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Abstract

We develop a unified analysis of how information captures attention. A deci-
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plement them. This delivers the form of optimal attention capture as a function
of the designer and DM’s relative time preferences. Intertemporal commitment is
unnecessary: sequentially optimal information structures always exist by induc-
ing stochastic interim beliefs. We further analyze optimal attention capture under
noninstrumental value for information. Our results speak directly to the attention
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1 INTRODUCTION

The modern age is brimming with information. Yet, our access to it is mediated by plat-
forms which funnel our attention toward algorithmically curated streams of content—
articles to digest, videos to watch, feeds to scroll—which we have little control over.
These platforms, in turn, generate revenue through advertisements; their business,
therefore, is to capture, repackage, and monetize attention.

Motivated by these developments,1 we study the extent to which information can
be used to capture attention. A designer (they) controls a decision maker’s (DM, she)
knowledge of an uncertain state by choosing some dynamic information structure
which specifies, for each history of past messages, a distribution over future messages.
The DM values information instrumentally2 and, at each point in time, chooses be-
tween observing more information and stopping to act. On some paths of realized
messages, the DM might become quickly become confident and stop to act; on other
paths, she might observe contradictory signals and so finds it worthwhile to wait for
more information. Hence, dynamic information structures induce distributions over
the DM’s optimal stopping times. How should a designer who values attention pro-
vide information over time?

Our contribution is to give a relatively complete characterization of (i) all stopping
times achievable through information and properties of dynamic information struc-
tures which implement them; (ii) dynamic information structures which optimally cap-
ture attention via a characterization of the convex-order frontier and etxreme-points of
feasbile stopping times; (iii) the requisite degree of intertemporal commitment (none);
(iv) optimal attention capture when information is valued noninstrumentally; and (v)
optimal dynamic information when the designer values both attention and persuasion
separably.

1.1 Outline of contribution.

Reduction to deterministic, increasing, and maximal belief paths. Our first result
(Theorem 1) establishes a reduction principle: any feasible distribution over stopping
times can be implemented with a special class of dynamic information structures such
that upon stopping, DM learns the state perfectly and upon continuing, the DM’s con-
tinuation beliefs follow a deterministic path which is (i) increasing: the longer she waits,
the more uncertain she becomes; and (ii) maximal: at each time step her continuation
beliefs move as much as the martingale condition allows. This is represented by the
top arrow in Figure 1.

Conceptually, the reduction principle highlights the key role that increasing con-
tinuation belief paths play in shaping dynamic continuation incentives. A distinctive

1Platforms are typically paid per ‘impression’ (view) or ‘click’. In the first quarter of 2022, 97% of
Facebook’s revenue, 81% of Google’s revenue, and 92% of Twitter’s revenue came from advertising.

2Information can, of course, have noninstrumental value e.g., Kreps and Porteus (1978). In Section 6
we study optimal attention capture when information is valued noninstrumentally in the sense of Ely,
Frankel, and Kamenica (2015).
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feature of attention capture is that the DM’s value for information over time depends
on her interim belief which is itself endogenous to the dynamic information structure—
this is a margin along which the designer exploits. Practically, the reduction principle
ensures continuation histories do not branch: conditional on continuing until time t,
DM’s beliefs are uniquely pinned down by the continuation belief path. This simplifies
the designer’s problem to whether we can find a continuation belief path supporting a
target distribution over stopping times.

Optimal attention capture via convex-orders and extreme points. We next turn to
the structure of optimal attention capture. We completely characterization of the convex-
order frontier over the set of feasible stopping times (Theorem 2 (i)). Distributions on
the convex-order frontier are supported by increasing and maximal belief paths which
keep the DM indifferent between continuing and stopping at each point in time. This
is depicted by the second arrow in Figure 1. Thus, increasingness and maximality are
both sufficient to achieve any feasible stopping time and necessary to achieve the convex
frontier.

Figure 1: Connections between aspects of attention capture

Our results offer a transparent perspective on the form of optimal attention with an
arbitrary number of states, arbitrary DM decision problems, and arbitrary (but addi-
tively separable) designer and DM time preferences. When the designer’s time prefer-
ences are more convex than that of the DM’s, optimal dynamic information structures
must generate full information at a time-inhomogeneous geometric rate which keeps
the DM indifferent and induces increasing and maximal continuation belief paths.
Conversely, when the designer’s preferences are more concave than that of the DM’s,
optimal dynamic information structures induces no movement in interim beliefs until
full information arrives at a fixed time.

We further analyze optimal attention capture with arbitrary designer value and ar-
bitrary DM costs. This allows us to understand environments beyond convex/concave
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preferences e.g., ‘S-shaped’ response curves commonly studied in the marketing liter-
ature. We show that extreme points of the set of feasible stopping times3 coincide
exactly with those induced by dynamic information with block structures such that the
support of the stopping times are the times at which the DM is indifferent between
stopping and continuing (Theorem 2 (ii)).4 This is depicted by the third arrow in Fig-
ure 1. That is, time is partitioned into blocks: in the interior of each block, the DM
never receives information; at the boundaries, the DM has some chance to learn the
state but, if she does not, is indifferent between continuing and stopping. Our tight
characterization of the extreme points of this set are distinct from those of majoriza-
tion (Kleiner, Moldovanu, and Strack, 2021): feasibility of stopping times is strictly
more stringent than either being majorized by, or majorizing another feasible stopping
time.5 This might be of interest in future work on dynamic mechanism or information
design where constraints on the conditional distribution feature prominently.6

Economically, block structures have the natural interpretation as the policy of a
platform that controls the duration of advertisements (length of each block). Over the
duration of each advertisement (interior of each block), the DM receives no informa-
tion; at the end of each advertisement, the designer gives the DM full information with
some probability, otherwise it shows the DM yet another advertisement at which point
the DM is indifferent between continuing and stopping.7 Crucially, since the DM has
already sunk her attention costs, conditional on being shown yet another advertise-
ment, she finds it weakly optimal to continue paying attention although she might
have been better-off not paying attention in the first place.

Sequential optimality. In much of the paper we will assume the designer can commit
to provision of future information. This promise, in turn, incentivizes the DM to pay
attention in the present. We show that intertemporal commitment is unnecessary (The-
orem 3): optimal information structures always have sequentially optimal modifications.
This is represented by the bottom arrow in Figure 1. We give an explicit procedure of
such modifications: the designer spreads interim beliefs randomly such as to raise the
DM’s interim outside option. This, in turn, ensures that at future histories the designer
finds it optimal to follow through with the promised information. Sequentially opti-
mal modifications exploit the irreversibility of information: once the cat is out of the
bag, it cannot be coaxed back in since, as soon as the DM’s beliefs have moved, there is
no way to systematically undo it—any further movement in the DM’s belief is subject
to a martingale constraint relative to her new belief. This is a distinctive property of
information with no analog in mechanism design and it allows designer to bind their

3When the DM’s prior is such that her value for information is maximized.
4With the possible exception of a pair of boundary times.
5It is more evidently distinct from the set of extreme points of first-order stochastic dominance (Yang

and Zentefis, 2023).
6For instance, the convex-order frontier of majorization developed in Kleiner, Moldovanu, and Strack

(2021) has been productively used in security design (Gershkov, Moldovanu, Strack, and Zhang, 2024).
7For instance, this is the form of advertisements (ads) on popular streaming platforms such as

Youtube, Spotify, and Tiktok which frequently show users ‘unskippable’ ads. Such platforms conduct
extensive optimization over the type, duration, and number of ads users see.
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future selves to follow through with the promised information.

Attention capture with non-instrumental value of information. We next turn to the
question of how attention should be optimally captured when the DM has noninstru-
mental value for information. We suppose that the DM obtains flow utility from sus-
pense (Ely, Frankel, and Kamenica, 2015) which is the expected variation in beliefs
between periods. Just as a sports fan might turn off the television after one team ac-
cumulates an insurmountable lead, the DM optimally chooses when to stop paying
attention by weighing her future suspense utility against the additional cost of wait-
ing. We show that optimal attention under suspense utility has a tight and surprising
connection with sequentially optimal attention capture when information is valued
instrumentally (Theorem 4). Exploiting this connection, we explicitly characterize op-
timal dynamic information structures when the designer has convex or concave value
of attention. When the designer’s value for attention is concave, optimal structures
have stochastic continuation belief paths and deterministically portions out suspense
over time. When the designer’s value is convex, optimal structures have deterministic
continuation belief paths and stochastically portions out suspense over time.

Attention capture with persuasion motives. For much of the paper we focus on a
designer who purely values attention. Nonetheless, we show that attention capture
remains a prominent force even in environments with additively separable persuasion
motives e.g., a platform with multiple revenue steams from selling ads (attention) and
commissions (persuasion). We show that the optimal dynamic information structure
is bang-bang (Theorem 5): they either focuses on extracting attention (such that our
results on optimal attention capture apply exactly), or persuades in one-shot at a fixed,
deterministic time T.8

1.2 Related literature.

Dynamic information design. Our paper most closely relates to the recent literature
on dynamic information design with forward-looking agents (Ely and Szydlowski,
2020; Smolin, 2021; Zhao, Mezzetti, Renou, and Tomala, 2020; Ball, 2023; Orlov, Skrzy-
pacz, and Zryumov, 2020; Knoepfle, 2020; Hébert and Zhong, 2022).9 Our contribution
is distinct in several regards.

First, the reduction principle we develop is a tool for understanding all stopping
times which can arise through information.10 This allows us to fully solve the prob-

8Methodologically, we develop a switching lemma which shows how to modify the correlation be-
tween stopping beliefs and stopping times while preserving the marginals and dynamic obedience con-
straints; and a pasting lemma which shows how to dynamically perturb continuation beliefs. These tech-
niques are similar in spirit to path perturbation methods in the recent mathematics literature on optimal
Skorokhod embeddings (Beiglböck, Cox, and Huesmann, 2017).

9See also Renault, Solan, and Vieille (2017) and Ely (2017) for early work on dynamic information
design with myopic agents. Doval and Ely (2020) develop a framework for information design in exten-
sive form games. De Oliveira and Lamba (2023) develop the notion of deviation rules to study which
dynamic choices can be rationalized by information.

10Indeed, the “all-or-nothing” information structure of Knoepfle (2020), and Poisson structures used
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lem of a designer with arbitrary nonlinear preferences over DM’s stopping times, and
stands in contrast to much of the recent literature which studies the linear case by ex-
amining the time-0 obedience constraint (Knoepfle, 2020; Hébert and Zhong, 2022).11

To do so, we develop a tight characterization of the convex-order frontier and extreme
points over the set of feasible stopping times. This set imposes constraints on the condi-
tional distribution over stopping times and is distinct from majorization or first-order
stochastic dominance (Kleiner, Moldovanu, and Strack, 2021; Yang and Zentefis, 2023).
Second, we solve the problem of a designer with additive preferences over both the
DM’s action as in (Kamenica and Gentzkow, 2011) as well as stopping time. To our
knowledge, this has not been previously studied.12 Third, we show there is no com-
mitment gap which highlights a novel role of information not simply as a carrot to in-
centivize attention, but as a stick for the designer to discipline their future self. Finally,
we study dynamic information design when information is valued noninstrumentally.
This builds on an important paper of Ely, Frankel, and Kamenica (2015) who develop
the notion of suspense and surprise. They characterize dynamic information structures
which maximize suspense utility for a fixed time horizon T. We complement their anal-
ysis by characterizing optimal dynamic information to extract attention when the DM
stops paying attention optimally such that the time horizon is endogenous.

Subsequent work has built on our analysis (Koh, Sanguanmoo, and Zhong, 2024;
Saeedi, Shen, and Shourideh, 2024); we discuss each paper in turn. Koh, Sanguanmoo,
and Zhong (2024) focuses on implementing joint distributions over actions, states, and
stopping times. This is a more general environment but our results are non-nested and
complementary.13 In in this paper we focus on aspects distinct to attention capture
which allows us to better understand the (i) structural properties of dynamic infor-
mation: e.g., how interim beliefs are steered, whether they should be deterministic
vs random; and (ii) convex-order frontier and extreme points over all feasible stopping
times: we use this to obtain general results on the structure of optimal attention capture
which (to our knowledge) cannot be obtained from the duality approaches developed
in both Koh, Sanguanmoo, and Zhong (2024) and Saeedi, Shen, and Shourideh (2024).

More related is Saeedi, Shen, and Shourideh (2024) who also study attention cap-
ture, albeit with exponential discounting. Our papers differ in at least two substantial
regards. First, our results deliver sharp insights into the structural properties of dynamic
information structures such as belief paths which cannot be obtained via duality meth-
ods. Belief paths are fundamental since (endogenous) interim beliefs shape interim
continuation incentives; we develop a relatively complete analysis of these objects, and

in Orlov, Skrzypacz, and Zryumov (2020) and Hébert and Zhong (2022) can be viewed as within this
class although our models are non-nested.

11Our work characterizing optimal structures in nonlinear settings complements the recent progress in
static persuasion when designer preferences over DM’s actions are nonlinear (Dworczak and Kolotilin,
2022; Kolotilin, Corrao, and Wolitzky, 2022).

12Several papers study dynamic persuasion with constraints on the information structure and the
designer cares only about DM’s action (Che, Kim, and Mierendorff, 2023; Escudé and Sinander, 2023).

13We emphasize that in Koh, Sanguanmoo, and Zhong (2024) we write that the environment there
“fully nests” that of the present paper, but the results are non-nested.
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show how they matter for capturing attention.14 Second, we study the set of all feasible
stopping times and characterize its convex-order frontier as well as extreme points. We
focus on a DM with additively separable time costs which allows us to obtain general
and transparent insights into optimal dynamic information for many states and ar-
bitrary decision problems without reliance on functional forms. The results in Saeedi,
Shen, and Shourideh (2024) on optimal dynamic information hold for binary states and
exponential discounting, but are qualitatively similar to Corollaries 1-3 of this paper.
Beyond the common prior case, we pursue different behavioral extensions: Saeedi,
Shen, and Shourideh (2024) study the important case of non-common priors while we
study noninstrumental value for information.

Sequential learning. We also contribute to the literature on sequential learning, ex-
perimentation, and optimal stopping starting from Wald (1947) and Arrow, Blackwell,
and Girshick (1949). One set of papers explore settings in which the DM’s attention
is optimally allocated across several exogenous and stationary information sources
(Austen-Smith and Martinelli, 2018; Che and Mierendorff, 2019; Gossner, Steiner, and
Stewart, 2021; Liang, Mu, and Syrgkanis, 2022).15 In our setting, the DM only faces a
single source of information and our motivation is to understand how distributions of
stopping times vary with the information structure. Fudenberg, Strack, and Strzalecki
(2018) study the tradeoff between a DM’s speed and accuracy within an uncertain-
difference drift-diffusion model driven by Brownian signals. The reduction principle
as well as our characterization of the extreme points over distributions of feasible stop-
ping times pave the way to more general analyses of speed vs accuracy tradeoff over
all possible information structures.

Outline. The rest of the paper is organized as follows. Section 2 develops the model;
Section 3 develops the reduction principle; Section 4 analyzes optimal attention capture
and, en-route, characterizes the convex-order frontier and extreme points of feasbile
stopping times; Section 5 establishes that there is no commitment gap; Section 6 studies
attention capture under noninstrumental value of information; Section 7 characterizes
optimal structures to jointly extract attention and persuade; Section 8 concludes.

2 MODEL

Time is discrete and infinite, indexed by T = 0, 1, 2 . . .. The state space Θ and action
space A are finite. State θ ∈ Θ is drawn from a common full-support prior µ0 ∈ ∆(Θ).

14We identify key properties of belief paths which are sufficient to implement any feasible stopping
time as well as necessary to achieve the convex-order frontier. We also show that whether interim beliefs
are degenerate vs random matters crucially for sequentially optimality as well as attention capture under
suspense utility.

15See also Zhong (2022) who studies a setting in which the DM can flexibly acquire any dynamic
information structure at some cost which is increasing in how quickly information reduces uncertainty.
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Decision maker’s preferences. A decision maker (DM)’s payoff from taking action
a ∈ A under state θ ∈ Θ at time τ ∈ T is

v(a, θ, τ) := u(a, θ)− c · τ

where u : A × Θ → R is an arbitrary decision problem and c > 0 is a constant per-unit
cost of waiting. Constant waiting costs are standard in the literature on optimal stop-
ping (see, e.g., Fudenberg, Strack, and Strzalecki (2018); Che and Mierendorff (2019);
Che, Kim, and Mierendorff (2023); Auster, Che, and Mierendorff (2024) among many
others). More importantly, we think additively separabie costs are particularly apt for
modelling attention capture: the cost of attention is not merely delay (which might
shrink the value of the decision problem) but an opportunity cost since attending to
one thing entails neglecting another.

We also emphasize that our use of constant cost per-unit time is purely a normaliza-
tion; our results extend to nonlinear but additively separable costs via a simple time-
change. Hence, statements about the shape of f can be equivalently be interpreted
as statements about relative shapes of the designer’s value function f (t) vis-a-vis the
DM’s nonlinear cost c(t); we formalize this in Online Appendix III.16

Dynamic information structures. A dynamic information structure specifies, for each
history of past beliefs, a distribution over the next period’s beliefs subject to a martin-
gale constraint. Let I ∈ ∆

(
∏t≥1 ∆(Θ)

)
be a distribution over belief paths where (µt)t

is a typical realization. Call Ht := (µs)s≤t a time-t history. Let It+1(·|Ht) denote the
conditional distribution over the next period’s beliefs. Say the history Ht realizes with
positive probability if {(µs)s : (µs)s≤t = Ht} ⊆ supp (I) i.e., if paths where the first t
periods agrees with Ht are contained in the support of I. I is a dynamic information
structure if it is the law of a martingale (with respect to the natural filtration generated
by its histories).17 Let I be the set of all dynamic information structures.

Measures under different dynamic information structures. We will often vary the
dynamic information structure to understand how variables of interest (e.g., probabil-
ities of histories, incentive compatibility constraints etc.) change. To this end, we will
use EI [·] and PI(·) to denote expectations and probabilities under dynamic informa-
tion structure I ∈ I . Throughout this paper we will typically use superscripts to track
dynamic information structures, and subscripts to track time periods.

Decision maker’s problem. Facing I ∈ I , DM solves

sup
τ,aτ

EI [v(aτ, θ, τ)],

16For instance, statements holding for convex f (t) can equivalently be interpreted as statements about
f ◦ c−1 convex for some strictly increasing cost function c : T → R.

17Note future information could depend on past decisions (Makris and Renou, 2023). In our setting,
at time t there is a unique sequence of decisions (wait until t) so our formulation is without loss. Further,
although we have associated dynamic information structures directly with belief martingales, it is well-
known that dynamic information can convey information about both the state (via beliefs) as well as
the continuation information structure. All our results hold for this slightly wider class; see Appendix.
Nonetheless, optimal dynamic information will not require this distinction so we work directly with
belief martingales (which remain optimal with respect to this wider class).
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where τ is a stopping time and aτ is a (stochastic) action under the natural filtration.
Throughout we will assume (i) the DM breaks indifferences in favour of not stopping
to ensure that the set of feasible distributions over stopping times is closed; and (ii) τ

is almost-surely finite which is guaranteed by weak regularity assumptions on v.
Thus, each information structure I ∈ I induces a joint distribution over outcomes

which arises as a solution to the DM’s problem. We will sometimes use τ(I) to empha-
size the dependence of the agent’s stopping time on I.

Definition 1 (Feasible distributions). Define d(I) ∈ ∆(T ) as the distribution over stop-
ping times induced by I. For a set I ′ ⊆ I , define D(I ′) := {d(I) : I ∈ I ′} as set of
distributions induced by structures in I ′. Say that d ∈ ∆(T ) is feasible if d ∈ D(I).

Designer’s problem. There is a designer with preferences over the DM’s stopping
time f : T → R which is strictly increasing. The designer’s problem is

sup
I∈I

EI[ f
(
τ(I)

)]
,

noting that the supremum is taken over the whole space of dynamic information struc-
tures. The set of feasible stopping times is closed and we will assume enough regular-
ity assumptions on f to ensure the supremum is obtained.18

Discussion of model. We briefly discuss aspects our model.

• Intertemporal commitment. Our formulation of the designer’s problem is such that
the designer first chooses I, then the DM stops optimally given information gen-
erated by I. In Section 5 we show that this can be relaxed completely. We do so
by showing constructively that every optimal structure has a sequentially opti-
mal modification which induces random interim beliefs.

• Instrumental value of information. In our baseline model, the DM values informa-
tion instrumentally to make a better decision. In Section 6 we solve for designer-
optimal structures when the DM values suspense.

• Pure attention capture. In our baseline model, we analyze the case in which the
designer aims to extract attention. We view this as a first-order concern in many
environments e.g., platforms where attention is the primary source of revenue.
In Section 7 we show that the form of optimal attention capture remains similar
when the designer values both attention and persuasion separably.

3 THE STRUCTURE OF DYNAMIC INFORMATION

We introduce a special class of information structures which will play a crucial role for
analyzing feasible distributions over stopping times.

Definition 2 (Full revelation with deterministic continuation beliefs). I is full-revelation
with deterministic continuation beliefs if there exists a deterministic belief path (µC

t )t ∈
∆(Θ)T such that for any Ht which realizes with positive probability,

18See Online Appendix I for a formal discussion.
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(i) Continuation beliefs follow the belief path (µC
t )t and stopping beliefs are full-

revelation: supp It+1
(
· |Ht

)
⊆ {µC

t+1} ∪ {δθ : θ ∈ Θ};

(ii) Recommendations are obedient: for each t, DM prefers to continue at history
Ht = (µC

s )s≤t and stop at Ht = (µ0, µC
1 , . . . µC

t−1, δθ).

Dynamic information structures which are full-revelation with deterministic con-
tinuation beliefs are depicted in Figure 2 which shows histories on the left, and sample
belief paths on the right for Θ = {0, 1} so that µt is the belief that the state is 1.

Figure 2: Illustration of full revelation and deterministic structures

Definition 3 (Increasing belief paths and basin of uncertainty). The belief path (µC
t )t ∈

∆(Θ)T is increasing if (ϕ(µC
t ))t is increasing in t where

ϕ(µ) := Eµ[max
a∈A

u(a, θ)]︸ ︷︷ ︸
Expected utility
under full info

−max
a∈A

Eµ[u(a, θ)]︸ ︷︷ ︸
Expected utility
acting under µ

is the additional value of full information at belief µ.19 Define the maximum value of ϕ

as ϕ∗ := maxµ∈∆(Θ) ϕ(µ). Further define Φ∗ := argmaxµ∈∆(Θ)ϕ(µ) as the convex set of
beliefs for which the DM’s utility from obtaining full information relative to stopping
immediately is maximized; we will often refer to Φ∗ as the basin of uncertainty.

Definition 4 (Maximal belief paths). The belief path (µC
t )t ∈ ∆(Θ)T is maximal for the

stopping time τ if for each t ∈ T ,

µC
t+1 /∈ Φ∗ =⇒

P(τ > t + 1)
P(τ > t)

= max
θ∈Θ

µC
t (θ)

µC
t+1(θ)

.

Maximality is a by-product of the martingale condition on beliefs. For instance,
consider a full revelation and deterministic dynamic information structure with con-
tinuation belief paths (µC

t )t. If the induced stopping time is PI(τ = t + 1|τ ≥ t) = 0,
then continuation beliefs cannot move between times t and t + 1: since the DM never
learns anything at time t + 1, the absence of full information is entirely uninformative.

19ϕ is continuous and concave since µ 7→ Eµ[maxa∈A u(a, θ)] is linear and µ 7→ maxa∈A Eµ[u(a, θ)] is
convex.
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This is reflected by the condition of maximality since P(τ > t) = P(τ > t + 1) so
µC

t = µC
t+1.

Figure 3: Illustration of increasing and maximal paths

(a) Increasing paths (b) Maximal paths

Increasingness imposes structure on the direction that continuation beliefs move:
they must steer the DM toward regions of increasing uncertainty; maximality imposes
structure on the magnitude that continuation beliefs move: they must move as much as
possible given the stopping time. Both properties are depicted in Figure 3. The dot-
ted line in Panel (a) depicts an increasing continuation belief path while the solid line
depicts a nonincreasing path where the blue portions correspond to strictly decreasing
segments. Panel (b) depicts maximality for |Θ| = 3: the time-t continuation belief µC

t
together with the stopping time pin down the degree to which time-t + 1 continuation
beliefs can move; this is depicted by the grey triangle. Maximality requires that µC

t+1
lie on this boundary.

Let I∗ ⊆ I be the set of full-revelation structures with deterministic, increasing,
and maximal continuation beliefs.

Theorem 1 (Reduction principle). Every feasible distribution over stopping times can be
implemented with full-revelation and deterministic structures with increasing and maximal
belief paths i.e., D(I) = D(I∗).

An attractive property of structures with deterministic continuation beliefs is con-
tinuation histories do not branch—conditional on paying attention up to t, there is
a unique continuation history. Hence, Theorem 1 drastically prunes the space of dy-
namic information structures and turns the designer’s problem into looking for a target
distribution over stopping times and a deterministic and increasing continuation be-
lief path which can support it.20 We will subsequently use this to understand optimal
attention capture.

20Since continuation histories do not branch, the number of dynamic incentive constraints grow lin-
early (rather than exponentially) in time.
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Conceptually, Theorem 1 highlights the importance of increasing and maximal con-
tinuation belief paths for optimal stopping when the space of dynamic information
structures is unrestricted. Although continuation beliefs are (on-path) unobserved by
an analyst observing the DM’s stopping time, it nonetheless plays a crucial role in the
background by shaping her interim value for information and hence her continuation
incentives.

Proof sketch of Theorem 1. Suppose that Θ = {0, 1} so we associate beliefs with
probability that the state is 1. The DM’s decision problem is symmetric, stationary, and
her prior is uniform. Fix an iid symmetric information structure I ∈ I and suppose
the DM’s optimal stopping decision is characterized by a stopping boundary which is
constant in time.

Figure 4: Illustration of contracting belief paths

Now consider the following modification of I: for the histories at which the DM
stops (i.e., beliefs under I cross the stopping boundary), modify the information struc-
ture to instead deliver full information. Next, for each time s under the original infor-
mation structure, there will be some some paths which have yet to hit the boundary. On
such histories, DM finds it optimal to continue. The distribution of beliefs associated
with these histories are depicted on the left of Figure 4. Collapse these continuation
paths into a single history which, by the symmetry of our environment, is associated
with belief 1/2. Call this new information structure I′.

Observe that for each time t, the DM has weakly higher continuation value since, at
stopping histories under I, she now learns the state perfectly under I′. Moreover, the
DM found it optimal to pay attention at each continuation history under the original
information structure. Hence, since payoffs are convex in beliefs, contracting continu-
ation beliefs must depress the DM’s stopping utility so that she also finds it optimal to
pay attention at the new collapsed belief. Moreover, 1/2 remains a mean-preserving
contraction of stopping beliefs so I′ is a valid dynamic information structure. Finally,
observe that I′ and I induce the same distribution over stopping times since, by con-
struction, for every belief path on the original structure I (depicted in red on right of
Figure 4), we instead deliver full information with identical probability under I′ (one
such path is depicted in blue).

The argument for increasingness and maximality is more involved. The underly-
ing intuition is that by making the DM progressively more uncertain as much as the
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martingale condition allows, this endogenously increases the value of all future infor-
mation which, in turn, slackens future incentives to pay attention. This is depicted in
Figure 3 (i) where the grey dashed lines are the level sets of ϕ. Starting from an initial
belief path (µC

t )t depicted by the solid red line which is strictly decreasing in ϕ over
the blue portions, we can “iterative iron” such paths to construct an alternate path
(µ̃C

t )t which are increasing in ϕ while preserving both the stopping time and dynamic
continuation incentives.

The proof of Theorem 1 in Appendix A makes these arguments precise. Our proce-
dure of collapsing continuation histories is conceptually related to revelation-principle
type arguments: collapsing continuation histories pushes down the value of the DM’s
best deviation; fully revealing the state at stopping histories pushes up the value of
continuation.21 Our observation is that we can do this dynamically while replicating
the distribution over stopping times and preserving continuation incentives at all other
times and histories.

3.1 Designer-optimal structures extract all surplus. A further observation is that the
DM’s surplus is zero across all designer-optimal structures. Hence, even if there are
substantial gains from trade e.g., the designer values the DM’s attention more than
the DM’s cost of delay, designer-optimal structures always hold the DM down to her
outside option.22 Remarkably, we will later see (Section 5) that this remains true when
the designer has no intertemporal commitment.

Proposition 1. If the designer’s value for DM’s stopping time is strictly increasing, every
designer-optimal structure extracts all surplus from the DM i.e.,

I∗ ∈ argmaxI∈IEI [ f (τ)] implies max
τ,aτ

EI∗ [v(aτ, θ, τ)]︸ ︷︷ ︸
DM’s utility under I∗

− max
a∈A,t∈T

Eθ∼µ0 [v(a, θ, t)]︸ ︷︷ ︸
DM’s utility under no info

= 0.

3.2 Reduction to stopping times and belief paths. 1 converts the problem of opti-
mizing over dynamic information structures into simply choosing a stopping time τ

and belief path (µC
t )t subject to the following constraints they impose on each other:

Lemma 1. The following are equivalent:

1. There exists a full-revelation structure with deterministic continuation belief paths I ∈
I∗ which induces stopping time τ and belief path (µC

t )t∈T .

2. The following conditions are fulfilled:

ϕ(µC
t ) ≥ EI [cτ | τ > t]− ct for every t ∈ T (Obedience)

PI(τ > t + 1)µC
t+1(θ) ≤ PI(τ > t)µC

t (θ) for every t ∈ T and θ ∈ Θ (Boundary)
21See, e.g., Myerson (1986); Forges (1986). More recently, Ely (2017) develops an ‘obfuscation principle’

which, roughly, states that the designer can simply tell the DM what her beliefs should be after every
history.

22Indeed, this is true for more general designer preferences over actions, states, and stopping times as
long as the designer values attention.

13



Obedience is the usual constraint that at each time t, the DM must find it optimal
to continue paying attention, noting that the DM’s outside option from stopping to act
is given by her continuation belief µC

t . Boundary imposes a constraint on the degree
to which beliefs can move between periods and is directly implied by the martingale
condition at time t. Say that the stopping time distribution-belief path pair (d,µC) is
feasible if it fulfils the obedience and boundary conditions.

Moreover, from Theorem 1, to implement any feasible distribution d, it is sufficient
to restrict ourselves to increasing and maximal belief paths µC. It will turn out that
these conditions are also necessary to achieve the convex-order frontier among the set
of feasible stopping times.

4 OPTIMAL ATTENTION CAPTURE

From Theorem 1 and Lemma 1 we move optimizing over dynamic information struc-
tures maxI∈I EI [ f (τ)] to

max(
d,µC

)
∈∆(T )×(∆(Θ))T

Eτ∼d

[
f (τ)

]

s.t. Obedience and Boundary.

For expositional simplicity we focus on the case with nonlinear value of attention f
and linear waiting costs (constant per-unit time). This can equivalently interpreted as
an analysis of the relative shapes of the designer’s value to the DM’s cost of attention.
That is, our results can be exactly translated to the environment in which the designer’s
value is f : T → R, the DM’s cost is c : T → R, and the designer maximizes f ◦ c−1.

We first characterize the convex-order frontier of feasible stopping times, as well
as—when beliefs start in the basin of uncertainty—the extreme points of feasible stop-
ping times. Then, solutions to the designer’s problem follow readily.

4.1 Characterization of convex-order frontier and extreme points. We recall some
basic definitions. For d, d′ ∈ ∆(T ), say that d dominates d′ in the convex order (denoted
d ⪰cx d′) if for any convex function f : T → R, Eτ∼d[ f (τ)] ≥ Eτ∼d′ [ f (τ)]. Note that
this implies mean-preservation. Say that d strictly dominates d′ in the convex order
(d ≻cx d′) if the inequality is strict for some convex function f . We begin with two key
definitions.

Definition 5 (Indifferent, increasing, and maximal (IIM) distributions). Let

D I IM :=

d ∈ ∆(T ) :
(i) ∃µC s.t. (d,µC) is feasible, µC increasing and maximal

Obedience binds for all t ≥ 1;
(ii) (d,µC) feasible =⇒ µC increasing and maximal


Part (i) states that every distribution d ∈ D IMM can be feasibly supported by an increas-
ing and maximal belief path µC which keeps the DM’s Obedience constraint binding
for all times ≥ 1. Part (ii) states that increasingness and maximality are furthermore
necessary to support distributions in D I IM.
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Definition 6 (Block structure). The feasible pair (d,µC) is a block structure if there
exists a sequence of times (ti)

n
i=1 where t1 < t2 < t3 . . . and, if n < +∞, a pair of

terminal times TER := {tn+1, tn+2} where tn < tn+1 ≤ tn+2 such that

supp τ = IND(d,µC) ∪ TER = {ti}n+2
i=1 ,

where IND(d,µC) :=
{

t ∈ T : Obedience binds at time t
}

are the set of times at which the DM is indifferent. Let IBLOCK denote the set of block
structures.

Block structures are such that the support of the stopping time supp d coincides
with indifference times with the possible exception of a pair of terminal times. We are
now ready to state our chracterization of the convex-order frontier and extreme points.

Theorem 2. Let Ds := {d ∈ D(I) : Eτ∼d[τ] = s} be the set of feasible stopping times with
mean s ∈ [0, ϕ(µ0)/c].

(i) Characterization of convex order. For any d ∈ Ds, there exists an indifferent, in-
creasing, and maximal distribution dI IM ∈ D I IM for which

dI IM ⪰CX d ⪰CX dDET

where Pτ∼dDET(⌊s⌋ ≤ τ ≤ ⌈s⌉) = 1. This implies if d /∈ D I IM then it is not on the
convex-order frontier i.e., the first relation is strict.

(ii) Characterization of extreme points. If µ0 ∈ Φ∗ or |Θ| = |A| = 2, block structures
induce extreme points of feasible stopping times:

D
(
IBLOCK) ∩Ds = Ext

(
Ds

)
.

Discussion of Theorem 2. Theorem 2 (i) gives a characterization of the stopping
times and continuation belief paths which attain the convex-order frontier. In Theorem
1 we previously slowed that those which were increasing and maximal were always
sufficient to obtain any feasible distribution over stopping times. Theorem 2 (i) shows
that such properties are also necessary to attain the convex frontier.

Distributions which attain the convex-order frontier are those which keep the DM
indifferent between continuing to pay attention and stopping for all times t ≥ 1. When
the DM’s beliefs start inside the basin of uncertainty (µ0 ∈ Φ∗) or |Θ| = 2, there is a
feasible stopping time which dominates all others in the convex-order frontier; if not,
the convex-order frontier will typically comprise a family of distributions because there
can be multiple increasing and maximal belief paths which keep the DM indifferent.
Figure 5 illustrates indifferent, increasing, and maximal distributions associated with
different belief paths for |Θ| = 3. Starting from the prior in the bottom right, the DM
initially has value ϕ(µ0) for full information; as her beliefs are progressively steered
towards the basin, she increasingly values information more. First consider the blue
line with depicts a “direct” increasing path from µ0 to Φ∗ along which the DM’s beliefs
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are steered.23 By Theorem 2 (i), such the DM’s belief paths must also be maximal
so, together with DM indifference, the “speed” at which the DM’s beliefs move along
this blue line are pinned down by the boundary condition. The CDF of the induced
distribution over stopping times is depicted by the blue line in Panel (b): the DM first
receives full information at an elevated rate. This is driven by two distinct forces: first,
while the DM’s beliefs are outside the basin, she values information less. Thus, to
entice her to pay attention, information must arrive at an elevated rate; second, the
blue path steers beliefs “directly” to the basin but, to do so, the designer must offer an
elevated probability of learning the state such as to generate the requisite movement
in continuation beliefs.

Figure 5: Illustration of convex-order frontier

(a) Belief paths on the convex-order frontier (b) CDFs comprising convex-order frontier

Now consider the red path in panel (a) of Figure 5 which depicts an “indirect” in-
creasing path from µ0 to Φ∗. Once again, from Theorem 2 (i), to support a distribution
on the convex frontier, such paths must be maximal so the “speed” at which the DM’s
belief move along this red line is pinned down and corresponds to a slower path to
the basin. The red line in panel (b) of Figure 5 depicts the CDF of the indifferent, in-
different, and maximal stopping time associated with the red line. Compared to the
distribution associated with the blue line, slower paths to the basin allow for lower
probability of early stopping since the requisite movement in continuation beliefs is
lower. However, this also means the basin at which the DM’s value for information is
reached later, which delays the time at which attention can be maximally extracted.

Theorem 2 (ii) goes beyond the convex-order frontier to characterize extreme points
of feasible stopping times when the DM’s prior starts in the basin (µ0 ∈ Φ∗) or the state
and action spaces are binary: block structures exactly implement these extreme points.
The CDFs of various extreme points of feasible distributions with the same mean s is
illustrated in Figure 6.24

23Loosely, this means that the path is everywhere perpendicular to the contour lines of ϕ (as with the
blue line in Figure 5 (a).

24Note that under the conditions of Theorem 2 (ii) (µ0 ∈ Φ∗ or |Θ| = |A| = 2) there is a unique
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Figure 6: Distributions induced by block structures

Block structures have the property of “indifference or nothing” before the terminal
times: if the DM has a chance to stop, she is kept indifferent between continuing and
stopping. This loosely resembles an important characterization of extreme points of
majorization by Kleiner, Moldovanu, and Strack (2021).25 However, the constraints in
our setting are strictly stronger than those imposed by mean-preserving spreads and
mean-preserving contractions. This is because the set of feasible stopping times must
obey conditional constraints so that at each time t, the conditional expected additional
value outweights the conditional expected additional cost. By contrast, majorization is
an unconditional constraint.

Figure 7: Feasibility of stopping times is more stringent than majorization

(a) MPS is strictly weaker (b) MPC is strictly weaker

This is illustrated in Figure 7. The red line in Panel (a) illustrates the CDF of a
feasible stopping time d1 which concentrates the DM’s stopping probability at time
t∗ = ϕ(µ0)/c (assuming this is an integer) so that, conditional on full information ar-
riving then, the DM’s time-0 obedience constraint is tight. The blue line illustrates a
mean-preserving spread of d1 which puts probability 1/2 on time 1, and probability
1/2 on time 2(t∗ − 1). This continues to respect the DM’s time-0 incentives, but vio-
lates her interim incentives: if full information does not arrive at time 1, then the ad-

distribution (geometric) which attains the convex-order frontier.
25Our characterization is also distinct from the extreme points of first-order stochastic dominance

(Yang and Zentefis, 2023) though this should be more apparent.
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ditional waiting costs exceeds her interim value of information.26 Now consider Panel
(b) which illustrates the CDF of a feasible stopping time d2 so that full information
arrives at a geometric rate of c/ϕ(µ0). Now consider the following mean-preserving
contraction: we contract the distribution before T into a single atom, and the distri-
bution after T into another. This is depicted by the blue line. Now observe that the
gap between these contracted atoms can be made arbitrarily large by increasing T; but
once again this violates the DM’s interim Obedience constraint since, if no information
arrives at the time of the first atom, the DM does not find waiting further worthwhile.

The structure of optimal attention capture. Theorem 2 readily delivers explicit solu-
tions for the problem of optimal attention capture which we showcase via the following
corollaries:

Corollary 1 (Optimal attention capture for convex/concave). Suppose f is

(i) convex, then the optimal dynamic information structure capture is given by the
stopping time-belief path pair (d,µC) such that DM is indifferent for all times
t ≥ 0 and µC is increasing and maximal. Moreover, there exists some time T <

+∞ such that continuation beliefs reach the basin (µC
T ∈ Φ∗) after which then full

information arrives at a geometric rate of c/ϕ∗:

Pτ∼d(τ = t + 1|τ > T) = c/ϕ∗;

(ii) concave, then the optimal dynamic information structure is given by the stop-
ping time-belief path pair (d,µC) such that DM is indifferent at time t = 0 and
Pτ∼d(⌊ϕ(µ0)/c⌋ ≤ τ ≤ ⌈ϕ(µ0)/c⌉) = 1.

Corollary 1 highlights how differences in relative time preferences matter for the struc-
ture of attention capture.27 In particular, suppose that the DM’s cost of waiting is given
by c(t). Then, if f is more convex than c (i.e., f ◦ c−1 is convex), optimal attention capture
must keep the DM indifferent at each point in time and, furthermore, the attendant be-
lief path must be increasing and maximal. Conversely, if f is less convex than c (i.e.,
f ◦ c−1 is concave), optimal attention capture concentrates the distribution over stop-
ping times around ϕ(µ0)/c, the highest feasible expected stopping time.

For binary states, indifference, increasingness, and maximality jointly pin down a
unique dynamic information structure. Suppose, for instance that Θ = {0, 1}. We as-
sociate beliefs with the probability that θ = 1 and suppose that µ0 < Φ∗ so the prior
starts outside the basin of uncertainty. From Corollary 1 (i), the optimal structure when
f is convex provides full information asymmetrically by only providing conclusive news
that θ = 0.28 This is depicted by the red lines in Figure 8 where the thick lines corre-
sponds to continuation beliefs, and the “jumps” correspond to the (random) arrival

26This is true whenever ϕ(µ0)/c > 3; in continuous time the mean-preserving spread would put mass
on 0 and 2t∗ so that the interim obedience constraint is always violated.

27Since this follows from our characterization of the convex-order frontier, the distribution of stopping
times is unique whenever convexity or concavity is strict. However, the accompanying belief path need
not be unique for |Θ| > 2.

28More precisely, the belief path (µC
t )t is pinned down by the relation ϕ(µC

t+1)/µC
t+1 =

(
ϕ(µC

t )− c
)
/µC

t
whenever µC

t+1 < min Φ∗, and µC
t+1 = min Φ∗ otherwise.
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Figure 8: Optimal belief paths for µ0 /∈ Φ∗

Note: Green: u(a, θ) ∝ −|a − θ|; blue: u(a, θ) ∝ −(a − θ)2; red: u(a, θ) ∝ (a − θ)4.

of full information. This bad news process steers the DM’s beliefs toward the basin;
upon reaching it, the optimal dynamic information structure provides full information
symmetrically across both states so that, upon not learning the state, the DM’s beliefs
are unchanged.

The thick green, blue, and red lines in Figure 8 illustrate the optimal continuation
belief paths for different DM utility functions when A takes values between 0 and 1.29

When the DM’s indirect utility is more concave, slower paths to the basin are better
and vice versa. A qualitatively similar binary-state case with exponential discounting
has been studied in subsequent work (Saeedi, Shen, and Shourideh, 2024) via weak
duality which requires guessing a sequence of multipliers. Beyond generalizing to
many states, Corollary 1 offers an arguably more transparent characterization in the
language of convex-orders and extreme-points.

Corollary 2 (Block structures are optimal after reaching the basin). For any increasing
value of attention f , suppose that (d,µC) is optimal for attention capture. If there exists
some time T < +∞ such that µC

T ∈ Φ∗ then the dynamic information structure starting
from T is a block structure: (

d|τ≥T, (µC
t−T)t≥T

)
∈ IBLOCK.

where d|τ≥T(t) = d(t+T)
∑s≥T d(s) for times t > 1 is the conditional distribution of d from T

onwards renormalized and translated to start at time 0.

Corollary 2 states that conditional on reaching the basin of uncertainty, the opti-
mal continuation dynamic information structure is a block structure. The special case
where beliefs start in the basin corresponds to T = 0 in which case optimal dynamic
information structures are simply block structures.

The reasoning behind Corollary 2 builds on the observation that the DM’s attention

29Although we assumed A is finite, this can be approximated with a finite grid. Utilities are normal-
ized so value of full information in the basin is equal.
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costs are sunk upon reaching the basin. Hence, the dynamic information structure
after then can be altered without affecting the DM’s obedience constraints at earlier
periods as long as this alteration preserves the conditional mean. Then (i) the law
of total expectation decomposing the designer’s payoff into the events that the DM
stops before and after reaching the basin; (ii) the observation the designer’s payoff is
a continuous linear functional on ∆(T ); and (iii) Bauer’s maximum principle implies
that the continuation information structure is attained an an extreme point over the
set of feasible stopping times. From Theorem 2 (ii), this is precisely given by block
structures.

Corollary 3 (Block structures are optimal for binary states and actions). Suppose that
|Θ| = |A| = 2. Then, for any increasing value of attention f , an optimal dynamic
information structure is given by (d,µC) ∈ IBLOCK where µC jumps directly to the
basin of uncertainty:

µC
t =

µ0 for t = 0

µ∗ ∈ Φ∗ for t ≥ 1.

Corollary 3 implies that for the simplest case with binary states and binary deci-
sions, the belief paths accompanying optimal dynamic information structures are quite
simple and consist of an immediate jump to the basin of uncertainty.

Attention capture with more exotic time preferences. We have thus far developed a
fairly general analysis of optimal attention capture though the perspective of convex-
orders and extreme points. This has allowed us to tackle settings in which the de-
signer’s value function f is more convex (correspond to less time-risk aversion) or
more concave (less) than the DM’s cost function c. While this is natural, there are eco-
nomic environments which do not fall into either category.

Definition 7. Say that f is a step function if there exists some time T and some increas-
ing function g such that f (t) = I

(
t ≥ T

)
· g(t).

Step functions reflect environments in which the designer might only begin to value
attention beyond a certain threshold of engagement. Two such functions are depicted
in panel (a) of Figure 9. Alternatively, step functions approximates environments in
with the designer’s value of attention is linear but the DM’s per-unit time cost of at-
tention is an “inverse step function”: it is initially very steep (which might represent a
“fixed cost” to attention) before the cost of attention falls temporarily to zero (e.g., the
DM voluntarily engages with the advertisement) before eventually rising again.30

Definition 8. Say that f is S−shaped if there exists some time T such that f (t)− f (t −
1) ≶ f (t + 1)− f (t) if t ≶ T.

‘S-shaped’ functions reflect environments in which users are initially unresponsive
to advertising but, after crossing a threshold (consumer ‘wear in’), begin to respond

30Our results will hold for f “sufficiently flat” so that the marginal value of attention is small but
positive before time T. This allows the inverse f−1 to be well-defined and, in panel (b) of Figure 9,
admit the interpretation of high marginal costs of attention by setting c(t) := f−1(t).
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Figure 9: Illustration of step functions

(a) f step function, c linear (b) f linear, c “inverse step”

strongly; at some point they become saturated and their demand once again tapers
off (‘wear out’).31 An equivalent interpretation is where the designer’s valuation of
attention is linear but the DM’s marginal time cost is initially very high but eventually
lowers then rises again after waiting beyond a certain point.32

Proposition 2 (Attention capture for step and S-shaped functions). If f is a

(i) step function, then for the step location T > ϕ∗/c, every optimal dynamic information
structure (d,µC) must be such that

(i) µC is increasing and maximal

(ii) Obedience binds for all t < T − ϕ∗/c.

Moreover, if T (independent of the function) is sufficiently large and {µ ∈ ∆(Θ) :
ϕ(µ) ≥ ϕ(µ0)} ⊂ int∆(Θ), then continuation beliefs µC reaches the basin before time
T − ϕ∗/c.

(ii) S-shaped function and µ0 ∈ Φ∗ or |Θ| = |A| = 2, then there exists some deterministic
time t∗ such that the optimal information structure (d,µC

t ) is such that

– Stopping time: d fulfils

Pτ∼d(τ = t + 1|τ > t) =


c

ϕ∗ if 1 ≤ t < t∗,
c

ϕ(µ0)
if t = 0

Pτ∼d

(
τ = t∗ +

ϕ∗

c

∣∣∣τ > t∗
)
= 1

– Belief path: µt ∈ Φ∗ for all t ≥ 1.

31S-shaped response functions have been influential within economics, marketing, and consumer
psychology; see Fennis and Stroebe (2015) and references therein for more details. In the literature
on static communication, S-shaped value functions also feature prominently (see, e.g., Lipnowski and
Ravid (2020)).

32This once again follows again from the observation that the constant cost c is a normalization so the
results holds for f ◦ c−1 S-shaped.
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Figure 10: Optimal for f S-shaped

(a) Belief path and CDF (b) Conditional concavification

When f is S-shaped (part (ii)), the optimal dynamic information structure com-
prises an initial jump to the basin following which information arrives at a geometric
rate of c/ϕ∗ up to a deterministic time t∗. Conditional on reaching time t∗, the DM
receives no information until time t∗ + ϕ∗/c at which point the DM receives full in-
formation for sure. The belief paths and CDF associated with the optimal information
structure are depicted in panel (a) of Figure 10. The time t∗ is in turn pinned down as
the smallest time at which the conditional concavification of the value function f —the
concavication of f only considering times t ≥ t∗—depicted as the red curve in panel
(b) of Figure 10 is such that the first time tangent to f is less than ϕ∗

c away from t∗. This
ensures that the DM’s stopping time conditional paying until until time t∗ concentrates
on t∗ + ϕ∗/c which exploits the “steeply increasing” portion of f . To see why this is
optimal, consider, instead, an alternative dynamic information structure which deliv-
ers full information at a geometric rate up until time t′ < t∗. Observe that at time t′,
the designer is unable to induce the DM to wait until time t∗ + ϕ∗/c with probability
1 since since information is insufficiently valuable. Instead, the designer could ensure
the DM waits until time t′ + ϕ∗/c. This, however, will be suboptimal because at time
t′ + ϕ∗/c, the marginal value of attention is still high. Thus, by delivering full infor-
mation at a geometric rate for longer (until t∗), the designer is able to fully exploit the
convex-concave curvature of f .

When f is a step-function (part (i)), optimal dynamic information maximizes the
probability that the DM pays attention until T (at which point the designer’s value
jumps). To do so, the designer delivers full information at a stochastic rate to keep
the DM indifferent while her continuation beliefs are steered towards the basin. This
also suggests that a durable property of optimal dynamic information (across the S-
shaped, convex, and step-function cases) is that, at least for initial periods, the DM
is kept indifferent while her continuation beliefs are steered toward the basin in an
increasing and maximal fashion.
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5 TIME-CONSISTENCY

Our analysis thus far proceeded under the assumption that the designer has full in-
tertemporal commitment. It turns out that this is unnecessary.

Definition 9. I is sequentially optimal for designer preference f : T → R if for every
history Ht which realizes with positive probability

max
I′∈I|Ht

EI′
[

f
(
τ(I′)

)∣∣Ht

]
= EI

[
f
(
τ(I)

)∣∣Ht

]
where I|Ht is the set of dynamic information structures where Ht realizes with positive
probability. Call the set of sequentially-optimal structures ISEQ( f ).

Sequential optimality is demanding, and requires that for every positive-probability
history, the designer has no incentive to deviate to a different continuation information
structure. It also implies optimality by choosing Ht as the empty time-0 history. Such
structures, if they exist, eliminate the need for intertemporal commitment.33

Theorem 3. Sequentially optimal dynamic information structures exist i.e., ISEQ( f ) ̸= ∅.

The key idea underlying Theorem 3 is the observation that the designer has some
freedom to manipulate the DM’s beliefs at non-stopping histories while still preserving
the induced joint distribution. By manipulating the DM’s beliefs—for instance, by
making her more certain of the state—the designer also increases the DM’s value of
stopping to act. This, in turn, ensures that the designer does in fact find it optimal to
follow through with promised information at future histories. The modification relies
on the fact that information is irreversible: as soon as the DM’s continuation beliefs
have shifted, the designer is subject to a martingale constraint with respect to these
new continuation beliefs. Indeed, in the Appendix we show a more general version of
Theorem 3 which applies to any DM preference which dislikes delay.34

Illustration of Theorem 3. The proof of Theorem 3 is deferred to Appendix C and
proceeds by performing surgery on the tree representing the optimal dynamic informa-
tion structure. We illustrate the main ideas through the following example. Suppose
there is a single decision maker (DM) whose payoff from choosing action a ∈ {0, 1}
when the state is θ ∈ {0, 1} at time τ is quadratic-loss:

v(a, θ, τ) = −(a − θ)2 − c · τ with c = 1/9.

DM has prior µ0 = P(θ = 1) = 1/3 and the designer’s payoff is f (τ) where f is
concave and strictly increasing. From Corollary 1 (ii), a designer-optimal distribution
of stopping beliefs puts probability 1 on τ = 3 to deliver a payoff of f (3). Under

33That is, they ensure the designer’s ”Stackelberg payoff” under full commitment—the designer first
chooses I then facing I, DM chooses an optimal stopping time and action—coincides with the designer’s
payoff in a subgame perfect equilibrium of the stochastic game in which at each history, the designer
chooses a new static information structure and, facing the chosen information structure, the DM decides
between stopping to act (game ends and payoffs realized) or waiting to observe the generated message
(game stochastically transitions to a new history).

34That is, t > t′ =⇒ v(a, θ, t) < v(a, θ, t′) for any (a, θ).
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commitment, this can be implemented via an information structure which gives the
DM no information up to time 3, upon which the DM learns the state perfectly. This is
illustrated on the left of Figure 11.

Figure 11: Making attention capture sequentially optimal

Note, however, that this not sequentially optimal: at time t = 3 the designer
does better by instead not following through with their promise and might instead try
and use information to further extract attention. Indeed, Knoepfle (2020) and Hébert
and Zhong (2022) study the case with linear value of attention and, noting this time-
inconsistency, employ an alternate structure at which full information arrives at a Pois-
son rate. However, such distributions are not optimal when f is strictly concave: the
uniquely optimal stopping time puts probability 1 on {τ = 3}. How can the designer
implement this time-consistently?

Consider the modification depicted in Figure 11 which delivers information grad-
ually: instead of inducing the unique beliefs 1/3 at time t = 1, the designer instead
induces the beliefs 7/9 and 2/9. At time t = 2, the designer induces the belief 8/9 and
1/9. Finally, at t = 3, the designer gives the DM full information. Observe that under
this information structure, the DM is indifferent between continuing and stopping at
every continuation history. For instance, at both histories with belief 8/9, the DM is
indifferent between stopping at time t = 2 and taking action 1, yielding an expected
payoff of −1/9, or paying an extra cost of c = 1/9 to learn the state at time t = 3.

We have modified the information structure to induce the same distribution over
stopping times, so this structure remains optimal. It remains to sketch why it is also
sequentially optimal. Suppose, towards a contradiction, that it is not. Then there must
be some continuation history Ht such that the designer strictly prefers to deviate to
an alternate continuation information structure I′|Ht. But observe that under the cur-
rent structure, the DM was indifferent between continuing and stopping at Ht. Hence,
under I′|Ht, the DM’s continuation incentives must weakly improve. But this in turn
means that continuation incentives at earlier histories leading to Ht also weakly im-
prove. Hence, the new information structure with I′|Ht replacing I|Ht remains obe-
dient. Since Ht realizes with positive probability, this is a strict improvement for the
designer, contradicting the optimality of the original structure.
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6 NONINSTRUMENTAL VALUE OF INFORMATION

Moving from sequentially optimality to suspense We will now show a tight connec-
tion between dynamic information structures which are sequentially optimal as analyzed
in the previous section, and optimal attention capture when information is valued non-
instrumentally (via suspense). On first reflection this connection might seem strange:
the latter is a property of the designer’s interim incentives while the former is a prop-
erty of the DM payoffs. It will turn out that in both environments, whether interim
continuation beliefs are random or deterministic plays a key role. We start by outlin-
ing how DM might values suspense before analyzing optimal attention capture under
suspense utility.

Definition 10 (Suspense). Following Ely, Frankel, and Kamenica (2015), let ϕs : ∆(Θ) →
R is a strictly concave functional such that ϕs(δθ) = 0 for each θ. Call ϕs the suspense
potential for reasons which will be soon apparent. For the information structure I and
the (random) belief realizations (µ′

t)t≤τ up to stopping time τ > 0, DM’s utility under
suspense is

vsusp
(
(µ′

t)t≤τ, I, τ
)
= ∑

t≤τ−1
g
(

EI
[
ϕs(µ

′
t)− ϕs(µt+1)

∣∣∣Ht := (µ′
s)s≤t

])
− c · τ.

where g is a strictly increasing and strictly concave aggregator and if τ = 0 then vsusp =

0.35

We emphasize that suspense utility is a function of all three arguments: the be-
lief path (µ′

t)t (which might be random), the dynamic information structure I, and
the stopping time τ. At the time-t history of realized continuation beliefs (µ′

s)s≤t, the
DM assesses how much suspense she expects to receive from paying further attention
which depends on I since the dynamic information structure governs the law of future
beliefs. These two ingredients determine the DM’s flow suspense utility; the stopping
time τ governs the boundary at which the DM stops paying attention.

Example 1 (Squared variation). Define ϕs(µ) = ∑θ(1 − µ(θ))µ(θ) as the expected
squared variation from learning the state at belief µ. Then at history Ht = (µs)s≤t,
the DM’s suspense utility for the period is

EI
[
ϕs(µt)− ϕs(µt+1)

∣∣∣Ht

]
= EI

[
∑
θ

(µt+1(θ)− µt(θ))
2
∣∣∣Ht

]
as in the main text of Ely, Frankel, and Kamenica (2015).36 ♢

35Note that our definition of suspense is such that, if DM pays attention up to τ, she gets the sum
of her flow suspense utility for periods t = 0, 1, . . . τ − 1 but not for τ. As a positive assumption, this
implies the DM does not value suspense for information she knows she will not receive. Nonetheless,
our results remain unchanged (with time translated by 1 period) if, stopping at τ, the DM gets the sum
of her flow suspense utility for periods t = 0, 1, . . . τ.

36To see this, write out the term within the expectation on the LHS via the definition of ϕs and use the
the martingale property of beliefs: EI [µt+1(θ)|Ht] = µt(θ) = EI [µt(θ)] and rearrange. We follow (Ely,
Frankel, and Kamenica, 2015) in assuming flow suspense utility is aggregated additively across time via
a concave function.
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Facing I, the DM chooses an optimal stopping time τ adapted to the filtration gen-
erated by belief realizations. The designer’s problem is, as before, supI EI [ f (τ(I))]
where τ(I) is the DM’s stopping time under suspense utility.

The DM’s stopping time τ must fulfil a sequence of dynamic constraints analogous
those in Lemma 1: for each time t < τ and history Ht = (µs)s≤t which realizes with
positive probability, her expected additional suspense utility up to her optimal stop-
ping time τ must be greater than her expected additional flow cost:

E

[ τ−1

∑
s=t

g
(

Es

[
ϕs(µs)− ϕs(µs+1) | Hs

]
︸ ︷︷ ︸

time-s suspense

)∣∣∣Ht

]
≥ E[c(τ − t) | Ht],

noting that the expected additional utility at time-t from suspense until stopping at
time τ depends on both the information structure I as well as realization of (potentially
random) interim beliefs between t and τ.

Recall we defined the suspense potential ϕs : ∆(Θ) → R as a primitive of the DM’s
preference for suspense. Further define Φ∗

s := maxµ ϕs(µ) as the basin of suspense
where the DM’s suspense potential is maximized. Say the sequence of beliefs (µt)t is
increasing in suspense potential if (ϕs(µt))t is increasing.

Our next result develops a tight connection between optimal attention capture un-
der suspense, and sequentially optimal attention capture when information is instru-
mentally valuable.

Theorem 4. For any designer value function f ,

I is optimal under suspense utility
with suspense potential ϕs,

cost c and aggregator g
⇐⇒

I is sequentially-optimal under instrumental value
for decision problem with ϕ = ϕs

and cost g−1(c)

In particular, if f is
(i) concave and ϕs(µ0)/g−1(c) is an integer, the designer-optimal information structure I

induces a stochastic belief path which reduces suspense potential deterministically: for all
t < τ, ϕ(µt)− ϕ(µt+1) = g−1(c) a.s. and PI(τ = ϕs(µ0)

g−1(c)

)
= 1;37

(ii) convex, the designer-optimal information structure I induces a deterministic and in-
creasing belief path which reduces suspense potential stochastically: there exists a deter-
ministic and increasing path (µC

t )t such that for all t ∈ T ,

supp It+1(·|Ht = (µC
s )s≤t) ⊆ {µC

t } ∪ {δθ : θ ∈ Θ}
and PI(µt+1 ∈ {δθ : θ ∈ Θ}|τ ≥ t) = g−1(c)/ϕs(µC

t ).

Theorem 4 establishes a bijection between optimal attention capture under sus-
pense and sequentially optimal attention capture when information is valued instru-
mentally we developed in Sections 4 and 5. It further illustrates how relative time pref-
erences between the designer and DM shapes not only whether full information should
arrive at random or deterministic times (analyzed in Section 4), but also whether in-
terim beliefs are deterministic/collapsed or random/spread out. At the heart of Theo-

37Our assumption that ϕs(µ0)/g−1(c) is an integer is purely an artifact of working in discrete time; if
it were not, the optimal time would be spread over two consecutive periods.
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rem 4 is the observation that there are two distinct ways to portion out suspense over
time:

When f is concave, suspense should be portioned out deterministically over time
with stochastic continuation belief paths so that the DM receives g−1(c) per-period in
flow suspense utility. The left panel of Figure 12 shows two realizations of belief paths.
Given µt, the continuation belief µt+1 is supported on the set of beliefs where suspense
is ϕs(µt) − g−1(c). This then induces a deterministic stopping time which is optimal
since f is concave. Moreover, since the DM’s per-period utility exactly offsets her cost,
she is kept indifferent between continuing and stopping. Indeed, this is also true of se-
quentially optimal attention capture for concave f when information is valued instru-
mentally. Further observe that this also coincides with the utility-maximizing dynamic
information structure of Ely, Frankel, and Kamenica (2015) for the fixed time horizon
ϕs(µ0)/g−1(c).

Figure 12: Optimal attention capture when DM values suspense

When f is convex, suspense should be portioned out stochastically over time with
deterministic continuation belief paths so that the DM receives g−1(c) in per-period flow
utility. The right panel of Figure 12 shows the belief path which is steered determin-
istically towards the basin Φ∗

s where suspense potential is maximized. Thus, for each
belief µt, the optimal information structure delivers full information in the next pe-

riod with probability g−1(c)
ϕs(µt)

such that her flow suspense utility exactly offsets the cost
of waiting. Note, however, that unlike the case where information is instrumentally
valuable, suspense utility depends on the entire path of realized beliefs.

Why is there a connection between optimal attention capture under suspense and
sequentially optimal attention capture under instrumental information? Recall that se-
quentially optimal dynamic information progressively delivers more reservation util-
ity to the DM such that she is kept indifferent between stopping to act and contin-
uing to pay attention. This equates the additional final value of information ϕ(µt)

with her expected additional cost conditional on already paying attention up to t. In
the suspense case, we equate the additional flow value of suspense E[∑τ−1

s≥t g(ϕs(µs)−
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ϕs(µs+1)) | Ht] with the DM’s expected additional cost. Although these settings re-
semble each other, they are not isomorphic.38 Nonetheless, Theorem 4 shows that at
the sender’s optimum, there is a tight connection: in Appendix C we construct a relaxed
problem for optimal attention capture under suspense, and show that the sequentially
optimal structures for a modified problem attains the bound.

7 ATTENTION CAPTURE WITH PERSUASION MOTIVES

We finally turn to the problem of optimal dynamic information structures when the de-
signer has preferences over both the DM’s action and stopping time. For instance, a re-
tail platform might generate revenue from both commissions (purchase decision) and
advertisements (browsing duration); a law firm on a hybrid fee model might charge
for both winning the case (contingent fees) as well as for their time (hourly fees); and
so on. Within the binary environment (Θ = A = {0, 1}), say that the designer’s pref-
erences f̂ : A × T → R are additively separable across actions and times if

f̂ (a, τ) = a + f (τ)

for some strictly increasing function f (τ).39 Implicit in this formulation is that the
designer has state-independent preferences.

Relative to pure attention capture, the DM’s continuation value now depends on
both when she expects to stop, as well as what beliefs she expects to hold when she
does. If, for instance, after time t the continuation information structure assigns high
probability to stopping at a belief at which DM is indifferent between actions, this
depresses incentives to continue paying attention since information has no value then.

Indeed, this tradeoff is at the heart of the designer’s problem: in order to increase
the probability that DM takes the designer’s preferred action, the designer must garble
information which, in turn, depresses the DM’s incentives to pay attention.40 Hence,
dynamic information structures can be quite complicated and intersperse periods of
persuasion (at which DM stops with intermediate beliefs and takes action 1) with peri-
ods of attention capture (at which DM stops upon learning the state). Nonetheless, we
will show that when attention and persuasion are valued additively, optimal informa-
tion structures are surprisingly simple.

Definition 11. A dynamic information structure is one-shot persuasion at time T if
it reveals no information for times t < T and at time T coincides with the designer-

38In particular, information structures which fulfil dynamic obedience constraints when information
is valued instrumentally (for a decision problem where ϕ = ϕs and cost is g−1(c) per unit time as in
Theorem 4) may not fulfil dynamic obedience constraints under suspense.

39Subsequent work (Koh, Sanguanmoo, and Zhong, 2024) studies implementation of joint distribu-
tions over actions and stopping times. However, we have not found a way to employ those duality
approaches to the additively separable case studied here. This suggests that the perturbation techniques
developed here are complementary.

40Several recent papers study persuasion in the presence of a rationally inattentive agent Lipnowski,
Mathevet, and Wei (2020); Bloedel and Segal (2021). Our setting is complementary to theirs: it is richer
along the time dimension since the designer chooses dynamic information structures, but simpler in the
sense that the receiver simply decides when to stop paying attention, not what to pay attention to.
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optimal static information structure subject to the constraint that the DM’s expected
surplus is greater than c · T.41

Theorem 5. Suppose we are in the binary environment and designer’s preferences f̂ = a+ f is
additively separable across actions and times. Then an optimal dynamic information structure
either:

(i) (Pure attention capture) is equivalent to the designer-optimal when f̂ (a, τ) = f (τ); or

(ii) (One-shot persuasion) is one-shot persuasion at some time T > 0.

Theorem 5 states that optimal designs either focuses on extracting attention such
that the DM stops only upon learning the state. In this case, the probability that DM
takes 1 is µ0 so the designer’s value function is

EI [ f̂ (a, τ)] = µ0 + EI [ f (τ)]

so that the optimal dynamic information structure coincides with that if the designer’s
value function were simply h(τ) as studied in Section 4. Alternatively, the designer
only provides information at a fixed and deterministic time T such that their payoff is

EI [ f̂ (a, τ)] = EI [aτ] + f (T)

which persuades the DM into taking action 1 when it is in fact state 0 at a frequency
which leaves the DM enough value so she finds it worthwhile to pay attention up to T.
Thus, Theorem 5 gives a ”bang-bang” characterization of optimal dynamic information
structures for arbitrary value of attention. In particular, this implies that, perhaps sur-
prisingly, the designer never finds it optimal to exploit potential randomization gains
(which, as we have seen, is optimal with convex value of attention) while persuading
the DM by garbling stopping beliefs.

Proof idea of Theorem 5. The proof is involved and deferred to Appendix B; we
sketch the basic ideas here. First observe that it is without loss to consider extremal
stopping beliefs—that is, stopping beliefs in {0, µ̄, 1} where the DM is indifferent be-
tween actions at belief µ̄ and we assume tiebreaking in favor of action 1.42

We now develop two key ideas. The first idea is a switching lemma which states that
the designer can either hasten or postpone the arrival of the uncertain stopping belief µ̄

while preserving dynamic obedience constraints. This allows the designer to vary the
correlation between stopping beliefs and stopping times while preserving marginals
as well as continuation incentives. It is illustrated on the left of Figure 13.

41That is, the static information structure at time T denoted π∗ = I(·|HT−1) ∈ ∆(∆(Θ)) maximizes
Eµ∼π [h(µ, T)] among the set{

π ∈ ∆(∆(Θ)) :
∫ (

max
a

Eµ∼π [u(a, θ)]− max
a

Eµ0 [u(a, θ)]
)

dπ(µ) ≥ c · T,
∫

µdπ(µ) = µ0

}
,

where h(µ, t) is the designer’s indirect utility function when the DM stops at belief µ at time t, breaking
ties in actions in favor of the designer.

42Extremal beliefs have been used prominently in static information design (e.g., Bergemann, Brooks,
and Morris (2015)). In Appendix D develop the observation that any feasible joint distribution over
actions and times can be implemented with (dynamic) extremal stopping beliefs.
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Figure 13: Switching and Pasting Lemma
Note: For simplicity assume continuation beliefs > µ̄.

The second idea is a pasting lemma which states that if the DM stops with positive
probability at time t at belief µ̄ but continues with belief µ > µ̄, then the designer can do
strictly better by having the DM continue at a more uncertain belief (e.g., from µ̄). This
is done by ”pasting” a suitable modification of the information structure continuing
from µ to instead continue from µ̄ and is illustrated on the right of Figure 13.43

With these ideas in hand, suppose that the optimal structure is such that the de-
signer provides the possibility of full information over multiple periods but the prob-
ability of stopping at the indifferent belief µ̄ is positive. Employing the switching
lemma, we can shift the probability of stopping at different beliefs {0, µ̄, 1} around in
time while weakly increasing the designer’s payoff and preserving the DM’s dynamic
ICs. We do so until there exists some time t at which the DM has positive probability
of either: (i) stopping at belief {0, µ̄, 1}; or (ii) continuing with belief µ > µ̄. Then, by
applying the pasting lemma, we can modify the information structure so that DM (i)
stops at belief µ̄; and (ii) continues at belief µ according to some modified information
structure. This strictly dominates the original structure, a contradiction.

8 SUMMARY

We have developed a unified analysis of the form and limits of attention capture. The
reduction principle (Theorem 1) showed that deterministic continuation belief paths
which maximally make DM increasingly uncertain play a crucial role in shaping DM’s
continuation incentives. We then characterized the convex-order frontier and extreme
points of feasible stopping times (Theorem 2) which delivered the form of optimal at-

43The pasting lemma is loosely related to the notion of ”stop-go” pairs in the mathematics literature
on optimal Skorohod embeddings as recently used in Beiglböck, Cox, and Huesmann (2017). There, they
use path-swapping arguments by continuing on one path, and stopping on another to obtain necessary
conditions on optimal stopping for a given stochastic process. Here, we take as given that the DM is
optimally stopping and instead modify the belief process to continue on µ̄ instead of µ, and stop on µ
instead of µ̄ to obtain necessary conditions on the designer’s optimality.
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tention capture for a wide class of environments (Corollaries 1-3). We also showed
that intertemporal commitment is unnecessary and provided an explicit procedure for
making optimal structures sequentially optimal (Theorem 3) which turned out to have
a tight and surprising connection to optimal attention capture for a DM who values
information noninstrumentally (Theorem 4). Finally, we considered designer who ad-
ditionally valued persuasion (Theorem 5) and showed that attention capture remains
an important force.
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APPENDIX TO ‘ATTENTION CAPTURE’

Outline of Appendix. Appendix A proves the reduction principle (Theorem 1) and
develops generalized martingale and obedience constraints. Appendix B proves re-
sults on optimal dynamic information structures. Appendix C proves that every opti-
mal structure can be made sequentially optimal (Theorem 3) and develops a bijection
between sequentially optimal structures and optimal structures under suspense utility
(Theorem 4). Appendix D proves the bang-bang result (Theorem 5) when the designer
has persuasion and attention motives.

Augmented dynamic information structures. In the appendix we will augment our
description of dynamic information structures. Let ∆Θ := ∆(Θ)× M be the space of
belief-message pairs, where M is an arbitrary message space. We now redefine several
objects. I ∈ ∆(∏+∞

t=1 ∆(Θ)) as a joint distribution over paths of belief-message pairs.
Ht := (µs, ms)s≤t is a time-t history. Write It+1(·|Ht) ∈ ∆(∆(Θ)) to denote the con-
ditional distribution over the time-t + 1 belief-message pair following history Ht. Say
that Ht is a positive probability history if {(µs, ms)s : (µs, ms)s≤t = Ht} ⊆ supp I. I is
a dynamic information structure if the belief component is a martingale with respect
to the natural filtration generated by its histories.

We emphasize that all results in the main text hold as stated for dynamic informa-
tion structures as belief martingales. This augmented definition helps describe modi-
fications by allowing us to distinguish histories with the same belief path, but differ-
ent continuation information structures, but one can verify that all results do not rely
on this augmentation. For instance, at each optimal augmented dynamic information
structure I ∈ ∆(∏+∞

t=1 ∆(Θ)), the belief paths for histories where the DM optimally
stops are disjoint from belief paths for histories where the DM optimally continues.44

APPENDIX A: PROOF OF REDUCTION PRINCIPLE

A.1 Preliminaries. Sequential formulation of DM’s problem. DM’s problem can be
equivalently formulated as follows: for any history Ht, the DM solves the following
optimization problem:

U I(Ht) := sup
τ,aτ :
τ≥t

EI [v(aτ, θ, τ) | Ht],

where τ is a stopping time, aτ is a stochastic action under the natural filtration, and
EI [·|Ht] is the conditional expectation under information structure I ∈ I after his-
tory Ht. Since we break indifferences in favor of not stopping, given history Ht, the

44Hence I can be canonically projected down onto the space of belief martingales analyzed in the
main text by setting m = ∅ for each m. The distinction between dynamic information structures as
conveying information about the state (via beliefs) and about continuation information (via messages)
is well-understood (Greenshtein, 1996).
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DM will stop paying attention if and only if maxa∈A EI [v(a, θ, t)|Ht], the expected pay-
off from stopping to act immediately, is strictly greater than the continuation payoff
EI [U I(Ht+1) | Ht].

General DM and designer preferences. Define the indirect utility function v∗ : ∆(Θ)×
T → R and DM’s best response correspondence a∗ : ∆(Θ)× T ⇒ A at time t ∈ T as
follows:

v∗(µ, t) = max
a∈A

Eθ∼µv(a, θ, t), a∗(µ, t) = arg maxa∈AEθ∼µv(a, θ, t).

Let f̂ : A × T → R be the designer’s value function. Define

h(µS, t) := Eθ∼µS

[
max

a∈a∗(µS,t)
f̂ (a, t)

]
as the designer’s indirect utility function when the DM stops at belief µS at time t
and breaking ties in favor of the designer. The designer’s maximization problem is
equivalent to sup

p∈P
E(µS,τ)∼p[h(µ

S, τ)].

where P is the set of feasible joint distributions over beliefs and stopping times. To
ensure the solution to the designer’s optimization problem, we impose the following
assumption which was described informally in the main text.

Assumption 1. There exists a metric d(·, ·) over the set ∆(∆(Θ) × T ) such that P is
compact under metric d. Moreover p 7→ E(µS,τ)∼p[h(µ

S, τ)] is continuous under d.

This implies the optimization problem attains its supremum i.e., maxI∈I E[ f (aτ, τ)]

has a solution. This assumption holds, for instance, whenever the designer’s function f
is bounded by some exponential function. More generally, this is fulfilled by standard
functional forms in economics; we elaborate on this in Online Appendix I.3. We will
weaken the constant cost per-unit time assumption to:

Assumption 2 (Impatience). The DM’s utility function v satisfies impatience if v(a, θ, t)
is strictly decreasing in t for all a ∈ A and θ ∈ Θ.

We are ready to prove reduction principle (Theorem 1). The proof of Theorem 1
consists of two steps:

• Step A: Show that every feasible distribution over stopping times can be imple-
mented with full-revelation and deterministic structures.

• Step B: Show that every feasible stopping time can be implemented with a max-
imal belief path via an iterative ironing procedure.

These two steps imply Theorem 1.
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A.2 Proof of Step A.

Proof of Step A. The following step show that every feasible distribution over stopping
times can be implemented with full-revelation and deterministic structures.
Step 1: Collapse non-optimal stopping histories (I → I′).

For each t ∈ T , define a (deterministic) belief µC
t as µC

t := EI[µt
∣∣τ(I) > t

]
. We

construct an information structure I′ so that the DM prefers to stop paying attention if
and only if she sees a message S. At time t with history HC

t := (µC
s , C)s≤t (the history

comprising continuation messages for t periods), define a static information structure
I′t+1(· | HC

t ) ∈ ∆(∆(Θ)× M) as follows:
(i) Stopping beliefs agrees with that under I:

I′t+1

(
{(µ, S) : µ ∈ B}

∣∣∣HC
t

)
= PI

(
µt+1 ∈ B, τ(I) = t + 1

∣∣∣τ(I) > t
)

for every Borel set B ⊆ ∆(Θ);
(ii) Continuation belief concentrates on µC

t+1:

I′t+1

(
(µC

t+1, C)
∣∣∣HC

t

)
= PI

(
τ(I) > t + 1

∣∣∣τ(I) > t
)

.

Moreover, whenever a history contains message S, an information structure I′ provides
no information. It is easy to check that I′ is indeed an information structure (such that
the martingale condition holds).

Define τ̄ as the random time at which DM first sees message S under I′. Observe

PI′(µs ∈ B, τ̄ = s | HC
t ) = PI(µs ∈ B, τ(I) = s | τ(I) > t),

for every Borel set B ⊆ ∆(Θ) and time s > t. Letting µ̄ be the random belief which
the DM sees message S under I′, we have (µ̄, τ̄)

d
= (µτ(I), τ(I)) since the modification

preserved the distribution of stopping beliefs for each time. It remains to show I′ is
obedient so the time at which DM receives S is indeed an optimal stopping time.

Lemma 2. Under I′, for any t ∈ T , the DM continues paying attention at history HC
t .

Proof of Lemma 2. We show that the DM does weakly better by continuing until seeing
message S since that is a well-defined stopping time. To this end, note that the DM’s
expected utility if she stops at history HC

t under I
′

is

v∗(µC
t , t) = v∗

(
EI [µt | τ(I) > t], t

)
≤ EI [v∗(µt, t) | τ(I) > t] (v∗(·, t) is convex)

≤ EI [v∗(µτ(I), τ(I)) | τ(I) > t] (sequential optimality of τ(I))

= EI′ [v∗(µ̄, τ̄) | HC
t ].

This implies DM does weakly better by continuing at history HC
t .

From Lemma 2, under I′ the DM does not stop unless she sees message S. Hence,
(µI(τ′), τ(I′)) d

= (µτ̄, τ̄) which implies (µτ(I′), τ(I′)) d
= (µτ(I), τ(I)).
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Step 2: Modify stopping beliefs to be full-revelation.
We now modify I′ so that I′′ is full-revelation and deterministic which gives the

second part of Theorem 1. Construct a new information structure I′′ from I′ as follows:
supp (I′′t+1 | HC

t ) = {(δθ, S) : θ ∈ Θ} ∪ {(µC
t+1, C)}

(i) For every θ ∈ Θ, I′′t+1((δθ, S) | HC
t ) =

∫
µ∈∆(Θ) µ(θ)dI′t+1((µ, S) | HC

t )

(ii) I′′t+1((µ
C
t+1, C) | HC

t ) = PI′(τ(I′) > t + 1 | τ(I′) > t).
Part (i) says I′′ redistributes stopping messages with arbitrary posteriors belief µ from
I′ into those with full beliefs. It is easy to check that I′ is a valid dynamic information
structure (so the martingale condition holds). Denote the stopping time τ̄ as a random
time at which the DM stops once she sees message S under I′′. Part (ii) then implies
PI′′(HC

s | HC
t ) = PI′(HC

s | HC
t ) for every s > t hence τ(I′) d

= τ̄.

Lemma 3. Under I′′, for any t ∈ T , the DM continues at history HC
t = (µC

s , C)s≤t.

Proof of Lemma 3. Note that DM’s expected utility if she stops at history HC
t under I′′ is

v∗(µC
t , t) ≤ EI′ [v∗(µτ(I′), τ(I′)) | HC

t ] (sequential optimality of τ′(I))

=
∞

∑
s=t+1

( ∫
µ∈∆(Θ)

v∗(µ, s)dI′s((µ, S) | HC
s−1)

)
PI′(τ(I′) > s − 1 | τ(I′) > t)

≤
∞

∑
s=t+1

( ∫
µ∈∆(Θ)

∑
θ∈Θ

µ(θ)v∗(δθ, s)dI′s((µ, S) | HC
s−1)

)
PI′(τ(I′) > s − 1 | τ(I′) > t)

=
∞

∑
s=t+1

(
∑

θ∈Θ
I′′s ((δθ, S) | HC

s−1)v
∗(δθ, s)

)
PI′′(τ̄ > s − 1 | τ̄ > t)

= EI′′ [v∗(µτ̄, τ̄) | HC
t ].

Therefore, DM does weakly better by continuing to pay attention given history HC
t .

We showed in Step 1 that d(I) = d(I′). By Lemma 3, we know τ(I′′) d
= τ̄. More-

over, we showed τ(I′) d
= τ̄ which implies τ(I) d

= τ(I′′). Let IFULL be the set of full-
revelation structures with deterministic paths. Since I′′ ∈ IFULL, D(IFULL) = D(I),
as desired

A.3 Proof of Step B. Lemma 1 implies that feasible pairs of stopping time and a belief
path suffice for information structures. We will construct a topological space of such
belief paths, fixing a feasible stopping time.

We first introduce some useful notation. Define the set of belief paths with W =

(∆(Θ))T . Fixing a stopping time τ, define W(τ) ⊂ W as the set of belief paths corre-
sponding to stopping time τ.

Definition 12 (Undominated belief path). Fix stopping time τ. A belief path (µt)t∈T ∈
W(τ) is an undominated belief path under τ if there is no (µ′

t)t∈T ∈ W(τ) such that
ϕ(µ′

t) ≥ ϕ(µt) for every t ∈ T and the inequality is strict for some t ∈ T .

36



The following proposition guarantees the existence of an undominated belief path
for any feasible stopping time τ. This will be a useful object to prove Step B. Note that
the proof of Lemma 1 relies on only the first half of Theorem 1.

Lemma 4. For every feasible stopping time τ, there exists an undominated belief path corre-
sponding to τ.

Proof. See Online Appendix I.4.

Since undominated belief paths exist, we provide a stronger version of Step B.

Lemma 5. Fixing a feasible distribution d(τ) ∈ {margT d : d ∈ D}, every undominated belief
path (µC

t )t∈T ∈ W(τ) must be increasing and maximal.

Proof of Lemma 5. Fixing a feasible stopping time τ and its corresponding undominated
belief path (µC

t )t∈T . Consider any sequence of (µi
t)t∈T ∈ (∆(Θ))T . We first prove

(µC
t )t∈T is increasing. We recursively construct another sequence of beliefs (µi+1

t )t∈T ∈
(∆(Θ))T which satisfies the conditions in Lemma 1 for each i ∈ T ∪ {−1} as follows:

(i) If i = −1, set µi
t = µC

t for every t ∈ T .

(ii) If i ≥ 0, given the sequence of (µi
t)t∈T ∈ (∆(Θ))T , define

ti =

min{t ∈ T : t > i, ϕ(µi
i) ≤ ϕ(µi

t)} if the minimum exists,

+∞ otherwise.

• If ti = +∞, set µ′
t =

µ′
t, if t < i

µi
i, if t ≥ i

i.e., the sequence (µi+1
t )t follows the se-

quence (µi
t)t up to period i, and remains constant at belief µi

i thereafter.

• If ti < +∞, define θi ∈ argmaxθ∈Θ
µi

ti
(θ)

µi
i(θ)

i.e., the state at which the ratio of the
beliefs at time i and time ti—the time at which ϕ increases relative to that at
time i.

It is clear that
µi

ti
(θi)

µi
i(θi)

≥ 1. Thus, there exists a sequence πi
i , . . . , πi

ti−1 ∈ R such

that πi
t ∈

[
1, P(τ>t)

P(τ>t+1)

]
for every t ∈ {i, . . . , ti − 1} and ∏ti−1

t=i πi
t =

µi
ti
(θi)

µi
i(θi)

be-

cause the second condition of Lemma 1 for µi implies

µi
ti
(θi)

µi
i(θi)

≤ P(τ > i)
P(τ > ti)

=
ti−1

∏
t=i

P(τ > t)
P(τ > t + 1)

.

This sequence (πi
s)

ti−1
s=i simply splits up the ratio of µi

ti
(θi)/µi

i(θi) into ti − 1 − i
sub-ratios. We will now construct a new sequence of beliefs to bridge µi

i and
µi

ti
while ensuring that ϕ increases over the interval. For any t ∈ {i, . . . , ti}, set
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µi+1
t = λi,tµ

i
i + (1 − λi,t)µ

i
ti

, i.e., a linear combination of the belief at ti and that
at i where the weights are given by

λi,t =
1

µi
ti
(θi)− µi

i(θi)

(
µi

ti
(θi)−

t−1

∏
s=i

πi
s · µi

i(θi)
)
∈ [0, 1].

Moreover, if t /∈ {i, . . . , ti}, we set µi+1
t = µi

t. From the construction of µi+1,
note that µi+1

i = µi
i and µi+1

ti
= µi

ti

We will now inductively show that a sequence (µi
t)t∈T satisfies the conditions in Lemma

1 for each i ∈ T ∪ {−1}:
Base step.(µ−1

t )t∈T = (µC
t )t∈T satisfies the conditions in Lemma 1 because by I was

assumed to be full-revelation and deterministic.
Inductive step. Suppose t ∈ T such that (µi

t)t∈T satisfies the conditions in Lemma 1.
We consider two cases.
Case 1: ti = +∞. We have that ϕ(µi

i) > ϕ(µi
t) for every t > i. This implies ϕ(µi+1

t ) =

ϕ(µi
i) > ϕ(µi

t) ≥ E[c(τ) | τ > t] − c(t) for every t > i. For every t ≤ i, ϕ(µi+1
t ) =

ϕ(µi
t) ≥ E[c(τ) | τ > t] − c(t). Therefore, the boundary constraint holds for every

time t ∈ T for the sequence of beliefs (µi+1
t )t∈T . Moreover, for every t < i, we know

µi+1
t+1(θ)

µi+1
t (θ)

=
µi

t+1(θ)

µi
t(θ)

≤ P(τ>t)
P(τ>t+1) . For every t ≥ i, we have

µi+1
t+1(θ)

µi+1
t (θ)

=
µi

i(θ)

µi
i(θ)

= 1 ≤ P(τ>t)
P(τ>t+1) .

Thus, the boundary constraint holds for every time t ∈ T for the sequence of beliefs
(µi+1

t )t∈T , as required.

Case 2: ti < +∞. We now verify each of the constraints holds.

(i) (Obedience constraint) The definition of ti implies ϕ(µi) > ϕ(µt) for every t ∈
{i + 1, . . . , ti − 1} and ϕ(µi) ≤ ϕ(µti). Because ϕ is concave and λi,t ∈ [0, 1],
Jensen’s inequality implies that for every t ∈ {i, . . . , ti − 1},

ϕ(µi+1
t ) = ϕ(λi,tµ

i
i + (1 − λi,t)µ

i
ti
)

≥ λi,tϕ(µ
i
i) + (1 − λi,t)ϕ(µ

i
ti
)

≥ ϕ(µi
i) ≥ ϕ(µi

t) ≥ E[c(τ) | τ > t]− c(t), (1)

where the last inequality follows from the first condition in Lemma 1 of µi. As
such, for every t /∈ {i, . . . , ti − 1}, we have ϕ(µi+1

t ) = ϕ(µi
t) ≥ ϕ(µi

i) ≥ ϕ(µi
t) ≥

E[c(τ) | τ > t]− c(t). Therefore, the obedience constraint holds for every time
t ∈ T for the sequence of beliefs (µi+1

t )t∈T .
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(ii) (Boundary constraint) For every t ∈ {i, . . . , ti − 1} and θ ∈ Θ, we have

µi+1
t+1(θ)

µi+1
t (θ)

=
λi,t+1µi

i(θ) + (1 − λi,t+1)µ
i
ti
(θ)

λi,tµ
i
i(θ) + (1 − λi,t)µ

i
ti
(θ)

≤
λi,t+1 + (1 − λi,t+1)µ

i
ti
(θi)/µi

i(θi)

λi,t + (1 − λi,t)µ
i
ti
(θi)/µi

i(θi)

(
λi,t ≤ λi,t+1 and

µi
ti
(θ)

µi
i(θ)

≤
µi

ti
(θi)

µi
i(θi)

)
=

∏t
s=i πi

s · µi
i(θi)

∏t−1
s=i πi

s · µi
i(θi)

= πi
t ≤

P(τ > t)
P(τ > t + 1)

.

Moreover, for every t /∈ {i, . . . , ti − 1} and θ ∈ Θ, we have
µi+1

t+1(θ)

µi+1
t (θ)

=
µi

t+1(θ)

µi
t(θ)

≤
P(τ≥t)

P(τ≥t+1) from the induction hypothesis. Therefore, the boundary constraint holds

for every time t ∈ T and state θ ∈ Θ for the sequence of beliefs (µi+1
t )t∈T .

We have shown that the sequence (µi
t)t∈T satisfies the conditions in Lemma 1 for each

i ∈ T ∪ {−1}. We now complete the proof of Theorem 1 (ii). Define a sequence
(µ∗

t )t∈T ∈ (∆(Θ))T such that µ∗
t = µt

t for every t ∈ T i.e., taking the ‘diagonal’ by
choosing time t’s beliefs to be sequence t’s beliefs at time t.

• For the obedience constraint, ϕ(µ∗
t ) = ϕ(µt

t) ≥ E[cτ | τ > t]− ct.

• For the boundary constraint,
µ∗

t+1(θ)

µ∗
t (θ)

=
µt+1

t+1(θ)

µt
t(θ)

=
µt+1

t+1(θ)

µt+1
t (θ)

≤ P(τ>t)
P(τ>t+1) .

• For the increasing property, from Equation 1 ϕ(µ∗
t ) = ϕ(µt

t) ≤ ϕ(µt+1
t+1) = ϕ(µ∗

t+1).

Thus, Lemma 1 implies (d(τ), (µ∗
t )t) is feasible. From the construction, ϕ(µ∗

t ) = ϕ(µt
t) ≥

ϕ(µC
t ). If ϕ(µC

t ) is not increasing for some t, then this modification is not trivial: there
exists t0 such that ϕ(µ∗

t0
) > ϕ(µC

t0
), which contradicts that (µC

t )t is an undominated
belief path of d(τ).

Now we prove (µC
t )t∈T is extremal. Suppose towards a contradiction that there is

a minimum t0 ∈ T such that µt0+1 /∈ Φ∗ and P(τ>t0+1)
P(τ>t0)

< minθ∈Θ
µt0 (θ)

µt0+1(θ)
. Pick any

µ∗ ∈ Φ∗. We pick λ ∈ [0, 1) as following. If minθ∈Θ
µt0 (θ)

µ∗(θ) ≥ P(τ>t0+1)
P(τ>t0)

, choose λ = 0.
Otherwise, choose λ ∈ [0, 1) such that

P(τ > t0 + 1)
P(τ > t0)

= min
θ∈Θ

µt0(θ)

λµt0+1(θ) + (1 − λ)µ∗(θ)
.

The existence of λ follows from the intermediate value theorem. We define a new belief
path (µ′

t)t∈T as follows:

µ′
t =

µt, if t ≤ t0

λµt + (1 − λ)µ∗, otherwise.

We will show that a pair of a belief path and a distribution of stopping time ((µ′
t)t∈T , d(τ))

is feasible. The obedience constraint is still the same for t ∈ {0, . . . , t0}. For t ≥ t0, we
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have

ϕ(µ′
t) = ϕ(λµt + (1 − λ)µ∗) ≥ λϕ(µt) + (1 − λ)ϕ∗ ≥ ϕ(µt) ≥ E[c(τ) | τ > t]− c(t),

so the obedience constraint for every t ∈ T . The boundary constraint is still the same
for t ∈ {0, . . . , t0 − 1}. For t = t0, the boundary constraint holds because of the con-
struction of λ. For t > t0, we have

min
θ∈Θ

µ′
t(θ)

µ′
t+1(θ)

= min
θ∈Θ

λµt(θ) + (1 − λ)µ∗(θ)

λµt+1(θ) + (1 − λ)µ∗(θ)
≥ min

θ∈Θ

µt(θ)

µt+1(θ)
≥ P(τ > t + 1)

P(τ > t)
,

where the first inequality follows from the fact that θ that minimizes the LHS must
satisfy µt(θ) ≤ µt+1(θ). This concludes that a pair of a belief path and a distribution of
stopping time ((µ′

t)t∈T , d(τ)) is feasible.
For every t ≤ t0, ϕ(µ′

t) = ϕ(µt). Moreover, for every t > t0, we have

ϕ(µ′
t) = ϕ(λµt + (1 − λ)µ∗) ≥ λϕ(µt) + (1 − λ)ϕ∗ ≥ ϕ(µt).

Therefore, ϕ(µ′
t) ≥ ϕ(µt) for every t ∈ T . Because (µt)t∈T is an undominated path

coresponding to τ, we must have ϕ(µ′
t) = ϕ(µt) for every t ∈ T , which implies that

ϕ(µt) = ϕ∗ for every t > t0. This contradicts the fact that µt0+1 /∈ Φ∗. Therefore, the
belief path (µt)t∈T must have a property of extremal paths, as desired.

A.4 Proof that designer-optimal structures leave DM with no surplus.

Proof of Proposition 1. Suppose towards a contradiction there exists a designer-optimal
structure I∗ that leaves the DM with a positive surplus. Fix sufficiently small ϵ > 0 and
construct an information structure I∗∗ as follows: with probability 1 − ϵ the designer
follows I∗, and with probability ϵ the designer reveals nothing with an augmented
message m∅ ∈ M in the first period and then follows I∗ in later periods:

(i) At time t > 1 for histories Ht that do not contain (µ0, m∅), we have I∗∗t+1((µ, m) |
Ht) = I∗t+1((µ, m) | Ht).

(ii) At time t > 1 with history Ht =
(
(µ0, m∅), Ht−1

)
, we have I∗∗t+1((µ, m) | Ht) =

I∗t ((µ, m) | Ht−1).

We now claim that the distribution of the resultant stopping time induced by I∗∗ is
d(I∗∗) = (1 − ϵ)d(I∗)⊕ ϵ(d(I∗) + 1).

To see this, we verify that the DM’s obedience constraints are preserved. For any
Ht−1 which realizes with positive probability on the structure I∗, note that DM prefers
to continue paying attention at history

(
(µ0, m∅), Ht−1

)
under I∗∗ if and only if she
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does so at history Ht−1 under I∗. To see this, let Ht−1 = (µ′
s, m′

s)s≤t−1 and observe

v∗(µ′
t−1, t) ≤ EI∗∗ [v∗(µτ(I∗∗), τ(I∗∗)) |

(
(µ0, m∅), Ht−1

)
]

⇐⇒ v∗(µ′
t−1, t) ≤ EI∗ [v∗(µτ(I∗), τ(I∗) + 1) | Ht−1]

⇐⇒ v∗(µ′
t−1, t − 1)− c ≤ EI∗ [v∗(µτ(I∗), τ(I∗)) | Ht−1]− c

(v has additively separable cost)

⇐⇒ v∗(µ′
t−1, t − 1) ≤ EI∗ [v∗(µτ(I∗), τ(I∗)) | Ht−1].

Moreover, the obedience constraint at time 0 under I∗∗ still holds for sufficient small
ϵ > 0 because I∗ and I∗∗ coincide with probability 1 − ϵ and the obedience constraint
at time 0 under I∗ is slack by assumption. These together imply τ(I∗∗) is indeed is still
the DM’s optimal stopping time under I∗∗. However, the designer’s value of I∗∗ is

EI∗∗ [h(µτ(I∗∗), τ(I∗∗))] = (1 − ϵ)EI∗ [h(µτ(I∗), τ(I∗))] + ϵEI∗ [h(µτ(I∗), τ(I∗) + 1)]

> EI∗ [h(µτ(I∗), τ(I∗))]

because h(µ, ·) is strictly increasing, which contradicts the optimality of I∗.

APPENDIX B: PROOF OF OPTIMAL ATTENTION CAPTURE

In this appendix we collect proofs which were omitted in Section 4. From Lemma 1,
a stopping time τ is feasible if we can find a supporting belief path (µC

t )t∈T such that
(τ, (µC

t )t∈T ) fulfils the obedience and boundary constraint.
We introduce an important lemma which we will draw on extensively.

Lemma 6 (Pivot Lemma). Suppose the designer’s optimal full-revelation information struc-
ture I with deterministic belief path induces the stopping time τ. Let t0 < t1 ∈ T ∪ {+∞}
such that t0 + 1 ∈ supp τ, and

E[ f (τ + 1)− f (τ) | τ ∈ [t0 + 1, t1)] > f (t0 + 1)− f (t0).

Then, the DM must be indifferent between continuing and stopping at time t0 under I, imply-
ing t0 ∈ supp τ. This further implies for any t0 ∈ T and any feasible distribution d ∈ Ds with
mean s, if the DM strictly pefers to continue at time t0 and t0 + 1 ∈ supp d, then there exists
d′ ∈ Ds such that d′ ≻CX d.

The proof is quite notation-intensive and deferred to Online Appendix II.1. Nonethe-
less, the intuition is simple; we sketch it here. Suppose the DM strictly prefers to con-
tinue at time t0 and the conjectured optimal distribution induces the stopping time
with CDF given by the red line in Figure 14.45

Now consider the following perturbation: at time t0, we ‘uniformly’ delay the infor-
mation structure by a single unit of time with probability ϵ, but increase the probability
of stopping at time t0 by the same probability. Then, conditional on facing this 1-unit

45We have depicted ‘smoothed’ versions of the CDF.

41



Figure 14: Intuition for pivot lemma

delay beyond time t0, we once again accelerate the arrival of full information at time
t1 so that the original distribution and modified distribution are identical after time t1.
This modified CDF is depicted as the blue line in Figure 14.

Note that this perturbation does not change the DM’s continuation value for times
t < t0 since it preserves the mean. Moreover, if the delay occurs, for times t > t1

the DM faces the same decision problem as she faces under the old information struc-
ture, so the obedience constraints on the delayed path still hold. If the delay occurs,
for times t ∈ (t0, t1], the DM faces approximately the same continuation information
structure, with the difference that information at and after time t1 is accelerated. Thus,
this strictly improves the obedience constraints on the delayed path at times t ∈ (t0, t1].
Now consider the obedience constraint at time t0. If it is slack, then this perturbation
for sufficiently small ϵ > 0 induces a feasible stopping time yet strictly improves the
designer’s payoff, contradicting optimality.

B.1 Proof of Theorem 2.

Proof of Theorem 2 (i). We begin with the existence of a convex frontier:

Lemma 7. Fix any d ∈ Ds. There exists d∗ ∈ Ds such that

1. d∗ ⪰CX d, and

2. there is no d′ ∈ Ds such that d′ ≻CX d∗.

Proof. See Online Appendix II.1.

Pick d∗ that satisfies the above conditions. We will show that d∗ ∈ D I IM. Pick any
belief path µC ∈ ∆(Θ)T such that (d∗,µC) is feasible. By Lemma 4, there exists an
undominated belief path µ∗C ∈ W(τ∗) where τ∗ ∼ d∗ such that ϕ(µ∗C

t ) ≥ ϕ(µC
t ) for

every t ∈ T .
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Let T = max supp τ∗, which can be +∞. Suppose that T is finite. Lemma 6 and the
fact that there is no d′ ∈ Ds such that d′ ≻CX d∗ imply the DM must be indifferent at
time T − 1 under (d∗,µ∗C). However, this is impossible because

E[c(τ∗ − (T − 1)) | τ > T − 1] = c < ϕ(µ0) ≤ ϕ(µt),

where the last inequality is from the result that a maximal belief path must be increas-
ing. Thus, max supp τ∗ = +∞. We show that the DM must be indifferent at every
time t ∈ T under (d∗,µ∗C). For each time t ∈ T , there exists time t′ > t such that
t′ ∈ supp τ∗. Applying Lemma 6 again implies the DM must be indifferent at time
t′ − 1 and t′ − 1 ∈ supp τ∗. Applying this argument (backward) inductively, we obtain
the DM must be indifferent at time t < t′, as desired.

Since the DM must be indifferent at every time t ∈ T under (d∗,µ∗C), we have

E[c(τ∗ − t) | τ∗ > t] = ϕ(µ∗C
t ) ≥ ϕ(µC

t ).

Since (d∗,µC) is feasible, the above inequality must be the equality. Thus, ϕ(µ∗C
t ) =

ϕ(µC
t ) for every t ∈ T , and the DM is indifferent at every time t ∈ T under (d∗,µC).

This means µC is a maximal belief path corresponding to τ∗, implying both increasing
and extremal paths. These together conclude d∗ ∈ D I IM, and d∗ ⪰CX d, as desired.

Finally, we show that d ⪰CX dDET. Let d, dDET ∈ Ds. We need to show, for every
concave function f ∈ T → R, Eτ∼d[ f (τ)] ≤ Eτ∼dDET [ f (τ)]. For each f , define an
augmented function fR as a linear interpolation of f on R. Note that fR is still concave
if f is concave. By Jensen’s inequality, we must have

Eτ∼d[ f (τ)] = Eτ∼d[ fR(τ)] ≤ fR(s) = EτDET∼d[ f (τ)],

where the last inequality follows from that fR is linear on the domain [⌊s⌋, ⌊s⌋ + 1].
Thus, d ⪰CX dDET, as desired.

B.2 Proof of Theorem 2 (ii). We drop the boundary constraint and relax the obedience
constraint as follows:

Definition 13. A stopping time τ is pre-feasible if τ satisfies the relaxed obedience con-
straint: E[cτ | τ > t]− ct ≤ ϕ∗ for every t ∈ T . For any s ≥ 0, let

Drelax(s) = {d ∈ ∆(T ) : Eτ∼d[τ] = s, τ ∼ d is pre-feasible}

be set of distributions of pre-feasible stopping times whose expected value is s.

It is clear that every feasible distribution of stopping times is pre-feasible: D(I(s)) ⊂
Drelax(s). We sketch the outline of omitted proofs in Section 4 is as follows. To prove
Theorem 2 (ii), we show that 1) extreme points of Drelax(s) have the property of block
structures, and 2) extreme points of Drelax(s) are in D(I(s)) using a supporting single-
jump belief path.

The following Lemmas 8 and 9 imply Theorem 2 (ii).
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Lemma 8. For every s > 0, Ext(Drelax(s)) = D(IBLOCK(s)) ∩ Drelax(s). Equivalently, for
every d(τ) ∈ Ext(Drelax(s)), there does not exist times r1 and r1 with r1 < r2 such that all of
the followings hold:

(i) The stopping time is r1 and r2 with positive probability, but not between these times:
P(τ = r1), P(τ = r2) > 0, and P(τ ∈ (r1, r2)) = 0

(ii) τ is after r2 with positive probability: P(τ > r2) > 0.
(iii) The DM is not indifferent at r1 under τ: E[cτ | τ > r1]− cr1 < ϕ∗.

Moreover, Ext(Drelax(s)) = Ext
(
Ext(Drelax(s))

)
.

Proof of Lemma 8. Suppose towards a contradiction that there exist r1 < r2 ∈ T satisfy-
ing (i), (ii), and (iii). Define α ∈ (0, 1) as the solution of αr1 + (1 − α)E[τ | τ > r2] = r2.
This is well-defined because P(τ > r2) = 0. For ϵ in a small neighborhood of 0, we
define a new stopping time τϵ as follows:

P(τϵ = t) =



P(τ = t) t < r1

P(τ = r1)− αϵ t = r1

0 r1 < t < r2

P(τ = r2) + ϵ t = r2(
1 − (1−α)ϵ

P(τ>r2)

)
P(τ = t) t > r2

It is easy to check that τϵ corresponds to a valid probability distribution. An im-
portant observation is that τϵ|τϵ > r2

d
= τ|τ > r2. We now verify that the relaxed

obedience constraints remain fulfilled.
Case 1: the relaxed obedience constraint at t < r1. Note that P(τϵ > t) = P(τ > t).
Consider that

E[τϵ1{τϵ > t}]− E[τ1{τ > t}] = r2 − (αr1 + (1 − α)E[τ | τ > r2]) = 0

by the definition of α. Thus, E[τϵ|τϵ > t] = E[τ|τ > t]. Since τ satisfies the relaxed
obedience constraint at t, so does τϵ.
Case 2: the relaxed obedience constraint at t ∈ [r1, r2). Since E[cτ | τ > r1]− cr1 > ϕ∗

(condition (iii)), τϵ must satisfy the relaxed obedience constraint at r1 for small ϵ. The
relaxed obedience constraint at t ∈ (r1, r2) is then implied by that at r1.
Case 3: the relaxed obedience constraint at t ≥ r2. This clearly holds because τϵ|τϵ >

r2
d
= τ|τ > r2 and τ satisfies the relaxed obedience constraint at t.
Therefore, τϵ satisfies the relaxed obedience constraints, implying d(τϵ) ∈ Drelax(s).

This is a contradiction because d(τ) = d(τϵ)/2 + d(τ−ϵ)/2 but d(τ) ∈ Ext(Drelax(s)).
It is easy to see that Ext(Drelax(s)) = Ext

(
Ext(Drelax(s))

)
because a convex combina-

tion of two different block structures cannot be another block structure (with the same
expected time).

Lemma 9. Suppose µ0 ∈ Φ∗ or we are in the binary environment. For every s > 0,
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Ext(Drelax(s)) ⊂ D(I(s)).

Proof of Lemma 9. Suppose d∗ ∈ Ext(Drelax(s)). To show that d∗ ∈ D(I(s)), we will
find a supporting belief path (µt)t∈T such that (d∗, (µt)t∈T ) is feasible. Let t0 :=
min{t ∈ T : d∗(t) > 0} be the first time that the DM has any chance to obtain
full information. Define a jumping belief µt0 := (1 − β)µ0 ⊕ βµ∗, where β satisfies
(1 − β)ϕ(µ0) + βϕ∗ = E[cτ | τ > t0]− ct0, and µ∗ ∈ Φ∗. We construct a single-jump
belief path (µt)t with a jump time t̄ = t0 and a jump destination µ̄ = µt0 .

To complete the proof, we show that (d∗(·), (µt)t) satisfies the obedience and bound-
ary constraints. To see this, when t < t0, the obedience constraint at time 0 is sufficient
since the DM receives no information between times 0 and t0. The obedience constraint
at time t = t0 holds by the definition of β and the concavity of ϕ. Consider any time
t > t0. The original and relaxed obedience constraints at time t coincide if µt0 = µ∗,
which is true if d∗ has at least one indifferent block. If d∗ has only a terminal block with
a terminal time t̄, the DM receives no information between times t0 and t̄, so the the
obedience constraint at time t is implied by that at time t0.

For boundary constraints, it is sufficient to check at time t0 because it is the only
time the belief path moves. Suppose d yields a stopping time τ. It is easy to verify that
ϕ(µt)
ϕ(µ∗) = minθ∈Θ

µ0(θ)
µt(θ)

when |A| = 2 and |Θ| = 2. The obedience constraint at time 0
implies

ϕ(µ0) ≥ P(τ > t0)E[cτ | τ > t0] ≥ P(τ > t0)
(
(1 − β)ϕ(µ0) + βϕ∗).

Moreover,

min
θ∈Θ

µ0(θ)

µt(θ)
= min

θ∈Θ

µ0(θ)

(1 − β)µ0(θ) + βµ∗(θ)
=

ϕ(µ0)

(1 − β)ϕ(µ0) + βϕ∗ .

Thus,
P(τ > t0)

P(τ > t0 − 1)
= P(τ > t0) ≤

ϕ(µ0)

(1 − β)ϕ(µ0) + βϕ∗ = min
θ∈Θ

µ0(θ)

µt(θ)
,

as desired.

B.3 Proof of Proposition 2. We will prove Proposition 2 (i) and deter the proof of a
generalization of Proposition 2 (ii) to Online Appendix II.3.

Proof of Proposition 2 (i). First we show that, for any designer-optimal stopping time τ,
supp τ ∩ [T, ∞) ̸= ∅. Suppose a contradiction that supp τ ⊂ (0, T). Then E[ f (τ)] = 0
which is suboptimal for the designer because, if τ′ is a Poisson stopping time with a
high arrival rate so that the obedience constraints hold, then E[ f (τ′)] > 0.

Next, we show supp τ ∩ [T − ϕ∗/c, T] ̸= ∅. Suppose that t1 = min supp τ ∩ [T, ∞).
Let t0 = max supp τ ∩ [0, t1). This implies (t0, t1) ∩ supp τ = ∅. The obedience condi-
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tion at time t0 implies

ϕ∗ ≥ ϕ(µt0) ≥ E[c(τ − t0) | τ > t0] ≥ c(t1 − t0),

which implies t0 ≥ t1 − ϕ∗/c ≥ T − ϕ∗/c. Since t1 = min supp τ ∩ [T, ∞) > t0, t0 < T.
Thus, t0 ∈ supp τ ∩ [T − ϕ∗/c, T], as desired.

Next, we show that the DM is indifferent at every time t < T − ϕ∗/c. Pick t0 ∈
supp τ ∩ [T −ϕ∗/c, T]. Because f (t0)− f (t0 − 1) = 0, we can directly use Pivot Lemma
to show that DM must be indifferent at t0 − 1 and t0 − 1 ∈ supp τ. Applying Pivot
Lemma (backward) inductively, we obtain that the DM must be indifferent at every
time t < t0, as desired.

Finally, we show that that The DM’s belief reaches the basin before time t < T −
ϕ∗/c. We introduce the following lemma.

Lemma 10. Let |Θ| = n. There exists a constant C > 0 such that the following statement is
true: fixing τ, suppose that T > 0 satisfies

T

∑
t=0

(log P(τ > t)− log P(τ > t + 1))n−1 > C.

Moreover, assume that {µ ∈ ∆(Θ) : ϕ(µ) ≥ ϕ(µ0)} ⊂ int ∆(Θ). Then, µt ∈ Φ∗ for every
t > T.

Proof. See Online Appendix II.2

Because the DM is indifferent at every time t < T − ϕ∗/c, we obtain the following

P(τ > t + 1 | τ > t)ϕ(µt+1) + c = ϕ(µt),

implying

P(τ > t + 1 | τ > t) =
ϕ(µt)− c
ϕ(µt+1)

≤ ϕ(µt+1)− c
ϕ(µt+1)

≤ ϕ∗ − c
ϕ∗ =: p∗ < 1.

Set T0 = 2C
(− log p∗)n−1 and consider sufficiently large enough T such that T > T0 + ϕ∗/c.

Thus,
T0

∑
t=0

(log P(τ > t)− log P(τ > t + 1))n−1 ≥ 2C
(− log p∗)n−1 · (− log p∗)n−1 = 2C > C.

Lemma 10 implies that µt ∈ Φ∗ for every t > T0, as desired.

APPENDIX C: SEQUENTIAL OPTIMALITY & ATTENTION CAPTURE WITH SUSPENSE

C.1 Proof of Theorem 3. We first define an information structure where DM is indif-
ferent between continuing and taking action at every non-stopping history:

Definition 14. A non-stopping history Ht is indifferent or no-learning (IN) if the DM
is indifferent between continuing at Ht or stopping and taking her best option under
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belief µ|Ht i.e.,

sup
τ,aτ

EI [v(aτ, θ, τ)|Ht] = max
a∈A

Eµ|Ht [v(a, θ, τ = t)];

I is IN if every non-stopping history Ht which realizes with positive probability is IN.

Outline of proof. The following sequence of results imply Theorem 3:
1. For all designer problems f such that Assumption 1 on the compactness of the set

of feasible joint distribution is fulfilled, there exists a designer-optimal structure
which is regular (to be made precise later) and has deterministic continuation
beliefs (Lemma 11).

2. Regular information structures which have deterministic continuation beliefs can
be modified to be IN while preserving the joint distribution of stopping actions
and times (Lemmas 12 and 13)

3. If an information structure I is IN and designer-optimal, I is sequentially optimal.
The converse is also true if the DM’s payoff function can be written as v(a, θ, t) =
u(a, θ)− ct. (Lemma 14).

Proof of Theorem 3. We proceed via the steps outlined above.
Step 1: Regular optimal structures with deterministic continuation beliefs exist.

Definition 15. An information structure I is regular if either
(i) I has a terminal time T i.e. PI(τ(I) > T) = 0; or

(ii) the set TIN(i) := {t ∈ T | I is IN at every non-stopping history at time t} is infi-
nite.

Lemma 11. Under Assumption 1 with the designer’s function f , there exists a regular in-
formation structure with deterministic continuation beliefs I∗ such that I∗ is a solution to
maxI∈I E[ f (aτ, θ, τ)]

The proof of Lemma 11 is involved and deferred to Online Appendix II.4.
Step 2: Regular structures with deterministic continuation beliefs can be made IN.

The next lemma provides a method to recursively modify continuation histories
while preserving the joint distribution over outcomes. The proof proceeds by perform-
ing ‘surgery on the tree’ and is in Online Appendix II.4.

Lemma 12. Fix a dynamic information structure I and time t ≥ 1. Suppose I is IN at every
non-stopping history at time t + 1. There exists a dynamic information structure I′ such that

(i) I and I′ induces the same joint distribution over actions, states, and stopping times;
(ii) I′ is IN at every non-stopping history at time t; and

(iii) for every s ≥ t + 1, if I is IN at every non-stopping history at time s, so is I′.

Note that Lemma 12 implies the more intuitive inductive step that if I is IN for
all non-stopping histories after t + 1, then there exists I′ such that I′ is IN for all non-
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stopping histories after time t. However, this form will be useful to prove the result for
infinite structures. We now use Lemma 12 to modify regular structures with determin-
istic continuation beliefs such that they are IN.

Lemma 13. Suppose Ī is regular with deterministic continuation beliefs. Then there exists an
information structure I∗ IN such that Ī and I∗ induce the same joint distribution over actions,
states and stopping times.

Proof of Lemma 13. We start from a finite uniquely obedient information structure Ī
with terminal time T. We use Lemma 12 to modify an information structure at the
terminal time. As a result, we have the information structure that is IN at every history
at time T − 1. We apply the previous lemma again and obtain the information structure
that is IN at every history at time T − 1. Keep doing this until time 1 and finally obtain
an IN information structure.

If TIN := {t1, t2, . . . } is infinite, assume t1 < t2 < . . . . We define (In)n iteratively:
let I0 = Ī. For each n ≥ 1, we use Lemma 12 to modify an information structure In−1

at time tn and then tn − 1 . . . , tn−1 + 1 to finally get In. It is easy to show that In is IN
at every history at every time t such that 1 ≤ t ≤ tn and d(I) = d(In) for every n.
Moreover, if m < n, Im and In coincide for every t ≤ tm. Thus, we can define I∗ such
that I∗ and Im coincide for every t < tm and m > 1. This implies I∗ is an IN information
structure and d(I∗) = d( Ī) as desired.

Step 3: IN structures are sequentially optimal.
In Steps 1 and 2 we showed optimal information structures can be made IN. We now
show that optimal IN structures are sequentially optimal, which implies Theorem 3.

Lemma 14. If a dynamic information structure I is IN and optimal for the designer, then it is
also sequentially optimal. The converse is also true if the DM’s payoff function can be written
as v(a, θ, t) = u(a, θ)− ct.

Proof of Lemma 14. Suppose towards a contradiction that I is IN and optimal but not
sequentially optimal for the designer. This means there exists a positive probability
history Ht such that, given that the DM pays attention until H′

t, the designer could do
strictly better by offering an alternative information structure I′t instead of It (which is
I after history Ht). Then modify I by simply replacing the information structure after
H′

t with I′t . This results in a new information structure I′.
We will show that the DM’s value conditional on paying attention until Ht under

I′ (denoted by U I′(Ht)) is higher than that under I (denoted by U I(Ht)). Since I is IN,
U I(Ht) = v∗t (µt | Ht). The DM’s value conditional on paying attention until Ht under
I′ can be written as a solution to the following optimal stopping problem:

U I′(Ht) = max
τ≥t

EI′ [v∗(µτ, τ) | Ht] ≥ v∗(µt | Ht, t) = U I(Ht),
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where the inequality is obtained by choosing τ = t∗.
This directly implies that the DM continues paying attention every time before his-

tory H′
t because the continuation value at Ht under I′ is greater than that under I.

Moreover, at history Hs where s < t and Hs ⊈ Ht, payoffs remain unchanged. We have
verified that the agent’s continuation incentives at each history remain unchanged. But
since the designer receives strictly more payoff at history Ht under I′ and Ht is reached
with positive probability, I′ delivers strictly more expected payoff for the designer than
I does, which contradicts the optimality of I.

For the converse, if I is not IN at some history Ht, then it is not sequentially optimal
at Ht by zero DM’s surplus result from Proposition 1, as desired.

Steps 1, 2, and 3 imply Theorem 3.

C.2 Proof of Theorem 4.

Proof of Theorem 4. It suffiecs to consider information structures with degenerate stop-
ping beliefs because this slackens every obedience constraint at which the DM prefers
to continue paying attention. Define a stochastic process (ψt)t where

ψt := E[ϕs(µt)− ϕs(µt+1) | Ht] ≥ 0.

Fixing t, observe ψt = 0 under {τ < t} since DM receives no further information after
stopping. We can rewrite the obedience condition under suspense as follows:

E
[ ∞

∑
s=t

g(ψs) | Ht

]
≥ E

[
c(τ − t) | Ht

]
=⇒ E

[ ∞

∑
s=t

g(ψs) | τ > t
]
≥ E

[
c(τ − t) | τ > t

]
.

Thus,

E[c(τ − t) | τ > t] ≤
∞

∑
s=t

E[g(ψs) | τ > t]

=
∞

∑
s=t

E[g(ψs) | τ > s]P(τ > s | τ > t)

≤
( ∞

∑
s=t

P(τ > s | τ > t)
)

g
(

E[∑∞
s=t ψs | τ > t]

∑∞
s=t P(τ > s | τ > t)

)
. (Jensen)

Note ∑∞
s=t P(τ > s | τ > t) = E[τ − t | τ > t] so obedience is implied by

c ≤ g
(

E[∑∞
s=t ψs | τ > t]

E[τ − t | τ > t]

)
=⇒ E[∑∞

s=t ψs | τ > t]
E[τ − t | τ > t]

≥ g−1(c)

since g is strictly increasing. Further observe from the law of iterated expectations,

E
[ ∞

∑
s=t

ψs | Ht

]
= ϕS(µt | Ht) =⇒ E

[ ∞

∑
s=t

ψs | τ > t
]
= E

[
ϕS(µt) | τ > t

]
≤ ϕS(µt | τ > t),

which implies

g−1(c) · E
[
τ − t | τ > t

]
≤ E

[ ∞

∑
s=t

ψs | τ > t
]
≤ ϕS(µt | τ > t),
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for every t ∈ T . Call this condition the relaxed obedience constraint. Define µC
t = µ0 |

τ > t. By the martingale condition

E[µC
t (θ)] = P(τ > t + 1 | τ > t)µC

t+1(θ) + P(τ = t + 1 | τ > t)(µ(θ) | τ = t + 1)

≥ P(τ > t + 1 | τ > t)µC
t+1(θ).

We call this condition a relaxed boundary constraint. Thus, the designer’s optimal
value is bounded above by the following relaxed program:

f̄ := max(
dT (τ),(µC

t )t

)
∈∆(T )×(∆(Θ))T

EI [ f (τ)]

s.t. ϕS(µ
C
t ) ≥ E[g−1(c)τ | τ > t]− g−1(c)t ∀t ∈ T (Relaxed obedience)

P(τ > t + 1)µC
t+1 ≤ P(τ > t)µC

t (Relaxed boundary)

If I∗∗ as a sequentially optimal information structure of the above program. Consider
any non-stopping history Ht under I∗∗. With a sequential optimal modification, the
relaxed obedience binds for every history Ht under I∗∗, implying

ϕS(µt | Ht) = EI [ϕS(µt+1) | Ht] + g−1(c) =⇒ ψt | Ht = g−1(c),

which does not depend on µt, for every non-stopping history Ht. Thus,

E
[ ∞

∑
s=t

g(ψs) | Ht

]
= E

[ ∞

∑
s=t

c1{τ > s} | Ht

]
= E

[
c(τ − t) | τ > t

]
,

which means continuation incentives under I∗∗ are preserved. Thus, I∗∗ is a sender-
optimal information structure under suspense, and the sender’s optimal value under
suspense must coincide with f̄ .

If I∗∗ is a sender-optimal information structure under suspense, then I∗∗ must be an
optimal structure of the above program. Proposition 1 implies the relaxed obedience
must bind at t = 0. This means all earlier inequalities must bind when t = 0, implying
E[ϕS(µt)− ϕS(µt+1) | Ht] = g−1(c) for every non-stopping history Ht. Since ϕS(µ

S) =

0 for every stopping belief µS, we must have

ϕS(µt | Ht) = E
[ τ−1

∑
s=t

(ϕS(µs)− ϕS(µs+1)) | Ht

]
= g−1(c)

(
E[τ | Ht]− t

)
,

which implies the DM is indifferent at every non-stopping history Ht. Thus, I∗∗ is IN
and optimal for the designer under the case of instrumental utility. By Lemma 14, I∗∗

is also sequentially optimal.

APPENDIX D: PROOF OF OPTIMAL ATTENTION CAPTURE AND PERSUASION

D.1 Preliminaries for proof of Theorem 5 . We first develop several useful results.
Let µ̄ be the belief at which the DM is indifferent between actions 0 and 1. Recall
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P is the set of joint distributions over beliefs and stopping times. Define P∗ as the
set of designer-optimal feasible distributions, noting that it is without loss to consider
P∗ ⊆ ∆({0, µ̄, 1} × T ) ∩ P since we can extremize stopping beliefs while preserving
joint distributions over outcomes; Online Appendix I formalizes this. Note that each
feasible distribution p ∈ P pins down the unique continuation belief path: if the DM
has paid attention up to time t, her beliefs at t are, by Bayes’ rule,

µC
t (p) := P

p
t (µτ | τ > t) =

E(µS,τ)∼p[µ
S1{τ > t}]

P(µS,τ)∼p(τ > t)
, (C-Belief)

where we sometimes drop the dependence on p when there is no ambiguity about the
dynamic information structure.

Definition 16 (Switching distribution). Let p ∈ ∆({0, µ̄, 1}×T ). For every (µ1, t1), (µ2, t2) ∈
{0, µ̄, 1}×T such that pµ1,t1 , pµ2,t2 > 0, define a new probability distribution pϵ,(µ1,t1;µ2,t2)

for ϵ ∈ (0, min{pµ1,t1 , pµ2,t2}) as follows:

pϵ,(µ1,t1;µ2,t2)
µ1,t1

= pµ1,t1 − ϵ pϵ,(µ1,t1;µ2,t2)
µ2,t2

= pµ2,t2 − ϵ

pϵ,(µ1,t1;µ2,t2)
µ1,t2

= pµ1,t2 + ϵ pϵ,(µ1,t1;µ2,t2)
µ2,t1

= pµ2,t1 + ϵ.

It is easy to see that p and p′ = pϵ,(µ1,t1;µ2,t2) share the same average belief and the same
marginal distributions over actions and times. If both p and p′ are feasible, then both
of them yield the same designer’s addivitely separable payoff.

Lemma 15 (Switching Lemma). Let p be a feasible joint distribution and fix T ∈ T . Then
for sufficiently small ϵ > 0,

(i) if µC
T(p) > µ̄, define T1 = min{t > T : p1,t > 0} as the first time DM stops at belief 1.

Then pϵ,(µT ,T;1,T1) is also feasible for every µT ∈ {0, µ̄};

(ii) if µC
T(p) < µ̄, define T0 = min{t > T : p0,t > 0} as the first time DM stops at belief 0.

Then pϵ,(µT ,T;0,T0) is also feasible for every µT ∈ {1, µ̄}; and

(iii) pϵ,(µT ,T;µ̄,t) is feasible for every µT ∈ {0, 1} and t > T.

The Switching Lemma gives a sufficient condition under which switching distribu-
tion does not hurt continuation incentives. We use this to appropriately push stoping
beliefs 1 and µ̄ to back in time. This implies a weaker version of Theorem 5:

Lemma 16 (Additively separable preferences). Suppose f̂ is additively separable. Define

P∗
f ull := {p ∈ P∗ : ∀t ∈ T , pµ̄,t = 0}

P∗
bad :=

{
p ∈ P∗ :

(i) A terminal time T exists and pµ̄,T > 0
(ii) p1,s = pµ̄,s = 0 for all s < T, and

(iii) For every t < T such that p0,t > 0, DM is indifferent
between stopping and continuing at time t upon receipt of HC

t

}
.

Then P∗
f ull ∪ P∗

bad ̸= ∅.
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P∗
f ull (“full information”) corresponds to distributions under which (i) the DM only

stops when she obtains full information. P∗
bad (“bad news”) corresponds to distribu-

tions under which there is a fixed terminal time T when the DM could stop with belief
µ̄; at this terminal time, (ii) the DM only receives bad news for all times t < T i.e.,
conditional on stopping before time t, the DM is certain that θ = 0 and furthermore,
(iii) on times t < T where the DM could receive bad news (i.e., p0,t > 0), the DM is
indifferent between stopping and continuing if she does not receive bad news.

The proof of Lemma 16 is deferred to Online Appendix II.5. We conclude the pre-
liminaries with the following Pasting Lemma explained in the main text.

Lemma 17 (Pasting Lemma). Suppose p be a feasible joint distribution with prior belief
µ0 > µ̄, leaving DM surplus ϕ. There exists a feasible joint distribution p′ with prior belief
µ′

0 = µ̄, which leaves DM’s surplus ϕ, and I and I′ induce the same joint distribution over
action and stopping time.

D.2 Proof of Theorem 5.

Proof of Theorem 5. If P∗
f ull ̸= ∅, then a designer’s optimal information structure can

be obtained by implementing degenerate stopping beliefs (full information). Hence
the DM’s expected action coincides with her prior beliefs. By additive separability, it
is sufficient for the designer to just consider the stopping time, which falls into the
pure attention case. Now suppose P∗

f ull = ∅. By Lemma 16, P∗
bad ̸= ∅ and consider

any p∗ ∈ P∗
bad. Let t0 be the first time the information structure provides a stopping

message with positive probability before time T. Since the DM is indifferent between
continuing and stopping at time t0 and µC

t0
≥ µ̄ by the definition of P∗

bad, the designer
could stop providing further information at µC

t0
and let the DM take action 1 imme-

diately while her dynamic incentives before time t0 are still preserved. Since p∗ is
optimal for the designer, stop providing further information at time t0 must be weakly
suboptimal for the designer. We will show that the designer’s utility does not change
if the information structure ends at time t0 instead. This concludes the proof because
truncating the information structure at t0 results one-shot persuasion.

Suppose a contradiction that stopping providing further information at time t0 is
strictly suboptimal for the designer. We modify the information structure as follows:
let p′ = (p∗)ϵ,(0,t0;µ̄,T) for small ϵ > 0. By Lemma 15, p′ is a feasible distribution. Now
observe that the designer’s value function is additively separable hence both p′ and p∗

yield the same expected value. Thus, p′ ∈ P∗.
By pasting lemma, we construct an information structure I′ | t > t0 with the prior

belief µ̄ from I | t > t0 with the prior belief µC
t0
> µ̄ such that I′ | t > t0 and I | t > t0

induce the same distribution of actions and stopping times. We further modify the
information structure p′ by pasting I′ | t > t0 at the stopping belief µ̄ at time t0 (this
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happens with positive probability because p′µ̄,t0
> 0). This modified information struc-

ture must be strictly better for the designer than p′ because 1) the designer’s utilities
under I′ | t > t0 and I | t > t0 are the same 2) the designer’s utilities under stopping
providing further information at µ̄ and µC

t0
at time t0 are the same f (1, t0), and 3) we

assumed earlier that the designer finds it suboptimal to stopping providing further
information at µC

t0
, which is a contradiction.
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Online Appendix I collects omitted technical details. Online Appendix II collects

the remaining proofs of auxiliary results used in the main Appendix. Online Appendix

III discusses optimal attention capture under nonlinear time preferences.

ONLINE APPENDIX I: TECHNICAL DETAILS

I.1 Generalized martingale and obedience constraints. From Step A of the proof

Theorem 1, it is without loss to consider information structures with a unique con-

tinuation belief if the joint distribution over of stopping times and stopping beliefs are

objects of interest. If the DM prefers to continue at these unique continuation beliefs,

call such information structures uniquely obedient. Each uniquely obedient dynamic

information structure I induces a probability distribution p over ∆(Θ)× T , where, for

every Borel set B ⊂ ∆(Θ)× T , p(B) = PI(µτ(I), τ(I)) ∈ B) i.e., p is a probability dis-

tribution of stopping times and stopping beliefs of I. Note that p also pins down the

unique continuation belief path: if the DM has paid attention up to time t, her beliefs

at t are, by Bayes’ rule,

µC
t (p) := E

p
t (µτ | τ > t) =

E(µS,τ)∼p[µ
S1{τ > t}]

P(µS,τ)∼p(τ > t)
,

where we sometimes drop the dependence on p when there is no ambiguity about the

dynamic information structure. We say that a distribution p over ∆(Θ)× T is feasible,

if some uniquely obedient information structure induces p. The next lemma gives

conditions under which p is feasible.

Lemma 18. A distribution p over ∆(Θ)×T is feasible if and only if the following constraints

hold:

(i) (Martingale constraint) µ0 = E(µS,τ)∼p[µ
S].

(ii) (Obedience constraint) For every t ∈ T ,

P(µS,τ)∼p(τ > t) · v∗(µC
t , t)︸ ︷︷ ︸

=:STOPp
t

≤ E(µS,τ)∼p[v
∗(µS, τ)1{τ > t}]︸ ︷︷ ︸
=:CONTp

t

.

I.2 Extremized information structures. We further reduce the dimension of feasible

distributions by considering only extremal beliefs. Recall DM’s action space A and
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state space Θ are finite. For each A′ ⊆ A, define the set of beliefs under which every

action in A′ is one of the DM’s best responses:

Xt,A′ := {µ ∈ ∆(Θ) : A′ ⊆ a∗(µ, t)}.

Since A is finite, Xt,A′ is a polytope. Each extreme point of Xt,A′ is called an extremal

belief. We denote the set of all extremal beliefs as follows:

XEXT
t :=

⋃
A′⊆A

Ext(Xt,A′).

An extremized information structure of πt is π∗
t ∈ ∆(XEXT

t ) such that (i) π∗
t pre-

serves the mean of πt; (ii) DM’s expected utility under πt and π∗
t are the same.

Lemma 19. For any πt ∈ ∆(∆(Θ)), there exists an extremized information structure of πt

denoted π∗
t . Moreover, for any designer’s utility function ft : A → R inducing the indirect

utility function ht : ∆(Θ) → R, Eµ∼πt ht(µ) ≤ Eµ∼π∗
t
ht(µ) .

The proof of Lemma 19 is omitted and straightforward, and variants of it has been

used in (static) information design (Bergemann, Brooks, and Morris, 2015).

Lemma 19 implies it is sufficient for the designer to consider feasible distribu-

tion p over ∆(Θ) × T to the set of pairs of time and corresponding extremal beliefs

XEXT(T ) = {(µt, t) : t ∈ T , µt ∈ XEXT
t }. This is because an extremized infor-

mation structure 1) preserves the DM’s continuation utility (hence, incentive to con-

tinue) and hence 2) weakly increases the designer’s value. Thus, it is without loss for

the designer to choose a feasible distribution p from the set of feasible distributions

PEXT := P ∩ ∆(XEXT(T )). For each p ∈ PEXT, we denote

pµ∗,t = P(µ,τ)∼p(µ = µ∗, τ = t)

for every t ∈ T and µ∗ ∈ XEXT
t .

I.3 Topology over the set of feasible distributions PEXT. Assume as in the main

text that costs are additively separable v(a, θ, t) = u(a, θ) − ct. It is easy to see that

the extremal beliefs do not change over time. Define XEXT = XEXT
t . We will create

a topology of feasible stopping times and beliefs over XEXT × T . We start with the

following lemma.

Lemma 20. Let δ = 1 − c
ϕ∗ . There exists a constant K such that P(τ = t) < Kδt for every

t ∈ T and every feasible stopping time τ.

Proof of Lemma 20. Let Ct := E[cτ | τ > t]− ct. We know from the obedience constraint

that Ct is bounded above by ϕ∗. Consider that

Ct + ct = E[cτ | τ > t + 1]P(τ > t + 1 | τ > t) + c(t + 1)(1 − P(τ > t + 1 | τ > t))

= c(t + 1) + Ct+1P(τ > t + 1 | τ > t),
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which implies that P(τ > t + 1 | τ > t) = Ct−c
Ct+1

, for every t ∈ T . Note also that Ct ≥ c.

Thus,

P(τ > t − 1) =
t−2

∏
s=0

P(τ > s + 1 | τ > s)

=
t−2

∏
s=0

Cs − c
Cs+1

=
C0 − c
Ct−1

t−2

∏
s=1

Cs − c
Cs

≤ ϕ∗ − c
c

(
1 − c

ϕ∗

)t−2

,

as desired.

Corollary 4. Suppose (pi)i∈N ⊂ PEXT pointwise converges to p∗ ∈ [0, 1]N. For every

function f : ∆(Θ)× T → R such that limt→∞ supµ∈∆(Θ) | f (µ, t)|δt
f = 0 for some δ f ∈

(δ, 1] , we must have

lim
i→∞

∑
t∈T

∑
µ∈XEXT

|pi(µ, t)− p∗(µ, t)|| f (µ, t)| = 0.

Proof of Corollary 4. From Lemma 20, we observe that |pi(µ, t) − p∗(µ, t)|| f (µ, t)| ≤
2Mδt| f (µ, t)| =: h(µ, t). Consider that

∑
t∈T

∑
µ∈XEXT

h(µ, t) = 2M ∑
µ∈XEXT

∑
t∈T

δt| f (µ, t)| < ∞,

which follows by our condition that limt→∞ | f (µ, t)|δt
f = 0 for some δ f ∈ (δ, 1]. Be-

cause
∣∣pi

µ,t − p∗µ,t
∣∣ f (µ, t) converges pointwise to 0 and f is integrable in l1, the lemma

is directly followed by dominated convergence theorem.

Pick any δ̄ ∈ (δ, 1). We introduce a metric ∆ of PEXT as follows: for any probability

measures p1, p2 ∈ PEXT,

∆(p1, p2) :=
∞

∑
t=1

∑
µ∈XEXT

|p1
µ,t − p2

µ,t|δ̄−t.

This metric is well-defined because the obedience constraint at t = 0 implies
∞

∑
t=1

∑
µ∈XEXT

∣∣p1
µ,t − p2

µ,t
∣∣δ̄−t ≤

∞

∑
t=1

∑
µ∈XEXT

p1
µ,tδ̄

−t +
∞

∑
t=1

∑
µ∈XEXT

p2
µ,tδ̄

−t ≤ 2
∞

∑
t=1

M(δ/δ̄)t,

which must be finite because δ̄ > δ. It is easy to verify that ∆ is a metric. We use the

metric ∆ to construct a topological space of PEXT and obtain the following lemma.

Lemma 21. PEXT is compact under the metric ∆.

Proof of Lemma 21. Consider any sequence (pi)i∈N ⊂ P ⊂ [0, 1]N. Since [0, 1]N is com-

pact under the product topology, there exists a subsequence (pin)n∈N that converges

pointwise to some p∗ ∈ [0, 1]N. We will show that 1) p∗ ∈ P and 2) (pin)n∈N converges

to p∗ under the metric ∆.

1) To show that p∗ ∈ PEXT, we show the following:
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• p∗ satisfies the martingale constraint, which also implies p∗ is a probability dis-

tribution. For every θ ∈ Θ, using Corollary 4 with f (µ, t) = µ(θ) and δ f = 1 − ϵ

gives ∑
t∈T

∑
µ∈XEXT

p∗µ,tµ(θ) = lim
n→∞ ∑

t∈T
∑

µ∈XEXT

pin
µ,tµ(θ) = µ0(θ),

as desired.

• p∗ satisfies the obedience constraints at every time t ∈ T . Fix action a ∈ A,

f (µ, s) = ∑θ∈Θ µ(θ)u(a, θ, s)1{s > t} and δ f = 1 − ϵ satisfies the condition in

Corollary 2 because u(a, θ, s) is linear in s. Thus,
∞

∑
s=t+1

∑
µS∈XEXT

s (Θ)

∑
θ∈Θ

u(a, θ, t)µS(θ)p∗µS,s = lim
n→∞

∞

∑
s=t+1

∑
µS∈XEXT

∑
θ∈Θ

u(a, θ, t)µS(θ)pin
µS,s.

Similarly, using Corollary 4 with f (µ, t) = u∗(µ, s) gives
∞

∑
s=t+1

∑
µS∈XEXT

p∗µS,su
∗(µS, s) = lim

n→∞

∞

∑
s=t+1

∑
µS∈XEXT

pin
µS,su

∗(µS, s).

With the obedience constraint at t for every pin , these together imply the obedi-

ence constraint at t for p∗, as desired.

2) Applying Corollary 4 with f (µ, t) = δ̄−t and δ f = δ̄− ϵ, we obtain limn→∞ ∆(pin , p∗) =

0. Thus, (pin)n∈N converges to p∗ under metric ∆, as desired.

From 1) and 2), any sequence (pi)i∈N ⊂ PEXT has a convergent subsequence in

PEXT under the metric ∆. This implies PEXT is compact under the metric ∆.

Note that we can apply a similar proof to show that Ds is compact under the metric

∆T , defined as ∆T (d1, d2) := ∑
t∈T

|d1(t)− d2(t)|δ̄−t,

for every d1, d1 ∈ Ds.

Proposition 3. If costs are additively separable as in the main text: v(a, θ, t) = u(a, θ)− ct

with the designer’s function f : A × T → R+ such that there exists δ f ∈ (1 − c
ϕ∗ , 1) such

that lim supt→∞ f (a, t)δt
f < ∞ for every a ∈ A. Then, Assumption 1 holds.

Proof of Proposition 3. Let δ = 1 − c
ϕ∗ . We choose δ̄ ∈ (δ, δ f ) and create a metric ∆ using

δ̄. We showed earlier that PEXT is compact under metric ∆. Because lim supt→∞ f (a, t)δt
f <

∞ for every a ∈ A and A is finite, there exists a constant M such that f (a, t)δ̄t < M for

every a ∈ A and t ∈ T . Recall that h(µ, t) := maxa∈a∗(µ) f (a∗(µ), t) for every µ ∈ XEXT,

which implies h(µ, t)δ̄t ≤ M. For any ϵ > 0 and p1, p2 ∈ PEXT, if ∆(p1, p2) < ϵ/M,

4



then ∣∣∣∣ ∑
t∈T

∑
µ∈XEXT

p1
µ,th(µ, t)− ∑

t∈T
∑

µ∈XEXT

p2
µ,th(µ, t)

∣∣∣∣
≤ ∑

t∈T
∑

µ∈XEXT

|p1
µ,t − p2

µ,t|h(µ, t) ≤ M∆(p1, p2) < ϵ.

This implies the map p 7→ ∑t∈T ∑µ∈XEXT pµ,th(µ, t) is continuous under metric ∆.

Thus, Assumption 1 holds under metric ∆, as desired.

This proposition implies the existence of a solution to the optimization problem for

the designer under the regularity assumption, and the set of the designer’s optimal

and extremized information structure, says P∗ ⊂ PEXT, is compact. Finally, noting

that the function p 7→ pµ̄,t2−t is well-defined and continuous under the metric ∆ we

have the following corollary.

Corollary 5. When |A| = 2 and |Θ| = 2 with the set of extremal beliefs XEXT =

{0, µ̄, 1}, the optimization problem minp∈P∗ ∑t∈T pµ̄,t2−t has a solution.

I.4 Proof of the existence of an undominated belief path.

Proof of Lemma 4. Our first step is, fixing a distribution of stopping time d(τ), to study

the set of belief paths that satisfy Proposition 1 in order to verify that τ is a feasi-

ble stopping time. We endow W with the product topology of the weak topology on

∆(Θ). Because ∆(Θ) endowed with the weak topology is compact and metrizable,

so is W by Tychonoff’s theorem. We show that W(τ) is sequentially compact; hence,

compact. Consider ((µi
t)t∈T )

∞
i=0 ⊂ W(τ). Because W is compact, there exists a con-

vergent subsequence ((µin
t )t∈T )

∞
n=0 as n → ∞. Suppose that (µin

t )t∈T → (µ∗
t )t∈T ∈ W

as n → ∞. This implies µin
t → µ∗

t as n → ∞ under the weak topology on ∆(Θ) for

every t ∈ T . It suffices to show that (µ∗
t )t∈T ∈ W(τ). Because ϕ is continuous under

the weak topology on ∆(Θ), for every t ∈ T , we have

ϕ(µ∗
t ) = lim

n→∞
ϕ(µin

t ) ≥ E[cτ | τ > t]− ct,

where the inequality follows by (µin
t )t∈T ∈ W(τ). This implies the obedience con-

straint holds for the belief path (µ∗
t )t∈T . Moreover, we have P(τ > t + 1)µin

t+1(θ) ≤
P(τ > t)µin

t (θ) for every t ∈ T . Therefore,

P(τ > t + 1)µ∗
t+1(θ) = lim

n→∞
P(τ > t + 1)µin

t+1(θ) ≤ P(τ > t)µin
t (θ) = P(τ > t)µ∗

t (θ),

which implies the boundary constraint. This implies (µ∗
t )t∈T ∈ W(τ), as desired.

Define F : W → R such that F((µt)t∈T ) = ∑∞
t=0

1
2t ϕ(µt). F is well-defined because

|F
(
(µt)t∈T

)
| ≤ ∑∞

t=0
1
2t ϕ∗ ≤ 2ϕ∗. Moreover, for every ϵ > 0 and every T > 1 +

log(ϕ∗/ϵ)/ log 2, we have ∑∞
t=T

1
2t ϕ(µt) ≤ 1

2T−1 ϕ∗ < ϵ. This implies ∑∞
t=0

1
2t ϕ(µt) is
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uniformly convergent. Therefore, F is continuous under W . Since W(τ) is compact

and nonempty, we can find

(µ∗
t )t∈T ∈ argmax(µt)t∈T ∈W(τ)F((µt)t∈T ).

Suppose that there exists (µt)t∈T ∈ W(τ) such that ϕ(µt) ≥ ϕ(µ∗
t ) for every t ∈ T and

the inequality is strict for some t ∈ T . This directly implies F((µt)t∈T ) > F((µ∗
t )t∈T ),

which contradicts the optimality of (µ∗
t )t∈T . Therefore, (µ∗

t )t∈T is a maximal belief

path under τ.

ONLINE APPENDIX II: REMAINING PROOFS OF TECHNICAL RESULTS

II.1 Proof of auxillary results used to show Theorem 2. We will prove Lemma 7 and

6

Proof of Lemma 7. Fix any d ∈ Ds. We first show that the upper contour set UP(d) =

{d′ ∈ Ds : d′ ⪰CX d} is compact under the metric ∆T .

Since Ds is compact under ∆T , it suffices to show that UP(d) is closed. Suppose a

sequence of (di)i∈N ⊂ Ds converges to d∗ ∈ ∆(T ) under the metric ∆T . Since Ds is

closed, d∗ ∈ Ds. For any s ∈ T , define fs : T → R such that fs(t) = (t − s) · 1{t ≥ s}.

By Corollary 4, we must have

lim
i→∞

∞

∑
t=0

fs(t)di(t) =
∞

∑
t=0

fs(t)d∗(t).

This implies
Eτ∗∼d∗ [ fs(τ

∗)] = Eτi∼di [ fs(τi)] ≥ Eτ∼d[ fs(τ)],

for every s ∈ T , where the inequality follows from the convexity of fs and di ⪰cx d.

We must have d∗ ⪰cx d, implying d∗ ∈ UP(d). Thus, UP(d) is closed, as desired.

Define a function h : T → R such that h(t) = δ−t, where δ = 1 − c
2ϕ∗ . The proof of

Proposition 3 shows that the map d ∈ Ds 7→ ∑t∈T d(t)h(t) is continuous under metric

∆T . Thus, an answer to the following maximization problem exists:

max
d′∈UP(d)

Eτ∼d′ [h(τ)].

Note that there is no d′ ∈ Ds such that d′ ≻CX d∗. To see this, if d′ ≻CX d∗, then

d′ ≻CX d, which implies d′ ∈ UP(d). Since h is a strictly convex function, Eτ∼d′ [h(τ)] >

Eτ∼d∗ [h(τ)], which contradicts the optimality of d∗.

Proof of Lemma 6. Suppose I is an information structure under which the DM strictly

prefers to continue paying attention at time t0 and t0 + 1 ∈ supp τ, where τ is the

induced stopping time. This means there exists θ0 ∈ Θ such that PI(µt0+1 = δθ0) > 0.

Define a new information structure as follows:
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1. For every t < t0, let It = I′t and define a continuation belief µ′C
t = µC

t .

2. At time t0, modify It0 as follows:

I′t0
((δθ0 , S) | (µ′C

t , C)t≤t0−1) = It0((δθ0 , S) | (µC
t , C)t≤t0−1) + ϵ

I′t0
((δθ, S) | (µ′C

t , C)t≤t0−1) = It0((δθ, S) | (µC
t , C)t≤t0−1) ∀θ ̸= θ0

I′t0
((µ′C

t0
, C) | (µ′C

t , C)t≤t0−1) = It0((µ
C
t0

, C) | (µC
t , C)t≤t0−1)− ϵ,

where µ′C
t0

is an appropriate belief so that the martingale condition holds.

3. To modify It0+1, we introduce a new augmented message Cdelay and define a new

information structure I′t0+1 as follows: let Pt0 = It0((µ
C
t0

, C) | (µC
t , C)t≤t0−1)− ϵ,

define

I′t0+1((δθ0 , S) | (µ′C
t , C)t≤t0) =

1
Pt0

· (Pt0 + ϵ − δ)It0+1((δθ0 , S) | (µC
t , C)t≤t0)−

ϵ

Pt0

I′t0+1((δθ, S) | (µ′C
t , C)t≤t0) =

1
Pt0

· (Pt0 + ϵ − δ)It0+1((δθ, S) | (µC
t , C)t≤t0) ∀θ ̸= θ0

I′t0+1((µ
′C
t0+1, C) | (µ′C

t , C)t≤t0) =
1

Pt0

· (Pt0 + ϵ − δ)It0+1((µ
C
t0+1, C) | (µC

t , C)t≤t0)

I′t0+1((µ
′C
t0

, Cdelay) | (µ′C
t , C)t≤t0) =

δ

Pt0

where we set µ′C
t0+1 = µC

t0+1 and δ = ϵ
P(τ∈[t0+1,t1)|τ≥t0)

.

4. For any t ≥ t0 + 1 with history (µ′C
s , C)s≤t, set

I′t+1(· | (µ′C
s , C)s≤t) = It+1(· | (µC

s , C)s≤t).

5. For any t ∈ [t0 + 1, t1 − 1) with history Ht ∈ {(µs, ms)s≤t : ∃s′ s.t. ms′ = Cdelay},

set I′t+1(· | Ht) = It(· | (µC
s , C)s≤t−1).

6. For history Ht1−1 ∈ {(µs, ms)s≤t1−1 : ∃ s.t. ms′ = Cdelay} set

I′t1
((µ, S) | Ht1−1) = It1−1((µ, S) | (µC

s , C)s≤t1−2) + Pt1 It1((µ, S) | (µC
s , C)s≤t1−1)

I′t1
((µ, C) | Ht1−1) = Pt1 It1((µ, C) | (µC

s , C)s≤t1−1),

where Pt1 = It1−1((µ
C
t , C) | (µC

s , C)s≤t1−2).

7. For any t ≥ t1 with history Ht ∈ {(µs, ms)s≤t : ∃s′ s.t. ms′ = Cdelay}, set

I′t+1(· | Ht) = It+1(· | (µC
s , C)s≤t).

It is easy to see that the martingale condition holds for every t ∈ T . We show

the DM’s optimal stopping time under I′ to continue paying attention when she sees

message C or Cdelay. Suppose this induces stopping time τ′. From the construction of
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I′, we must have

P(τ′ = t) =



P(τ = t) if t < t0

P(τ = t) + ϵA if t = t0

(1 − δA)P(τ = t)− ϵA if t = t0 + 1

(1 − δA)P(τ = t) + δAP(τ = t − 1) if t ∈ (t0 + 1, t1),

P(τ = t1) + δAP(τ = t1 − 1) if t = t1,

P(τ = t) if t > t1,

where A = PI(τ ≥ t0). The obedience constraints clearly hold at every history (µs)s≤t

when t > t1 by obedience constraints under I. We will show that the obedience con-

straints hold at every history ((µs, ms))s≤t in the support of τ′ when t ∈ [t0 + 1, t1) and

mt0+1 = Cdelay. It is easy to see that µ′
t = µC

t−1. By the obedience constraint at t − 1

under τ,

ϕ(µ′
t) = ϕ(µC

t−1) ≥ E[c(τ − (t − 1)) | τ > t − 1].

Consider that

E[c(τ′ − t) | (µs, ms)s≤t]

= E[c(τ − (t − 1))1{τ ∈ (t − 1, t1]} | τ > t − 1] + E[c(τ − t)1{τ > t1} | τ > t − 1]

≤ E[c(τ − (t − 1)) | τ > t − 1]

≤ ϕ(µ′
t),

which implies the obedience constraint at the history ((µs, ms))s≤t in the support of

τ′ when t ∈ [t0 + 1, t1) and mt0+1 = Cdelay. The DM still prefers to continue paying

attention at history (µ′C
t )t≤t0 with small perturbation ϵ > 0 because the obedience

constraint at time t0 under I slacks. It suffices to check the DM’s incentive at time

t < t0. Since µC
t = µ′C

t for every t < t0, the stopping utilities under both I and I′ before

time t0 are the same. The difference of the continuation utilities under I and I′ at t is

E[cτ′ · 1{τ′ > t}]− E[cτ · 1{τ > t}] = −ϵA + δAP(τ ∈ [t0 + 1, t1)) = 0,

implying the continuation utilities at t under I and I′ are the same. Thus, the DM con-

tinues paying attention whenever she sees message C or Cdelay. These together implies

d(τ′) ∈ Ds, where s = E[τ]. For (i), the designer’s utility under I′ is more than that

under I because

E[ f (τ′)]− [ f (τ)] = −Aϵ( f (t0 + 1)− f (t0)) + AϵEI [ f (τ + 1)− f (τ) | τ ∈ [t0 + 1, t1)]

> 0,

where the last line is from the assumption of f , which proves (i). For (ii), consider
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every strictly convex function h. We must have

E[h(τ′)]− E[h(τ)] = −Aϵ(h(t0 + 1)− h(t0)) + AϵEI [h(τ + 1)− h(τ) | τ ∈ [t0 + 1, t1)]

> 0.

This implies d(τ′) ≻CX d(τ), which proves (ii).

II.2 Proof of auxillary results used to show Proposition 2 (i). Before proving Lemma

10, we introduce a definition of a feasible set of µt+1 given µt and stopping time τ

derived by the boundary constraint.

Definition 17. For every nonnegative number r ≤ 1 and belief µ ∈ ∆(Θ), define

F(µ, r) ⊂ ∆(Θ) such that

F(µ, r) = {µ′ ∈ ∆(Θ) | rµ′(θ) ≤ µ(θ) ∀θ ∈ Θ}.

With this definition, the boundary constraint is equivalent to µt+1 ∈ F
(

µt,
P(τ>t+1)

P(τ>t)

)
for every t ∈ T . We now begin the proof of Lemma 10

Proof of Lemma 10. Consider any feasible stopping time τ. Suppose that µT /∈ Φ∗.

Choose an undominated belief path and a distribution of stopping time (µt)t∈T .

From Lemma 5, we must have ϕ(µt) is increasing in t ∈ T and the boundary constraint

binds for every t < T. Consider any t0 ∈ T . We will show that, for every t < T and

λ ∈ [0, 1) such that t > t0 + 1, we have λµt0+1 + (1 − λ)µt /∈ int F
(

µt0 , P(τ>t0+1)
P(τ>t0)

)
.

Assumes a contradiction that there are t1 ∈ T and λ ∈ [0, 1) such that t1 > t0 + 1

and λµt0+1 + (1 − λ)µt1 ∈ int F
(

µt0 , P(τ>t0+1)
P(τ>t0)

)
. This means P(τ>t0+1)

P(τ>t0)
< 1, so the

property of an extremal path implies µt0+1 ∈ Bd F
(

µt0 , P(τ>t0+1)
P(τ>t0)

)
, so µt0+1 ̸= µt0 .

We define a new belief path (µ′
t)t∈T as follows:

µ′
t =

λµt + (1 − λ)µt1 , if t0 < t ≤ t1

µt, otherwise.

We will show that a pair of a belief path and a distribution of stopping time ((µ′
t)t∈T , d(τ))

is feasible. The obedience constraint is still the same for t /∈ {t0 + 1, . . . , t1}. If t ∈
{t0 + 1, . . . , t1}, we have

ϕ(µ′
t) ≥ λϕ(µt) + (1 − λ)ϕ(µt1) ≥ ϕ(µt),

where the inequality follows by the fact that ϕ(µt) is increasing in t ∈ T . This directly

implies the obedience constraint for t ∈ {t0 + 1, . . . , t1}. The boundary constraint is

still the same for t ∈ {0, . . . , t0 − 1} ∪ {t1, . . . }. The boundary constraint holds when

t = t0 by the construction of λ. For any t ∈ {t0 + 1, . . . , t1 − 1}, we have

min
θ∈Θ

µ′
t(θ)

µ′
t+1(θ)

= min
θ∈Θ

λµt(θ) + (1 − λ)µt1(θ)

λµt+1(θ) + (1 − λ)µt1(θ)
≥ min

θ∈Θ

µt(θ)

µt+1(θ)
≥ P(τ > t + 1)

P(τ > t)
,

9



This concludes that the belief path (µ′
t)t∈T is also an undominated belief path cor-

responding to the stopping time τ because ϕ(µ′
t) ≥ ϕ(µt) for every t ∈ T . How-

ever, the above inequality us strict for t = t0 because µt0+1 ̸= µt0 , which implies that

(µ′
t)t∈T does not satisfy the property of a maximal path. This contradicts with the fact

that (µ′
t)t∈T is an undominated belief path. Therefore, for every t0, t1 ∈ T such that

t1 > t0 + 1, we must have λµt0+1 + (1 − λ)µt1 /∈ int F
(

µt0 , P(τ>t+1)
P(τ>t)

)
.

For any Θ′ ⊂ Θ, define

TΘ′ =

{
t ≤ T

∣∣∣∣Θ′ =
{

θ ∈ Θ
∣∣∣µt+1(θ) =

P(τ > t)
P(τ > t + 1)

µt(θ)
}}

Note that T∅ = ∅ because the boundary constraint must bind. Moreover, for every

t ∈ TΘ, we must have P(τ > t) = P(τ > t + 1) and µt = µt+1. Therefore,

∑
Θ′⊊Θ

∑
t∈TΘ′

(log P(τ > t)− log P(τ > t + 1))n−1

=
T

∑
t=0

(log P(τ > t)− log P(τ > t + 1))n−1 > C.

Thus, there is a nonempty set Θ′ ⊂ Θ such that ∑t∈TΘ′ (log P(τ > t) − log P(τ >

t + 1))n−1 > C
2n . Consider any t0 < t1 ∈ TΘ′ , we will show that there exists θ ∈ Θ′ such

that µt1(θ) ≥ P(τ>t0)
P(τ>t0+1)µt0(θ). Suppose a contradiction that µt1(θ) < P(τ>t0)

P(τ>t0+1)µt0(θ)

for every θ ∈ Θ′. Because µt0+1(θ) < P(τ>t0)
P(τ>t0+1)µt0(θ) for every θ /∈ Θ′ we can find a

sufficiently small 1 − λ > 0 such that λµt0+1(θ) + (1 − λ)µt1(θ) <
P(τ>t0)

P(τ>t0+1)µt0(θ) for

every θ /∈ Θ′. For θ ∈ Θ, we have
P(τ > t0)

P(τ > t0 + 1)
µt0(θ) > λµt0+1(θ) + (1 − λ)µt1(θ).

This implies λµt0+1 +(1− λ)µt1 ∈ int F
(

µt0 , P(τ>t+1)
P(τ>t)

)
, which is a contradiction. Thus,

there exists θ ∈ Θ′ such that 1 ≥ µt1(θ) ≥
P(τ>t0)

P(τ>t0+1)µt0(θ). This implies�
θ∈Θ′

(
log µt0(θ), log

(
P(τ > t0)

P(τ > t0 + 1)
µt0(θ)

))
∩
�
θ∈Θ′

(
log µt1(θ), log

(
P(τ > t1)

P(τ > t1 + 1)
µt1(θ)

))
is the empty set for every t0 < t1 ∈ TΘ′ .

Because
{

µ ∈ ∆(Θ) | ϕ(µ) ≥ ϕ(µ0)
}
⊂ int ∆(Θ) and ϕ(µt) is increasing in t, we

have µt ∈
{

µ ∈ ∆(Θ) | ϕ(µ) ≥ ϕ(µ0)
}
⊂ int ∆(Θ). Therefore, for each θ ∈ Θ, there

is µθ > 0 such that µt(θ) ≥ µθ for every t ∈ T . This implies that for every t ∈ TΘ′ we

have �
θ∈Θ′

(
log µt(θ), log

(
P(τ > t)

P(τ > t + 1)
µt(θ)

))
⊂
�
θ∈Θ′

[log µθ, 0],
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This implies⋃
t∈TΘ′

�
θ∈Θ′

(
log µt(θ), log

(
P(τ > t)

P(τ > t + 1)
µt(θ)

))
⊂
�
θ∈Θ′

[log µθ, 0].

We showed that two different boxes inside the union have disjoint interiors. This im-

plies

∏
θ∈Θ′

| log µθ| = Vol
(�

θ∈Θ′
[log µθ, 0]

)
≥ ∑

t∈TΘ′

Vol
(�

θ∈Θ′

(
log µt(θ), log

(
P(τ > t)

P(τ > t + 1)
µt(θ)

)))
= ∑

t∈TΘ′

(log P(τ > t)− log P(τ > t + 1))|Θ
′|

≥
(

∑
t∈TΘ′

(log P(τ > t)− log P(τ > t + 1))n−1
)|Θ′|/(n−1)

>

(
C
2n

)|Θ′|/(n−1)

where the second last equality follows from the fact that |Θ′| ≤ n − 1. We can simply

choose C = 2n max
Θ′⊂Θ

(
∏

θ∈Θ′
| log µθ|

)(n−1)/|Θ′|
,

which makes the above inequality false. Therefore, with the chosen C, a maximal belief

path must stay at Φ∗ for every t > T, as desired.

II.3 Attention capture for S-shaped functions in general cases. We will first provide

results of attention capture for S-shaped functions that generalize Proposition 2 (ii) and

then prove Proposition 2 (ii). We first define conditional concavification.

Definition 18. (Conditional concavification) Suppose f is S-shaped. For every time

t ∈ T , if s∗(t) := min
{

s > t : f (s + 1)− f (s) < f (s)− f (t)
s−t

}
exists, define the conditional

concavification from t of f , cconvt( f ) : {s ∈ T : s ≥ t} → R+ such that

cconvt( f )(s) =


s∗(t)−s
s∗(t)−t f (t) + s−t

s∗(t)−t f (s∗(t)), for s ≤ s∗(t)

f (s), otherwise.

We now state the following result of attention capture for S-shaped functions under

a general prior.

Proposition 4. If f is a S-shaped function, every optimal dynamic information structure

(d,µC) must be such that there exist t1 < t2 ≤ t3 ∈ T such that

1. supp (d) = {1, . . . , t1} ∪ {t2, t3},
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2. Obedience constraints bind for all t ≤ t1,

3. t3 ∈ [s∗(t1 + 1), s∗(t1)] and either

• t2 = t1 + 1, or

• t3 − t2 ≤ 1 and s∗(t1 + 1) ≤ t2.

Before proving Proposition 4, we develop several lemmas establishing properties

of cconvt(h) and s∗.

Lemma 22. Let T be the inflection point of f , meaning f (t)− f (t − 1) ≶ f (t + 1)− f (t) if

and only if t ≶ T. Then, for every t ∈ T , s∗(t) > T, cconvt( f ) is concave, and cconvt( f ) ≥ f

over the domain of cconvt( f ).

Proof of Lemma 22. We will show that cconvt( f )(s) has decreasing differences. Within

this proof, we abuse notation s∗(t) by s∗. By the definition of s∗, we must have f (s∗)−
f (s∗ − 1) ≥ f (s∗−1)− f (t)

s∗−1−t > f (s∗ + 1)− f (s∗), which implies s∗ > T. This means f (s +

1)− f (s) < f (s)− f (s − 1) for every s > s∗. Note also that cconvt( f ) is linear over the

domain {t, . . . , s∗}. Consider that

cconvt( f )(s∗)− cconvt( f )(s∗ − 1) =
f (s∗)− f (t)

s∗ − t
> f (s∗ + 1)− f (s∗)

= cconvt( f )(s∗ + 1)− cconvt( f )(s∗),

which implies the concavity of cconvt( f ). To see that cconvt( f ) ≥ f over the domain of

cconvt( f ), it suffices to consider the domain of {t, . . . , s∗}. We will show by induction

on ∆ ∈ {0, . . . , s∗ − t} that cconvt( f )(s∗ − ∆) ≥ f (s∗ − ∆). It is clear that the inequality

is true when ∆ = 0. Assume that the inequality is true for some ∆. By the definition of

s∗, we must have f (s∗ − ∆)− f (s∗ − ∆ − 1) ≥ f (s∗−∆)− f (t)
s∗−∆−t , which implies

f (s∗ − ∆ − 1) ≤
(

1 − 1
s∗ − ∆ − t

)
f (s∗ − ∆) +

1
s∗ − ∆ − t

f (t)

≤
(

1 − 1
s∗ − ∆ − t

)
cconvt( f )(s∗ − ∆) +

1
s∗ − ∆ − t

cconvt( f )(t)

= cconvt( f )(s∗ − ∆ − 1),

where the inequality follows the linearity of cconvt( f ) over the domain {t, . . . , s∗}, as

desired.

Lemma 23 (Properties of s∗). The following are properties of s∗:

(i) For every t < t′ ∈ T , we have s∗(t′)− t′ ≤ s∗(t)− t. This becomes a strict inequality

if t < T.
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(ii) For every t, t1, t2 ∈ T such that t ≤ t1 < t2 ≤ s∗(t), we have f (t1) < t2−t1
t2−t f (t) +

t1−t
t2−t f (t2).

Proof of Lemma 23. (i) It is sufficient to show the statement in the case of t′ = t + 1. If

s∗(t)− t > 1, then t < t + 1 < s∗(t). From (i), we have s∗(t + 1) ≤ s∗(t), which implies

that s∗(t + 1)− (t + 1) < s∗(t)− t. On the other hand, if s∗(t)− t = 1, then f (t + 2)−
f (t + 1) < f (t + 1)− f (t), which means t ≥ T. This implies that f (t + 3)− f (t + 2) <

f (t + 2)− f (t + 1), so s∗(t + 1) = t + 2. Therefore, s∗(t + 1)− (t + 1) = 1 = s∗(t)− t,

as desired. From the proof, we get the strict inequality when t < T.

(ii) Consider any t′ ∈ {t + 1, . . . , s∗(t)}. The definition of s∗(·) implies that f (t′)−
f (t′ − 1) > f (t′−1)− f (t+1)

t′−t−2 , which implies the inequality in (iii) when t2 − t1 = 1. If

t′ < s∗(t), we also have (t′ − t) f (t′)− (t′ − t − 1) f (t′ + 1) < f (t + 1). Thus,

(t′ − t) f (t′ − 1)− (t′ − t − 2) f (t′ + 1) < 2 f (t + 1),

which also implies the inequality in (ii) when t2 − t1 = 2. With a simple induction, we

obtain the inequality in (ii) for an arbitrary value of t2 − t1.

We are ready to prove Proposition 4.

Proof of Proposition 4. Suppose t∗ = max(supp τ ∩ [0, T]). We proceed with the follow-

ing steps.

Step 1: The DM must be indifferent at every time t < t∗. Since t∗ ∈ supp τ, set

t0 = t∗ − 1 and t1 = t∗ + 1. Consider that

E[ f (τ + 1)− f (τ) | τ ∈ [t0 + 1, t1)] = f (t0 + 2)− f (t0 + 1)

= f (t∗ + 1)− f (t∗)

> f (t∗)− f (t∗ − 1).

Pivot Lemma implies that the DM must be indifferent at time t∗ − 1. We can do this

(backward) inductively to show that the DM must be indifferent at every time t < t∗.

Step 2: Show supp τ ∩ (T, ∞) ̸= ∅. Suppose a contradiction that supp τ ∩ (T, ∞) =

∅. Thus, max(supp τ) = t∗, which is impossible because the DM is indifferent at

time t∗ − 1 but E[c(τ − (t∗ − 1)) | τ > t∗ − 1] = c < ϕ∗. Therefore, we must have

supp τ ∩ (T, ∞) ̸= ∅.

Step 3: Aggregating concave part: |supp τ∩ (T, ∞)| ≤ 2, and max supp τ−min(supp τ∩
(T, ∞)) ≤ 1. This is directly implied by Theorem 2 (i) on the domain (T, ∞) and the

assumption that f is concave on the domain (T, ∞).

Suppose supp τ ∩ (T, ∞) = {tpter, tter}, where tter ∈ {tpter , tpter + 1}.

Step 4: Show tpter ≥ s∗(t∗ + 1). Suppose a contradiction that s∗(t∗ + 1) ≥ tpter + 1.
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For small ϵ > 0, we define a new stopping time τ′ and belief path (µ′
t)t as following

P(τ′ = t) =



P(τ = t), if t ≤ t∗

P(τ = t) + ϵ, if t = t∗ + 1

P(τ = t)− (tpter − t∗)ϵ, if t = tpter

P(τ = t) + (tpter − t∗ − 1)ϵ, if t = tpter + 1

0, otherwise,

µ′
t =

µt, if t < t∗ + 1

µt∗ , if t ≥ t∗ + 1.

Boundary constraints clearly hold at every time t ∈ T . The obedience constraint holds

at t∗ + 1 because, since max supp (τ′) = tpter + 1,

E[c(τ′ − (t∗ + 1)) | τ′ > t∗ + 1] ≤ c(tpter − t∗) ≤ E[c(τ − t∗) | τ > t∗] ≤ ϕ(µt∗).

This also implies the obedience constraint holds at every time t ≥ t∗ + 1. It suffices to

show that obedience constraints at time t ≤ t∗ hold. This is clear because the difference

of the (unconditional) continuation utilities under τ and τ′ at t ≤ t∗ is

E[cτ · 1{τ > t}]− E[cτ′ · 1{τ′ > t}] = 0,

so obedience constraints still hold for t ≤ t∗. Thus, τ′ is feasible. However, the de-

signer’s utility under τ′ is more than that under τ because
E[ f (τ′)]− E[ f (τ)]

ϵ
= f (t∗ + 1) + (tpter − t∗ − 1) f (tpter + 1)− (tpter − t∗) f (tpter) > 0,

where the inequality is implied by Lemma 23 (ii), and s∗(t∗ + 1) ≥ tpter + 1, which is a

contradiction

Step 5: Show tter ≤ s∗(t∗). Suppose a contradiction that tter > s∗(t∗). For small

ϵ > 0, we define a new stopping time τ′ and belief path (µ′
t)t as following

P(τ′ = t) =



P(τ = t), if t < t∗

P(τ = t)− ϵ, if t = t∗

P(τ = t) + (tter − t∗)ϵ, if t = tter − 1

P(τ = t)− (tter − t∗ − 1)ϵ, if t = tter

0, otherwise,

µ′
t =

µt, if t < t∗

pµt∗ + (1 − p)µt∗−1, if t ≥ t∗ + 1,

where p ∈ [0, 1] will be specified later. We will choose p so that (τ′, (µ′
t)t) is feasi-

ble. Boundary constraints clearly hold at every time t ∈ T . With the same argu-

ment as before, the obedience constraints still hold for t < t∗ because the continua-

tion utility at t < t∗ does not change. Thus, it suffices to check the obedience con-

straint and the boundary constraint at time t∗. Let q = PI(τ > t∗|τ > t∗ − 1), so

q + ϵ = PI′(τ > t∗|τ > t∗ − 1). We set p = q
q+ϵ ·

1−(q+ϵ)
1−q ∈ (0, 1). First, we show the
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boundary constraint at time t∗ under τ′, which is

(pµt∗(θ) + (1 − p)µt∗−1(θ))(q + ϵ) ≤ µt∗−1(θ) ∀θ ∈ Θ.

The inequality is true if and only if

p(q + ϵ)µt∗(θ) ≤ (1 − (1 − p)(q + ϵ))µt∗−1(θ).

The boundary constraint at time t∗ under I implies qµt∗(θ) ≤ µt∗−1(θ) for every θ ∈ Θ.

Thus,

p(q + ϵ)µt∗(θ) ≤ pq(q + ϵ)µt∗−1(θ) = (1 − (1 − p)(q + ϵ))µt∗−1(θ),

which implies the boundary constraint. Next, we show the obedience constraint at

time t∗ under τ′, which is

ϕ(pµt∗ + (1 − p)µt∗−1) ≥ E[c(τ′ − t∗) | τ′ > t∗].

Since qµt∗(θ) ≤ µt∗−1(θ), Jensen’s inequality implies

ϕ(µt∗−1) ≥ qϕ(µt∗) + (1 − q)ϕ
(µt∗−1 − qµt∗

1 − q

)
≥ qϕ(µt∗).

By Jensen’s inequality, we have

ϕ(pµt∗ + (1 − p)µt∗−1) ≥ pϕ(µt∗) + (1 − p)ϕ(µt∗−1)

≥ (p + (1 − p)q)ϕ(µt∗)

=
q

q + ϵ
ϕ(µt∗).

The obedience constraint at t∗ under τ implies

ϕ(µt∗) ≥ E[c(τ − t∗) | τ > t∗] =
E[c(τ − t∗)1{τ > t∗}]

qP(τ > t∗ − 1)
=

E[c(τ′ − t∗)1{τ′ > t∗}]
qP(τ′ > t∗ − 1)

.

Thus,

E[c(τ′ − t∗) | τ′ > t∗] =
E[c(τ′ − t∗)1{τ′ > t∗}]
(q + ϵ)P(τ′ > t∗ − 1)

≤ q
q + ϵ

ϕ(µt∗) ≤ ϕ(pµt∗ + (1 − p)µt∗−1),

which implies the obedience constraint at time t∗ under τ′. Thus, τ′ is a feasible stop-

ping time. However, the designer’s utility under τ′ is more that that under τ because
E[ f (τ′)]− E[ f (τ)]

ϵ
= (tter − t∗) f (tter − 1)− ( f (t∗) + (tter − t∗ − 1) f (tter)) > 0,

where the inequality is implied by tter > s∗(t∗) and cconvt∗( f ) is concave, which is a

contradiction.

Step 6: Show if the DM is not indifferent at t∗, then tter = tpter. Suppose a contradic-

tion that tpter = tter − 1. We can use the same stopping time τ′ and a belief path (µ′
t)t

from Step 5 but ϵ < 0 and p = 1 instead. The boundary constraint at time t∗ holds

because (q + ϵ)µt∗(θ) < qµt∗(θ) ≤ µt∗−1(θ). The obedience constraint at time t∗ holds

with ϵ close to 0 because of the slackness of the obedience constraint at time t∗ under

τ. Thus, τ′ is a feasible stopping time. However, the designer’s utility under τ′ is more
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that that under τ because
E[ f (τ′)]− E[ f (τ)]

ϵ
= (tter − t∗) f (tter − 1)− ( f (t∗) + (tter − t∗ − 1) f (tter)) < 0,

where the inequality is implied by tter ≤ s∗(t∗) and Lemma 23 (ii).

We now prove Proposition 2 (ii), which is a special case of Proposition 4.

Proof of Proposition 2 (ii). Define t̃ = min{t ∈ T : s∗(t)− t ≤ ϕ∗/c}. Choose a feasible

stopping time τ that maximizes E[ f (τ)]. Using Theorem 2 (ii), we know from the

Proposition 4 that τ must be generated by an increasing sequence 1, . . . , t1 with a pair

of terminal time (t2, t3), where t1 < t2 ≤ t3. If t3 − t2 = ϕ∗/c, then the DM is indifferent

between continuing paying attention and stopping at time t2 and t2 = t1 + 1. Thus, an

increasing sequence 1, . . . , t2 with a pair of terminal times (t3, t3) also generates τ. It is

sufficient to consider the case that t3 − t2 < ϕ∗/c. We will show that t2 = t3 = t1 +ϕ∗/c

Suppose a contradiction that t2 < t3. Define stopping times τ1, τ2 generated by

the same increasing sequence 1, . . . , t1 but with different terminal stopping times (t2 −
1, t3) and (t2 + 1, t3). the stopping time τ1 is well-defined because t2 − 1 ≥ t1 and

t3 − (t2 − 1) ≤ ϕ∗/c. The stopping time τ2 is also well-defined because t3 > t2. We

obtain the following equations:

E[ f (τ) | τ > t1] =
t3 − ϕ∗/c − t1

t3 − t2
f (t2) +

ϕ∗/c + t1 − t2

t3 − t2
f (t3)

E[ f (τ1) | τ1 > t1] =
t3 − ϕ∗/c − t1

t3 − t2 + 1
f (t2 − 1) +

ϕ∗/c + t1 − t2 + 1
t3 − t2 + 1

f (t3),

E[ f (τ2) | τ2 > t1] =
t3 − ϕ∗/c − t1

t3 − t2 − 1
f (t2 + 1) +

ϕ∗/c + t1 − t2 − 1
t3 − t2 − 1

f (t3), .

Note that, if t2 = t1 + 1, the second equation still holds. To see this, we have ϕ∗/c +

t2 > t3 ≥ ϕ∗/c + t1, so t3 = ϕ∗/c + t1, which implies that the coefficient of f (t2 − 1) is

equal to 0. Because τ, τ1, and τ2 are identical until time t1, the optimality of τ implies

E[ f (τ1) | τ > t1] ≤ E[ f (τ) | τ > t1] =⇒ (t3 − t2) f (t2 − 1) + f (t3) ≤ (t3 − t2 + 1) f (t2)

E[ f (τ2) | τ > t1] ≤ E[ f (τ) | τ > t1] =⇒ (t3 − t2) f (t2 + 1) ≤ (t3 − t2 − 1) f (t1) + f (t3).

Because t3 − t2 > 0, these two inequalities altogether imply f (t2 + 1)− f (t2) < f (t2)−
f (t2 − 1). By the definition of S-shaped, we obtain t∗ < t2 < t3, so f is concave in the

interval [t2, t3]. Consider a stopping time τ′ generated by the same increasing sequence

1, . . . , t1 but with a pair of terminal stopping times (t1 + ϕ∗/c, t1 + ϕ∗/c). We obtain

E[ f (τ′) | τ′ > t1] = f (t1 + ϕ∗/c), which implies that

E[ f (τ′) | τ′ > t1]− E[ f (τ) | τ′ > t1] = f (t1 + ϕ∗/c)−
(
λ f (t2) + (1 − λ) f (t3)

)
> 0

by the concavity of f in the interval [t2, t3], where λ = t3−ϕ∗/c−t1
t3−t2

. Because τ and

τ′ are identical up until time t1, we have E[ f (τ′)] > E[ f (τ)], which contradicts the

optimality of τ. Therefore, we have t2 = t3 which implies t2 = t3 = t1 + ϕ∗/c.
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We want t1 such that t1 + ϕ∗/c ∈ [s∗(t1 + 1), s∗(t1)]. This is equivalent to s∗(t1)−
t1 ≥ ϕ∗/c but s∗(t1 + 1) − (t1 + 1) < ϕ∗/c. From Lemma 23 (i), s∗(t) − t is strictly

decreasing in t ∈ [0, T] and s∗(T)− T = 0. This means there exists a unique t1 such

that t1 + ϕ∗/c ∈ [s∗(t1 + 1), s∗(t1)], which is t1 = t̃ := max{t ∈ T : s∗(t)− t ≥ ϕ∗/c}
(if the set is empty, set t̃ = 0).

II.4 Proof of auxillary results used to show Theorem 3.

Proof of Lemma 11. Consider that P is both convex and compact. Moreover, the func-

tion p 7→ E(µS,τ)∼p[h(µ
S, τ)]

is linear and continuous. By Bauer’s maximum principle, there exists p∗ ∈ Ext(P) such

that p∗ is a solution to the designer’s optimization problem. Suppose that an extremal

and deterministic information structure I∗ induces p∗. It is without loss to assume that

p∗ has the support of a countable set because of countable linear constraints of p. We

will show that I∗ is regular. Assume a contradiction that I∗ does not have a terminal

time and TIN( Ī) is finite. Suppose that max TIN( Ī) = T∗. Because I∗ does not have a

terminal time, there exist (µ1, t1), . . . , (µn+2, tn+2) ∈ ∆(Θ)× T such that t1, . . . , tn+2 >

T∗ and p∗
µi,ti

> 0. We choose k1, . . . , kn+2 satisfying the following conditions:∑n+2
i=1 kiµ

i = 0

∑n+2
i=1 kiu∗(µi, ti) = 0,

and (k1, . . . , kn+2) ̸= (0, . . . , 0). A non-zero solution exists because the system of lin-

ear equations has n + 2 variables but only n + 1 equations. This implies ∑n+2
i=1 ki =

∑n+2
i=1 ∑θ∈Θ kiµ

i(θ) = 0. For any ϵ ∈ R, we define a probability distribution pϵ as

pϵ
ti,µi := p∗ti,µi + kiϵ and pϵ

t,µ := p∗t,µ for every (t, µ) ̸= (ti, µi). We will show that pϵ ∈ P
when |ϵ| is small enough. It is clear that pϵ

t,µ > 0 when |ϵ| is small enough because

p∗ti,µi > 0. pϵ
t,µ also satisfies the martingale condition by ∑n+2

i=1 kiµ
i = 0. It remains to

show pϵ
t,µ satisfies the obedience constraints. Key observations are

1. The continuation beliefs µC
t are still the same for every t ≤ T∗ and t > tn+2:

µC
t (p∗) =

∑∞
s=t+1 ∑µS∈∆(Θ) µS p∗

µS,s

∑∞
s=t+1 ∑µS∈∆(Θ) p∗

µS,s
=

∑∞
s=t+1 ∑µS∈∆(Θ) µS pϵ

µS,s

∑∞
s=t+1 ∑µS∈∆(Θ) pϵ

µS,s
= µC

t (pϵ),

where the second equality follows from ∑n+2
i=1 kiµ

i = 0 and ∑n+2
i=1 ki = 0.

2. The continuation utility is still the same for every t ≤ T∗ and t > tn+2 :
∞

∑
s=t+1

∑
µS∈∆(Θ)

p∗µS,su
∗(µS, s) =

∞

∑
s=t+1

∑
µS∈∆(Θ)

pϵ
µS,su

∗(µS, s)

because ∑n+2
i=1 kiu∗(µi, ti) = 0.
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Two key observations imply that the obedience constraint still holds for every t ≤
T∗ and t > tn+2. We assumed in the beginning the DM is not indifferent between

stopping and continuing paying attention at every time t > T∗. Thus, the obedience

constraints at time t ∈ (T∗, tn+2] slack under p∗. Thus, with sufficiently small |ϵ| > 0,

the obedience constraints at time t ∈ (T∗, tn+2] still hold under pϵ. Therefore, pϵ ∈ P
for sufficiently small |ϵ| > 0. However, p∗ = pϵ+p−ϵ

2 and pϵ, p−ϵ ∈ P . This is a

contradiction because p∗ is an extreme point of P , as desired.

Proof of Lemma 12. Suppose I is IN at every non-stopping at time t + 1. Fix a history

H∗
t ∈ supp (I) such that the DM prefers to continue paying attention at H∗

t . Define

supp It+1(·|H∗
t ) =:

{
(µt+1(i), mt+1(i))

}
i∈M∗

which are the belief-message pairs at time t + 1 which realize with positive probabil-

ity from history Ht labelled with M∗. For every i ∈ M∗, define Vt+1(i) as the DM’s

optimal expected utility conditional on paying attention until the time-t + 1 history

(H∗
t , (µt+1(i), mt+1(i))) under I. Define

S :=
{
(pi)i ∈ R

|M∗|
≥0

∣∣∣∣ ∑
i∈M∗

pi = 1, v∗
(

∑
i∈M∗

piµt+1(i), t
)
≤ ∑

i∈M∗
piVt+1(i)

}
.

as the distributions over M∗ such that the DM’s incentive to stop under the time-t belief

is less than her expected continuation utility.

We first argue S is non-empty, convex, and closed. S is non-empty because we

can pick the original distribution p∗ under I where p∗i = PI(µt+1 = µt+1(i), mt+1 =

mt+1(i) | H∗
t ) for all i ∈ M∗. Furthermore, since v∗t is convex and continuous, S is

convex and closed.

Another important observation is that |supp (p)| > 1 for every p ∈ S. To see

this, since I is IN at every non-stopping at time t + 1, Vt+1(i) = v∗(µt+1(i), t + 1) <

v∗(µt+1(i), t) because of the impatience assumption, which implies p with a singleton

support cannot be in S. We next argue that for any p := (pi)i ∈ Ext(S) ⊆ S,

v∗
(

∑
i∈M∗

piµt+1(i), t
)
= ∑

i∈M∗
piVt+1(i) (♢)

i.e., the DM is indifferent. To see this, suppose, towards a contradiction, that the LHS

of the above equation is strictly less than the RHS in (♢). We showed earlier that

|supp p| > 1. Let i1, i2 ∈ M∗ be such that pi1 , pi2 > 0. We can perturb p for ϵ > 0 to p+

and p− as follows:

p+i1 = pi1 + ϵ, p+i2 = pi2 − ϵ, p+i = pi,

p−i1 = pi1 − ϵ, p−i2 = pi2 + ϵ, p−i = pi,

for every i ̸= i1, i2. Because we assumed the LHS of (♢) is strictly less than the RHS,

for sufficiently small ϵ, we must have p+, p− ∈ S. But then p = p++p−
2 which this
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contradicts the assumption that p is an extreme point of S, as desired.

Recall that we denoted the original distribution with p∗ and by construction p∗ ∈ S.

Since S is convex and closed, there exists a finite set {pn}n ⊂ Ext(S) such that p∗ can

be written as a convex combination of (pn)n:

p∗ = ∑
n

λn pn where ∑
n

λn = 1, λn ∈ [0, 1].

We now abuse notation slightly by associating histories with just their realized belief

paths (and omitting accompanying messages). Let H∗
t = (µ∗

1 , . . . , µ∗
t ). For any s < t

and history H∗
t , we denote H∗

s ⊂ Ht as the first s realized beliefs of Ht.

We modify the information structure I to I∗ as follows:

1. I∗ and I are identical except for the information structure continuing from H∗
t−1.

2. Modify time-t beliefs and transition probabilities from t − 1 to t:

For the unique history H∗
t−1 = (µ∗

1 , . . . , µ∗
t−1) ⊂ H∗

t define the new posterior

beliefs (µn
t )n as follows: for each n,

µn
t = ∑

i∈M∗
pn

i µt+1(i) with conditional probability λnPI(µ∗
t |H∗

t−1).

where recall pi ∈ Ext(S) and ∑n λn pn = p∗.

3. Modify transition probabilities from t to t + 1:

At time t at history Hn
t := (µ∗

1 , . . . , µ∗
t−1, µn

t ), for each i ∈ M∗,

PI∗
(

µt+1 = µt+1(i)
∣∣∣Hn

t

)
= pn

i

4. Preserve structure after t + 1: After history Ht+1 = (µ∗
1 , . . . , µ∗

t−1, µn
t , µt+1(i)) for

each i, I∗ is identical to I.

Figure 15: Illustration of Steps 1-4

This modification is depicted in Figure 15. Part 1 states that I∗ and I are identi-

cal except for the information structure continuing from history H∗
t−1 onwards. Part 2

modifies the transition probabilities from H∗
t−1 to the new beliefs (µn

t )n. Part 3 mod-

ifies the transition probabilities from the new beliefs (µn
t )n to the original time-t + 1

histories (H∗
t , (µt+1(i), mt+1(i)))i∈M∗ . Part 4 states that after each time-t + 1 history the

continuation information structure under I∗ and I are identical.
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It remains to verify that this modification (i) is a valid information structure; (ii)

preserves the joint distribution; and (iii) replaces H∗
t with non-stopping histories (Hn

t )n

which are IN. Note that the martingale condition at history H∗
t−1 still holds:

∑
n

λn

(
∑

i∈Ms

pn
i µt+1(i)

)
= µ∗

t = ∑
i∈M∗

p∗i µt+1(i).

The martingale condition at histories Hn
t = (µ∗

1 , . . . , µ∗
t−1, µn

t ) also clearly hold, imply-

ing I′ is a valid information structure. Because pn ∈ Ext(S), then either |supp pn| = 1

or (♢) holds such that the DM is indifferent between continuing and stopping to act.

Therefore, I∗ is IN at history Ht = (µ∗
1 , . . . , µ∗

t−1, µn
t ) for every n. Finally, observe that by

construction, I and I∗ yield the same joint distribution over actions states and stopping

times as the DM’s beliefs at stopping histories are unchanged. We have performed the

modification for a given H∗
t . Now successively perform this operation until all non-

stopping histories at time t are modified to get I′ which implies the result.

II.5 Proof of auxillary results used to show Theorem 5.

Proof of Lemma 15 (switching lemma). Proof of (i): Write p′ := pϵ,(µT ,T;1,T1). It is straight-

forward to verify that obedience constraints are unchanged for times s < t and times

s ≥ T1. Now consider any time s where s ∈ [T, T1). The martingale condition implies

that µC
T(p) is a positive linear combination of µC

s (p) and stopping beliefs between time

T and s which are at most µ̄ by the definition of T1. Since µC
T(p) > µ̄, µC

s (p) must also

be strictly greater than µ̄. Similarly, for small enough ϵ we also have µC
s (p′) > µ̄. This

means action 1 is the optimal action at time s under both p and p′. This implies

P(µ,τ)∼p(τ > s) · (µC
s (p′)− µC

s (p)) = −(1 − µT)ϵ

=⇒ STOPp′
s − STOPp

s = −ϵ(1 − µT)(u(1, 1)− u(1, 0))

which follows from equation C-Belief. Furthermore,

CONTp′
s − CONTp

s = (u∗(µT)− u(1, 1))ϵ

which then implies CONTp′
s − STOPp′

s ≥ CONTp
s − STOPp

s . Since p is feasible, the

obedient constraint at time s holds under p′ so it is feasible too. Part (ii) follows from a

symmetric argument.

Proof of (iii): Write p′ = pϵ,(µT ,T;µ̄,t). Without loss of generality, assume that µT = 0.

With the same argument as before, it is sufficient to verify obedience constraints at time

s ∈ [T, t). Observe

P(µ,τ)∼p(τ > s) · (µC
s (p′)− µC

s (p)) = −µ̄ϵ =⇒ STOPp′
s − STOPp

s ≤ (u(0, 0)− u(1, 0))µ̄ϵ.

and furthermore,

CONTp′
s − CONTp

s = (u(0, 0)− u∗(µ̄))ϵ.
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Putting these inequalities, together we then have CONTp′
s − STOPp′

s ≥ CONTp
s −

STOPp
s . Since p is feasible, the obedient constraint at time s holds under p′ so it is

feasible too.

Before proving Lemma 16, we start with the following lemma.

Lemma 24. Define P∗
ter := {p ∈ P∗ : A terminal time T(p) exists and pµ̄,T(p) > 0}. Then

P∗
f ull ∪ P∗

ter ̸= ∅

Proof of Lemma 24. By Corollary 5 in Online Appendix I, the optimization problem

min
p∈P∗

∞

∑
t=1

2−t pµ̄,t

has a solution. Suppose that p∗ ∈ P∗ solves such an optimization problem. We will

show that p∗ must satisfy either condition in Proposition 1. If p∗ /∈ P∗
f ull, there exists

t ∈ T such that pµ̄,t > 0.

Define T := min{t ∈ T : pµ̄,t > 0} as the first time that under the information

structure p∗ the DM stops with belief µ̄, and Tµ := min{t ≥ T : pµ,t > 0} for µ ∈
{0, 1} as the times after Tµ̄ under which the information structure leaves the DM with

stopping belief either 0 or 1. Note that if the information structure does not end at time

Tµ̄, this implies {t > T : p1,t > 0} and {t > T : p0,t > 0} are both non-empty. To

see this, observe that otherwise the DM takes the same action for every stopping time

t > Tµ̄, which cannot incentivize her to pay attention at time Tµ̄. As such, it will suffice

to show that we cannot have T0 > T or T1 > T. We proceed by considering cases.

Case 1: µ
p∗
T < µ̄ or

(
µ

p∗
T = µ̄ but CONTp∗

T > STOPp∗
T
)
. Suppose towards a contradiction

that T0 > T. Define p′ = (p∗)ϵ,(µ̄,T;0,T0). By Switching Lemma (Lemma 15) p′ is also a

feasible distribution.* Now observe p′ ∈ P∗ because p and p′ induce the same marginal

distributions of times and actions and p ∈ P∗. However, ∑∞
t=1 2−t p′µ̄,t − ∑∞

t=1 2−t p∗µ̄,t =

(2−T0 − 2−T)ϵ < 0, which contradicts the fact that p∗ solves the optimization problem

minp∈P∗ ∑∞
t=1 2−t pµ̄,t.

Case 2: µ
p∗
T > µ̄. Suppose towards a contradiction that T1 > T. Define p′ = (p∗)ϵ,(µ̄,T;1,T1).

We can apply the argument from Case 1 to show a contradiction.

Case 3: µ
p∗
T = µ̄ and STOPp∗

T = CONTp∗
T . We modify the information structure as fol-

lows: let p′ be a distribution over ∆({0, µ̄, 1} × T ) such that, with ϵ in a small neigh-

borhood around 0,

p′µ̄,T = p∗µ̄,T − ∑
µ′,t′>T

p∗µ′,t′ϵ,

p′µ,t = p∗µ,t + p∗µ,tϵ for all µ ∈ {0, µ̄, 1}, t > T,

*This is also true for the latter case with a small perturbation ϵ because the obedience constraint at T
under p∗ slacks.
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and p′µ,t = p∗µ,t for every other pair of (µ, t). Intuitively speaking, we decrease the

probability of stopping at belief µ̄ at time T but increase the continuation probability

at time T instead. It is easy to see that p′ satisfies a martingale condition. Obedience

constraints also clearly hold because the information structure after time T has not

changed, and the continuation value has not changed: for t < T,

CONTp∗
t − CONTp′

t =

(
∑
s>T

∑
µ∈{0,µ̄,1}

(v∗(µ)− cs)p∗µ,s − ∑
µ′,t′>T

p∗µ′,t′(v
∗(µ̄)− cT)

)
ϵ = 0,

where the equality follows STOPp∗
T = CONTp∗

T . Therefore, p′ is a feasible distribu-

tion. Note that Ep′ [ f (aτ, τ)] − Ep∗ [ f (aτ, τ)] is linear in ϵ. Since p′ ∈ P∗, we have

Ep′ [ f (aτ, τ)] = Ep∗ [ f (aτ, τ)] for every ϵ in a small neighborhood around 0. But taking

a small enough ϵ > 0,
∞

∑
t=1

2−t p′µ̄,t −
∞

∑
t=1

2−t p∗µ̄,t = ∑
m,t>T

(2−t − 2−T)p∗µ̄,tϵ < 0,

which contradicts the fact that p∗ ∈ argminp∈P∗ ∑∞
t=1 2−t pµ̄,t.

We finally prove Lemma 16.

Proof of Lemma 16. If P∗
f ull ̸= ∅, there is nothing to show. Next suppose that P∗

f ull = ∅.

Lemma 24 implies P∗
per ̸= ∅. Pick p∗ ∈ P∗

per and let T be the terminal time of p∗.

Since p∗ is a designer’s optimal information structure, it must solve the following

optimization problem:

max
(p0,t,p1,t)

T
t=1,pµ̄,T

Ep[ f̂ (a, τ)] =
T

∑
t=1

p0,t f (0, t) +
T

∑
t=1

p1,t f (1, t) + pµ̄,t f (1, T)

s.t.
T

∑
t=1

p0,t +
T

∑
t=1

p1,t + pµ̄,T = 1 (Total probability)

T

∑
t=1

p1,t + µ̄pµ̄,t = µ0 (Martingale)

v∗(µ0) ≤
T

∑
t=1

p0,t(u(0, 0)− ct) +
T

∑
t=1

p1,t(u(1, 1)− ct) + pµ̄,T(ū − cT) (Obedience-0)

Obedience-(a, t) ∀ a ∈ {0, 1} ∀ t ∈ {1, . . . , T − 1} (Obedience-(a, t))

p0,t ≥ 0, p1,t ≥ 0, pµ̄,T ≥ 0 for all t ∈ {1, . . . , T}, (Non-negativity)

where ū = u(0,0)u(1,1)
u(0,0)+u(1,1) . Note that all constraints of this optimization problem are

linear, and the optimization problem is linear. Define R and R∗ as the polytope of

((p0,t, p1,t)
T
t=1, pµ̄,T) which satisfies the above constraints and solves the above opti-

mization problem, respectively. By standard arguments, we have Ext R∗ ⊂ Ext R, and

Ext R∗ ⊂ P∗. Pick p∗∗ ∈ R∗ that solves the optimization problem minp∈R∗ ∑T
s=1 2−s p1,s

and p ∈ Ext R∗. This exists because extreme points attain the optimum. This implies
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p ∈ Ext R∗ ⊂ Ext R∩P∗.

Step 1: p∗∗0,T, p∗∗1,T, p∗∗µ̄,T > 0.

It is clear that p∗∗µ̄,T > 0 because P∗
f ull = ∅. If p∗∗0,T = 0, then the DM takes the same

action 1 at time T, so there is no value of the information at time T which violates the

obedience constraint at time T − 1. Therefore, p∗∗0,T > 0. Similarly, p∗∗1,T > 0.

Step 2: For each 1 ≤ t < T, at most two of the following four constraints bind:

Obedience-(0, t), Obedience-(1, t), p∗∗0,t ≥ 0, p∗∗1,t ≥ 0

Suppose that both Obedience-(0, t) and Obedience-(1, t) bind. This means the util-

ities of taking action 0 and 1 at time t are the same, which implies µt = µ̄, and the DM

must be indifferent between continuing and stopping at time t. If p∗∗0,t = 0, then the

DM’s utility after time T is equivalent to that when she always takes action 1. Thus,

there is no value of information after time t, which contradicts the obedience constraint

at time t − 1. Therefore, p∗∗0,t > 0, and, similarly, p∗∗1,t > 0,. This means only two con-

straints bind, as desired. Suppose that both p∗∗0,t = p∗∗1,t = 0. This means the designer

does not send any message at time t. Then any obedience constraint at time t cannot

bind; otherwise, the obedience constraint at time t − 1 would be violated, as desired.

Step 3: For each 1 ≤ t < T Obedience-0 binds and exactly two of the following

four constraints bind: (i) Obedience-(0, t); (ii) Obedience-(1, t); (iii) p0,t ≥ 0; and (iv)

p1,t ≥ 0

Noting that the optimization problem had 2T + 1 variables, then since p∗∗ ∈ Ext R,

2T + 1 constraints must bind (Simon, 2011, Proposition 15.2). From Step 1 we know

that none of the non-negativity constraints at time T bind. From Step 2, we know that

for each 1 ≤ t < T at most two of the following four constraints: Obedience-(0, t),

Obedience-(1, t), p0,t ≥ 0, p1,t ≥ 0. If exactly two of them bind for all 1 ≤ t < T, then

in addition to the Total probability, Martingale, and Obedience-0 constraints, we have

3 + 2(T − 1) = 2T + 1 constraints as desired.

Step 4: p∗∗ satisfies (i) if p∗∗1,t + p∗∗0,t > 0 then DM is indifferent at t; and (ii) if

µC
t (p∗∗) ̸= µ̄, then p∗∗1,t = 0.

(i) If t < T such that p∗∗1,t + p∗∗0,t > 0, then only one of two constraints p1,t ≥ 0 and

p0,t ≥ 0 bind. From Step 3, either Obedience-(0, t) or Obedience-(1, t) must bind,

which means the DM is indifferent at time t.

(ii) If t < T such that µC
t (p∗∗) ̸= µ̄, then at most one of two constraints Obedience-

(0, t) or Obedience-(1, t) bind. From Step 3, one of p1,t and p0,t equals 0. Suppose

that p1,t ̸= 0. From the previous point, the DM must be indifferent at time t and

p0,t = 0. This together implies µC
t (p∗∗) < µ̄. Let T0 = min{s > t : p∗∗0,s > 0}

and p′ = (p∗∗)ϵ,(1,t;0,T0). By Switching Lemma (Lemma 15) p′ is also a feasible
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distribution and induces the same marginal distributions of actions and stopping

times, which implies p′ ∈ P∗∗. However,
T

∑
s=1

2−s p′1,s −
T

∑
s=1

2−s p∗∗1,s = (2−T − 2−t)ϵ < 0,

which contradicts the fact that p∗∗ ∈ arg minp∈R∗ ∑T
s=1 2−s p1,s.

Note that part (i) or Step 4 is exactly equal to condition (iii) of P∗
bad so it remains to

show that for all t < T, p∗∗1,t = 0 so that we have a pure bad news dynamic information

structure (condition (ii) of P∗
bad).

Step 5: truncate p∗∗.

If p∗∗1,t = 0 for every t < T, then p∗∗ ∈ P∗
bad, as desired. Suppose that p∗∗1,t > 0

for some t < T. Define T0 := min{t ≤ T : p∗∗1,t > 0}. Step 4 implies µC
t (p∗∗) = µ̄.

We modify the information structure as follows: p′ = pϵ,(1,T0;µ̄,T). Switching lemma

(Lemma 15) implies that p′ is also a feasible distribution. Note that p′ ∈ P∗ because

both p∗∗ and p′ yield the same joint distribution of actions and times (since we break

DM indifference in favour of action 1).

Now observe that under p∗∗, when the DM is indifferent at time T0 with belief µ̄

(from Step 4), the designer provides more information until time T. On the other hand,

under p′, when the DM reaches the stopping belief µ̄ at time T0, the designer prefers to

stop providing further information. To see this, assume, towards a contradiction, that

this is not the case so that the designer strictly prefers to provide further information at

time T0 when the continuation belief is µ̄. We have shown that under p′, the designer

obtains the same utility and furthermore, p′µ̄,T0
> 0. But since the designer strictly

prefers to continue at time T0, it cannot find it optimal to have the DM stop at time T0

with belief µ̄ which contradicts the optimality of p′ and hence p∗∗.

Truncate p∗∗ at time T0 by constructing p∗∗∗ as follows:

p∗∗∗m,t :=



p∗∗m,t t < t0

p∗∗m,t t = t0, m ∈ {0, 1}

∑s>t0 ∑m p∗∗m,s t = t0, m = µ̄

0 t > t0,

and by the previous argument, p∗∗∗ and p∗∗ yield the same designer’s utility. Thus,

p∗∗∗ ∈ P∗. From the definition of t0, it is simple to show that p∗∗∗ ∈ P∗
bad, as desired.

Proof of Lemma 17 (pasting lemma). Let p ∈ ∆({0, µ̄, 1} × T ) be a feasible distribution

with prior µ0. Define a probability distribution pT as follows:

pT
µ̄,t = pµ̄,t + p1,t, pT

1,t = 0,
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for every t < T and every other probabilities are the same. Define

t∗ := sup{t ∈ T | E(µ,τ)∼pt [µ] ≥ µ̄}

We define a new probability distribution p′ with prior belief µ̄ as follows:

p′µ,t = pt∗
µ,t, ∀t ̸= t∗, ∀µ

p′µ̄,t = pµ̄,t + δ

p′1,t = p1,t − δ,

where δ > 0 is an appropriate constant such that E(µ,τ)∼p′ [µ] = µ̄. p′ is still a valid

probability distribution by the definition of t∗. Clearly, p and p′ yield the same joint

distribution of action and stopping time. It is sufficient to show that p′ is a feasible

distribution.

An important observation is that µC
t (p) > µC

t (p′) for every t < t∗ because we in-

crease and decrease the stopping probability at the beliefs µ̄ and 1 by the same amount

at every time. Moreover, µC
t (p′) > µ̄ for every t < t∗ since µ0 > µ̄ and stopping beliefs

at time in [0, t) under p′ are only 0 and µ̄. This means action 1 is optimal at continuation

beliefs µC
t (p) and µC

t (p′) for every t < t∗. For every t < t∗, we obtain

STOPp′
t − STOPp

t = P(µ,τ)∼p(τ > t) ·
(
Eθ∼µC

t (p′)u(1, θ)− Eθ∼µC
t (p)u(1, θ)

)
.

However,

CONTp′
t − CONTp

t = A
(
u(1, 1)− Eθ∼µ̄u(1, θ)

)
,

where A is the change of the unconditional probability of stopping at belief 1 after time

t. The martingale constraint time t implies

P(µ,τ)∼p(τ > t)µC
t (p′) = P(µ,τ)∼p(τ > t)µC

t (p)− A · 1 + A · µ̄.

By linearity of µ 7→ Eθ∼µu(1, θ), we obtain

STOPp
t − STOPp′

t = CONTp
t − CONTp′

t ⇒ CONTp′
t − STOPp′

t = CONTp
t − STOPp

t ≥ 0

which p′ is a feasible distribution and induces the same DM surplus.
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ONLINE APPENDIX III: MORE GENERAL TIME PREFERENCES

In the main text we assumed the DM pays a constant cost per-unit time. Observe that

Theorems 1 and 3 required impatience and nothing else, so they continue to hold as

stated for more general time preferences. We now observe that results on designer-

optimal structures (e.g., Theorems 2 and 5) extend readily to nonlinear waiting costs

c(τ) where c : T → R is a strictly increasing function.† As in the main text, suppose

that the designer’s payoff is a strictly increasing function f . This model is isomorphic

(up to an integer constraint) to a model in which the DM pays a unit cost per-unit

time, and the designer’s value function if f ◦ c−1. To see this, observe that f (τ) =

f (c−1(c(τ))) hence we can perform a time change by defining units of time in terms of

c(τ). Hence, if I is optimal for attention capture under f with cost c if and only if it is

also optimal for attention capture under value f ◦ c−1 with cost 1 per-unit time and the

time-change c.

This immediately implies that a model with nonlinear value of attention f and lin-

ear constant per-unit cost can be mapped to a model with nonlinear f : T → R and

c : T → R by considering f ◦ c−1. For instance,

(i) If f is linear and c is concave then f ◦ c−1 is convex hence the designer-optimal

structure is the same form as when f is convex and c is linear as in Corollary 1 (i).

(ii) If f is linear and c is convex then f ◦ c−1 is concave hence the designer-optimal

structure is the same form as when f is concave and c is linear as in Corollary 1

(ii).

†Beyond additively separable time preferences, an earlier version of this paper developed some of
our results for exponential discounting
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