

Advertising and Consumer Decision-Making in the Experience Goods Market

Yiran Zheng, Texas Tech University

IV_{BLP}

IV_P

Abstract

The study explores the impact of brand-level information contained in media advertising on consumer decision-making when purchasing non-durable experience goods. Utilizing a random coefficient discrete-choice model on the ready-to-eat cereal industry, I consider the effects of advertising via nationwide media on consumer choices. Building on previous studies, I propose a new group of instrumental variables for addressing endogeneity and incorporating demographic household information on the consumers who purchased.

Introduction

Consumer decision-making has been a concern for decades. If we consider the **price** as a characteristic of a product, then it becomes a question of **if other characteristics can also**

Endogeneity Problem

Two groups of instruments are used

BLP¹ and Berry⁴'s IVs & adverting spending variable

New introduced instruments

- The price of a brand in the market (t-12)
 - Sums of prices of other brands from the same firm in the market (t-12);
 - Sums of prices of brands from different firms in the market (t-12).

Logit Results

The simple logit model is a two-stage least squares regression of $\ln(s_j) - \ln(s_0)$, where s_j is the market share of a brand j and s_0 is the market share of outside goods, which are

be an influential factor.

Advertising is one method that can deliver information to consumers, which, in turn, affects decisions. This study examines the effects of **advertising-related** features on consumers' decisions, in addition to the **characteristics of products**.

Moreover, the process of determining which products to purchase depends **not only on the attributes of the products but also on demographics that will influence the decisionmaking process**.

I focus on non-durable experience goods in this study, specifically the ready-to-eat cereal market. I aim to answer the question, "How do advertisements influence consumers' choices of non-durable experience goods in the mass media channels?" using the random coefficient discrete-choice model and the ready-to-eat cereal as a sample product category.

Empirical Model

To test the impact of advertising on consumer choice, in addition to using a simple logit model, a structural model at the brand-level is established based on BLP¹, Nevo², and Ackerberg³'s choice models.

Logit Model

$$U_j = X_j\beta + A_j\gamma - \alpha P_j + \epsilon_j$$

(1)

$$x_{i+1} = X_{i+1}\beta_i + A_{i+1}\gamma_i - \alpha_i P_{i+1} + \xi_{i+1} + \epsilon_{i+1}$$

alternatives of 39 brands inside the data.

The first-stage adjusted R-squared for instrumental variable regression as shown below:

	(1)	(ii)	(iii)
TT 7			
IV _{BLP}	Yes		Yes
IV_P		Yes	Yes
Shea's Adj. Partial R ²			
Shea's Adj. Partial R ²	0.775	0.010	0 784
Shea's Adj. Partial R ² Advertising Dummy	0.775	0.010	0.784

Full-Model Results

Full model results are regressed from equation (2) by interacting with household demographics.

			Interactions with Demographic Varia	
	Mean	SD	Income	Kid
ln(Price)	-7.354***	0.034	1.072***	7.515***
	(2.794)	(2.901)	(0.308)	(1.661)
Protein	3.443	0.000	-0.455	-6.256***
	(2.408)	(2.476)	(0.377)	(1.311)
Fat	-0.195	0.010	-0.039*	1.040**
	(0.167)	(1.108)	(0.020)	(0.326)
Carbohydrate	-0.113	1.349	-2.412*	6.984*
-	(4.139)	(1.385)	(0.981)	(3.213)

$C_{ijt} = A_{jt}P_{1} + A_{jt}P_{1} + C_{ijt} + C_{ijt}$ (2)

- U_{ijt} is the utility of a household i choosing a brand j in a market t;
- P_{jt} , X_{jt} , and A_{jt} are vectors prices, brand characteristics, and advertisement characteristics of a brand j in a market t;
- ξ_{jt} is unobserved characteristics of brands consisting of latent features that cannot be captured in data but impact consumers' decisions.

Noted that a market t is defined in time dimension as a year-month observation.

Following Nevo's methodology on household characteristics using real data distribution, estimated **consumers' taste parameters**, $(\alpha_i, \beta_i, \gamma_i)$, can be modeled as,

$$\begin{pmatrix} \alpha_i^* \\ \beta_i^* \\ \gamma_i^* \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} + \Pi D_i + \Sigma \nu_i , \qquad (3)$$

where Π and Σ are matrices of coefficients, D_i captures the observed distribution of household characteristics, and v_i is independently and identically distributed, capturing the unobserved household characteristics

Data

Household-level data and advertising data were collected by Nielsen in collaboration with the **Kilts Marketing Data Center** at the University of Chicago, Booth School of Business. There are 39 brands covered in this study, from 3 firms that account for more than 80% market share in Texas from 2015 to 2019 However, the full-model results do not present a statistically significant estimations on advertising-related variables. Possible reasons for statistically insignificant estimates: low variation over markets, and high heterogeneity between advertised and unadvertised brands. A further test is conducted for testing advertised brands only:

			Interactions with Demographic Variable		
	Mean	SD	Income	Kid	
ln(Price)	-2.686***	0.061	0.180	4.929**	
	(0.770)	(2.338)	(0.327)	(1.848)	
Protein	0.264	0.000	-0.103	-4.792***	
	(0.598)	(2.437)	(0.282)	(1.201)	
Fat	-0.155	0.008	0.058	-0.230	
	(0.237)	(0.511)	(0.117)	(0.209)	
Carbohydrate	-4.699	0.000	1.624*	-27.719***	
	(2.787)	(13.467)	(0.743)	(8.075)	
Commercial Duration	-10.186	4.798*	1.343	-2.192	
	(9.853)	(2.134)	(1.640)	(6.818)	
Media Types	1.801**	0.000	-0.342	-3.865***	
	(0.586)	(1.000)	(0.348)	(1.069)	

Conclusion & Contribution

Table 1. Summary of Variables

Household		Brand		Advertising		
Income	Annual income per household members (\$ 10K)	Nutrition	Market	Advertising	A dummy variable equals 1 when	
		Protein	Price		a brand has ads within a month	
A dummy vari Kid when a house one kid.	A dummy variable equals 1	Fat	(per ounce)	Commercial duration	The monthly average duration of brand commercials	
	when a household has at least one kid.	Carbohydrate (grams per serving)	Market Share	Media types	Number of media channels a brand advertised in	

<u>Conclusion</u>

- Advertising on more media channels can help brands improve brand awareness;
- Brands with advertisements should be careful in marketing kids-orientated products about carbohydrate-related features;
- Consumers are less sensitive to the price of advertised brands, which implies that brand awareness and loyalty could be built through advertisements.

Contribution

- Applying advertising into a structural random coefficient discrete choice model
- Introducing new instrumental variables
- Using actual consumer purchasing data and panel data

Contact

Yiran Zheng

Texas Tech University

Email: yirzheng@ttu.edu

Website: https://yiran-zheng.github.io/

Phone: (202) 6550360

References

- 1. Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica, 63(4), 841–890.
- 2. Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry. Econometrica, 69(2), 307–342.
- 3. Ackerberg, D. A. (2003). Advertising, learning, and consumer choice in experience good markets: An empirical examination. International Economic Review, 44(3), 1007–1040.
- 4. Berry, S. (1994). Estimating discrete-choice models of product differentiation. The RAND Journal of Economics, 25(2), 242–262.