Motivation

- Climate risks in the banking sector have been an increasing concern for financial regulators
- Banks are indirectly exposed to two types of climate risks via lending to firms:
- . **Physical risks**: damages to firms due to increasingly extreme climate events
- 2. Transition risks: the implementation of climate policies aimed at emission-intensive firms

This Study in a Nutshell

Research question:

- How does firms' exposure to physical and transition risks affect banks' credit allocation?
- 1. What happens to lending for non-listed firms, which are typically SMEs?
- 2. Do banks provide credit to risky firms engaging in reducing emissions, or "greening" firms?
- 3. What are the individual effects of each type of risk, and how do these risks interact?

Data:

• Granular measures for both climate risks and bank-firm matched Danish register data from 2004 to 2019 are utilized

Methodology:

Saturated fixed effect models in the spirit of Khwaja and Mian (2008), and Jiménez et al. (2012)

Key results:

- Lower credit growth to firms exposed to higher physical and transition risks
- More credit to risky firms with "greening" efforts and to firms with lower interacted risks • Large heterogeneity on the firm and bank side
- The mechanism indicates that credit supply plays a relatively more important role due to credit risk

Contributions

- Provide evidence based on a more representative sample of firms, including non-listed firms
- Examine the impact of both types of climate risks and interactions based on novel, granular risk measures
- Focus on banks' quantity adjustment and investigate credit allocation to risky and "greening" firms

Danish Administration Data

- Employer-Employee Matched Data: firm and worker registers; provides the universe of firm and worker level information
- Bank-Firm Matched Data: credit register; account-level data for the universe of corporate bank loan; link with employer-employer matched data
- Final sample: 19,904 firms, 106 banks, and 16 years

Transition Risks Exposure

• Certain firms and industries with higher emission intensity face greater transition risks due to exposure to more stringent climate-related policy

Transition risks indicator_{ijt} = Energy intensity_{ijt} × Environmental tax_{jt}

, where

Energy consumption_{ii} Total environmental tax_{it} Environmental tax_{it} = -Energy intensity_{ijt} =</sub> Value added_{it} Value added_{iit}

for firm *i*, industry *j*, year t

Climate Change and Bank Lending: Evidence from Physical and Transition Risks

Jinhong Wu

Copenhagen Business School | Department of Economics

Physical Risks Exposure

Construction of physical risks indicator

- Combine exposure to extreme precipitation frequency $(freq_{ct})$ and flood risks (fl_r)
- Allow for incorporating geographic spillover effects

Physical risks indicator_{$$p,t$$} = $\sum_{k=1}^{R}$

where $I_{r,t} = fl_r \times freq_{ct}$

for climate station c, parish p, year t, surrounding parish r

- Physical risks indicator_{p,t}: physical risks exposure for parish p at year t.</sub>
- $I_{r,t}$: interaction between extreme precipitation ($freq_{ct}$) and flood risks (fl_r)
- $e^{-\delta x_{p,r}}$: weighting function that depends on
- $x_{p,r}$: distance between parish p and r
- δ : decay parameter (0,1), how far-reach the events can extend

Spatial and Time Variations of Physical Risks Exposure

Empirical Specification and Identification

• Start with a simple model, gradually saturate with a complete set of fixed effects including location (parish) α_p , industry-year α_{it} , bank-year α_{bt} , and firm-bank α_{ib} fixed effects:

Credit Outcome_{*ibt*} = β_1 Physical risks_{*pt*-1} + β_2 Transition risks_{*it*-1} + $X'_{it-1}\gamma_1 + \alpha_p + \alpha_{jt} + \alpha_{bt} + \alpha_{ib} + \epsilon_{ibt}$

for firm *i*, bank *b*, year *t*, industry *j*, and parish p

• Identification including firm-bank fixed effects relies on exploiting credit evolution within the same firm-bank pair, in response to the change in climate risks over time

With firm-bank fixed effects

 $\sum I_{r,t}e^{-\delta x_{p,r}}$

Without firm-bank fixed effects

Do Banks Adjust Credit Allocation? Baseline Results on Loan Growth

Physical Risks

Transition Risks

Firm Fixed Effects Year Fixed Effects Bank Fixed Effects Parish Fixed Effects 2-digit Industry Fixed Effects 2-digit Industry-Year Fixed Effects Bank-Year Fixed Effects Bank-Firm Fixed Effects Firm Variables Bank Variables R-sq

Further Results: The Role of "Greening" Firms and the Interactions of Risks

Do banks allocate more credit to risky and "greening" firms?

- energy intensity, apply for a green patent
- adaptation or mitigation as a positive signal

What is the role of interactions of physical and transition risks?

Credit Outcome_{ibt} = β_1 Low $PR_{it-1} \times Low TR_{it-1} + \beta_2$ High $PR_{it-1} \times Low TR_{it-1} + \beta_3$ Low $PR_{it-1} \times High TR_{it-1}$ $+eta_4$ High PR $_{it-1}$ imes High TR $_{it-1}$ $+oldsymbol{X}'_{it-1}oldsymbol{\gamma_1}+oldsymbol{Z}'_{bt-1}oldsymbol{\gamma_2}+ extsf{FEs}+oldsymbol{\epsilon_{ibt}}$

for firm i, bank b, year t

risks, relative to medium risks groups

Heterogeneity analysis:

- relationships

Mechanism: Supply vs Demand, Which Side is More Important?

- fixed asset growth, and sales growth)

Loan Growth					
(1)	(2)	(3)	(4)	(5)	(6)
-1.368***	-1.483***	-1.274***	-1.276***	-1.283***	-1.143**
(0.489)	(0.490)	(0.491)	(0.491)	(0.489)	(0.540)
-2.208***	-2.203***	-2.100***	-2.146***	-1.783***	-1.632***
(0.598)	(0.574)	(0.547)	(0.562)	(0.441)	(0.427)
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes		
Yes	Yes	Yes	Yes		
		Yes	Yes Yes	Yes	Yes
				Yes	Yes
				Yes	Yes
					Yes
	Yes	Yes	Yes	Yes	Yes
	Yes	Yes	Yes		
0.086	0.087	0.097	0.097	0.123	0.190
189,200	189,142	187,764	187,760	187,700	179,374

• Credit outcome (intensive margin): Loan $Growth_{ibt} = \frac{(loan_{ibt}-loan_{ibt-1})}{(0.5 \times loan_{ibt}+0.5 \times loan_{ibt-1})} \times 100\%$ • 1 sd \uparrow in physical risks \rightarrow 1.1%-1.4% \downarrow in loan growth (8%-10% deviation from the mean) • 1 sd \uparrow in transition risks \rightarrow 1.6%-2.2% \downarrow in loan growth (11%-16% deviation from the mean)

Includes an interaction of climate risks variables with proxies for "greening" firms, i.e., reduction in

• Positive coefficients in the interaction terms suggest banks also consider firms' engagement in risk

• Positive coefficient for β_1 suggests more credit reallocation to firms with low interacted (compounded)

• At the firm level, the effects are more pronounced for constrained firms (small, highly leveraged) • At the bank level, the effects are concentrated within highly exposed banks with repeat lending

• No evidence that climate risks are linked to lower firm growth (investment growth, employment growth)

• Evidence suggests that higher climate risks are associated with increased credit risk, as measured by various firm-level financial stress (low EBIT, high ICR) and survival proxies (exit)