The Paper in short

Idea: Use investors' portfolios to characterize their subjective expected returns

Pipeline

- 1. Theoretical framework to recover subjective beliefs through holdings data and option prices
- 2. Empirically test on 30-days option portfolios of Customers and Market Makers

Results

- 1. Rationale to explain statistical properties of subjective expected returns
- 2. Customers: volatile, even negative, a-cyclical, in line with survey data
- 3. Market Makers: positive, counter-cyclical, aligned to price-based measures

Subjective Expected Returns

$$\mathbb{E}_{t}^{i}[R] = \mathbb{E}_{t}^{\star}[\boldsymbol{\theta}_{i}^{\prime}\boldsymbol{R}R] = \theta_{mkt} \mathbb{V}ar_{t}^{\star}(R) + \boldsymbol{\theta}_{opt}^{\prime}\mathbb{C}ov_{t}^{\star}(\boldsymbol{R}_{opt}, R) + 1$$

- Unconstrained investors with heterogeneous beliefs
- Lower bound for subjective expected returns (exact if agents have log utility)
- Data-driven, real-time recovery
- Covariance term may be positive/negative, pro-/counter-/a-cyclical \rightarrow rich variety of features captured by demand effects

- CBOE data: Customers' and Market Makers' daily positions in OTM options
- Portfolio structure: θ_0 in S&P500, $1 \theta_0$ in OTM calls and puts, the rest in risk-free

 $\theta_0 = \theta_0^{min} + \alpha \cdot (1 - \theta_0^{min})$

- Customers hold index + long OTM puts + short OTM calls
- Market Makers hold/sell index + short OTM puts + long OTM calls + negative Δ -hedging (the rest in risk-free)
- Investors' positions in options depend on aggregation pattern across maturity and moneyness

Demand-based Expected Returns

Alessandro Crescini¹

¹University of Geneva and SFI

Customers vs. Market Makers

- Customers' "pessimistic" view : options-induced belief distortion is negative, volatile, not persistent, a-cyclical
- Market Makers' Δ -hedged positions neutralize the first order covariance correction : large, positive, counter-cyclical expected returns
- ...but Market Makers' subjective expectations are spuriously "optimistic" as they are constrained investors

lpha	mean	std	min	median	max	corr (%)	AR(1)	index (%)
Customers								
1	1.082	0.058	1.017	1.069	1.521	100	0.82	100
90%	1.041	0.058	0.911	1.032	1.433	85	0.69	97
80%	1.004	0.071	0.792	1.006	1.366	59	0.58	94
50%	0.913	0.124	0.520	0.933	1.337	20	0.51	86
0	0.810	0.194	0.258	0.838	1.345	5	0.49	72
Market Makers								
1	1.082	0.058	1.017	1.069	1.521	100	0.82	100
90%	1.074	0.053	1.006	1.065	1.465	99	0.85	86
80%	1.045	0.049	0.989	1.059	1.410	97	0.87	72
50%	1.045	0.043	0.936	1.043	1.262	78	0.86	30
0	1.012	0.048	0.779	1.021	1.104	29	0.69	-40

Market Makers

AFA 2025, San Francisco

Fabio Trojani¹ Andrea Vedolin²

²Boston University, NBER and CEPR

What is the implicit Market View?

What if Holdings have Measurement Errors?

Subjective Measures of Risk

	Customers' subj. Volatility						Customers' subj. Sharpe Ratio						
α	mean	std	min	median	max	corr (%)	mean	std	min	median	max	corr (%)	
1	0.221	0.104	0.094	0.190	0.934	91	0.226	0.068	0.124	0.218	0.523	76	
90%	0.253	0.103	0.093	0.244	0.931	86	0.060	0.134	-0.351	0.790	0.483	36	
80%	0.269	0.105	0.091	0.265	0.919	81	-0.054	0.200	-0.821	-0.016	0.481	17	
50%	0.286	0.110	0.087	0.279	0.872	72	-0.341	0.390	-1.517	-0.269	0.477	-4	
0	0.281	0.133	0.210	0.260	1.221	57	-0.912	0.850	-3.623	-0.733	0.476	-17	

How do Holdings affect SDFs?

Applications

• Consensus Belief = $\sum_{i} w_i \mathbb{E}^i[R]$ reflects the aggregate expected return across unconstrained investors. Options arre redundant only if every market participant is unconstrained • Belief Dispersion = $\sum_{i} w_i |\mathbb{E}^i[R] - CB|$ the belief heterogeneity degree in the market

Solve for the portfolio supporting the minimum (or maximum) subjective expected return, while being compatible with the observed belief

$$\min_{\boldsymbol{\theta}} \left\{ \mathbb{E}_t^{\star}[\boldsymbol{\theta}'\boldsymbol{R}R] + \lambda \left(\frac{1}{2}\|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|_2^2 - \delta\right) \right\}$$