-axis is the average electricity price
in a Census-Region-year, and the y-axis is the price gap between the average prices for plants with an
employment under 50 people and those for larger plants.
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Table A.1: Variable Definitions

Variable Definition Source

Panel A: ASM & CMF Sample

Energy Costs / TVS The ratio of energy costs to total value of shipments.
Electricity Costs / TVS The ratio of electricity costs to total value of shipments.
Log(TFP) Log of total factor productivity.
Log(Value-Added/Total Hours Worked) Log of the ratio of value-added to workers’ total working hours.
Log(Total Hours Worked) Log of workers’ total working hours.
Log(TVS) Log of total value of shipments.

Panel B: LBD Sample

Exit An indicator of exit, where employment of the firm in year t is above-zero and in year t+1 is zero.

Panel C: LBD - Long-run difference between the 1980s and the 2010s

∆ Degree-Days > 18 °C long-difference in the average degree days above 18 °C from 1980s to 2010s.
∆ Degree-Days < 18 °C long-difference in the average degree days below 18 °C from 1980s to 2010s.
∆ Log(# Establishments) Long-difference in log of average total establishment from 1980s to 2010s.
∆ Log(Employment) Long-difference in log of average total employment from 1980s to 2010s.
∆ Log(Avg. Size of Establishments) long-difference in log of average employment size from 1980s to 2010s.
∆ Frac. of Emp. in Top 5 Largest Estab. long-difference in the average fraction of employment from top 5 establishments from 1980s to 2010s.
∆ Log(HHI Emp.) long-difference in the average HHI of employment from 1980s to 2010s.

Panel D: Control Variables from Other Sources

Avg. Precipitation Average daily precipitation of a location-year. Database built by Wolfram Schlenker
# Events of Floods Number of drought events in the county-year. SHEDULS from Arizona State University
# Events of Droughts Number of drought events in the county-year. SHEDULS from Arizona State University
# Events of Heatwaves Number of heatwave events in the county-year. SHEDULS from Arizona State University
# Events of Hurricane Number of hurricane events in the county-year. SHEDULS from Arizona State University
# Events of Tornado Number of tornado events in the county-year. SHEDULS from Arizona State University
∆ IPW Changes in the exposure to the import shock from China from 1990 to 2007. Autor, Dorn, and Hanson (2013)
Perc. of college students Percentage of 25-year old or above population finished at least one year of college. US Census
Log(Population) Log of county population. Database built by Andrew Leuven
Log(Income pc) Log of county per capita income. IPUSM
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Table A.2: Short-run effects of temperature on productivity:
Alternative measure of productivity removing energy costs

Log(value added w/out energy costs
total working hours

)

(1) (2)

T < 3°C -0.0155 -0.0177
(0.0214) (0.0319)

3°C ≤ T < 6°C -0.0307 -0.0467
(0.0186) (0.0300)

6°C ≤ T < 9°C 0.0104 -0.0034
(0.0214) (0.0266)

9°C ≤ T < 12°C -0.0009 -0.0004
(0.0181) (0.0230)

12°C ≤ T < 15°C 0.0096 0.003
(0.0168) (0.0192)

18°C ≤ T < 21°C -0.0151 -0.0302
(0.0186) (0.0213)

21°C ≤ T < 24°C -0.0277 -0.0477**
(0.0186) (0.0228)

24°C ≤ T < 27°C -0.0266 -0.0501**
(0.0175) (0.0207)

27°C ≤ T < 30°C -0.0455*** -0.0609***
(0.0168) (0.0204)

T ≥ 30°C -0.0441*** -0.0729***
(0.0150) (0.0185)

Observations 1922000 1922000
R-squared 0.792 0.793
Establishment FE yes yes
NAICS3-Year FE yes yes
Extreme weather controls yes yes
Census Division-year FE yes
State-year FE yes

Notes: In this table, we replicate the results presented in Table 4

Columns 3-4, removing energy costs from the numerator used to cal-

culate productivity. All specifications control for average zip code-year

precipitation and include establishment fixed effects. Further fixed ef-

fects are included as indicated. Extreme weather controls include num-

ber of hurricanes and number of tornadoes, both of which are measured

at the county-year level. Regressions are estimated using ASM sample

weights. Standard errors are reported in parentheses and clustered at

the state level. Significance is indicated at 1% (***), 5% (**), and

10% (*) level.
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Table A.3: Short-run effect of temperature on size and exit

Log(TVS) Exit
(1) (2)

T < 3°C 0.0631 -0.0025
(0.0424) (0.0061)

3°C ≤ T < 6°C 0.0343 -0.0021
(0.0344) (0.0054)

6°C ≤ T < 9°C 0.0193 0.0023
(0.0322) (0.0043)

9°C ≤ T < 12°C -0.0228 0.0028
(0.0201) (0.0044)

12°C ≤ T < 15°C 0.0062 0.004
(0.0155) (0.0036)

18°C ≤ T < 21°C -0.0105 -0.0018
(0.0158) (0.0020)

21°C ≤ T < 24°C -0.0051 0.001
(0.0163) (0.0024)

24°C ≤ T < 27°C -0.0047 0.0016
(0.0215) (0.0023)

27°C ≤ T < 30°C 0.002 0.0031
(0.0230) (0.0028)

T ≥ 30°C 0.0103 0.0033
(0.0211) (0.0029)

Observations 1922000 13590000
R-squared 0.953 0.015
Zipcode FE yes
Establishment FE yes
NAICS3-Year FE yes yes
Extreme weather controls yes yes
State-year FE yes yes

Notes: The table uses the panel data approach de-
scribed in equation (1) to estimate the short-run effect
of temperature on the total value of shipments (Col-
umn 1) and exit (Column 2). Exit is an indicator
variable set equal to one if a plant had strictly more
than zero employees in year t and zero employees in
year t+1. The analysis is at the plant-year level and
the sample period comprises 1977-2018. The shown
coefficients of interest represent the number of days
with maximum temperature in each respective tem-
perature bin (βb in Equation (1)) in a given year in a
plant’s zip code. The number of days in a temperature
bin is divided by 100 for readability and the temper-
ature bin [15°C,18°C) is used as the reference bin and
therefore omitted. All specifications control for aver-
age zip code-year precipitation and include establish-
ment fixed effects. Further fixed effects are included as
indicated. Extreme weather controls include number
of hurricanes and number of tornadoes, both of which
are measured at the county-year level. Regressions
are estimated using ASM sample weights. Standard
errors are reported in parentheses and clustered at the
state level. Significance is indicated at 1% (***), 5%
(**), and 10% (*) level.
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Table A.4: Short-run effects of temperature on energy costs and
productivity: Robustness to High Tradability Manufacturing

Energy Costs/TVS Log(TFP)

(1) (2) (3) (4)

T < 3°C 0.0234 -0.1311 -0.0225 -0.0307
(0.0908) (0.1592) (0.0176) (0.0237)

3°C ≤ T < 6°C 0.1373 0.0695 -0.0496** -0.0415
(0.0847) (0.1035) (0.0236) (0.0330)

6°C ≤ T < 9°C 0.1642* 0.1546 -0.0284 -0.0388
(0.0832) (0.1204) (0.0213) (0.0255)

9°C ≤ T < 12°C 0.0433 0.095 -0.0291 -0.0343
(0.0719) (0.0861) (0.0180) (0.0205)

12°C ≤ T < 15°C 0.1294** 0.1443* -0.0201 -0.0244
(0.0583) (0.0736) (0.0198) (0.0204)

18°C ≤ T < 21°C 0.09 0.1223 -0.0373* -0.0476**
(0.0989) (0.1207) (0.0196) (0.0205)

21°C ≤ T < 24°C 0.0683 0.1012 -0.0583*** -0.0790***
(0.0838) (0.1027) (0.0188) (0.0220)

24°C ≤ T < 27°C 0.1812*** 0.2564** -0.0504*** -0.0727***
(0.0670) (0.1093) (0.0162) (0.0207)

27°C ≤ T < 30°C 0.2168*** 0.3393*** -0.0597*** -0.0844***
(0.0613) (0.1030) (0.0171) (0.0209)

T ≥ 30°C 0.1730** 0.3439*** -0.0570*** -0.0918***
(0.0756) (0.1218) (0.0152) (0.0211)

Observations 975000 975000 975000 975000
R-squared 0.823 0.824 0.784 0.786
Establishment FE yes yes yes yes
NAICS3-Year FE yes yes yes yes
Extreme weather controls yes yes yes yes
Census Division-year FE yes yes
State-year FE yes yes

Notes: In this table, we replicate the results presented in Tables 3 and 4 (Colmns 1-2),

restricting the sample to tradable manufacturing sectors. Tradable manufacturing sectors

are those with an above median geographical concentration index, as proposed by Mian and

Sufi (2014). All specifications control for average ZIP Code-year precipitation and include

establishment fixed effects. Further fixed effects are included as indicated. Extreme weather

controls include number of hurricanes and number of tornadoes, both of which are measured

at the county-year level. Regressions are estimated using ASM sample weights. Standard

errors are reported in parentheses and clustered at the state level. Significance is indicated

at 1% (***), 5% (**), and 10% (*) level.
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Table A.5: Short-run effects of temperature on energy costs and
productivity: Robustness to excluding sectors dependent on

Agriculture via input-output linkages

Energy Costs/TVS Log(TFP)

(1) (2) (3) (4)

T < 3°C 0.0033 -0.0138 0.0046 0.0183
(0.0789) (0.1375) (0.0156) (0.0240)

3°C ≤ T < 6°C 0.1267* 0.1013 -0.0173 -0.0112
(0.0706) (0.1230) (0.0184) (0.0229)

6°C ≤ T < 9°C 0.0311 0.0631 -0.0004 0.0001
(0.0721) (0.0866) (0.0140) (0.0207)

9°C ≤ T < 12°C 0.1021 0.0768 -0.0057 0.0025
(0.0795) (0.1049) (0.0123) (0.0154)

12°C ≤ T < 15°C 0.0676 0.1191* -0.0102 -0.0097
(0.0529) (0.0604) (0.0163) (0.0210)

18°C ≤ T < 21°C 0.0724 0.0747 -0.0107 -0.0197
(0.0536) (0.0680) (0.0122) (0.0158)

21°C ≤ T < 24°C 0.1424** 0.1377* -0.0252* -0.0430**
(0.0629) (0.0758) (0.0133) (0.0188)

24°C ≤ T < 27°C 0.1326*** 0.1594** -0.0156 -0.0349*
(0.0493) (0.0727) (0.0121) (0.0182)

27°C ≤ T < 30°C 0.1590*** 0.2263*** -0.0314** -0.0437**
(0.0523) (0.0650) (0.0118) (0.0164)

T ≥ 30°C 0.1720** 0.2451*** -0.0295** -0.0542***
(0.0654) (0.0894) (0.0112) (0.0177)

Observations 1715000 1715000 1715000 1715000
R-squared 0.792 0.793 0.76 0.762
Establishment FE yes yes yes yes
NAICS3-Year FE yes yes yes yes
Extreme weather controls
Census Division-year FE yes yes
State-year FE yes yes

Notes: In this table, we replicate the results presented in Tables 3 and 4 (Columns 1-2),

excluding from our sample manufacturing sectors related to food processing, beverages and

tobacco, for which expenditure in agricultural inputs constitute more than 5% of the value of

production according to the 1980 Input-Output Tables of the BEA. All specifications control

for average zip code-year precipitation and include establishment fixed effects. Further fixed

effects are included as indicated. Extreme weather controls include number of hurricanes

and number of tornadoes, both of which are measured at the county-year level. Regressions

are estimated using ASM sample weights. Standard errors are reported in parentheses and

clustered at the state level. Significance is indicated at 1% (***), 5% (**), and 10% (*)

level.
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Table A.6: Short-run effects of temperature on energy costs and
productivity: Robustness to alternative temperature definitions

Energy Costs/TVS Log(TFP)
(1) (2)

Panel A: Mean temperature bins

T < -3°C 0.0196 0.0272
(0.1595) (0.0291)

-3°C ≤ T < 0°C -0.0785 0.0071
(0.1113) (0.0223)

0°C ≤ T < 3°C 0.054 -0.0087
(0.0933) (0.0169)

3°C ≤ T < 6°C 0.0293 0.0081
(0.0676) (0.0127)

6°C ≤ T < 9°C 0.0575 0.006
(0.0912) (0.0127)

12°C ≤ T < 15°C -0.0105 -0.0044
(0.0743) (0.0101)

15°C ≤ T < 18°C 0.0592 -0.0330***
(0.0925) (0.0106)

18°C ≤ T < 21°C 0.1539** -0.0379*
(0.0742) (0.0217)

21°C ≤ T < 24°C 0.2034** -0.0588***
(0.0774) (0.0162)

T ≥ 24°C 0.2579** -0.0572***
(0.0986) (0.0178)

Panel B: Degree-Days

Degree-Days > 18°C 0.0139*** -0.0017*
(0.0049) (0.0009)

Degree-Days < 18°C -0.0002 0.0018
(0.0074) (0.0012)

Observations 1922000 1922000
Establishment FE yes yes
NAICS3-Year FE yes yes
State-year FE yes yes

Notes: In this table, we replicate the results presented in Tables

3 and 4 (Columns 1-2), using the daily average temperature (as op-

posed to the daily maximum temperature) to construct temperature

bins. The number of days in a temperature bin is divided by 100 for

readability and in this specficiation, the temperature bin [9°C,12°C)
is used as the reference bin and therefore omitted. All specifications

control for average zip code-year precipitation and include establish-

ment fixed effects. Further fixed effects are included as indicated.

Extreme weather controls include number of hurricanes and number

of tornadoes, both of which are measured at the county-year level.

Regressions are estimated using ASM sample weights. Standard er-

rors are reported in parentheses and clustered at the state level.

Significance is indicated at 1% (***), 5% (**), and 10% (*) level.
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