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Abstract

This paper analyzes the resilience of U.S. listed firms. The environment in which firms operate

is inherently uncertain and new types of risk or crises may emerge. Do firms bounce back after

an unexpected crisis? And what types of firms are more resilient than others? We first develop

a novel measure of firm resilience. Our measure is return-based and it is forward-looking. A

key advantage is that we do not need to focus on one particular crisis in order to classify

firms as resilient or non-resilient. Our resilience measure captures the extent to which a firm’s

conditional downside risk after an extreme loss differs from its downside risk after a typical

underperformance loss. If the two are similar, the firm, in terms of its downside risk, bounces

back after experiencing an extreme loss. In other words, the firm is resilient. Using weekly

stock return data, we estimate time-varying firm resilience and document substantial cross-firm

variation. We validate our measure by linking cross-firm variation in ex-ante resilience to post-

crisis firm performance, focusing on three different types of crises: the 2000 Internet Bubble,

the 2008 Great Financial Crisis and the 2020 Covid-19 outbreak. Finally, we relate resilience

to lagged firm characteristics. Besides the expected link with leverage, we find a key role of

innovation. Firms with higher R&D investments, more patents and a higher economic value per

patent are significantly more resilient.
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1 Introduction

Resilience is important and relevant in many different settings. For example, resilience as a psycho-

logical trait, resilience as a feature of an ecosystem or an energy network, organizational resilience or

resilience of communities. While there are many different ways to describe resilience (e.g., Bhamra,

Dani, and Burnard, 2011; Logan, Aven, Guikema, and Flage, 2022), one common aspect is this: the

ability to cope with the unexpected (e.g., Duchek, 2020; Molyneaux, Brown, Wagner, and Foster,

2016).

In this paper, we examine the resilience of listed firms. Finance research traditionally studies

risks that firms are exposed to. However, firms operate in an inherently uncertain environment and

new types of risk or crises may emerge.1 Do firms bounce back after an unexpected crisis? And

what types of firms are more resilient than others?

In order to address these research questions, we first develop a novel measure of firm resilience.

Our measure is return-based and it is forward-looking. Several recent studies examine resilience

of firms from an ex-post perspective. Most focus on the Covid-19 pandemic and use stock price

changes or the return on assets after the start of the pandemic as a measure of firm resilience (e.g.,

Cheema-Fox, LaPerla, Wang, and Serafeim, 2021; Ding, Levine, Lin, and Xie, 2021; Fahlenbrach,

Rageth, and Stulz, 2021). We extend this line of research by developing a forward-looking resilience

measure. A key advantage is that we do not need to specify the type and timing of the crisis in

order to classify firms as resilient or non-resilient.

After estimating time-varying resilience for individual U.S. listed firms, we validate our measure

by linking cross-firm variation in ex-ante resilience to post-crisis firm performance. In the final step,

we run panel regressions to study how lagged firm characteristics are related to resilience. In short,

1For example, Heyerdahl-Larsen, Illeditsch, and Sinagl (2022) develop an asset pricing model where new sources
of risk emerge before a recession.
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besides the expected relation to leverage, we find that innovation matters. Firms with higher R&D

investments, more patents and a higher economic value per patent are significantly more resilient.

Hence, while the characteristics that help firms bounce back after the Covid-19 outbreak (i.e., the

ability of employees to work from home) are arguably different from characteristics that help recover

from other types of crises such as the Great Financial Recession, we find that overall, innovation

activities help firms cope with unexpected future extreme events. In his 2024 AFA Presidential

Address, Markus Brunnermeier highlights that for a system (or a firm) to be resilient, it needs to

be able to adapt after the realization of a crisis, by investing in adaptability pre-crisis. Our results

suggest that innovation plays a significant role here.2

Our resilience measure focuses on the dynamics of a firm’s downside risk, based on the Value-

at-Risk. We call our measure ∆ReV aR. This resilience measure captures the extent to which a

firm’s conditional downside risk after an extreme loss differs from its downside risk after experi-

encing a typical underperformance. If the two are similar, the firm, in terms of its downside risk,

bounces back after an extreme loss. In other words, the firm is resilient. By contrast, a firm whose

conditional downside risk increases substantially following distress would be regarded as lacking

resilience.

Our resilience measure is reminiscent of measures of systemic risk, such as the ∆CoV aRmeasure

of Adrian and Brunnermeier (2016), who develop a conditional Value-at-Risk measure to capture

systemic risk across financial institutions; cf. also Marginal Expected Shortfall (Acharya, Engle, and

Richardson, 2012; Acharya, Pedersen, Philippon, and Richardson, 2017) and SRISK (Brownlees

and Engle, 2017). Instead, we construct our measure at the individual firm level.3 Our resilience

2The Presidential Address focuses mostly on resilience at the aggregate level, in the context of macro-finance
models. In contrast, we study resilience at the firm level.

3The ∆CoV aR measure of Adrian and Brunnermeier (2016) captures how the conditional Value-at-Risk of banks
change after an extreme loss of one of the other banks. Instead of the cross-sectional dimension, our resilience measure
focuses on an individual firm and captures how its conditional Value-at-Risk varies after the firm itself experiences
an extreme loss.
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measure also relates to the literature on time-varying quantiles, e.g., using autoregressive processes,

such as conditional autoregressive Value-at-Risk (CAViaR) of Engle and Manganelli (2004) and

extended to a multivariate setting in White, Kim, and Manganelli (2015).4 Rather than analyzing

time-varying quantiles, our resilience measure captures conditional Value-at-Risk differentials, by

conditioning upon two different loss scenarios.

More specifically, we first estimate a firm’s Value-at-Risk using return losses; the q% Value-at-

Risk of firm i, denoted by V aRi
q, implies that there is a q% probability that firm i will not experience

losses exceeding V aRi
q. Next, we construct conditional Value-at-Risk measures, to account for the

fact that the distribution of a firm’s returns and risks may vary across different scenarios, which

is not captured by an unconditional V aRi
q. We focus on two types of historical scenarios, denoted

by Ci. First, we consider a stress scenario Ci
s in which the firm’s return losses exceed its historical

95% or 99% Value-at-Risk. Second, we use a so-called median scenario Ci
m, where its losses exceed

the firm’s 50% Value-at-Risk. Consequently, we denote by ReV aR
i|Ci

s
q the conditional V aRi

q when

firm i is in a stress scenario, and by ReV aR
i|Ci

m
q the conditional V aRi

q when firm i is in a typical

underperformance scenario.

Finally, we define ∆ReV aRi
q as the disparity (or increment) of conditional downside risks; i.e.,

the difference between ReV aR
i|Ci

s
q and ReV aR

i|Ci
m

q . When measuring resilience, we are interested

in how much a stress scenario would increase the firm’s downside risk conditional upon an extreme

stress scenario compared to that of a normal scenario. Hence, a firm with a low ∆ReV aRi
q is

considered to be resilient. In this case, the conditional V aRi
q does not vary much, suggesting

that an extreme scenario has the same implications for the Value-at-Risk of the firm as a typical

underperformance. Loosely speaking, the firm’s downside risk bounces back to its normal state

even after a stress event.

4The autoregressive nature of large shocks is also recognized in Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015).
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We use quantile regressions to estimate the conditional Value-at-Risk measures that form the

basis of ∆ReV aR. This estimation method has been widely applied to estimate conditional Value-

at-Risk (e.g., Adrian and Brunnermeier, 2016; Chernozhukov and Du, 2006; Chernozhukov and

Umantsev, 2001; Koenker and Bassett, 1978). Quantile regressions allow us to estimate the relation

between a firm’s current losses and its future extreme losses, and can be used to estimate the firm’s

future downside risk conditional upon a given current scenario.

In our empirical analysis, we estimate firm-level resilience for all U.S. listed stocks, using weekly

return data from January 1990 to December 2022. We first assess the cross-firm dispersion of our

resilience estimates and how they relate to traditional measures of firm risk. To this end, we

employ a static version of ∆ReV aR, estimated for each stock over the full sample period. Our

findings reveal substantial cross-firm variation in ∆ReV aR. Furthermore, we show that ∆ReV aR

is distinct from other (tail) risk measures, including historical V aR, volatility, skewness, kurtosis

and the CAPM market beta. Next, to capture changes in firms’ resilience levels over time, we

introduce a dynamic time-varying version of ∆ReV aR, using several state variables, such as the

term spread, TED spread and the VIX index.

We proceed by validating our dynamic resilience measure using three distinct crises: the Covid-

19 outbreak in 2020, the Global Financial Crisis in 2008 and the Technology Bubble in 2000. We

find that firms with a higher ex-ante resilience measure tend to have higher ex-post Return on Assets

as well. The relation is statistically significant for both the Covid-19 crisis as well as the Global

Financial Crisis, two very different types of crises. It is noteworthy that we estimate a firm’s

∆ReV aR solely using pre-crisis returns data, signifying that ∆ReV aR as a pre-crisis resilience

measure can predict a firm’s post-crisis performance.

In the final part of the analysis, we examine how firm resilience relates to firm characteristics.

To this end, we conduct panel regressions where we regress firm-level quarterly resilience measures
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on lagged firm characteristics. First, we find a positive and statistically significant relationship

between financial leverage and resilience, consistent with existing literature (Ding, Levine, Lin, and

Xie, 2021; Fahlenbrach, Rageth, and Stulz, 2021). Second and importantly, we detect a key role of

innovation. We find that firms with higher levels of R&D investment, a larger number of patents

and firms with a higher economic value per patent are significantly more resilient.

Our paper contributes to a long-standing literature that studies various forms of resilience,

such as psychological resilience (e.g., Masten, Best, and Garmezy, 1990; Masten and Reed, 2002;

Southwick and Charney, 2018), organizational resilience (e.g., Duchek, 2020; Ortiz-de-Mandojana

and Bansal, 2016), community resilience (e.g., Berkes and Ross, 2013; Magis, 2010) and ecosystem

resilience (e.g., Holling, 1973; Peterson, Allen, and Holling, 1998; Walker and Salt, 2012). In these

domains, researchers have extensively studied how to measure resilience and have identified strate-

gies to enhance resilience in different contexts. Within the field of finance, our paper contributes

to the nascent literature on firm resilience during Covid-19 (Albuquerque, Koskinen, Yang, and

Zhang, 2020; Cheema-Fox, LaPerla, Wang, and Serafeim, 2021; Ding, Levine, Lin, and Xie, 2021;

Fahlenbrach, Rageth, and Stulz, 2021; Fisher, Knesl, and Lee, 2022; Pagano, Wagner, and Zechner,

2023).

Our results suggest that innovation plays a significant role in shaping resilience. The relation

between innovation and firm risks and returns has been extensively examined (Hsu, Tian, and

Xu, 2014; Kogan and Papanikolaou, 2014; Kogan, Papanikolaou, Seru, and Stoffman, 2017). In

addition, some studies show that firms with higher innovation capacity are less likely to go bankrupt

(e.g., Bai and Tian, 2020; Eisdorfer and Hsu, 2011), and have lower stock price crash risk (e.g.,

Ben-Nasr, Bouslimi, and Zhong, 2021; Hossain, Masum, and Xu, 2023; Jia, 2018; Wu and Lai,

2020). We add to this literature by showing that after experiencing an extreme loss, innovative

firms also tend to bounce back more in terms of their downside risk.
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The remainder of this paper is organized as follows. In Section 2, we present our resilience

measure, the economic intuition and we introduce the estimation method. We first focus on a

static version of ∆ReV aR. Next, in Section 3, we introduce a dynamic time-varying version of

∆ReV aR. Section 4 discusses the data used for estimation and presents summary statistics. We

examine cross-firm variation in ∆ReV aR estimates and the relation to return-based risk measures

in Section 5. Section 6 shows our main empirical results, including a validation of ∆ReV aR and

a panel regression that links firm resilience estimates to lagged firm-level characteristics. Section 7

concludes.

2 A Return-Based Resilience Measure

Resilience usually refers to the ability to adapt, survive and recover from extreme and unexpected

disruptions. We define resilience as the degree to which an extreme scenario deviates from a typical

underperformance of a firm in terms of the firm’s conditional downside risk. We call our measure

∆ReV aR.

In Section 2.1, we first introduce a basic static version of ∆ReV aR, and we further discuss the

economic intuition in Section 2.2. Next, we explain two important components for this measure:

the choice of normal and stress scenarios (Section 2.3), and the horizon parameter τ that defines

the recovery period we consider after a firm experiences a stress scenario (Section 2.4). Finally, in

Section 2.5, we discuss the estimation method, which is based on quantile regressions.

2.1 Static ∆ReV aR

Our resilience measure is based on the definition of the q% Value-at-Risk, denoted by V aRi
q:

Pr(Xi
t ≤ V aRi

q) = q%, (1)
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where Xi
t is the return loss of firm i at time t.5 Here, similar to Adrian and Brunnermeier (2016)

and many others, we use return losses rather than gains, since V aRi
q is typically expressed as a

positive value. As such, the chosen value of q is typically larger than or equal to 50% as we focus

on the downside risk of a firm. From this equation, we can see that V aRi
q is the unconditional q%

quantile of firm i’s return losses. Suppose q = 95, then V aRi
q=95 can be interpreted as the upper

bound of firm i’s loss in 95% cases. In other words, there is a 5% chance that firm i loses more

than V aRi
q=95.

For q = 50, V aRi
q=50 is the median loss return of firm i. That is, there is a 50% probability

that firm i loses more than V aRi
q=50 and a 50% probability that it loses less than V aRi

q=50. Note

that V aRi
q=50 is the median value (with negative sign) of all returns rather than the median value

of losses only.

Based on the definition of V aR, we define ReV aR as a conditional V aR. We denote by

ReV aR
i|Ci

q firm i’s qth-quantile of return losses conditionally upon facing a specific scenario Ci

in the past:

Pr([Xi
t ≤ ReV aRi|Ci

q ]|Ci) = q%, (2)

where Ci is a specific scenario that firm i experienced before time t. Recall that we define resilience

as the degree to which an extreme underperformance differs from a typical underperformance of

a firm in terms of the firm’s conditional downside risk. Therefore, we need to define an extreme

underperformance and a typical underperformance. We name these two scenarios as stress scenario

and median (or normal) scenario, and denote them by Ci
s and Ci

m, respectively.

We denote the cumulative distribution function (CDF) of Xi
t by FXi

t
(·), and thus the conditional

CDF for qth-quantile by FXi
t
(q|·). Then we can express ReV aR

i|Ci

q as an inverse conditional CDF

5Xi
t is given by the negative value of returns. Thus, a positive value of Xi

t indicates a loss while a negative value
of Xi

t signifies a gain.
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F−1
Xi

t
(q|Ci):

ReV aRi|Ci
s

q = F−1
Xi

t
(q|Ci

s), (3)

and

ReV aRi|Ci
m

q = F−1
Xi

t
(q|Ci

m). (4)

ReV aR
i|Ci

s
q measures the future downside risk conditionally upon a current extreme return

loss, and ReV aR
i|Ci

m
q measures the future extreme downside risk conditionally upon a current

median loss. When talking about resilience, we are interested in by how much downside risk

increases conditionally upon a stress scenario as compared to conditionally upon a normal scenario.

Therefore, we measure resilience as the difference between these conditional downside risk measures.

Specifically, our measure of resilience, ∆ReV aRi
q, is defined as:

∆ReV aRi
q = ReV aRi|Ci

s
q −ReV aRi|Ci

m
q . (5)

As the benchmark scenario Ci
m and corresponding ReV aR

i|Ci
m

q are firm specific, we can compare

resilience across firms, controlling for possible different levels of normal downside risks. The next

subsection discusses more economic intuition of the resilience measure.

Throughout this paper, we use Value-at-Risk as the basic measure of risk to construct our

measure of resilience. There exists a large literature on alternatives to the Value-at-Risk, such

as perhaps most noticeably Expected Shortfall.6 Expected Shortfall and related risk measures

have been used to measure systemic risk in Acharya, Engle, and Richardson (2012), Acharya,

Pedersen, Philippon, and Richardson (2017), and Brownlees and Engle (2017). One could also

6Modern classes of risk measures include coherent, convex, entropy convex, monetary, return, cash-subadditive,
quasi-convex, quasi-logconvex, and star-shaped measures of risk. We refer to Ch. 4 of Föllmer and Schied (2016),
Laeven, Rosazza Gianin, and Zullino (2023), and the references therein for further details.
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invoke Expected Shortfall to construct (an adapted version) of our measure of resilience.7 In view

of the appealing statistical properties of quantiles, we restrict attention to Value-at-Risk as the

basic measure of risk, and leave extensions and generalizations to future work.

2.2 Economic Intuition

A resilient firm has a relatively low ∆ReV aRi
q. In this case, the firm’s conditional V aRi

q does

not change much and is similar after an extreme scenario compared to a typical underperformance

scenario.

As an example, suppose firm A has ReV aR
A|Ci

s
q=95 = 10% and ReV aR

A|Ci
m

q=95 = 5%, whereas firm B

has ReV aR
B|Ci

s
q=95 = 11% and ReV aR

B|Ci
m

q=95 = 7%. When both firm A and firm B experience normal

underperformance, there is a 95% probability that future return losses over a certain time period

are less than 5% in stock A and less than 7% in stock B. Suppose now both firm A and firm B

encounter a stress scenario. The conditional V aR implies that they are now 95% sure that they

would lose no more than 10% in stock A and lose no more than 11% in stock B in a certain future

time period. In both scenarios, stock B seems to be more risky in terms of downside risk than

stock A. However, firm B is classified as more resilient than firm A, since its resilience measure

∆ReV aRB
q=95 = 11% − 7% = 4% is lower than that of firm A, ∆ReV aRA

q=95 = 10% − 5% = 5%.

Under a stress scenario, the guaranteed maximum potential loss increases by 4 percentage points

for stock B and 5 percentage points for stock A. A stress scenario presents a greater challenge to

firm A compared to firm B. Therefore, we regard B as a more resilient firm than A. Here, we show

that a more risky firm (B) can be more resilient than a less risky firm (A), and thus distinguish

the concept of resilience from risk.

7In fact, it is conceptually straightforward to replace Value-at-Risk by any conditional distortion risk measure of
Dhaene, Laeven, and Zhang (2022) in the definition of our measure of resilience.
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2.3 Ci
s and Ci

m

We have defined ∆ReV aRi
q as the difference between ReV aR

i|Ci
s

q and ReV aR
i|Ci

m
q . The next step is

to define the stress scenario Ci
s and the typical underperformance scenario Ci

m. In this subsection,

we follow Adrian and Brunnermeier (2016) and define Ci
s as scenarios in which firm i’s losses exceed

its V aRi
q. This makes ReV aR a V aR of V aR:

Pr([Xi
t ≤ ReV aR

i|Ci
s(X

i
t−τ )

q ]|[Xi
t−τ ≥ V aRi

q)]) = q%, (6)

where Ci
s(X

i
t−τ ) is a stress scenario that depends on Xi

t−τ . Under this definition, ReV aR
i|Ci

s(X
i
t−τ )

q

measures firm i’s conditional qth-quantile of return losses at time t after it experiences an extreme

loss at time t− τ .

Likewise, we define Ci
m(Xi

t−τ ) as a benchmark scenario when firm i’s losses exceed its median

loss V aRi
50. In this sense, ReV aR

i|Ci
m(Xi

t−τ )
q is a benchmark that measures firm i’s conditional

qth-quantile of return losses at time t after it experiences typical underperformance at time t− τ .

Pr([Xi
t ≤ ReV aR

i|Ci
m(Xi

t−τ )
q ]|[Xi

t−τ ≥ V aRi
50)]) = q%. (7)

There are two things that need to be highlighted. First, we use the same q in V aRi
q as in

ReV aR
i|Ci

s(X
i
t−τ )

q and ReV aR
i|Ci

m(Xi
t−τ )

q for reasons of consistency: we aim to re-estimate the guar-

anteed maximum potential losses at the same probability level. Second, V aRi
q differs per firm,

indicating that the return loss that defines a stress scenario or a median scenario is specific to each

firm. In other words, a stress scenario of a given percentage of loss for one firm may not be a stress

scenario for another firm. Suppose firm A has V aRA
q=95 = 2% and V aRA

q=50 = 0%, whereas firm B

has V aRB
q=95 = 6% and V aRB

q=50 = 2.5%. In this case, a loss of 2.5% means a stress scenario for
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firm A but is just a typical underperformance for firm B.

2.4 Horizon τ

The conditioning scenarios Ci
s(X

i
t−τ ) and Ci

m(Xi
t−τ ) are taken with a lag of τ . In other words,

ReV aR
i|Ci

s(X
i
t−τ )

q and ReV aR
i|Ci

m(Xi
t−τ )

q are τ -period forward-looking measures. As a result, the

resilience measure ∆ReV aRi
q,τ is also forward-looking and depends on the chosen τ . ∆ReV aRi

q,τ

with smaller τ indicates short-term resilience while ∆ReV aRi
q,τ with larger τ indicates longer-term

resilience. For a firm that is slow to recover after a crisis, but eventually does recover, one can

expect ∆ReV aRi
q,τ to approach zero for a sufficiently large horizon τ . However, it is also possible

that ∆ReV aRi
q,τ stays at a certain level that is away from zero. In that case, a stress scenario

has permanently changed the firm’s (tail) return distribution. This firm is thus regarded as a

non-resilient firm as it does not have the ability to recover from a stress or shock.

As an alternative measure of resilience, one could consider the recovery speed: how fast does the

conditional Value-at-Risk return to its normal level? Recovery speed is clearly intimately related

to our measure of resilience, but we note that the conditional Value-at-Risk may never return to

the previous normal level. Therefore, in this paper, resilience ∆ReV aRi
q,τ focuses only on the

gap between the tail distribution after a stress underperformance and the tail distribution after a

typical underperformance at a given horizon. That is to say, we do not explicitly relate resilience

to the speed at which this gap reduces to zero (or a stable level). Lastly, we choose τ = 1 week

throughout this paper. More details are discussed in Section 5.

2.5 Estimation Method: Quantile Regressions

In Section 2.3, we have related V aR to ReV aR by defining a stress scenario Ci
s and a normal

scenario Ci
m, using V aRi

q and V aRi
q=50 as benchmarks. To estimate ReV aR, we use quantile
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regressions as our main estimation method. Quantile regressions offer various advantages (Bassett

and Koenker, 1978; Chernozhukov, Fernández-Val, and Kaji, 2017; Koenker and Bassett, 1978)

and have been widely applied in the estimation of conditional Value-at-Risk (e.g., Adrian and

Brunnermeier, 2016; Chernozhukov and Du, 2006; Chernozhukov and Umantsev, 2001).

In this subsection, we first estimate the static ∆ReV aR based on the full sample period. In the

following section, we extend our resilience measure to a dynamic specification. As a starting point,

we use the following quantile regression:

Xi
q,t+τ = αi

q,τ + βi
q,τI

i
tX

i
t + ϵiq,τ,t, (8)

where Xi
q,t+τ is firm i’s qth quantile return loss at time t + τ ; Xi

t is firm i’s return loss at time t;

and Iit equals 1 if Xi
t > 0 and 0 otherwise. αi

q,τ is a firm i, horizon τ and probability q-specific

constant; βi
q,τ quantifies the extent to which future extreme losses can be accounted for by current

losses; and ϵiq,τ,t is the error term.

There are several reasons why we introduce Iit into our regression equation. First, generally

there is a relatively weak extreme-quantile correlation between Xi
q,t+τ and Xi

t .
8 Baur, Dimpfl,

and Jung (2012) use major European stocks and find the same pattern. They ascribe this to

high variance of returns in extreme quantiles. Thus, a quantile regression that uses only Xi
t as

independent variable is not suitable since insignificant coefficient estimates will result in unreliable

and noisy estimates of ∆ReV aRi
q,τ .

Furthermore, using IitX
i
t rather than Xi

t as regressor also fits our research design. Our idea of

using a quantile regression is to predict future extreme losses, based on the current information

set. By introducing Iit , we allow only current losses, not gains, to change the distribution of future

8In our initial estimation of Xi
q,t+τ = αi

q,τ + βi
q,τX

i
t + ϵiq,τ,t, we find the estimated coefficients β̂i

q,τ are overall

insignificant when we take q ≥ 90%. Using both daily data and weekly data, we observe significant β̂i
q,τ for only

3%-9% of the 500 largest stocks.
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extreme losses, which is natural when measuring resilience.

We can now calculate ReV aR
i|Ci

s=V aRi
q

q,τ with the estimated coefficients obtained from Equation

(8):

ReV aR
i|Ci

s=V aRi
q

q,τ = α̂i
q,τ + β̂i

q,τV aRi
q, (9)

where Iiq = 1 because, in our empirical setting, we always have V aRi
q > 0 whenever we take

q% ≥ 90%. V aRi
q is estimated as the quantile value using all firm i’s historical returns. The

subscript τ in ReV aR
i|V aRi

q
q,τ indicates the length of the forward-looking period. Suppose we use

daily data, then ReV aR
i|V aRi

q

q,τ=1 designates the conditional qth-quantile of firm i over the next day,

and ReV aR
i|V aRi

q

q,τ=20 denotes the conditional qth-quantile over the next month.

Likewise, we calculate ReV aR
i|Ci

m=V aRi
50

q,τ by plugging in V aRi
50:

ReV aR
i|V aRi

50
q,τ = α̂i

q,τ + β̂i
q,τI

i
50V aRi

50, (10)

where Ii50 is equal to 1 if V aRi
50 > 0 and equals 0 otherwise.

As the last step, ∆ReV aRi
q,τ is obtained as:

∆ReV aRi
q,τ = ReV aR

i|V aRi
q

q,τ −ReV aR
i|V aRi

50
q,τ = β̂i

q,τ (V aRi
q − Ii50V aRi

50). (11)

In general, V aRi
50 ≈ 0. This gives a simplification of Equation (11): ∆ReV aRi

q,τ ≈ β̂i
q,τV aRi

q.

3 Dynamic ∆ReV aR

In Section 2, we have related Ci
s and Ci

m to V aRi
q and V aRi

50, and have estimated ∆ReV aRi
q,τ

on the basis of the quantile relation between current return losses and future return losses. As

a key component of ∆ReV aRi
q,τ , ReV aR

i|V aRi
q

q,τ captures the qth-quantile of future return losses
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conditionally upon current V aRi
q. For simplicity, we have used the quantile value based on all firm

i’s historical returns as V aRi
q.

This method is simple and intuitive as it defines stress scenarios as scenarios in which the firm’s

losses exceed its V aRi
q. However, this method does not allow for variation in firms’ downside risk

over time. To address the limitations of static ∆ReV aR, we now introduce a dynamic time-varying

version. Following Adrian and Brunnermeier (2016), we extend the historical V aRi
q to time-varying

V aRi
q,t by conditioning on state variables. In this section, we present the details of the estimation

method for our time-varying ∆ReV aR.

3.1 Estimation Method: Quantile Regressions

To start with, we estimate the following quantile regression with different aggregate factors Mt

based on the full sample period:

Xi
q,t = αi

q + γiqMt + ϵiq,t. (12)

In this regression, we examine the contemporaneous relation between extreme losses Xi
q,t at quantile

q and a vector of state variables Mt. γ
i
q is the vector of risk exposures of extreme losses to each state

variable. Here, we do not impose any restrictions on γiq, and thus the sign of γiq can be different for

each firm.

We can then use coefficient estimates to construct V aRi
q,t as a linear function of Mt:

V aRi
q,t = α̂i

q + γ̂iqMt. (13)

In the static measures discussed in Section 2, we use V aRi
q, calculated as the quantile value of all

firm i’s historical returns. Here, V aRi
q,t is time-varying through Mt.

Similar to the previous setting, we further set q = 50% and run the following regression to
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obtain a benchmark measure of a firm’s normal state:

Xi
50,t = αi

50 + γi50Mt + ϵi50,t, (14)

and

V aRi
50,t = α̂i

50 + γ̂i50Mt. (15)

Equations (12) to (15) have different interpretations compared to related expressions in Adrian

and Brunnermeier (2016). In their paper, Adrian and Brunnermeier (2016) use lagged state vari-

ables Mt−1 to capture time variation in the conditional moments of asset returns. Instead, we use

contemporaneous Mt to model a firm’s extreme loss. For example, if we use excess market return

as Mt, γ̂
i
q measures how firm i’s quantiles of return losses at time t are exposed to market risk at

time t.

Next, we estimate the following quantile regression:

Xi
q,t+τ = αi

q,τ + βi
q,τI

i
tX

i
t + δiq,τMt + ϵiq,τ,t. (16)

This quantile regression has the same role as Equation (8). The only difference is that Equation (16)

contains Mt as control variables. These control variables are essential because we will subsequently

employ dynamic, time-varying V aRi
q,t based on the control variables instead of static V aRi

q as Xi
t .

Using the estimators, we obtain ReV aR
i|V aRi

q,t

q,τ,t and ReV aR
i|V aRi

50,t

q,τ,t as follows:

ReV aR
i|V aRi

q,t

q,τ,t = α̂i
q,τ + β̂i

q,τV aRi
q,t + δ̂iq,τMt, (17)

and

ReV aR
i|V aRi

50,t

q,τ,t = α̂i
q,τ + β̂i

q,τI[V aRi
50,t > 0]V aRi

50,t + δ̂iq,τMt. (18)
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ReV aR
i|V aRi

q,t

q,τ,t indicates the qth-quantile of firm’s i future return losses conditional upon stress

scenarios represented by V aRi
q,t that are triggered by factors Mt. Likewise, ReV aR

i|V aRi
50,t

q,τ,t indi-

cates the qth-quantile of firm’s i future return losses conditional upon a typical underperformance

represented by V aRi
50,t that can be described by factors Mt. In Equation (17), the indicator

I[V aRi
q,t > 0] = 1 is omitted as V aRi

q,t at an extreme quantile level q is empirically positive.

Lastly, we can compute ∆ReV aRi
q,τ,t for each firm as:

∆ReV aRi
q,τ,t = ReV aR

i|V aRi
q,t

q,τ,t −ReV aR
i|V aRi

50,t

q,τ,t

= β̂i
q,τ (V aRi

q,t − I[V aRi
50,t > 0]V aRi

50,t)

= β̂i
q,τ (α̂

i
q + γ̂iqMt − I[V aRi

50,t > 0](α̂i
50 + γ̂i50Mt)).

(19)

In general, V aRi
50,t ≈ 0. This gives a simplification of Equation (19): ∆ReV aRi

q,τ,t ≈ β̂i
q,τV aRi

q,t =

β̂i
q,τ (α̂

i
q + γ̂iqMt). We can see that the ∆ReV aRi

q,τ,t depends primarily on four components. First,

the sensitivity of future extreme losses to current losses, which is measured by β̂i
q,τ . Since the

term (V aRi
q,t − I[V aRi

50,t > 0]V aRi
50,t) is positive, a lower sensitivity β̂i

q,τ is related with lower

∆ReV aRi
q,τ,t and thus higher resilience. This means resilient firms are those with stable quantiles

of future return losses, regardless of today’s losses.

The second component, α̂i
q, may be viewed as firms’ idiosyncratic risks when Mt stays constant.

The third component, γ̂iq, measures the sensitivity of firms’ extreme losses to contemporaneous

changes in Mt. The last component is Mt, which is the same for all firms.

4 Data

We focus on weekly return data since it provides more observations than monthly data. Compared

to daily data, weekly data provides a more effective means of capturing the information we require,
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given our expectation of firms experiencing recovery over the course of weeks rather than days.

We obtain daily stock return data from CRSP, and transform the daily returns to continuously

compounded returns on a weekly basis. Our sample comprises U.S. stocks with share code 10 and

11 from January 1, 1990 to December 31, 2022.9 To mitigate survivorship bias, we incorporate

delisted stocks in our sample. We exclude small stocks whose prices have fallen below 1 dollar at

any point during our sample period. In our context, the reliability of resilience estimates for small

stocks may be weakened due to the influence of other non-fundamental factors on their stock prices.

In order to estimate dynamic ∆ReV aR with Equations (12) and (14), we need to introduce

state variables Mt. Similar to Adrian and Brunnermeier (2016), we focus on six macroeconomic

variables: the three month yield change, the term spread change, the TED spread, the credit

spread change, the value-weighted U.S. stock market return, and the VIX index. The three month

yield change is calculated as the weekly change of the average three-month treasury bill secondary

market rate (DTB3). The term spread change is the weekly change of the average ten-year treasury

constant maturity minus three-month treasury constant maturity (T10Y3M). The TED spread is

the spread between the three-month LIBOR and three-month treasury bill before January 2022,

and the spread between the secured overnight financing rate (SOFR) and the three-month treasury

bill after January 2022. The credit spread change is the weekly change of the spread between

Moody’s seasoned Baa corporate bond yield and the ten-year treasury rate (DTB10). The VIX

index is the CBOE volatility index (VIXCLS). The stock market return is obtained from Kenneth

French’s website, and the other macro variables are from the Federal Reserve Bank of St. Louis.

Summary statistics of these weekly variables from January 1, 1990 to December 31, 2022 are shown

in Table 1.

[Insert Table 1]

9Our sample begins in 1990 as this is the start of the VIX index, one of the state variables.
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In Section 6, we analyze the relation between our resilience measures and firm characteristics

to assess which types of firms are more resilient. We obtain quarterly firm financial data from

Compustat. As firm characteristics, we use size, book-to-market ratio, leverage, cash, Return on

Assets (ROA) and R&D investment. Size is calculated as the natural logarithm of total assets.

Leverage is calculated as the sum of long-term and short-term debt divided by total assets. Cash,

ROA and R&D investment are all scaled by total assets.

Moreover, we study how resilience relates to firm innovation by using patent data from Kogan,

Papanikolaou, Seru, and Stoffman (2017) as measures of innovation output. As the first to exploit

this dataset at a large scale, Kogan, Papanikolaou, Seru, and Stoffman (2017) collect and use patent

data dated back to 1926 and provide PERMNO as firm identifier to match with other firm-level

datasets. For patent-related variables, we use two main measures. The first one is the number of

patents, defined as the total number of patents issued in the past five years (i.e., twenty quarters).

The other measure is the average economic value of firm patents, computed as the total economic

value of patents in the past five years divided by the patent number during the same period.

Kogan, Papanikolaou, Seru, and Stoffman (2017) construct the measure of economic value by using

three-day market reactions around patent announcement days while adjusting for noise, and define

economic value as a measure of investors’ valuation. In other words, economic value is defined as

the change in stock price, based on the assumption that stock prices reflect the value investors

assign to the technological innovation or intellectual property represented by the patent. Summary

statistics of all firm-level variables are reported in Table 2.

[Insert Table 2]
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5 Estimation Results

There are several parameter choices in the estimation procedure (Section 3.1). First, in line with

common practice, we adopt both q = 95% and q = 99% to assess tail risk. As discussed in

Section 2.4, we use τ = 1 week as forward-looking horizon in the following analysis. When applying

the estimation method in the U.S. equity market, we find τ = 1 gives statistically significant β

estimates for more stocks compared to other values of τ .

We estimate two versions of the resilience measure: a static one (Section 2) and a dynamic

measure (Section 3). Here, we begin with the static ∆ReV aR to examine cross-firm variation and

we contrast it with other risk measures. Next, we use the dynamic ∆ReV aR in cross-sectional and

panel regressions to explore the relation between resilience and firm characteristics.

5.1 Static ∆ReV aR

Section 2.5 introduces quantile regression as an estimation method for the static ∆ReV aR. As a

first step, we estimate Equation (8) and obtain β̂i
95, which measures the extent to which future

extreme losses can be accounted for by current losses.10 Figure 1 Panel A displays the relation

between β̂i
95 and its t−value. In this figure, 1% outliers of all variables are winsorized.

[Insert Figure 1]

We find that 46% of all firm-level β̂i
95 estimates is statistically significant at at least the 10% level.

The figure shows that β̂i
95 is both economically important and statistically significant. Moreover,

even though the vast majority of β̂i
95 estimates is positive, highlighting that past losses positively

predict extreme future losses, we observe a small number of negative β̂i
95 estimates.

We obtain ∆ReV aRi
95 using Equation (11), where V aRi

95 and V aRi
50 are calculated as the

10For ease of exposition, we write β̂i
95 instead of β̂i

95,1 since we use τ = 1 week throughout this paper.
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quantile values of all firm i’s historical returns. Panel B shows substantial cross-firm variation

in both βi
95, ranging from -0.5 to 1.5, and ∆ReV aRi

95, ranging from -5% to 15%. This dispersion

across firms is essential for our follow-up analysis where we relate differences in resilience to different

firm characteristics.

Panel C plots the relationship between ∆ReV aRi
95 and its component V aRi

95. As there is no

one-to-one relationship between ∆ReV aRi
95 and V aRi

95, the figure highlights that our resilience

measure ∆ReV aR is different from a historical V aR and provides information about another aspect

of firms’ tail risk.

[Insert Figure 2]

Further, we compare ∆ReV aR to other (tail) risk measures. Figure 2 Panels A, B and C

present scatter plots between ∆ReV aR and higher moments of historical returns Ri. We do not

find a significant positive or negative relation between ∆ReV aR and these higher moments. We

also obtain βi
mkt from CAPM and show its relation with ∆ReV aR in Panel D. The correlation

between these two variables is as low as 0.3 and the scatter plot shows a high dispersion within the

sample.

In sum, we show that there is substantial variation of ∆ReV aR across firms, which enables us to

conduct further cross-sectional analyses. Furthermore, ∆ReV aR is different from other (tail) risk

measures, including historical Value-at-Risk (V aR), market beta (βi
mkt) from CAPM, and higher

moments of historical returns. This evidence shows that ∆ReV aR provides new information about

another aspect of firms’ (tail) risk, namely Resilience.

5.2 Dynamic ∆ReV aR

We now turn to the dynamic ∆ReV aR estimates as our main measure of resilience. As discussed in

Section 3, time variation in the components of ∆ReV aR is driven by several state variables, such
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as stock market returns, the VIX and the term spread.

[Insert Table 3]

We first estimate, for each stock, the quantile regression where we use the stock’s q% quantile

weekly returns as dependent variable and the contemporaneous weekly state variables as indepen-

dent variables as in Equations (12) and (14). We also estimate the quantile regression of (16),

where the independent variables are the one-week lagged state variables, along with the one-week

lagged return losses of the stock.

Table 3 presents the average absolute t−values of state variable exposures. We report the

average absolute t−statistics because the exposures to state variables of each stock might have

different signs and here we are interested in evaluating the statistical significance rather than the

sign of the estimated risk exposure. According to Equations (12) and (14), γ̂i measures how

much the quantile returns are exposed to the state variable. Overall, we find that the estimated

exposures are significant for most of the state variables. Particularly, quantile returns Xi
95,t and

Xi
99,t (i.e., extreme losses) are most exposed to the VIX index, the market return and the TED

spread. Quantile returns Xi
50,t (i.e., median returns) are most exposed to the market return. When

we include lagged state variables as control variables in the quantile regressions on the stock’s own

lagged losses (Equation (16)), we find that the estimates of δ̂iq,1 are also significant for most state

variables.

[Insert Table 4]

Table 4 presents summary statistics of dynamic firm-level resilience estimates. In total, our

sample includes 6, 319 stocks and thus 4, 867, 067 observations on a weekly basis. Our key measure

∆ReV aRi
95,t+1 ranges from −3.93% to 6.64%, and the average value is 0.642%. The economic

intuition is that a stress scenario will increase the weekly 95% Value-at-Risk of a stock by 0.642%
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point on average. Similarly, a stress scenario will increase the 99% Value-at-Risk of a stock by

2.298% point on average. At the same time, these numbers highlight that there is substantial

variation in resilience estimates, which we will exploit in the next section.

6 Resilience and Firm Characteristics

Before linking resilience to firm characteristics, we first validate our measure by showing a significant

relation between ex-ante dynamic ∆ReV aR and Return on Assets (ROA), which can be viewed as

an ex-post resilience measure. In Section 6.2, we conduct a panel regression that relates resilience

to lagged firm-level characteristics.

6.1 Ex-Ante v.s. Ex-Post Resilience

Several recent finance studies use stock price changes after crisis as an ex-post measure of firm

resilience (e.g., Cheema-Fox, LaPerla, Wang, and Serafeim, 2021; Ding, Levine, Lin, and Xie, 2021;

Fahlenbrach, Rageth, and Stulz, 2021). By this definition, firms with lower cumulative stock return

losses since a crisis are regarded as resilient firms. Alternatively, ROA is also applied as it measures

the financial performance of a firm. That is, higher Return on Assets (ROA) after a crisis means

the firm has the ability to maintain its business activity and is thus regarded as more resilient. As

our resilience measure is already returns-based, we focus on ROA as a post-crisis outcome measure.

Specifically, in this section, we link our measure ∆ReV aR estimated using pre-crisis data to ex-

post ROA in three different crises: the Covid-19 outbreak in 2020Q1, the Global Financial Crisis

in 2008Q3 and the Technology Bubble in 2000Q1.

To avoid a look-ahead bias, we estimate ex-ante resilience using pre-crisis data only. That is, we

use data from January 1 1990 to December 31 2019, from January 1 1990 to December 31 2007, and

from January 1 1990 to December 31 1999 for the above three crisis events, respectively. Following
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the estimation methods in Sections 3.1 and 5.2, we obtain weekly ∆ReV aR for each estimates pre-

crisis sub sample period. Next, we average the weekly ∆ReV aR within each quarter, and use the

quarterly ∆ReV aR in 2019Q4, 2008Q2, and 1999Q4, respectively, as pre-crisis ∆ReV aR for the

three events. To measure post-crisis performance, we use the Return on Assets in quarters 2020Q2,

2008Q4 and 2000Q2, respectively. Alternatively, we use three types of firm financial performance

(i.e., NI, EBITDA and EBIT) as numerator to compute ROA. We then run the following cross-

sectional regressions:

ROAi
event+1 = a+ b∆ReV aRi

q=0.99,τ=1,event−1 + cXi
event−1 + ϵit. (20)

Table 5 shows the results with different forms of ROA as dependent variables. We include

industry fixed effects and clustered standard errors by industry level. We also control for pre-crisis

firm-level characteristics in all regressions. As a larger value of ∆ReV aRi
q=0.99,τ=1,event−1 indicates

a less resilient firm, a negative sign of b̂ should be interpreted as a positive relation between ex-ante

resilience and post-crisis ROA.

[Insert Table 5]

In all regressions, we can observe negative signs of b̂, indicating that firms with lower ∆ReV aR

before the crisis tend to have higher ROA after the crisis. The relation between ROA and ∆ReV aR

is statistically significant during the Covid-19 outbreak (Columns 1-3) and the Global Financial

Crisis (Columns 4-6), while the sign are negative but lack statistical significance during the Tech-

nology Bubble (Columns 7-9). For the first two crises, the relation is significant after controlling

for multiple pre-crisis firm characteristics and for all three types of ROA measures.

In sum, these results carry two noteworthy implications. First, ∆ReV aR as a pre-crisis resilience

measure can predict cross-sectional differences in firms’ post-crisis performance. Across all three
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crises examined, we estimate a firm’s ∆ReV aR solely from pre-crisis data. This suggests that

∆ReV aR captures a firm’s prospective capacity to sustain its business operations during unforeseen

crises. In essence, it serves as an indicator of the firm’s preparedness to navigate through unexpected

disruptions, thereby providing valuable insights into its resilience potential. Second, ∆ReV aR

extracts information concerning a firm’s fundamental performance using stock return data.

6.2 Panel Regression Results

After validating our resilience measure, we investigate which firm characteristics are related to

higher levels of firm resilience. To do so, we use weekly estimates of dynamic ∆ReV aR using the

full sample period, as discussed in Section 5.2, and convert them into quarterly estimates by taking

the average weekly value within the quarter. Finally, we conduct the following panel regression:

∆ReV aRi
q,τ=1,t = a+ bMt−h + cZi

t−h + ϵit, (21)

where h is the forecast horizon in quarters, Mt−h are lagged macro variables, and Zi
t−h are lagged

firm-level variables. In this equation, a negative sign of ĉ indicates a positive relation between

firm characteristics Zi
t−h and resilience and a positive sign indicates a negative relation. We adopt

h = 1, 4, 8 to see how quarter t resilience of a firm is related to its characteristics one quarter, one

year and two years ago. We include industry fixed effects and adopt Newey-West standard errors

with h lags. The regression results with different values of h and q are displayed in Table 6.

[Insert Table 6]

In Table 6, two firm characteristics stand out: leverage and innovation. The most statistically

significant result is the relation between lagged leverage and ∆ReV aR. For q = 95%, we find that

a 1% increase in lagged leverage level is associated with a 41 to 45 percentage point decrease in
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resilience level. This negative relation between financial leverage and ∆ReV aR is significant in

regressions with different parameters q and different lagged horizons h. This finding is consistent

with existing literature indicating that firms with higher leverage tend to have worse performance

during Covid-19 (Ding, Levine, Lin, and Xie, 2021; Fahlenbrach, Rageth, and Stulz, 2021).

This literature also conclude that firms with more cash performed better during Covid-19,

while we do not find a positive and significant relation between cash and resilience. A potential

explanation is cash holdings do not always play a positive role during different types of crises. In

rapidly changing markets, a resilient firm should equip itself with diversified buffers, rather than

solely relying on cash, to withstand crises. Holding excess cash entails high opportunity cost,

potentially impeding a firm’s ability to enhance its resilience and sending a negative signal that the

firm lacks the capacity to allocate its resources effectively (Cortes, 2021).

Second, we find a significant relation between innovation and resilience. We use three different

measures of innovation, including R&D as innovation input, the number of patents issued in the past

five years as innovation output, and the economic value of patents issued from Kogan et al. (2017)

as a measure for the patent value. The results indicate that firms with more innovation input, more

innovation output and higher economic value per patent tend to be more resilient. This suggests

that an innovative firm tends to be more adaptable to changes in the business environment and can

quickly adjust itself in response to unexpected shocks. Moreover, innovation can create competitive

advantages for firms, enabling them to preserve during market disruptions.

In terms of size, our results imply that small firms are more resilient. Yet, the portrait of

resilient firms is more likely to be mid-sized firms since very small firms are not included in our

sample. While larger firms could be perceived as more resilient, a concept often referred to as “too

big to fail”, we find that in terms of downside risk, small firms bounce back more. Furthermore,

we find that firms with higher book-to-market (BM) value are associated with lower ∆ReV aR,
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suggesting that value firms tend to be more resilient.

In sum, our panel regressions point towards two important firm characteristics that relate to

firm resilience: leverage and innovation. Firms with higher financial leverage tend to be less

resilient. Furthermore, resilience is related to several measures of firm innovation. Overall, our

findings suggest that firms may enhance their ability to cope with unexpected future shocks and

uncertainties by maintaining low debt levels and engaging in innovative activities.

7 Conclusion

While resilience is widely studied across many different disciplines, within finance, the concept of

resilience is nascent. Rather than studying how firms are exposed to different sources risk, we study

their resilience. Commonly, resilience is described as the ability to cope with the unexpected. After

being hit by an unexpected negative shock, do firms bounce back? And what are the characteristics

of firms that are resilient?

To address these questions, we first propose a novel measure of resilience, namely ∆ReV aR.

∆ReV aR captures the extent to which a firm’s conditional downside risk after an extreme loss

differs from its conditional downside risk after a typical underperformance of that firm. If the two

are similar, an extreme scenario has the same implications for the conditional return distribution

and hence Value-at-Risk of the firm as a typical underperformance. In other words, the firm is

resilient. Loosely speaking, the firm’s downside risk bounces back to its normal state even after a

stress event.

A key advantage of ∆ReV aR is that the measure is return-based and forward-looking. This

means that we do not need to specify the type and timing of the crisis in order to classify firms as

resilient or non-resilient.

Using weekly stock returns of U.S. listed firms and employing quantile regressions as our esti-
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mation method, we compute both a static and dynamic version of ∆ReV aR. The dynamic version

accounts for changes in firms’ downside risk over time, and is thereby used as the primary measure

in subsequent empirical analyses. Our initial assessment reveals substantial cross-firm variation

in ∆ReV aR. Furthermore, we show that ∆ReV aR is distinct from other (tail) risk measures,

including historical V aR, volatility, skewness, kurtosis and the CAPM market beta.

Next, we validate the dynamic resilience measure using three distinct crises: the Covid-19

outbreak in 2020, the Global Financial Crisis in 2008 and the Technology Bubble in 2000. We find

that firms with a higher ex-ante resilience measure tend to have higher ex-post Return on Assets

as well. The relation is statistically significant for both the Covid-19 crisis as well as the Global

Financial Crisis, two very different types of crises.

Lastly, we examine the relation between firm resilience and lagged firm characteristics using

panel regressions. Besides the expected relation to leverage, we find that innovation matters signif-

icantly. Firms with higher R&D investments, a greater number of patents and a higher economic

value per patent are significantly more resilient. Hence, while the characteristics that help firms

bounce back after the Covid-19 outbreak (i.e., the ability of employees to work from home) are ar-

guably different from characteristics that help recover from other types of crises such as the Great

Financial Recession, we find that overall, innovation activities help firms cope with unexpected

future extreme events.
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Figure 1: Static Resilience Estimates

These figures plot static ∆ReV aRi
95,1 and related estimates using a sample of U.S. stocks from

1980 to 2022. Panel A plots βi
95,1 (x-axis) and t-value (y-axis). The two horizontal lines indicate

t-values of 1.65 and -1.65. Panel B plots resilience measure ∆ReV aRi
95,1 (x-axis) and βi

95,1 (y-axis).

Panel C plots ∆ReV aRi
95,1 (x-axis) and V aRi

95 (y-axis).
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Figure 2: ∆ReV aR and Risk-Related Measurements

These figures plot static ∆ReV aRi
95,1 and other risk-related measurements. Panel A plots

∆ReV aRi
95,1 (x-axis) and standard deviations of weekly returns Ri (y-axis). Panel B plots

∆ReV aRi
95,1 (x-axis) and skewness of weekly returns Ri (y-axis). Panel C plots ∆ReV aRi

95,1

(x-axis) and kurtosis of weekly returns Ri (y-axis). Panel D plots ∆ReV aRi
95,1 (x-axis) and βi

mkt

(y-axis) from CAPM.
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Table 1: Summary Statistics of State Variables

This table presents summary statistics for the state variables Mt, based on weekly data from 1990 to 2022. Market returns are obtained from Kenneth
French’s website, while the remaining macroeconomic variables are obtained from the Federal Reserve Bank of St. Louis. The change in the three-
month yield is calculated as the weekly difference in the average three-month Treasury bill secondary market rate (DTB3). The term spread change
represents the weekly difference between the average ten-year Treasury constant maturity rate and the three-month Treasury constant maturity rate
(T10Y3M). The TED spread measures the difference between the three-month LIBOR and the three-month Treasury bill before January 2022, and
the difference between the Secured Overnight Financing Rate (SOFR) and the three-month Treasury bill after January 2022. The credit spread
change reflects the weekly difference between Moody’s seasoned Baa corporate bond yield and the ten-year Treasury rate (DTB10). Lastly, the VIX
refers to the CBOE Volatility Index (VIXCLS).

Obs. Mean Median p99 p1 SD Skewness Kurtosis

Three month yield change (%) 1,717 0.230 0.084 67.111 -50.000 49.219 -27.753 1,050.862
Term spread change (%) 1,717 -2.173 -0.368 104.324 -100.000 142.299 0.514 420.541
Ted spread (%) 1,717 45.155 37.000 188.400 -0.444 36.276 3.122 21.177
Credit spread change (%) 1,717 0.030 -0.110 7.582 -6.145 2.514 1.202 12.518
Market return (%) 1,717 0.209 0.320 6.424 -6.443 2.393 -0.542 8.799
VIX 1,717 19.661 17.838 48.375 10.188 7.877 2.067 10.495
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Table 2: Summary Statistics of Quarterly Stock-Level Variables

This table presents summary statistics for quarterly firm characteristics, with data obtained from Compustat. Size is measured as the natural
logarithm of total assets (log(atq)). The book-to-market ratio is calculated as the ratio of common equity (ceqq) to market value, determined by
shares outstanding times price (cshoq * prccq). Leverage is defined as the ratio of total debt (dlttq + dlcq) to total assets (atq). Cash holdings are
measured as cash and equivalents (cheq) divided by total assets (atq). Return on assets (ROA) is calculated as net income (niq) divided by total
assets (atq). R&D intensity is measured as research and development expenditures (xrdq) divided by total assets (atq). Patent data is obtained from
Kogan et al. (2017). Patent number refers to the total number of patents issued in the past five years (i.e., twenty quarters). The average economic
value of patents is calculated as the total economic value of patents over the past five years, divided by the number of patents issued in the same
period.

Obs. Mean Median p99 p1 SD Skewness Kurtosis

Size 355,965 6.742 6.645 2.508 11.872 1.998 0.238 2.701
Book-to-market 355,965 0.605 0.517 -0.140 2.380 0.442 1.426 5.847
Leverage 355,965 0.212 0.173 0.000 0.867 0.195 1.008 3.721
Cash 355,965 0.146 0.067 0.000 0.844 0.186 1.912 6.235
ROA (NI) 355,965 0.007 0.008 -0.150 0.078 0.030 -2.300 12.768
ROA (EBITDA) 355,965 0.025 0.025 -0.119 0.126 0.034 -0.753 7.266
ROA (EBIT) 355,965 0.017 0.016 -0.116 0.103 0.030 -0.973 7.868
R&D 355,965 0.007 0.000 0.000 0.099 0.017 3.125 13.688
Patent number 355,965 1.040 0.000 0.000 7.197 1.769 1.753 5.164
Average economic value of patent 355,965 0.770 0.000 0.000 5.138 1.289 1.646 4.731
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Table 3: Average absolute t−statistics of State Variable Exposures

This table presents the average absolute t−statistic values from dynamic measurement estimations. The first column reports γ̂i
50 from Equation

(14) (Xi
50,t = αi

50 + γi
50Mt + ϵi50,t). The second and forth columns present the average absolute t−statistics of estimates from Equation 12 (Xi

q,t =

αi
q+γi

qMt+ ϵiq,t) with q equals to 95 and 99 respectively. The third and fifth columns report average absolute t−statistics of estimates from Equation

(16) (Xi
q,t+τ = αi

q,τ + βi
q,τI

i
tX

i
t + δiq,τMt + ϵiq,t+τ ).

γ̂i
50

q=95 q=99

γ̂i
95 δ̂i95,1 γ̂i

99 δ̂i99,1

Three month yield change 1.167 1.472 2.168 1.746 2.009
Term spread change 1.240 1.760 1.519 2.812 2.256
Ted spread 0.944 2.001 1.697 2.156 1.780
Credit spread change 0.977 1.027 1.084 1.194 1.205
Market return 9.822 4.599 1.157 2.779 1.322
VIX 0.863 3.026 3.092 2.934 3.057
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Table 4: Summary Statistics of Dynamic Resilience Estimates

This table presents summary statistics of dynamic resilience estimates, calculated on a weekly frequency from 1990 to 2022. The variable Xi
t

represents weekly losses. V aRi
95,t and V aRi

99,t are conditional Value-at-Risk (V aR) estimates based on Equation (13) (V aRi
q,t = α̂i

q + γ̂i
qMt),

while V aRi
50,t is based on Equation (15) (V aRi

50,t = α̂i
50 + γ̂i

50Mt). ReV aR
i|V aRi

95,t

95,t+1 and ReV aR
i|V aRi

99,t

99,t+1 represent conditional tail risk based on

Equation (17) (ReV aR
i|V aRi

q,t

q,t+τ = α̂i
q,τ + β̂i

q,τV aRi
q,t + δ̂iq,τMt). ReV aR

i|V aRi
50,t

95,t+1 and ReV aR
i|V aRi

50,t

99,t+1 are benchmarks, calculated using Equation (18)

(ReV aR
i|V aRi

50,t

q,t+τ = α̂i
q,τ + β̂i

q,τI[V aRi
50,t > 0]V aRi

50,t+ δ̂iq,τMt). Finally, ∆ReV aRi
95,t+1 and ∆ReV aRi

99,t+1 are the final resilience measures, defined

by Equation (19) (∆ReV aRi
q,t+τ = ReV aR

i|V aRi
q,t

q,t+τ −ReV aR
i|V aRi

50,t

q,t+τ ).

Obs. Mean Median p99 p1 SD Skewness Kurtosis

Xi
t (%) 4,867,067 -0.355 -0.000 16.129 -20.000 6.499 -5.840 631.757

V aRi
50,t (%) 4,867,067 -0.067 -0.086 6.655 -5.998 2.209 0.828 18.163

q=95

βi
95,1 4,867,067 0.102 0.092 0.732 -0.473 0.241 0.278 4.106

βi
95,1 t-value 4,867,067 0.942 0.710 6.856 -3.106 2.006 1.039 8.058

V aRi
95,t (%) 4,867,067 7.366 6.600 21.079 0.901 4.210 2.139 20.092

ReV aR
i|V aRi

50,t

95,t+1 (%) 4,867,067 8.051 7.355 20.320 2.653 3.785 2.063 26.746

ReV aR
i|V aRi

95,t

95,t+1 (%) 4,867,067 8.693 7.913 23.111 2.434 4.350 2.136 23.466
∆ReV aRi

95,t+1 (%) 4,867,067 0.642 0.486 6.639 -3.925 1.892 1.273 15.879

q=99

βi
99,1 4,536,898 0.185 0.113 1.777 -0.726 0.501 1.409 8.535

βi
99,1 t-value 4,536,898 1.050 0.459 10.302 -2.955 2.942 8.079 191.574

V aRi
99,t (%) 4,536,898 12.532 11.277 34.500 2978 6.723 2.699 36.847

ReV aR
i|V aRi

50,t

99,t+1 (%) 4,536,898 13.368 12.173 34.428 4.344 6.467 3.149 65.168

ReV aR
i|V aRi

99,t

99,t+1 (%) 4,536,898 15.666 13.327 53.221 2.575 10.240 3.280 41.426
∆ReV aRi

99,t+1 (%) 4,536,898 2.298 1.041 29.699 -11.140 7.478 3.375 54.054
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Table 5: Events: ROA Prediction

This table presents the results of cross sectional regressions (ROAi
event+1 = a+ b∆ReV aRi

q=0.99,τ=1,event−1 + cZi
event−1 + ϵit) for three major events:

the Covid-19 pandemic (Columns 1-3), the Global Financial Crisis (Columns 4-6), and the Technology Bubble (Columns 7-9). The resilience estimates
are based on expanding samples from 1990 to 2019, 1990 to 2007, and 1990 to 1999, respectively. The independent variables (Lag ∆ReV aRi

99,τ=1

and other Lag firm-level characteristics denoted by Z) are measured as of 2019Q4, 2008Q2, and 1999Q4 for the three events. The dependent variable,
ROA, is measured at 2020Q2, 2008Q4, and 2000Q2, respectively. Lagged ROA is also included as an independent variable. All regressions account
for industry fixed effects. Standard errors clustered at industry level are reported in parentheses. Significance levels are indicated as follows: *p < .10;
**p < .05; ***p < .01.

Covid Global Financial Crisis Technology Bubble

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ROA (NI) ROA (EBITDA) ROA (EBIT) ROA (NI) ROA (EBITDA) ROA (EBIT) ROA (NI) ROA (EBITDA) ROA (EBIT)

Lag ∆ReV aRi
99,1 -0.030** -0.015*** -0.017** -0.086*** -0.022* -0.024** -0.004 -0.002 -0.005

(0.010) (0.004) (0.006) (0.016) (0.011) (0.010) (0.003) (0.005) (0.005)
Lag size 0.002** 0.001* 0.001** 0.007*** 0.001 0.001 0.002 0.001 0.001

(0.001) (0.000) (0.000) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Lag BM -0.009*** -0.008*** -0.009*** -0.046* -0.010** -0.008*** -0.006*** -0.006* -0.004

(0.002) (0.002) (0.002) (0.025) (0.003) (0.002) (0.001) (0.003) (0.003)
Lag leverage -0.030*** -0.015* -0.015* -0.007 -0.005 -0.005 -0.009** 0.001 0.001

(0.006) (0.007) (0.007) (0.010) (0.010) (0.011) (0.004) (0.004) (0.005)
Lag cash -0.013 -0.017* -0.014* 0.032* -0.023*** -0.020*** -0.018 -0.012 -0.016

(0.010) (0.008) (0.007) (0.015) (0.004) (0.005) (0.016) (0.012) (0.012)
Lag ROA 0.322*** 0.477*** 0.450*** 0.635*** 0.617*** 0.724*** 0.341*** 0.497*** 0.512***

(0.033) (0.079) (0.081) (0.107) (0.072) (0.068) (0.037) (0.020) (0.024)
Lag R&D -0.422*** -0.229** -0.252** -0.230 -0.165* -0.038 -0.296* -0.255** -0.214*

(0.094) (0.079) (0.080) (0.254) (0.082) (0.079) (0.139) (0.095) (0.098)
Lag patent number 0.000 0.000 0.000 -0.006** 0.001 -0.000 0.001 -0.000 0.001

(0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.001)
Lag EV per patent 0.000 0.000 0.001 0.003 0.002 0.003 0.001 0.001 0.000

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

Observations 2,081 2,081 2,081 2,142 2,142 2,142 2,697 2,697 2,697
Adjusted R2 0.357 0.437 0.440 0.162 0.322 0.365 0.363 0.472 0.534
Industry FE yes yes yes yes yes yes yes yes yes
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Table 6: Resilience and Firm Characteristics

This table presents the results of quarterly panel regressions (∆ReV aRi
q,τ=1,t = a + bMt−h + cZi

t−h + ϵit)

using data from 1990 to 2022. The dependent variables are resilience measurements ∆ReV aRi
95,t in Columns

1 to 3 and ∆ReV aRi
99,t in Columns 4 to 6. The independent variables are 1-quarter lag in Columns 1 and

4, 4-quarter lag in Columns 2 and 5, and 8-quarter lag in Columns 3 and 6. The lagged V aRq is component
of the lagged dependent variable ∆ReV aRi

q,t. Financial variables are obtained from Compustat and are
winsorized at 1% level. Patent data is obtained from Kogan et al. (2017). Macroeconomic variables consist
of six state variables used in the estimation of ∆ReV aRi

q,t. All regressions include industry fixed effects.
Newey-West standard errors are reported in brackets. Significance levels are indicated as follows: *p < .10;
**p < .05; ***p < .01.

∆ReV aRi
95,t ∆ReV aRi

99,t

(1) (2) (3) (4) (5) (6)
h=1 h=4 h=8 h=1 h=4 h=8

V aRq,t−h 0.089*** 0.077*** 0.064*** 0.263*** 0.241*** 0.205***
(0.003) (0.004) (0.005) (0.007) (0.010) (0.012)

Sizet−h 0.166*** 0.159*** 0.150*** 0.354*** 0.339*** 0.302***
(0.003) (0.004) (0.006) (0.012) (0.018) (0.023)

BMt−h -0.092*** -0.115*** -0.109*** -0.322*** -0.402*** -0.422***
(0.013) (0.018) (0.023) (0.049) (0.071) (0.089)

Leveraget−h 0.414*** 0.429*** 0.448*** 0.227** 0.319* 0.481**
(0.027) (0.042) (0.054) (0.109) (0.166) (0.216)

Casht−h 0.366*** 0.380*** 0.397*** -0.000 0.056 0.218
(0.034) (0.050) (0.064) (0.152) (0.226) (0.287)

ROAt−h 0.287 0.177 0.180 1.213 1.056 0.821
(0.181) (0.244) (0.299) (0.833) (1.149) (1.442)

R&Dt−h -2.640*** -2.169*** -1.520** -3.276* -1.285 1.494
(0.403) (0.589) (0.750) (1.847) (2.728) (3.476)

Patent numbert−h -0.045*** -0.048*** -0.049*** -0.044*** -0.054** -0.062*
(0.004) (0.006) (0.007) (0.016) (0.024) (0.032)

Economic value per patentt−h -0.012** -0.013* -0.015 -0.023 -0.029 -0.035
(0.005) (0.007) (0.010) (0.020) (0.031) (0.040)

3-month yield changet−h 0.001*** 0.001*** -0.000 0.004*** -0.001 -0.004***
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

Term spread changet−h -0.000*** 0.000*** -0.001*** -0.001*** -0.000 -0.002***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Ted spreadt−h 0.000* 0.001*** 0.000 0.002** 0.002** 0.001
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

Credit spread changet−h 0.000 0.009*** -0.007** -0.002 0.038*** -0.007
(0.003) (0.003) (0.003) (0.014) (0.014) (0.012)

Market returnt−h 0.045*** 0.074*** 0.057*** 0.189*** 0.285*** 0.222***
(0.007) (0.008) (0.008) (0.028) (0.031) (0.033)

VIXt−h -0.002** -0.007*** -0.011*** -0.033*** -0.045*** -0.054***
(0.001) (0.001) (0.001) (0.003) (0.005) (0.005)

Observations 354,491 335,727 310,767 350,026 331,257 306,298
Adjusted R2 0.043 0.038 0.033 0.036 0.031 0.027
Industry FE yes yes yes yes yes yes
Newey-West SE lag 1 4 8 1 4 8
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