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Abstract

Information frictions in financial decision-making are particularly salient in the ven-
ture capital (VC) industry, where VCs traditionally rely on professional networks to iden-
tify potential investment opportunities. Over the past decade, however, VCs have increas-
ingly adopted digital data and machine learning techniques to inform their investment
decisions, marking a significant shift from traditional methods. I posit that these tech-
nologies, capable of identifying all startups with a digital presence, reduce information
frictions in identifying promising ventures. Using the geographic concentration of the
VC industry as my empirical setting, I find that VCs are more likely to invest outside tra-
ditional VC hubs after adopting data technologies. Moreover, these investments are more
likely to exit through an IPO or achieve unicorn status than their counterparts in estab-
lished hubs. Additionally, data technologies help locate startups in areas outside major
hubs with increasing entrepreneurial activity, which subsequently experience growth in
VC activity. These findings highlight the benefits of using data technologies to identify
promising ventures, benefiting both investors and emerging VC markets.
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1 Introduction

Managing a portfolio of assets involves acquiring information and using that information

to inform investment decisions. However, information acquisition is costly (Grossman and

Stiglitz (1980), Verrecchia (1982)), prompting a large literature to explore mechanisms to re-

duce these information barriers. For instance, geographic proximity (e.g. Huberman (2001))

and network centrality (e.g. Kuchler et al. (2022)) have been shown to facilitate investment

opportunities by improving access to information. Recently, the rise of data accessibility and

advancements in data technologies have radically changed information flow. Investors can

now access company data within seconds, and tools such as machine learning and artificial

intelligence can synthesize large amounts of data to inform investment decisions. This raises

the following research questions: do data technologies reduce information frictions for finan-

cial decision-making, and how does this impact who receives funding?

To explore this question, I examine the role of data technologies in reducing information

asymmetry within the venture capital (VC) industry. I study the VC market due to the impor-

tance of the setting, the centrality of deal flow in the investment process, and the presence

of an ideal empirical setting. First, VCs are crucial providers of capital to young, innovative

firms, with approximately 50% of all publicly traded companies having received VC financing

prior to the IPO (Gornall and Strebulaev (2021)). Second, information frictions are particu-

larly salient in the VC industry, as VCs invest in young companies with limited track records.

Lastly, the VC industry is highly geographically concentrated, with over two-thirds of VC ac-

tivity centered in three main areas: California, Massachusetts, and New York (NVCA (2020)).

This provides an ideal empirical setting to test the impact of data technologies on overcoming

search frictions.

To identify if and when VCs adopt data technologies, I utilize detailed employee data from

Crunchbase and LinkedIn. VCs using data technologies rely on human capital and expertise

to implement the data infrastructure. Prior research has used job postings to infer technology

adoption in other settings1 and specifically in the VC domain (Retterath (2020), Bonelli (2023)).

1. For example, job posting data has been used to identify demand for AI skilled labor in public firms (Alek-
seeva et al. (2021), Babina et al. (2024)) and in the real estate industry (Raymond (2024)) and Goldfarb, Taska, and
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Using job titles and descriptions from a complete history of VC employees, I identify when VCs

hire data scientists and classify a VC firm as data-driven from the date of its first data-related

employee hire.2 Using data technologies in the pre-investment screening process represents

a significant shift from traditional deal-sourcing methods, which historically rely mostly on

professional networks (Gompers et al. (2020)). As shown in Figure 1), VCs are increasingly

adopting data-driven approaches to aid their investment decision processes. Industry reports

predict 75% of VCs will use data technologies in some capacity by 2025 (Gartner (2023)).

In the first part of the paper, I investigate whether data technologies impact VCs’ invest-

ment opportunity set. My overarching prediction is that adopting data technologies lowers

search frictions for finding investment opportunities, as VCs are able to find all potential

investments with an online presence. I use startups located outside of traditional VC hubs

(California, Massachusetts, and New York) as a proxy for those outside of established VC net-

works. VC activity is highly concentrated in traditional hubs, with 85% of capital raised by

VCs and 73% of capital invested in startups located in these areas (NVCA, 2020). VCs tend

to invest locally (Sorenson and Stuart 2001) as geographic barriers facilitate information flow

about potential investment opportunities (Cumming and Dai 2010). Additionally, VCs are

more likely to establish satellite offices in these regions (Chen et al. 2010), further enforcing

hub-based interactions across geographic markets. As a result, startups outside these areas

are more likely to be excluded from traditional networks and face larger information fric-

tions. My findings support this prediction: after VCs adopt data technologies, they increase

their number of investments in non-hub locations by 15% per year. This translates to an in-

crease of approximately half an investment per year, a non-trivial amount considering the

industry’s high geographic concentration. In additional analyses, I further narrow non-hub

locations to those with fewer than 25 VC investments over the past five years (classified as

low-activity areas). After adopting data technologies, VCs increase their investments in these

low-activity areas by 60%, or approximately 0.15 investments per year. These findings provide

evidence that data technologies increase VCs potential investment opportunity set to startups

Teodoridis (2021))
2. Alternatively, VCs could hire data scientists that use AI to help their startup companies —a classification I

am careful to exclude.
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that would otherwise be excluded from their professional networks.

In my second set of tests, I examine other proxies for startups that would fall outside of a

VCs professional network. I test whether VCs rely less on other investors to find investment

opportunities after adopting data technologies. VCs tend to syndicate investments with other

investors, a practice that helps overcome information frictions (Lerner (2022)). Conditional

on investing in a different state, I find that VCs are 4-7% less likely to invest with a local

VC syndicate. VC networks can also vary at the industry level. A large literature shows

that VCs tend to specialize in investing in certain industries (e.g. Hochberg, Mazzeo, and

McDevitt (2015)) and these industries can form established networks (Hochberg, Ljungqvist,

and Lu (2010)). I classify VCs as specializing in a particular industry if more than 40% of

their investments were in one industry over the last five years. I find that after adopting data

technologies, VCs that specialized in one industry are approximately 40% more likely to invest

in a different industry.

I implement various strategies to mitigate concerns that the results are driven by corre-

lated unobservables. To address concerns that VCs using data technologies may differ from

those that do not, I include VC firm fixed effects, allowing for a comparison of VC invest-

ment decisions before and after technology adoption. Additionally, I include VC headquarter

state × industry × funding round stage × investment year fixed effects to account for local

time trends coinciding with VCs’ adoption of data technologies that may lead them to invest

in non-hub locations. To mitigate concerns that data technology adoption is correlated with

overall firm growth, I conduct a placebo test in which I repeat the same analysis but use the

hiring of a venture partner in place of a data scientist. The hiring of a venture partner is asso-

ciated with an increase in the number of investments, but only in hub areas, not in non-hub

or low-activity commuting zones. This provides further evidence that data technologies help

overcome information frictions in identifying investment opportunities compared to an in-

crease in the VCs’ human capital, which leads to more hub investments. Lastly, to address

concerns about selection bias, I employ an instrumental variables approach. Specifically, I

isolate variation in VCs’ data technology adoption from two sources: early exposure to AI

and the timing of raising a new fund. This identification strategy reduces bias from demand
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shocks that could influence both technology adoption and investment strategies. The results

remain robust to the IV approach, providing evidence of a causal relationship between data

technology adoption and investment decisions.

A natural follow-up question is: how do data-driven investments in non-hub areas per-

form compared to hub investments? Prior literature indicates that data technology adoption

provides an advantage in identifying startups less likely to fail but does not confer any ad-

ditional advantage in finding startups more likely to achieve a major exit, such as an IPO or

acquisition (Bonelli (2023)). However, little is known about how data-driven investments in

non-hub and low-activity areas compare to (1) their data-driven hub counterparts and (2) tra-

ditional investments in non-hub and low-activity areas. Ex ante, the performance outcomes

of data-driven non-hub investments are ambiguous. On one hand, VCs investing in non-hubs

may face less competition, potentially enabling them to invest in higher-quality startups. This

aligns with prior literature showing that VCs set a higher hurdle rate for non-hub startups,

which tend to outperform their hub investments (Chen et al. (2010)). Alternatively, if data

technologies reduce search frictions in finding investments, they may allow VCs to identify

more firms in non-hub areas, including more lower-quality startups. Although VCs actively

monitor their portfolio companies-a practice associated with increased performance (Bern-

stein, Giroud, and Townsend (2016))-effective monitoring may be more challenging with dis-

tant, non-hub investments, especially for lower-quality firms.

I find evidence supporting both scenarios: data-driven investments in non-hub areas are

more likely to fail, but they are also more likely to achieve a major success. The results for

the failure analysis offer two interpretations. First, data-driven VCs may invest in lower-

quality non-hub startups compared to their hub investments. Alternatively, data-driven VCs

might abandon their lower quality non-hub startups more readily than those in hub locations.

Local investments allow VCs to monitor more effectively (Lerner (1994)), potentially offsetting

concerns about quality. Either way, VCs generate the majority of their returns through a few

“home-run” investments, and I find evidence that data technologies provide advantages in

identifying these types of startups in non-hub locations.

In the final part of the paper, I investigate which non hub areas are likely to attract data-
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driven investments and if data-driven investments in these areas lead to an increase in sub-

sequent VC activity. One advantage of algorithmic techniques is that they are able to identify

emerging trends and markets. Thus I posit that data technologies are more likely to iden-

tify promising investments in areas with growing levels of entrepreneurial activity. Using

regional entrepreneurial statistics from the Startup Cartography Project (Fazio et al. (2019)),

I find that non-hub areas with growing levels of entrepreneurial activity receive more data-

driven investments than areas with low levels of entrepreneurial activity. In contrast, I find

no evidence that traditional VC investments can identify growing areas of entrepreneurial

activity. In addition, I find that low-activity areas experience an increase in subsequent VC

activity after a startup in that area receives a data-driven investment. Specifically, I find these

low-activity areas experience an increase in the number of funding rounds, the number of

startups that receive VC financing, the number of investors and the number of VC-backed

firm patents after entry by a data-driven VC compared to low activity areas that do not re-

ceive a data-driven investment. In sum, my results indicate that data-technologies are better

able to identify emerging markets and trends than traditional methods, and that these areas

experience an increase in subsequent VC activity.

The rest of the paper proceeds as follows. Section 2 discusses my findings’ contribution

to relevant literature. Section 3 discusses the institutional background. Section 4 details data

sources and construction of measures. Section 5 reports my main findings on how VCs’ in-

vestments change after adopting data technologies. Section 6 investigates how data-driven

investments perform in non hub locations. Section 7 identifies which non-hub areas receive

data-driven investments. Section 8 concludes.

2 Contribution to Prior Literature

This paper relates to several strands of literature. First, this paper contributes to the literature

studying mechanisms to reduce information frictions in financial markets. Even in public

markets, where disclosure is enforced, investors tend to display a large home bias in invest-

ments (Van Nieuwerburgh and Veldkamp (2009)), which can lead to information advantages
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in stock selection (Coval and Moskowitz (2001)) but also underdiversification in investor port-

folios (Huberman (2001), Van Nieuwerburgh and Veldkamp (2010)). Social networks also play

an important role in information transmission in financial markets (e.g Hong and Xu (2019)).

However, for both geographic and social networks, the literature provides conflicting evi-

dence on whether these networks provide superior information for returns (Massa and Si-

monov (2006), Cohen, Frazzini, and Malloy (2008), Seasholes and Zhu (2010), Pool, Stoffman,

and Yonker (2012), Pool, Stoffman, and Yonker (2015), Kuchler et al. (2022)). In recent years,

the role of technological advancements has also impacted information frictions in financial

markets. Introduction of commercial databases reduces barriers for information acquisition

(Gao and Huang (2020)), and more recently the rise of AI has helped inform investment de-

cisions (Cao et al. (2024)). This paper contributes to the literature by studying the role of

advanced technological techniques for finding investment opportunities in an industry with

limited disclosure, specifically the VC industry.

Second, this paper adds to the literature on how VCs source investments. Considered one

of the most important factors of deal success (Sørensen (2007)), 60% of investments come from

a VCs’ network (Gompers et al. (2020)). Strong networks between VCs allow for better fund

performance (Hochberg, Ljungqvist, and Lu (2007)) and can create extensive barriers to entry

for new VCs firms in existing markets (Hochberg, Ljungqvist, and Lu (2010)). However they

can also be used to overcome geographic barriers through syndicated investments (Sorenson

and Stuart (2001)) or alumni networks with founders (Garfinkel et al. (2021), Huang (2022)).

The consequences of strong networks is that the capital for innovation is largely centralized in

a few distinct locations in the US (Lerner and Nanda (2020)) which can impact the innovation

prospect of other economies (Glaeser, Kerr, and Ponzetto (2010)). This paper studies the im-

plications of adopting data technologies as another means to overcome information frictions

when sourcing investments.

Third, this paper also contributes to the literature studying the role of data technologies

in the VC industry. Prior literature has looked at the role of the internet (e.g. Li, Li, and

Yang (2022)) and direct airline routes (Bernstein, Giroud, and Townsend (2016)) on finding in-

vestment opportunities. Recent literature looks at the role of artificial intelligence in the VC
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industry. Lyonnet and Stern (2022) and Davenport (2022) look ex ante how algorithms could

be used to outperform human investments in startups. They use machine learning to identify

the most promising ventures and find that VCs invest in some firms that perform predictably

poorly and pass on others that perform predictably well largely due to stereotypical thinking

by VCs. Retterath (2020) develops an algorithm to predict successful investments in the VC

industry which outperforms that of actual investments. The only other paper (to my knowl-

edge) that looks at the ex post impact of data technologies on investment decisions is Bonelli

(2023), who finds that VCs are more likely to invest in startups similar to their previous in-

vestments and less in break through technologies. While this study evaluates the screening

ability of data technologies, I look at how data technologies lower search costs and the overall

impact this has on the financing of innovation.

Lastly, this paper contributes to the growing of data technologies in financial markets.

Prior research has examined these technologies in the banking sector and credit markets

(Fuster et al. (2022); Blattner and Nelson (2021); Di Maggio, Ratnadiwakara, and Carmichael

(2022)), financial analysts (Birru, Gokkaya, and Liu (2018); Coleman, Merkley, and Pacelli

(2021); Grennan and Michaely (2020); Dessaint, Foucault, and Frésard (2021); Chi, Hwang,

and Zheng (2023)), asset management (DâAcunto, Prabhala, and Rossi (2019); Rossi and Utkus

(2020); Abis (2020); Abis and Veldkamp (2024)) and stock price information dissemination (Bai,

Philippon, and Savov (2016); Dugast and Foucault (2018); Zhu (2019); Farboodi and Veldkamp

2020; Gao and Huang (2020); Farboodi et al. (2022)). This paper investigates the impact of data

technologies in the VC industry.

3 Institutional Background -TraditionalVCModel vsData

Driven VCs

VC activities encompass three primary tasks as outlined by Gompers et al. (2020): (i) prelim-

inary investment screening, which involves sourcing, evaluating, and selecting investments,

(ii) investment structuring, and (iii) post-investment value enhancement, including activities

like monitoring and advising startups. Traditionally, pre-investment screening, which plays
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the most crucial role in value creation (Sørensen (2007); Gompers et al. (2020)), relies heavily

on existing networks (Hochberg, Ljungqvist, and Lu (2007); Howell and Nanda (2019)) and

subjective assessments by VC partners (Kaplan and Strömberg (2000); Kaplan, Sensoy, and

Strömberg (2009); Lyonnet and Stern (2022); Gompers et al. 2022). However, evaluating hun-

dreds of startups annually can be lengthy and time-consuming. Many firms therefore adopt

data technologies to automate parts of the pre-investment screening process.

Specifically for sourcing deal flow, VCs want to identify as many startups as possible, to

maximize the likelihood of finding a “home run” investment. However in practice, VCs largely

rely on inbound approaches to find investment opportunities. Gompers et al. (2020) find that

approximately 60% of deals are sourced through a VCs’ professional network. As Damian

Cristian, founder of Koble − a sourcing platform engineered by AI − puts it “Above all else,

VC is a network business, effectively capped by the scalability of human relationships”. While

better networked VCs are shown to have superior fund performance (Hochberg, Ljungqvist,

and Lu (2007)), the coverage of potential investments is largely incomplete which can prevent

best possible fit between startups and VCs. However, using data technologies allows the VC to

find every company possible. Early adopters of these technologies hire data scientists to build

their own internal data infrastructures. 3 Data scientists use data technologies to identify firms

at their earliest stages and use web crawling tools to expand their search from commercial

databases (such as Pitchbook and Crunchbase) to non-obvious sources like LinkedIn, Github,

X, and new firm registrations. SignalFire’s platform, BeaconAI, tracks and ranks more than

80 million companies, 600 million people and millions of open-source projects.4. Basis Set

Ventures uses large language models to study founders’ cognitive and behavioral traits to

predict founder success.5. Data-driven approaches provide a competitive advantage to VCs

over traditional methods, as they are no longer bound by their networks and can identify

promising founders and markets more efficiently. Data technologies then use all the gathered

information to score the startups and provide informative metrics for VCs to decide which

companies to invest in. While this paper focuses mostly on sourcing startups, see Bonelli

3. For example, Signal Fire built Beacon AI, Tribe Capital built Termina, and Connetic Ventures built Wendel.
4. https://www.signalfire.com/blog/signalfire-beacon-ai
5. https://www.basisset.com/founder-superpowers
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(2023) for more information on how data technologies are used in the screening portion of

the pre-investment screening of startups. To end the quote by Damian Cristian “There is a

cognitive gap in how many sectors and companies an individual investor can deeply understand

without the help of data and technology. Technology solves this limitation, enabling investors to

source and screen huge deal flow volumes.”

4 Data and Summary Statistics

4.1 VC Investments

I use data from Crunchbase to construct my investment sample. Crunchbase is an online

database providing detailed information on startup firms and their investors. I start by defin-

ing my VC investor sample. I keep all VC firms headquartered in the US and defined as venture

capitalists, micro venture capitalists or private equity firms 6. I then merge the remaining VCs

with Preqin and VentureXpert to ensure coverage in multiple databases. I am left with 927

distinct VC firms during my sample period of 2010 to 2022 7. For each VC firm, I gather in-

formation on their founding year, headquarter location, assets under management, and full

employee and job histories provided in Crunchbase. After identifying my sample of investors,

I use all their investments made in the US after 2010. I restrict my sample of investments to

those classified as pre-seed, seed, and series a, b, c, and d+. My final sample amounts to 927

unique investors, 8,513 VC-years, and 62,020 VC investments.

Lastly, I gather information on all the startups invested in by my VC sample. This includes

their founding year, industry classification, head quarter location and founder information

from their employee and job histories. Founder information includes gender, education, and

whether they are a serial entrepreneur or previously a VC. I also follow methodology on an

emerging literature on VC investment and alumni networks to identify whether VC partners

and startup founders attended the same alma mater (Garfinkel et al. (2021), Huang (2022), and

6. I exclude all firms classified as angel groups, family offices, funds of funds, investment banks, hedge funds,
accelerators and incubators, government offices, university and entrepreneurship programs, coworking spaces,
startup competitions, pension funds and loyalty programs.

7. Crunchbase’s coverage of startups has been validated to be most accurate in more recent years (Wu, 2016;
Ferrati and Muffatto, 2020).
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Koenig (2022)). My final sample includes 29,375 distinct startups that were at some point VC

funded.

4.2 Methodology to Identify Data-Driven VCs

Following prior literature (e.g. Bonelli (2023), Retterath (2020), Raymond (2024)), I define VC

firms utilizing data technologies as those that hire data scientists or data-related employees.

The rationale is that VCs leveraging data technologies depend on human capital and expertise

to implement and maintain their data infrastructure. I employ a three-step process to identify

when VCs become data-driven.

In step one, I compile a list of data-driven VCs from the “Data-Driven VC” website8, an

initiative led by Andre Retterath, PhD, from Earlybird Ventures. This site provides insights for

VCs interested in adopting data-driven approaches and publishes a weekly newsletter and an

annual report on data-driven practices in the VC industry. According to their methodology, a

VC is classified as data-driven if it meets three criteria: (1) employs at least one data engineer,

(2) receives at least one community nomination as data-driven, and (3) has developed inter-

nal tooling across one or more segments of the VC value chain (e.g. sourcing, screening, due

diligence, portfolio management, or exits). As of the 2024 Annual Report, 79% of identified

data-driven VCs adopt data strategies to improve deal coverage9. Additionally, a 2018 Pitch-

book survey found that 85% of VCs use data for sourcing investments, with 38% using data for

all investment sourcing10. This indicates that data-driven approaches are primarily employed

during the pre-investment screening process.

According to the Data-Driven VC criteria, 75 U.S.-based VC firms are classified as data-

driven (out of 183 globally). I merge this list with my Crunchbase sample, resulting in 40

matches. The remainder of the firms were either classified as data-driven after my sample

period (i.e., in 2023 or 2024) or excluded due to differences in classification, such as incubators.

This refined list of data-driven VCs allows me to proceed to step two.

In step two, I scrape LinkedIn profiles to gather data on current and past employees of the

8. https://www.datadrivenvc.io/
9. https://landscape2024.datadrivenvc.io/

10. https://pitchbook.com/media/press-releases/pitchbook-survey-finds-only-38-of-venture-capital-investors-currently-use-data-to-source-and-evaluate-all-investments-opportunities
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identified data-driven VCs. I manually review each employee profile to identify those working

as data scientists or in closely related roles, ensuring they were hired to develop or manage

internal tools for pre-investment screening . I also compile a list of relevant job titles from

these data-related employees.

In step three, I use Crunchbase and LinkedIn to identify profiles for all current and past

employees of the remaining VCs in my sample. Using the job titles identified in step two, I

flag any data-related employees and manually verify whether they meet the internal tooling

criteria set by Data-Driven VC (i.e. hired to build or manage data-related internal tools used in

pre-investment screening). This process identifies an additional 13 data-driven VCs. Following

prior literature, I classify a VC as data-driven based on the hire date of its first data-related

employee, resulting in 59 data-driven VCs. All other VCs are considered traditional. This

classification results in 2,964 data-driven investments. Panel A of Table 2 shows the mean

difference between data-driven and traditional (i.e. non data-driven) VCs in my sample. Data-

driven VCs are considerably older (14.65) than traditional VCs (11.92) and are also larger based

on number of employees (23.18 versus 8.95) and assets under management (1.3 billion versus

0.4 billion). They also tend to have larger networks (5.93 versus 2.69) and invest in more

startups per year (22.47 versus 7.85).

5 Data-Driven Investors and Investment Opportunities

In this section, I examine whether data technologies reduce search frictions in identifying in-

vestment opportunities. VCs invest in startups, which by nature, are characterized by high

levels of information asymmetry Dessein (2005), This leads VCs to favor local investments

Chen et al. (2010), as geographic proximity facilitates information flow. Since data technolo-

gies can identify all startups with a digital presence, this section explores whether these tech-

nologies help overcome traditional geographic barriers in VC investing.
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5.1 Quantity of Investments

First, without claiming causality, I investigate whether data technologies scale investors’ op-

portunities set. Without access to deal flow data, I proxy for this by looking at the VC’s

overall investments in a given year as well as where they choose to invest. The intuition is

that data technologies are able to find all possible startups with an online presence and can

therefore identify potential investments that would fall outside a VCs network. The VC in-

dustry is highly concentrated with over 79% of capital invested in California, New York, and

Massachusetts (Lerner (2010)). I therefore define VC “Hubs” as commuting zones located in

San Francisco and San Jose, California; New York, New York, and Boston Massachusetts. I

define “Non Hubs” as commuting zones other than Hub commuting zones and “Low Activ-

ity” commuting zones as those with 25 or fewer VC investments over the previous 5 years. I

use 25 or fewer investments as prior literature has used this cutoff to define established VC

markets (e.g. Hochberg, Ljungqvist, and Lu (2010)). I estimate the following regression at the

VC-Year level:

Yj,t = βDataDrivenj,t +Xj,t + αj + αc×i×s×t + ϵj,t (1)

The dependent variable is the number of investments made by VC j in year t. The main

explanatory variable, DataDriven, is a dummy variable equal to 1 if VC j is classified as

data-driven as of year t and 0 otherwise. Xj,t are time varying controls of VC j, including

the VC-firm age (controlling for experience), the number of employees and total assets under

management (controlling for size), and their eigenvector centrality (controlling for network

intensity). αj are VC firm fixed effects to control for any time invariant VC characteristics.

αc×i×s×t are VC-headquarter state c × startup industry i × funding stage s × funding year

t fixed effects to alleviate concerns of the VC’s location, time and industry trends coinciding

with VC’s adoption of data technologies that leads them to invest in startups outside major

hubs. The coefficient β is therefore estimated by comparing VC j’s investments before versus

after data technology adoption relative to other VC firms’ investments in the same state-

industry-stage-year segment. Since the number of investments is a count variable with certain

specifications left-censored at zero and skewed, I estimate a Poisson model. Standard errors
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are clustered at the VC-firm level.

I begin by looking at the overall number of investments made by a VC in a given year. Ta-

ble 3 Panel A reports the results. Since some VCs are founded as quantitative firms (i.e. have

always been data-driven), the first four columns do not include the VC-firm fixed effect to

conduct a between firm analysis. Column (1) estimates Equation 1 without controls. The co-

efficient on DataDriven is positive and significant with a sizable magnitude, indicating that

data-driven VCs make e0.790 − 1 = 120% more investments than traditional VCs. However,

the size and significance of this coefficient is largely dependent on time-varying VC controls.

In column (2), I include the natural log of VC firm age to proxy for experience. The coeffi-

cient is positive and statistically significant and decreases the coefficient on DataDriven to

0.688. In column (3), I include the natural log of the number of employees at the VC firm

and the natural log of the total assets under management to proxy for firm size. Both coef-

ficients are positive and statistically significant, indicating that larger VC firms make more

investments. The coefficient on DataDriven decreases substantially to 0.113 and is no longer

statistically significant. The coefficient on Log(V CFirmAge) also decreases in magnitude,

switching signs to negative and becomes statistically insignificant. In column (4), I include

the VC firm’s eigenvector centrality to proxy for the size of their network. Prior literature

finds that VCs’ investments are largely sourced through inbound approaches, and the coef-

ficient on Centrality is positive and significant, indicating VCs with larger networks invest

more. The coefficient on DataDriven falls to 0.026 and is largely insignificant with t-statistic

of 0.46. Thus firm size and network centrality mostly explains the differences in the number

of investments made by a VC in a given year.

In columns (5) through (8) I include VC-firm fixed effects. This allows me to compare the

number of investments VCs make before and after they adopt data-technologies. The coeffi-

cients across the specifications are more stable, even after including proxies for VC firm age,

size, and network centrality. The most stringent specification is column (8) and the coeffi-

cient on data-driven can be interpreted as, after VCs adopt data technologies, they increase

the number of investments made by approximately 14%, compared to VCs in the same state-

industry-stage-year segment. The average VC therefore increases the number of investments
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from 8 to 9 investments per year. The persistent significance and large magnitudes on proxies

for VC firm size and network centrality offer important inferences for VC-investment deci-

sions. Overall, the results suggest that data-driven VCs do not invest in more startups relative

to traditional VCs, however, after they adopt data technologies, they increase their number of

investments on average by an additional firm per year.

In Panel B of Table 3, I replace the dependent variable with the number of investments

in hub commuting zones (i.e., San Francisco and San Jose, CA; Boston, MA; and New York,

NY). Before controlling for firm size and network centrality (columns (1), (2), (5), and (6)), the

coefficients are positive and statistically significant, indicating that data-driven firms increase

their investments in hub locations after adopting data technologies. VCs tend to concentrate

the majority of their investments in these areas, with an average of 5 out of 8 investments

per year, and two-thirds of VC-backed startups are located in these regions (NVCA, 2020).

Therefore, if VCs scale up their investments, it is intuitive that they would do so by investing

in hub-located startups. However, the magnitudes decrease substantially and lose statistical

significance after controlling for firm size and network centrality proxies. This suggests that

the observed increases in hub investments are largely explained by a firm’s network, rather

than the adoption of data technologies. In contrast, Panel C presents the results when the de-

pendent variable is replaced with the number of investments in non-hub commuting zones.

The coefficients on DataDriven in columns (1), (2), (5), and (6) are positive and statistically

significant, though smaller in magnitude than those in Panel B. However, when size and cen-

trality controls are included in columns (7) and (8), the coefficients remain consistent in both

magnitude and significance. This indicates that the increase in investments in non-hub areas

is not fully explained by a VC firm’s size and network but is also attributed to the adoption of

data technologies. The results are even stronger in Panel D, where I further restrict the number

of investments to those made in low-activity areas. The most stringent specification, shown

in column (8), suggests that after VCs adopt data technologies, they increase the number of

investments in low-activity areas by e0.46 − 1 = 58% .

To mitigate concerns that VCs located in non hub areas are driving results, I repeat the

above analysis but exclude all VCs located in non bub areas. The results are displayed in Panel
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A of Table A1. Results are largely consistent: after VCs adopt data technologies, VCs increase

the number investments they make, specifically in non hub and low activity areas. Another

concern is that the analysis in Table 3 includes follow-on investments, which are unlikely

to be sourced through quantitative means. In Panel B of Table A1, I only include first time

investments by VCs in startups. The results hold. In addition, results are robust to variations

of the main independent DataDriven variable. In panel A of Table A2, results are robust

to a continuous measure of “Data-driven intensity”, defined as the logarithm of one plus the

number of data-related jobs at the VC firm. In panel B of Table A2, results continue to hold

when using the number of data-related employees scaled by the number of partners at the

VC firm. Overall, these results suggest that after adopting data technologies, VCs increase

their investments, particularly in non-hub and low-activity areas, providing evidence that

data technologies can lower search frictions in identifying investment opportunities.

5.1.1 Confounding Variable: VC Firm Growth

The previous results indicate that after adopting data technologies, VCs tend to increase their

investments, particularly in non-hub and low-activity areas. A natural follow-up question

is: how do they achieve this? VCs are constrained by both how much they can invest (i.e.,

fund size) and the number of companies they can actively manage (i.e., number of partners).

To explore this further, I begin by examining the first limitation: fund size. VCs can either

raise larger funds at the time of data technology adoption, allowing them to invest more.

Alternatively, VCs could participate in smaller round sizes, thus increasing the number of

startups they can invest in. Data-driven approaches allow VCs to evaluate more startups

than human capital alone, potentially leading them to adopt “spray and pray” strategies,

where they invest in a larger number of startups but reduce the amount of capital per in-

vestment to hedge against failure (Ewens, Nanda, and Rhodes-Kropf (2018)). I conduct an

OLS regression using Equation 1, replacing the outcome variables with Log(TotalAUM)

and Log(MedianRound$). To better capture firm growth, I remove controls for firm size (i.e.

Log(#Employees)). The results are displayed in Panel A of Table 4. Odd-numbered columns

exclude VC-firm fixed effects to capture between firm variation and even-numbered columns
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include VC-firm fixed effects to capture within firm variation. In columns (1) and (2), the coef-

ficient on DataDriven is positive and statistically significant, indicating that after VCs adopt

data technologies, their AUM increases. In columns (3) and (4), I replace the dependent vari-

able with the natural log of median round size. The coefficients on DataDriven are largely

insignificant. These results suggest that VCs are able to invest more because they have more

committed capital, not because they are decreasing round sizes.

Another constraint on VCs’ ability to invest more is their human capital. VCs actively

manage their portfolios (Hsu (2004), Bernstein, Giroud, and Townsend (2016), often taking

board seats and meeting regularly with portfolio companies. Therefore, if VCs are making

more investments, they would likely need to hire more partners to manage the increased

workload. To examine this, I replace the dependent variable in Equation 1 withLog(#Partners).

The results are displayed in columns (1) and (2) in Panel B of Table 4. In both specifications,

the results are positive but the magnitude and significance weakens when including the VC

firm fixed effect. In columns (3) and (4), I replace the dependent variable with the number of

investments per partner and perform a Poisson model. The results are insignificant. Overall,

these findings suggest that VCs tend to hire more partners after adopting data technologies,

consistent with the increase in committed capital, which enables them to make more invest-

ments.

The results above suggest that the timing of data technology adoption is correlated with

overall firm growth. A potential concern is that VCs may be investing more, particularly in

non-hub and low-activity areas, as a byproduct of firm growth rather than due to data tech-

nology adoption through the hiring of a data-related employee. While the previous section

controls for firm size by including Log(#Employees) and Log(TotalAUM), I conduct two

additional analyses to further address this concern to provide added confidence in my find-

ings.

Examining Pre-Trends First, I address concerns that VCs hire data scientists during a

period of growth by examining pre-trends. I begin by performing a more formal stacked

difference-in-differences (DiD) approach. Given that the hiring of data scientists is staggered,

I estimate a stacked DiD specification (Gormley and Matsa (2011) and Baker, Larcker, and
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Wang (2022)) using an unbalanced VC panel.. The event window spans 5 years before and

after the hiring event (the panel is unbalanced as some VCs were founded less than 4 years

before the event), and the analysis is conducted at the VC-year level.:

Yj,d,t = βTreatedj,d × Postd,t +Xj,d,t + αj×d + αd×c×i×s×t + ϵj,d,t (2)

Yj,d,t is the number of investments made by VC j in year t. Treated is an indicator equal

to one if VC j hires a data scientist during my sample and zero otherwise. Post is an indicator

that equals one post-hiring and zero otherwise. Controls and fixed effects remain the same

as before. Results are displayed in columns (1) through (3) in Table 5 and are consistent using

the stacked DiD design: after VCs adopt data technologies, they invest in more startups (Panel

A), specifically in non hub (Panel C) and low activity (Panel D) areas. Similar as before, coeffi-

cient magnitudes are sensitive to the inclusion of VC network centrality (column (2)) and VC

firm size (column (3)), indicating that these are important controls when investigating where

VCs choose to invest. To examine more closely whether data scientists were hired simply to

manage overall investment growth, I plot the coefficient dynamics in Figure 2. The figure is

constructed by replacing Postd,t in Equation 2 with event time dummies:

Yj,d,t =
5∑

k=−4,k ̸=−1

βk[Treateddc × Y ear(k)c] + αd,c +Xj,d,t + αj×d + αd×c×i×s×t + ϵj,d,t

(3)

whereY ear(k)c indexes years since cohort d’s hiring of a data scientist. Panel A of Figure 2

shows the results for all investments made by VC j in year t. The figure shows slight pre-

trends for total investments (Panel A). Thus to mitigate concerns that overall firm growth is

correlated both with the hiring of a data scientist and investments in non-hub areas, I conduct

the following placebo analysis.

Placebo Analysis For the placebo analysis, I create a matched sample with another type

of employee hire: venture partner. Venture partners are different from general partners, as

they are specifically hired to help with deal sourcing and strategic guidance (Rezaei (2024)).
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They do not act as general partners, who are more senior and committed employees and are

involved in all aspects of venture capital financing. In addition, they are not involved in

the final investment decision, making them an ideal equivalent to data scientists as they are

primarily hired to help with the front end of investment process.

For each data-driven firm in my sample, I propensity score match to another VC firm that

hires a venture partner in the same year. The matched-VC has to be located in the same state

and invest in the same industry and stage as the data-driven VC. I propensity score match on

the controls: VC firm age, number of employees, total assets under management, and network

centrality, the year prior to employee hire. I conduct a one-to-one match with replacement,

and results are robust to a 1-3 match in the appendix (Table A3). The summary statistics and

mean differences to the data-driven sample are in Panel B of Table 2. There are no statistical

differences between investor age, assets under management, and network centrality, however,

data driven VCs are larger in terms of employee size than the matched sample. This can be

attributed to the largest VC firms being classified as data-driven (e.g. Andreesson Horowitz,

Norwest Venture Partners, and Sequoia). In untabulated results, the median differences are

not statistically significant from zero. I conduct the same analysis in Equation 2 as well as

the dynamic analysis in Equation 3, but Treateddc is an indicator to a matched firm hiring a

venture partner.

Panel A of Figure 3 shows the dynamics for total investments after the hiring of a venture

partner. Similar to the data-driven analysis, the hiring of a venture partner is associated with

an overall increase in the number of investments with a slight pre-trend. This indicates that

hiring of a venture partner is also associated with overall firm growth. The coefficients are

displayed in columns (4) through (6) of Panel A in Table 5. The coefficients are positive and

statistically significant, indicating that after VCs hire a venture partner, they increase the num-

ber of investments by 11% to 17%. Similar to the data-driven results, the magnitudes decrease

when controlling for size and centrality. Panel B replaces total investments with investments

in hub areas. The results are largely similar in both significance and magnitude to those in

Panel A: VCs that hire venture partners increase their number of investments in hub areas.

In Panel C, there is no significant increase in non-hub investments, and in Panel D, which
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focuses on investments in low-activity areas, the results are insignificant and have a nega-

tive sign. These findings indicates that the hiring of a venture partner, similar to the hiring

of a data scientist, correlates with overall firm growth. However, unlike data scientists, ven-

ture partners drive increased investments predominantly within established hub areas rather

than expanding into non-hub or low-activity regions. This distinction underscores the geo-

graphically concentrated nature of traditional VC networks, highlighting the unique potential

of data technologies to identify promising startups beyond major hubs, thus expanding the

reach of venture capital into previously underserved locations.

5.1.2 Selection: Instrumental Variables Approach

The previous section presented evidence that growth is not the primary driver of increased in-

vestments in non hub locations. However, to address the possibility of other omitted variables,

I develop an empirical strategy to estimate the causal impact of data technology adoption on

VC investments. My approach isolates variation in VCs’ adoption of data technologies that

stems from early exposure to AI and the timing of raising a new fund, mitigating potential bias

from demand shocks that could influence both technology adoption and investment strategies.

Identification Strategy I construct my instrument by isolating variation in VCs’ adoption

of data technologies from two sources: early exposure to AI and the timing of raising a new

fund. For the early exposure measure, the intuition is that commercial interest in AI only

became widespread around 2010, when technology firms first began incorporating AI into

consumer products (e.g., Apple introducing Siri in 2011), followed by non-technology firms

using AI to enhance business operations (e.g., Walmart deploying cameras on floor scrubbers

to track real-time inventory levels in 2017). In 2012, researchers at Google introduced a deep

Convolutional Neural Network (CNN) architecture that won the ImageNet challenge, sparking

a surge in deep learning research and implementation (Krizhevsky, Sutskever, and Hinton

(2012)). Since then, many firms − both in and outside the tech sector − have adopted these

advances in their operations.

Recent research by Babina et al. (2024) highlights a significant increase in AI investments

by public firms across industries, leading to growth in sales, employment, and market valua-
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tions. For early AI adopters in industries other than technology, such as VCs in the financial

services industry, firms need both an understanding of the benefits of AI and the know-how to

implement it. While AI became popular for commercial use after 2010, young, innovative star-

tups were pioneering AI development in the 2000s. For instance, Predictix, founded in 2005,

provided clients with big data and analytics processes to forecast business operations, and

Voci, founded in 2008, pioneered speech-to-text algorithms in hardware. VCs that invested in

such startups would have had a first-mover advantage in understanding AI’s potential appli-

cations, ahead of other investors. I hypothesize that VCs who invested in AI-focused startups

before 2010 are more likely to be early adopters of data technologies and to adjust their in-

vestment strategies in line with my previous findings.

AI Industry Exposure I exploit the cross-sectional heterogeneity in the impact of AI in-

dustries to identify the effect on data technology adoption by VCs. Crunchbase categorizes

companies into 750 industries to account for heterogeneity across startup’s specific market

segments11. Following methodology used in Bonelli (2023), I assign a treatment intensity to

each industry in Crunchbase proxying for the extent to which that industry would special-

ize in artificial intelligence. To create industry-level treatment intensities, I rely on business

descriptions of firms in the Crunchbase database, including those of firms that were not VC-

funded (Crunchbase covers other types of firms - including public and private that are \were

not necessarily VC-backed). I start by collecting AI terms defined in the Artificial Intelli-

gence Glossary from Tech Target, a marketing company that provides data-driven services

to business-to-business technology vendors12. Table A4 reports the terms contained in the

glossary. They include keywords such as “Artificial Intelligence”, “Machine Learning” and

“Natural Language Processing”. I then search for these terms in the business descriptions of

all companies in Crunchbase13. Finally, for each industry I compute the fraction of company

descriptions featuring at least one AI term and I rank industries according to this metric. I

only consider industries with more than 100 business descriptions to avoid assigning industry-

level treatment intensities that are too dependent on a few companies. Treatment intensity

11. For example, in the market segment Financial Services, Crunchbase includes Life Insurance, FinTech, Mobile
Payments, and Wealth Management as some of the industries

12. See https://www.techtarget.com/whatis/feature/Artificial-intelligence-glossary-60-terms-to-know
13. I exclude firms classified only as “investors”
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(between 0 and 1) is then defined as the overall percentile rank in the industry distribution:

IndustryExposurei = RankI{
Nb. Company Descriptions with Match in Industry i

Nb. Company Descriptions in Industry i
} (4)

where I is the set of industries in Crunchbase. Intuitively, industries in which companies men-

tion AI terms more often are more likely to be part of the AI industry. Panel A of Table A5

shows the ten industries with the highest treatment intensities. It includes industries such as

“Machine Learning”, “Artificial Intelligence”, “Natural Language Processing”, and “Text Ana-

lytics”. The least exposed industries are presented in Panel B and encompass industries such

as “Timber”, “Bakery”, and “Laundry”. This is not surprising as companies in these industries

are less likely to benefit from AI.

VC Exposure The extent to which VCs are exposed to AI pre-2010 depends on the VCs

sectoral specialization. A VC firm mainly investing in software and data analytics companies

is more likely to invest in a firm in the AI industry. By contrast, a VC firm investing in phar-

maceuticals is less likely to invest in firms conducting business in AI. My empirical strategy

makes use of these variations across VC firms to identify the impact of investing in AI star-

tups pre-2010 on VCs adoption of data technologies. An important assumptions is that VCs

investing in AI startups prior to 2010 did not do so in anticipation to adopt these technologies

themselves. However, this runs counter to the lack of commercial interest in AI by firms prior

to 2010, especially in the non-technology sector (such as VCs in the Financial Services indus-

try). To quantify a VC firm’s exposure to the AI industry pre-2010, I create a measure called

“VC Exposure” constructed by linking each VC investment in my sample to the corresponding

industry exposure defined above. This creates the following exposure measure:

V CExposurej =
1

Nj,2010

∑
i∈Aj,2010

IndustryExposurei, (5)

where J is the set of VCs with investments before 2010, Aj,2010 is the set of investments

made by VC firm j before 2010,Nj2010 is the number of investments in this set, IndustryExposurei

is the treatment intensity of the industry of the startup corresponding to investment i, defined

in Equation 4. VC firms with the highest exposure are those with most of their investments
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before 2010 in industries with high treatment intensity, creating within-industry variations

across investments made by investors with different VC-level exposures.

Fund Timing Lastly, I create an indicator if a VC raised a fund in the previous two years

(NewFundj,[−2:0]). The intuition is that VCs tend to hire new employees from the increased

capital they receive from raising a new fund. Thus VCs that plan on adopting more data-

driven approaches are likely to wait till their next fundraising cycle. I collect data for VC fund

vintages from Preqin.

First Stage I instrument VCs’ data technology adoption with their exposure to AI prior to

2010 interacted with whether they raised a new fund in the previous two years. The exclusion

restriction is satisfied in that commercial interest in AI for non-technology firms only became

popular after 2010 and thus any investments in AI prior to 2010 were not in anticipation to

adopt these technologies. To further support this assumption, the first investment made by a

data-driven VC was in 2010. The following is the first-stage specification:

DataDrivenj,t = βV CExposurej ×NewFundj,[−2:0] +Xj,t + αj + αc×i×s×t + ϵj,t, (6)

where DataDrivenj,t is an indicator if the VC is data driven as of year t. V CExposurej

is a VCs’ exposure to AI through their investment prior to 2010 as defined in Equation 5.

NewFundj,[−2:0] is an indicator if a VC raised a new fund in the previous two years. Xj,t are

time varying VC controls. αj are VC-firm fixed effects and αc×i×s×t are VC state × industry

× stage × year fixed effects. Standard errors are clustered at the VC firm level.

The results of the first stage are displayed in column (1) of Table 6. The coefficient on

V CExposurej is positive and statistically significant and the F-statistic 14, greater than the

conventional level of 10, satisfying the relevance condition for the instrument.

Second Stage Next, I implement the second stage of my instrumental specification. I

estimate the following regression:

Yj,t = β ˆDataDriven+Xj,t + λj + λc×i×s×t + ξj,t, (7)

where ˆDataDriven is instrumented by VCs’ exposure to AI prior to 2010 and Yj,t is the
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number of investments made by VC j in year t. The empirical specifications in Equation 6 and

Equation 7 require observing the industry composition of VCs portfolios before 2010. This

analysis therefore consists of 3,301 VC-years made by 398 VC firms. The summary statistics

for this sample can be found in Panel E of Table 1. The even columns in Table 6 show the

OLS results using this sample. The results are similar to that of the baseline specification in

Table 3.

The results for the second stage can be found in Column (3) for investments in non-hubs

and Column (5) for investments in low activity commuting zones. Since I perform Poisson

Pseudo Maximum Likelihood models, I bootstrap the standard errors over 1,000 iterations.

The coefficients are positive and statistically significant across both specifications, implying

a causal effect of data technology adoption on lowering search frictions and VCs investing

more outside of VC hubs. The magnitudes in the second stage are significantly larger than the

OLS estimates. One potential reason is that only 4% of firm-years are data-driven. As a result,

there may not be enough variation in the instrument, resulting in the model overfitting the

data.

5.2 Other Proxies for Out-of-Network Investments

In this section, use other proxies for startups considered to be outside VC networks to test

where data technology adoption lowers search frictions for finding investments. I conduct

these analyses at the investment level, to focus on VC-startup pairs, using the following re-

gression:

Yj,k,t = βDataDrivenj,t +Xj,k,t + αj + αc×i×s×t + ϵj,k,t (8)

For my first test I investigate whether VCs invest further away after adopting data tech-

nologies. Specifically, the dependent variable is an indicator if the investment is located in the

top tercile of distance over my sample period. The main explanatory variable, DataDriven,

is a dummy variable equal to 1 if VC j is classified as data-driven as of the investment date and

0 otherwise. Xj,k,t includes the same set of time varying controls for VC j and also includes a

rich set of time varying startup k, and VC j startup k pair controls. Specifically, I control for

startup age (Log(StartupAge)), where the founder is serial entrepreneur (Serial), whether
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the founder was previously a VC (V CPrior), and whether a partner at VC j and a founder

at startup k share the same alma mater (Alumni). I estimate Equation 8 and Column (1) of

Table 7 displays the results without the VC firm fixed effect. The coefficient is highly insignif-

icant, indicating that data-driven VCs are no more likely to invest in distantly located startups

than traditional VCs. In column (2), I include the VC-firm fixed effect. While still insignificant,

the coefficient is positive and can be interpreted as, after VCs adopt data technologies they

are 6% more likely to invest in distantly located startups.

In columns (3) and (4), I replace the outcome variable with an indicator if the VC invests in

a different industry than their specialization. A large literature shows that VCs tend to special-

ize in investing in various industries (e.g. Hochberg, Mazzeo, and McDevitt (2015)) and these

industries can form established networks within the VC industry (Hochberg, Ljungqvist, and

Lu (2010)). I therefore classify a VC as specializing in a particular industry if more than 40% of

their investments in the previous 5 years are in startups from the same industry. Crunchbase

uses a granular industry specification system with over 750 industry classifications. Using

a supervised machine learning approach, I classify these into 7 industry groups (Figure A1):

Software and IT, Health Care and Biotechnology, Hardware and Electronics, Financial Ser-

vices, Business Services, Consumers, Industrial and Energy. The coefficient on DataDriven

in columns (3) and (4) is positive and statistically significant, and can be interpreted as, after

VCs adopt data technologies they are 7.7% more likely to invest in a startup in a different

industry than their specialization, a 40% increase from the unconditional mean.

Lastly, in columns (5) and (6), I investigate whether VCs rely less on other investors to

find startups and invest with. I therefore replace the outcome variable with an indicator equal

to 1 if a VC invests with another VC located in the same state as the startup, conditional

on investing out of their headquartered state. The intuition is that VCs who invest outside

of their home state are less likely to know of potential investment opportunities in other

VC markets unless they know another VC located close to the startup. However, if VCs use

data technologies to find investments, they can now find the startup without local help. The

coefficients on DataDriven are negative and statistically significant in Column (6) and can

be interpreted as, after VCs adopt data technologies, and conditional on investing outside of
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their headquartered state, they are 2% less likely to syndicate with a local VC, a

6 Data-Driven Performance

In the previous section, I find that VCs increase the overall quantity of investments after

adopting data technologies, specifically in non-hub and low-activity areas. In this next sec-

tion, I examine the quality of these data-driven investments. Prior literature shows that data

technology adoption provides an advantage in finding startups that are less likely to fail (i.e.

more likely to receive follow on funding) but provides no advantage in finding firms that are

likely to achieve a major exit, either through an IPO or an acquisition (Bonelli (2023)). How-

ever, little is known how data-driven investments in non hub and low activity areas compare

to (1) their data-driven hub counterparts or (2) traditional investments in non hub and low

activity areas. Ex ante, the performance of data-driven non-hub investments is unclear. On

one hand, VCs investing in non-hubs may encounter less competition, potentially enabling

them to invest in higher quality startups. This aligns with prior literature that VCs have a

higher hurdle rate for their non hub investments, and as a result, those investments tend to

outperform their local counterparts (Chen et al. (2010)). Alternatively, if data technologies

reduce search frictions for finding investments, they may identify more lower quality firms

in non hub areas. VCs actively monitor their portfolio companies, which leads to increased

performance (Bernstein, Giroud, and Townsend (2016)). However, since non hub investments

are typically further away, VCs may be unable to effectively manage their lower quality in-

vestments. Thus the performance of data-driven non-hub and low-activity investments is an

empirical question.

I therefore examine the performance of data-driven investments compared to traditional

VCs. I split performance outcomes into three variables: whether the startup received follow-

on funding, if the startup achieved an exit through a high-quality acquisition, or if the startup

exited through an IPO or achieved Unicorn status. I examine this at the investment level and

replace the outcome variable in Equation 8 with an indicator if the startup receives follow on

funding, exits through an acquisition or exits through an IPO or achieves unicorn status.
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First, I investigate if data-driven investments are more likely to receive follow-on funding.

I restrict my sample to all investments made between 2010 and 2020, as investments take up to

two years to receive their next investment. Prior literature finds that overall, data-driven in-

vestments are more likely to receive follow-on funding. I find the same result in column (1) of

Table 8. The coefficient on DataDriven can be interpreted as, after VCs adopt data technolo-

gies, the likelihood their investments receive follow on funding increases by 2.6 percentage

points or 3.3% compared to the unconditional mean. In column (2) I interact DataDriven

with an indicator equal to 1 if the startup is located in a non-hub. The coefficient on the

interaction term is negative, but statistically insignificant. The coefficient on DataDriven

is still positive and statistically significant and the coefficient between the interaction and

DataDriven is statistically different at the 5% level, indicating that data-driven investments

in non-hub locations are less likely to receive a follow-on investment than their data-driven

counterparts in hub locations. I also compare the coefficient on the interaction term to the

coefficient on NonHub, which represents traditional investments in non-hub areas. The dif-

ference is not statistically different, indicating that data-driven investments in non-hub areas

do not perform any differently to traditional investments in non-hubs. In column (3), I con-

duct the same analysis but replace non-hub with an indicator if the startup is located in a

low activity area. The coefficient is negative and statistically significant, indicating that data-

driven low-activity investments are less likely to receive follow-on funding. They are also

significantly less likely to receive follow-on funding than their non low-activity data-driven

counterparts (DataDriven) and traditional investors in low-activity areas (LowActivity). In

columns (4) through (6), I repeat the same analysis but restrict investments to those where

the investor is the lead VC in that funding round. The results are similar, with the coefficients

slightly larger in magnitude, indicating that overall, VCs lead investments are more likely to

receive follow-on funding, except in non-hub and low-activity areas.

The above analysis suggests that data-driven VCs tend to invest in lower quality startups

in non-hub and low-activity areas than their hub investments. However, VCs make the major-

ity of their returns through successful exit events, primarily IPOs and acquisitions. These exit

routes allow VCs to capitalize on the growth and value of their portfolio companies, trans-
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lating their equity stakes into liquidity. Among these exits, IPOs are generally regarded as

the most lucrative outcome, generating a 5x to 10x or even 20x return, versus an acquisition,

which tends to yield a 1x to 5x return. However, over the last decade, firms are staying private

longer (Ewens, Nanda, and Rhodes-Kropf (2018)) and are often much older and larger when

they eventually do go public (Gao, Ritter, and Zhu (2013)). Successful startups are likely to

achieve unicorn status (a valuation above $1 billion) before going public. In addition, it is

rare for startups to achieve such a return. Only 23% of startups in my sample exit through

an acquisition, 7% through an IPO, and only 10% achieve unicorn status. Thus VCs tend to

make the majority of their returns in the right tail of their return distribution. To test this, I

start by investigating whether VCs are more likely to invest in startups that eventually IPO

or receive unicorn status after they adopt data technologies. I restrict my sample to first-time

investments made by VCs between 2010 to 2018 as startups typically take 4-5 years to exit.

The results are displayed in Table 9.

The statistically insignificant coefficient on DataDriven in column (1) supports prior lit-

erature’s findings that data technologies have no effect on identifying firms that are likely

achieve a major exit through an IPO or achieve unicorn status. However, in column (2), the

coefficient on the interaction term of DataDriven and NonHub is positive and statistically

significant, indicating that the likelihood of data-driven investments exiting through an IPO

or reaching unicorn status increases by 2.6 percentage points, an increase of 26%. The coeffi-

cients on DataDriven and DataDriven×NonHub are also statistically different from one

another, indicating that data-driven investments in non hubs are more likely to exit through

IPO or achieve unicorn status than their data-driven hub counterparts. Similarly, the coef-

ficient on NonHub and DataDriven × NonHub is statistically different from one another,

indicating that data-driven investments in non-hubs are more likely to outperform than tra-

ditional investments in non-hubs. I find similar results in column (3) when I replace NonHub

with LowActivity. The coefficient magnitudes are even larger, and can be interpreted as the

likelihood of data-driven investments in low-activity exiting through an IPO or achieving uni-

corn status increases by 4.5 percentage points or by 56% compared to the unconditional mean.

The coefficient magnitudes continue to increase in columns (5) and (6) where I further restrict
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the analysis to VCs’ lead investments.

To test whether data technologies provide an advantage for finding investments that are

likely to exit through an acquisition, I repeat the same analysis, but replace the dependent

variable with an indicator if the startup exits through an acquisition. The results are displayed

in Table 10. In all specifications, the likelihood that a startup exits through an acquisition is

no different after VCs adopt data technologies (columns (1) and (4)), regardless if the startup

is located in a non hub ((2) and (5)) or low activity ((3) and (6)) area.

Overall, the results suggest that data-driven technologies are able to identify high-quality

startups that are more likely to achieve unicorn status or exit through an IPO, but also iden-

tify startups in these areas that are more likely to fail (and, also, has no impact on acquisition

outcomes in non-hub areas). These results can be interpreted in two ways. Either, data tech-

nologies lower search frictions for finding startups in non hub areas, both of higher quality

(as shown through the IPO and unicorn analysis) and lower quality (as shown through the

follow-on analysis) than their hub investments. Alternatively, VCs are more likely to abandon

lower quality startups in non hub areas in earlier rounds than their hub counterparts. VCs are

better able to monitor their local investments or investments where they are more likely to

have a secondary office (i.e. another hub location). Thus they may continue to invest in star-

tups in hub areas even if they are of lower quality, as the monitoring may offset their concerns.

In either interpretation, VCs make the majority of their returns through an IPO or acquisition

exit, not through their startup receiving another funding round. Thus data technologies not

only identify startups in non-hub locations, but they are able to identify better quality startups

than traditional VC investments in non-hub locations, as well as better quality investments

than data-driven investments in hub locations.

7 WhichNon-HubAreasAre Likely toAttractData-Driven

Investments?

To summarize the results so far, I show that after VCs adopt data technologies, they are more

likely to invest in non-hub and low activity commuting zones, and that these investments have
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a higher likelihood of exiting through and acquisition or IPO. In this next section, I investigate

which commuting zones are most likely to attract data-driven investments. One advantage of

algorithmic techniques is that are able to identify emerging trends and markets. I therefore

posit that data-driven VCs are more likely to identify startups in areas with high levels of

entrepreneurial activity. I first describe the data and research design and then present my

findings.

7.1 Data and Research Design

I begin by constructing a commuting-zone-year panel from 2010 to 201714. To identify the

entrepreneurial activity of a commuting zone, I use recently available data from the “Startup

Cartography Project” or SCP (Fazio et al. (2019)). The SCP offers a set of entrepreneurial

ecosystem statistics for the United States at the zip code, county, MSA, and state level from

1988 to 2016. The SCP combines state-level business registration records with a predictive

analytics approach to estimate the probability of “extreme” growth (IPO or high-value acqui-

sition) at or near the time of founding for all newly registered firms in a given year. The SCP

then leverages estimates of entrepreneurial quality to develop four entrepreneurial ecosys-

tem statistics, including the rate of start-up formation, average entrepreneurial quality, the

quality-adjusted quantity of entrepreneurship, and entrepreneurial ecosystem performance

over time. For my analysis, I use their Regional Entrepreneurship Cohort Potential Index or

RECPI . This measure interacts the number of new business registrants within a given pop-

ulation with the average growth potential or quality of those startups. In short, the RECPI

is a quality-adjusted index for entrepreneurial activity in a given area. Summary statics can

be found in Panel D of Table 1. I construct the following commuting-zone-year panel:

#Investmentsc,t = βLog(RECPI)c,t−1 +Xc,t−1 + αc + αt + ϵc,t, (9)

The main dependent variable is #Investmentsc,t, the number of VC investments made in

commuting zone c in year t. Log(RECPI)c,t−1 is the natural log of RECPI of commuting

14. The data from the Startup Cartography Project ends in 2016.
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zone c in the previous year. Xc,t−1 includes time varying commuting zone controls such

as GDP, Income, and the percentage of the adult population that went to college. Since the

number of investments is a count variable with certain specifications left-censored at zero and

skewed, I estimate a Poisson model. Standard errors are clustered at the commuting zone level.

My main prediction is that data technologies are skilled in identifying emerging markets and

trends, and thus commuting zones with higher levels of RECPI will attract more data-driven

investments.

7.2 Results

The results are displayed in Table 11. Panel A shows the number of data-driven investments.

The odd numbered columns do not include commuting zone fixed effects and thus repre-

sent the impact of high-levels of entrepreneurial activity on attracting data-driven invest-

ments. Column (1) includes all commuting zones. The coefficient on Log(RECPI) is posi-

tive and statistically significant and can be interpreted as a one standard deviation increase

in Log(RECPI) results in a 632.4% increase in the number of data-driven investments. In

column (3) I exclude all major VC-hub years and repeat the analysis. The coefficient, while

slightly smaller in magnitude, is still positive and statistically significant, indicating that areas

outside major hubs but with high levels of entrepreneurial activity attract more data-driven

investment. I further restrict my sample in column (5) by including on commuting zones with

low VC activity (i.e. 25 or fewer VC investments in the prior 5 years). While still smaller in

magnitude still, the coefficient is positive and statistically significant, indicating that areas

with low venture activity but high entrepreneurial activity attract more data-driven invest-

ments.

The even numbered columns in Table 11 include commuting-zone fixed effects. This re-

moves all time invariant characteristics and thus regressing the number of investments on

the lag of Log(RECPI) captures the change in entrepreneurial activity. In column (2) of

Panel A, the coefficient is negative and statistically significant, indicating that changes in

Log(RECPI) lead to a decrease in data-driven investment. However, I find the result re-

verses when I exclude major VC-hub years in column (4). The coefficient magnitude is even
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higher when further restricting the sample to areas with low VC activity. The negative result

in column (2) may be due to VC hubs having high levels of Log(RECPI) and VC capital

investment, and since the data is highly skewed, including the commuting-zone fixed effect

concentrates the results in these areas. Overall, these results can be interpreted as data-driven

VCs are more likely to invest in areas with growing entrepreneurial activity, which can be at-

tributed to data technologies identifying emerging market trends.

I repeat the analysis in Panel B of Table 11, however the dependent variable is the num-

ber of investments made by traditional VCs in a commuting-zone year. For columns (1), (3),

and (5), the results are similar in significance and magnitude to that of data-driven invest-

ments. However, when I include the commuting zone fixed effects in columns (2), (4), and (6),

the results become insignificant and the magnitudes decrease drastically. This suggests that

traditional methods of identifying startups may overlook emerging markets. These findings

further support the notion that data technologies are more effective in identifying emerging

markets and trends, offering a valuable tool for VCs looking to expand into these areas.

7.3 Implications for Areas with Low History of VC Activity

In the previous section, I demonstrated that non hub and low activity areas with growing

entrepreneurial activity attract more data-driven investment. Next, I explore whether invest-

ment in these areas, specifically low activity areas, experience an increase in subsequent VC

activity. I begin by constructing a panel of all low activity commuting zones in the US during

my sample period (i.e. 25 or fewer VC investments over the previous five years Hochberg,

Ljungqvist, and Lu (2010)). I then identify startups in these commuting zones that receive

funding for the first time by data-driven VCs and classify these commuting zones as treated,

a total of 56 commuting zones. I classify all other commuting zones as my control group. I

then construct a stacked difference-in-difference model, comparing various measures of VC

activity before and after an investment made in the commuting zone by a data-driven VC.

Specifically, I construct the following difference-in-difference regression:

Yd,c,t = β{Treatedd,c × Postd,t}+ αd,c + αd,t + ϵd,c,t, (10)

31



where Yd,c,t are various outcomes of venture activity for commuting zone c in cohort d

and year t. Treatedd,c is an indicator equal to one if a startup in commuting zone c received

an investment by a data-driven VC. Postd,t is an indicator that equals one post data-driven

entry and zero otherwise. The baseline specification controls for cohort × county (αd,c) to

absorb any time-invariant characteristics at the commuting zone level and and cohort × year

(αd,t) fixed effects to absorb time trends. In addition, I add pre-data-driven entry commuting

zone characteristics including income, gdp, and percentage of the population that has a col-

lege degree, interacted with Postt,c to account for the possibility that commuting zones with

certain characteristics experience a change in outcomes post data-driven entry. In the tightest

specification, I also include Log(RECPI) interacted with Post to control for the level of en-

trepreneurial activity prior to investment. All outcomes are left-censored at zero and skewed

and therefore I estimate a Poisson model. The variable of interest , β, captures the change

in an outcome variable for commuting zones with a data-driven investment (Treatedd,c) to

those without.

I begin by looking at the impact of an investment by a data-driven VC in a commuting zone

with low VC activity on entrepreneurial activity in subsequent years. Specifically, I look at

the number funding rounds, the number of startups that receive their first ever VC financing,

the number of unique investors, the number of first time investors and the number of patents

filed by startups backed by VCs. I following methodology introduced by Ewens and Marx

(2024) to classify these patents as being filed by VC-backed startups. I run the specification

outlined in Equation 10. The results are displayed in Table 12. In columns (1) and (2), I find

that the number of funding rounds increases by 8-12% in commuting zones that experience

an investment by a data-driven VC compared to commuting zones that do not. Similarly in

columns (3) and (4), I find that the number of startups that receive their first ever VC-financing

also increase by 8-12%. In columns (5) and (6) I find that the number of unique investors in

low activity commuting zones that receive data-driven investment experience an increase of

19-26% and the in columns (7) and (8) I find that the number of first-time investors increases by

11-18%. Lastly, in columns (9) and (10), the number of patents produced by VC-backed startups

increases by approximately 28% to 35% in commuting zones that receive investment from a
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data-driven VC. Overall, the increase in VC activity in low activity commuting zones after

entry by a data-driven investor indicates that data technologies can have a positive impact on

the financing of innovation in areas outside major clusters in the US.

8 Conclusion

The adoption of data technologies by VCs firms has the potential to significantly transform

their investment strategies and the broader landscape of innovation. This paper demonstrates

that data technologies enable VCs to broaden their investment opportunity sets, allowing

them to identify and invest in startups beyond their traditional networks and geographic

constraints. By leveraging detailed employee data from Crunchbase and LinkedIn, I track the

adoption of data technologies and show that VCs become more likely to invest outside major

hubs, specifically those with high and growing levels of entrepreneurial activity. In addition,

data-driven investments in non hub locations are more likely to IPO or achieve unicorn status

than their hub counterparts. I also find that areas with little prior VC activity that receive

a data-driven investment experience an increase in subsequent VC activity. These findings

suggest that data-driven approaches can mitigate information frictions and enhance the effi-

ciency of deal sourcing. As data technologies continue to evolve, their role in democratizing

access to venture capital and consequently impacting entrepreneurial growth in underrepre-

sented areas will likely become increasingly important. Future research should continue to

explore the long-term effects of this technological shift on financial markets.
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Figure 1: Data-Driven Investments Over Time
The figure reports for each year between 2000 and 2022 the number and percentage of investments made by VC
firms classified as data-driven.

0

5

10

15

%
 o

f D
at

a-
D

riv
en

 In
ve

st
m

en
ts

0

500

1000

1500

# 
of

 D
at

a-
D

riv
en

 In
ve

st
m

en
ts

2000 2005 2010 2015 2020
Year

#Investments
%Investments

41



Figure 2: Data Technologies And Number of Investments
The figures plot the estimated coefficients from Equation 2 at the VC-Year level, of each year relative to VCs’
adoption of data technologies. In Panel A, the dependent variable is the number of investments made by a VC
firm in a given year. In Panel B, the dependent variable is the number of investments made in hub commuting
zones by a VC firm in a given year. In Panel C, the dependent variable is the number of investments made in
non hub commuting zones by a VC firm in a given year. In Panel D, the dependent variable is the number of
investments made in low activity commuting zones by a VC firm in a given year. The year prior to VCs adopting
data technologies is the excluded category, reported as zero in the figures. The horizontal bars represent the 90%
confidence interval for the coefficient estimates with standard errors clustered at the VC firm level. Regressions
include VC firm fixed effects, VCs headquarter state-main stage-main industry-year fixed effects. Regressions
are conducted as Poisson Pseudo Maximum Likelihood (PPML) regressions.
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Figure 3: Placebo And Number of Investments
The figures plot the estimated coefficients from Equation 2 at the VC-Year level, of each year relative to VCs’
hiring of a venture partner. In Panel A, the dependent variable is the number of investments made by a VC
firm in a given year. In Panel B, the dependent variable is the number of investments made in hub commuting
zones by a VC firm in a given year. In Panel C, the dependent variable is the number of investments made in
non hub commuting zones by a VC firm in a given year. In Panel D, the dependent variable is the number of
investments made in low activity commuting zones by a VC firm in a given year. The year prior to VCs adopting
data technologies is the excluded category, reported as zero in the figures. The horizontal bars represent the 90%
confidence interval for the coefficient estimates with standard errors clustered at the VC firm level. Regressions
include VC firm fixed effects, VCs headquarter state-main stage-main industry-year fixed effects. Regressions
are conducted as Poisson Pseudo Maximum Likelihood (PPML) regressions.
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(C) Non Hub Investments

-.2

-.1

0

.1

.2

.3

Po
in

t E
st

im
at

e 
an

d 
95

%
 C

I

-4 -3 -2 -1 0 1 2 3 4 5
Year to/after Data-Driven

(D) Low Activity Investments
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Table 1: Summary Statistics

Mean St. Dev. P1 P25 Median P75 P99 N
Panel A: VC-Year Level

Data Driven 0.04 0.19 0.00 0.00 0.00 0.00 0.00 8513
# Investments All 8.86 12.80 0.00 2.00 5.00 10.00 21.00 8513
# Investments First 5.45 7.69 0.00 1.00 3.00 7.00 13.00 8513
# Investments Hub All 5.95 9.96 0.00 1.00 2.00 7.00 15.00 8513
# Investments Hub First 3.58 5.81 0.00 0.00 2.00 4.00 9.00 8513
# Investments Nonhub All 2.91 4.16 0.00 0.00 2.00 4.00 7.00 8513
# Investments Nonhub First 1.87 2.82 0.00 0.00 1.00 2.00 5.00 8513
# Investments Low Comzone All 0.24 0.78 0.00 0.00 0.00 0.00 1.00 8513
# Investments Low Comzone First 0.17 0.55 0.00 0.00 0.00 0.00 1.00 8513
Investor Age 11.95 11.74 0.00 4.00 9.00 16.00 27.00 7903
Panel B: VC-Year Level Stacked

Data Driven 0.01 0.07 0.00 0.00 0.00 0.00 0.00 34293
Venture Partner 0.18 0.23 0.00 0.00 0.00 1 3 34293
# Investments All 8.25 11.38 0.00 2.00 5.00 10.00 19.00 34293
# Investments Hub All 5.45 8.87 0.00 1.00 2.00 6.00 14.00 34293
# Investments Nonhub All 2.81 3.91 0.00 0.00 2.00 4.00 7.00 34293
# Investments Low Comzone All 0.24 0.79 0.00 0.00 0.00 0.00 1.00 34293
Investor Age t-1 0.99 1.13 0.00 0.00 0.69 1.95 2.64 34293
Panel C: Investment Level

Data-Driven 0.06 0.25 0.00 0.00 0.00 0.00 0.00 62020
Startup Age 3.05 3.93 0.00 1.00 2.00 4.00 7.00 62020
Investor Age 14.04 15.04 0.00 4.00 9.00 20.00 33.00 62020
Distance (miles) 857 1039 0 14 283 1865 2570 49411
Local Syndicate 0.72 0.45 0.00 0.00 1.00 1.00 1.00 62020
Investment Outside Industry Specialization 0.19 0.39 0.00 0.00 0.00 0.00 1.00 49411
Follow On 0.61 0.49 0.00 0.00 1.00 1.00 1.00 62020
Acquisition 0.23 0.42 0.00 0.00 0.00 0.00 1.00 62020
IPO 0.07 0.33 0.00 0.00 0.00 0.00 1.00 62020
Unicorn 0.10 0.30 0.00 0.00 0.00 0.00 0.00 62020
Panel D: VC-Year Level - IV Sample

Data Driven 0.05 0.22 0.00 0.00 0.00 0.00 0.00 3301
# Investments All 18.73 17.02 5.00 7.00 12.00 25.00 43.00 3301
# Investments First 9.87 9.10 0.00 4.00 6.00 13.00 23.00 3301
# Investments Hub All 13.65 15.08 0.00 4.00 8.00 19.00 34.00 3301
# Investments Hub First 7.04 8.10 0.00 2.00 4.00 10.00 18.00 3301
# Investments Nonhub All 5.42 5.28 0.00 2.00 4.00 7.00 11.00 3301
# Investments Nonhub First 3.09 3.40 0.00 1.00 2.00 4.00 7.00 3301
# Investments Low Comzone All 0.37 0.70 0.00 0.00 0.00 1.00 1.00 3301
# Investments Low Comzone First 0.26 0.71 0.00 0.00 0.00 0.00 1.00 3301
Investor Age 21.54 1.68 7.03 15.03 20.9 30.88 42.1 3301
Panel E: Commuting Zone - Year Level

# Investments 3.38 35.55 0.00 0.00 0.00 0.00 1.00 9095
# Non-Data Driven Investments 3.15 31.54 0.00 0.00 0.00 0.00 1.00 9095
# Data Investments 0.23 4.74 0.00 0.00 0.00 0.00 0.00 9095
SFR 876.14 3280.24 0.22 31.74 100.08 420.79 1797.87 9095
EQI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9095
RECPI 2.06 11.90 0.00 0.02 0.08 0.46 2.46 9095
GDP 4041297 12598352 72767 517446 1066089 2812575 7851039 9095
Income 36103 9321 22247 29821 34332 40337 47398 9095
Population 82867 216637 1729 13887 29595 67120 174788 9095
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Table 2: Data-Driven versus Traditional Summary Statistics
This table reports the t-test of mean differences between Data-Driven VCs and Traditional (or non Data-Driven)
VCs. In Panel A, all traditional VCs are included. In Panel B, only matched Traditional VCs are included. The
symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Data-Driven Traditional Difference
Mean Count Mean Count Data-Driven − Traditional

Panel A: VC-Year Level - All Traditional

Age 14.65 598 11.92 7915 2.73***
# Employees 23.18 598 8.95 7915 15.17***
AUM ($ Mil) 1,256.73 598 437.90 7915 818.83***
Centrality 5.93 598 2.69 7915 3.23***
# Investments 22.47 598 7.85 7915 14.62***
# Hub Investments 16.84 598 5.02 7915 11.82***
# Non Hub Investments 5.46 598 2.80 7915 2.66***
# Low Comzone 0.47 598 0.27 7915 0.20***
Panel B: VC-Year Level - Matched Traditional

Age 13.79 398 13.23 358 0.56
# Employees 23.83 398 20.31 358 3.52**
AUM ($ Mil) 1228.37 398 1162.34 358 66.02
Centrality 5.44 398 5.37 7915 0.07
# Investments 25.37 398 21.61 358 3.76**
# Hub Investments 19.02 398 16.83 358 2.21*
# Non Hub Investments 6.36 398 5.33 358 1.03**
# Low Comzone 0.5 398 0.39 358 0.11**
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Table 3: Data Technology Adoption and Number of Investments
This table reports results for regressions at the VC-year level, investigating whether data-driven VCs make more
investments per year after they adopt data technologies than traditional VCs. The dependent variable is the
number of investments made by a VC firm in a given year. Panel A shows the number of total investments.
Panel B shows the number of investments in Hubs. Panel C shows the number of investments in Low Activity
areas. “State” denotes the state where the VC firm is headquartered. “Industry” denotes the main industry the
VC firm invests in over the sample period (among seven industries: Business Services, Consumers, Financial
Services, Hardware and Electronics, Health Care and Biotechnology, Industrial and Energy, and Software and
IT). “Stage” denotes the main stage the VC firm invests in over the sample period (among six categories: Pre-
Seed, Seed, Series A, Series B, Series C, Series D and onward). I estimate a Poisson Pseudo Maximum Likelihood
(PPML) regression. Standard errors are clustered at the VC-firm level. The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate
significance at the 10%, 5%, and 1% level, respectively.

Outcomes: # Investments
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Total Investments

Data Driven 0.790*** 0.688*** 0.113 0.026 0.224*** 0.231*** 0.144** 0.135**
(6.14) (5.98) (1.27) (0.46) (2.93) (3.14) (2.26) (2.06)

Log(VC Firm Age) 0.402*** -0.041 -0.163*** 0.306*** -0.037 -0.308***
(7.85) (-1.11) (-6.82) (5.17) (-0.61) (-5.58)

Log(# Employees) 0.477*** 0.207*** 0.334*** 0.213***
(9.71) (9.02) (6.60) (5.23)

Log(Total AUM) 0.223*** 0.052*** 0.190*** 0.090***
(6.18) (3.25) (5.97) (3.58)

Centrality 0.190*** 0.148***
(26.15) (16.95)

VC-Firm FE No No No No Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.34 0.38 0.52 0.63 0.66 0.66 0.67 0.68
N 8513 8513 8513 8513 8513 8513 8513 8513

Panel B: Hub Investments

Data Driven 0.635*** 0.558*** 0.016 -0.082 0.184 0.192* 0.098 0.101
(5.08) (4.73) (0.17) (-1.10) (1.55) (1.67) (0.67) (0.88)

Log(VC Firm Age) 0.322*** -0.061* -0.169*** 0.363*** -0.037 -0.303***
(6.82) (-1.66) (-4.54) (4.99) (-0.54) (-4.48)

Log(# Employees) 0.504*** 0.322*** 0.392*** 0.279***
(11.23) (8.00) (6.77) (5.67)

Log(Total AUM) 0.155*** 0.031 0.233*** 0.135***
(4.71) (1.29) (5.94) (3.97)

Centrality 0.147*** 0.154***
(11.87) (12.10)

VC-Firm FE No No No No Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.26 0.28 0.36 0.40 0.49 0.49 0.50 0.51
N 8513 8513 8513 8513 8513 8513 8513 8513
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Panel C: Non Hub Investments

Data Driven 0.842*** 0.730*** 0.142 0.068 0.230*** 0.237*** 0.161** 0.152**
(6.21) (6.06) (1.45) (1.02) (3.14) (3.32) (2.55) (2.54)

Log(VC Firm Age) 0.434*** -0.036 -0.159*** 0.282*** -0.040 -0.315***
(7.53) (-0.80) (-5.79) (4.53) (-0.61) (-5.15)

Log(# Employees) 0.463*** 0.153*** 0.310*** 0.183***
(8.02) (6.28) (5.58) (4.11)

Log(Total AUM) 0.254*** 0.061*** 0.177*** 0.076***
(5.98) (3.74) (5.52) (3.00)

Centrality 0.207*** 0.147***
(27.60) (16.10)

VC-Firm FE No No No No Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.38 0.42 0.55 0.66 0.69 0.69 0.70 0.71
N 8513 8513 8513 8513 8513 8513 8513 8513

Panel D: Low Activity Investments

Data Driven 0.609*** 0.547*** 0.058 -0.010 0.481* 0.508** 0.442* 0.460*
(3.66) (3.55) (0.40) (-0.07) (1.93) (2.07) (1.92) (1.81)

Log(VC Firm Age) 0.294*** -0.044 -0.133** 0.228 -0.001 -0.259*
(4.91) (-0.78) (-2.34) (1.59) (-0.00) (-1.87)

Log(# Employees) 0.445*** 0.303*** 0.201* 0.038
(7.59) (5.06) (1.78) (0.35)

Log(Total AUM) 0.149*** 0.031 0.245*** 0.107
(3.60) (0.78) (2.88) (1.30)

Centrality 0.119*** 0.174***
(8.34) (6.85)

VC-Firm FE No No No No Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.37 0.37 0.39 0.41 0.50 0.50 0.50 0.51
N 8513 8513 8513 8513 8513 8513 8513 8513

47



Table 4: Data Technology Adoption and Growth
This table reports results for regressions at the VC-year level. Panel A shows the impact of data technology
adoption on total assets under management (columns (1) and (2)). Panel B shows the impact of data technology
adoption on the number of partners (columns (1) and (2)) and the number of investments per partner (columns
(3) and (4)). “State” denotes the state where the VC firm is headquartered. “Industry” denotes the main industry
the VC firm invests in over the sample period (among seven industries: Business Services, Consumers, Financial
Services, Hardware and Electronics, Health Care and Biotechnology, Industrial and Energy, and Software and
IT). “Stage” denotes the main stage the VC firm invests in over the sample period (among six categories: Pre-
Seed, Seed, Series A, Series B, Series C, Series D and onward). Standard errors are clustered at the VC-firm level.
The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A: Fund Size

Outcomes: Log(Total AUM) Log(Median Round $)
(1) (2) (3) (4)

Data Driven 0.481*** 0.247** 0.100 0.006
(2.75) (2.39) (0.95) (0.08)

Log(VC Firm Age) 0.255*** 0.397*** -0.033 0.032
(4.28) (5.22) (-0.85) (0.49)

Centrality 0.220*** 0.120*** 0.038*** 0.013
(13.73) (7.20) (4.47) (1.44)

VC-Firm FE No Yes No Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes
R-squared 0.53 0.90 0.49 0.69
N 8513 8513 6075 6075

Panel B: Employee Size

Log(# Partners) Investment/Partner
(1) (2) (3) (4)

Data Driven 0.209* 0.101 0.008 0.030
(1.78) (1.14) (0.06) (0.28)

Log(VC Firm Age) 0.227*** 0.274*** -0.294*** -0.414***
(6.17) (6.22) (-6.32) (-5.58)

Centrality 0.071*** 0.022** 0.156*** 0.160***
(7.05) (2.55) (13.13) (8.96)

VC-Firm FE No Yes No Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes
R-squared 0.33 0.87 0.54 0.85
N 8513 8513 8513 8513
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Table 5: Data Technology Adoption and Number of Investments - Placebo
This table reports results for regressions at the VC-year level, investigating whether data-driven VCs make more
investments per year after they adopt data technologies than traditional VCs. The dependent variable is the
number of investments made by a VC firm in a given year. Panel A shows the number of total investments.
Panel B shows the number of investments in Hubs. Panel C shows the number of investments in Non Hubs.
Panel D shows the number of investments in Low Activity areas. “State” denotes the state where the VC firm
is headquartered. “Industry” denotes the main industry the VC firm invests in over the sample period (among
seven industries: Business Services, Consumers, Financial Services, Hardware and Electronics, Health Care and
Biotechnology, Industrial and Energy, and Software and IT). “Stage” denotes the main stage the VC firm invests in
over the sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series D and onward).
I estimate a Poisson Pseudo Maximum Likelihood (PPML) regression. Standard errors are clustered at the VC-
firm level. The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Treat = Data Scientist Hire Venture Partner Hire
(1) (2) (3) (4) (5) (6)

Panel A: Total Investments

Treat×Post 0.183** 0.183** 0.134* 0.168** 0.167** 0.113*
(2.39) (2.29) (1.75) (2.47) (2.28) (1.87)

Log(VC Firm Age)×Post -0.158*** -0.158*** -0.192*** -0.157*** -0.158*** -0.193***
(-5.01) (-4.12) (-5.04) (-5.00) (-4.14) (-5.11)

Log(# Employees)×Post 0.045 0.051
(1.13) (1.28)

Log(Total AUM)×Post 0.038* 0.038*
(1.76) (1.73)

Centrality×Post -0.000 -0.012 0.001 -0.012
(-0.00) (-1.18) (0.06) (-1.17)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.64 0.64 0.64 0.64 0.64 0.64
N 34293 33704 31069 34293 33704 31069

Panel B: Hub Investments

Treat×Post 0.146* 0.119 0.104 0.184** 0.184** 0.116**
(1.69) (1.28) (1.22) (2.43) (2.27) (2.22)

Log(VC Firm Age)×Post -0.171*** -0.187*** -0.197*** -0.171*** -0.188*** -0.198***
(-4.25) (-4.04) (-4.29) (-4.26) (-4.05) (-4.33)

Log(# Employees)×Post -0.021 -0.018
(-0.37) (-0.33)

Log(Total AUM)×Post 0.033 0.033
(1.25) (1.24)

Centrality×Post 0.011 0.006 0.011 0.006
(0.97) (0.42) (1.00) (0.43)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.50 0.50 0.50 0.50 0.50 0.50
N 34293 33704 31069 34293 33704 31069
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Panel C: Non Hub Investments

Treat×Post 0.200** 0.201** 0.147* 0.090 0.088 0.082
(2.44) (2.36) (1.67) (0.93) (0.90) (0.84)

Log(VC Firm Age)×Post -0.152*** -0.151*** -0.192*** -0.151*** -0.151*** -0.194***
(-4.63) (-3.79) (-4.77) (-4.60) (-3.80) (-4.85)

Log(# Employees)×Post 0.066* 0.073*
(1.73) (1.95)

Log(Total AUM)×Post 0.045** 0.044*
(2.00) (1.96)

Centrality×Post -0.001 -0.016 -0.000 -0.016
(-0.07) (-1.63) (-0.00) (-1.62)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.68 0.68 0.68 0.68 0.68 0.68
N 34293 33704 31069 34293 33704 31069

Panel D: Low Activity Investments

Treat×Post 0.502* 0.506* 0.511* -0.291 -0.307 -0.071
(1.81) (1.80) (1.77) (-0.86) (-0.88) (-0.27)

Log(VC Firm Age)×Post -0.113 -0.111 -0.106 -0.106 -0.114 -0.119
(-1.06) (-0.99) (-0.97) (-1.00) (-1.02) (-1.10)

Log(# Employees)×Post -0.027 -0.013
(-0.21) (-0.11)

Log(Total AUM)×Post 0.013 0.022
(0.17) (0.29)

Centrality×Post -0.001 -0.002 0.004 0.001
(-0.06) (-0.06) (0.20) (0.04)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.55 0.53 0.54 0.55 0.53 0.54
N 34293 33704 31069 34293 33704 31069
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Table 6: Data Technology Adoption and Number of Investments - IV Approach
This table reports results for regressions for the instrumental variable two-stage least squares analysis at the
VC-investment level, investigating whether the investments made by data-driven VCs after they adopt data
technologies lead to different outcomes than those made by other VCs. Column (1) shows the first stage of the
regression, where an indicator equal to one if an investment is made by a data-driven VC is fitted with the VC
Exposure × New Fund. Columns (2) and (3) show investments made in non hub commuting zones, and columns
(4) and (5) show investments made in low activity commuting zones. “State” denotes the state where the VC
firm is headquartered. “Industry” denotes the main industry the VC firm invests in over the sample period
(among seven industries: Business Services, Consumers, Financial Services, Hardware and Electronics, Health
Care and Biotechnology, Industrial and Energy, and Software and IT). “Stage” denotes the main stage the VC
firm invests in over the sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series
D and onward). I estimate a Poisson Pseudo Maximum Likelihood (PPML) regression for columns (2) through
(5). Standard errors are clustered at the VC-Firm level. For columns (3) and (5) standard errors are bootstrapped
over 1,000 iterations.

Outcomes: Non Hub CZ Low Activity CZs
First Stage PPML 2SLS PPML 2SLS

(1) (2) (3) (4) (5)
Data-Driven 0.170*** 0.872*** 0.688** 1.436***

(3.33) (2.45) (2.75) (2.55)
VC Exposure×New Fund 0.055***

(3.71)
Log(VC Firm Age) -0.044 -0.332 -0.028 -0.021 -0.025

(-0.78) (-0.34) (-0.54) (-0.57) (-0.57)
Log(# Employees) 0.445*** 0.303*** 0.281*** 0.285*** 0.264***

(7.59) (5.06) (4.78) (5.35) (5.23)
Log(Total AUM) 0.149*** 0.159*** 0.215*** 0.249*** 0.255***

(3.60) (2.68) (2.88) (2.70) (2.82)
Centrality 0.119*** 0.178*** 0.176*** 0.174*** 0.172***

(8.34) (6.55) (6.42) (6.85) (6.72)
VC-Firm FE Yes Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes
F-Statistic 13.74
R-squared 0.44 -0.05 0.45 -0.02
N 3301 3301 3301 3301 3301
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Table 7: Data Technology and Other Measures of Out-of-Network Investments
This table reports results for regressions at the investment level, investigating the impact of data technology adoption on out-of-network investment outcomes.“State” denotes
the state where the VC firm is headquartered. “Industry” denotes the main industry the VC firm invests in over the sample period (among seven industries: Business Services,
Consumers, Financial Services, Hardware and Electronics, Health Care and Biotechnology, Industrial and Energy, and Software and IT). “Stage” denotes the main stage the
VC firm invests in over the sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series D and onward). The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate
significance at the 10%, 5%, and 1% level, respectively.

Outcomes: 1(Top Tercile Distance) 1(Diff Industry) 1(Local Syndicate)
(1) (2) (3) (4) (5) (6)

Data-Driven -0.004 0.027 0.089** 0.077* -0.045 -0.020**
(-0.13) (1.33) (2.15) (1.80) (-1.10) (-2.03)

Log(VC Firm Age) 0.008 0.033*** 0.020** 0.045** -0.006 -0.013**
(1.05) (3.39) (2.09) (2.32) (-1.18) (-2.08)

Log(# Employees) -0.015*** -0.022*** -0.017*** -0.026*** -0.018*** -0.026***
(-2.71) (-3.27) (-2.75) (-3.30) (-2.70) (-3.30)

Log(Total AUM) 0.008*** -0.000 0.008*** -0.000 0.008*** -0.000
(3.62) (-0.09) (3.69) (-0.09) (3.62) (-0.07)

Centrality 0.004*** 0.001 0.005*** 0.001 0.004*** 0.002**
(4.14) (0.61) (4.19) (0.62) (4.12) (2.32)

Log(Startup Age) 0.010* 0.010** -0.004 -0.003 -0.042*** -0.032***
(1.89) (2.20) (-0.80) (-1.04) (-9.94) (-8.97)

Serial 0.023** 0.021* 0.006 0.003* -0.005 0.010
(2.32) (1.85) (0.42) (0.22) (-0.20) (0.64)

VC Prior 0.046* 0.045 -0.016 -0.015 -0.016 -0.014
(1.85) (1.97) (-1.06) (-0.97) (-1.05) (-0.96)

Alumni 0.016*** 0.011*** 0.018*** 0.021*** 0.016*** 0.021***
(2.99) (3.42) (3.21) (3.66) (2.84) (3.23)

VC-Firm FE No Yes No Yes No Yes
Org-State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.15 0.24 0.22 0.37 0.45 0.50
N 49411 49411 49411 49411 49411 49411
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Table 8: Data Technology Adoption and Follow On Investments
This table reports results for regressions at the investment level, investigating the impact of data technology
adoption on investment outcomes. The dependent variable is an indicator equal to 1 if the startup receives
another round of financing and 0 otherwise. Columns (1) through (3) include all investments and columns (4)
through (6) include investments where the VC was the lead investor. “State” denotes the state where the VC firm
is headquartered. “Industry” denotes the main industry the VC firm invests in over the sample period (among
seven industries: Business Services, Consumers, Financial Services, Hardware and Electronics, Health Care and
Biotechnology, Industrial and Energy, and Software and IT). “Stage” denotes the main stage the VC firm invests in
over the sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series D and onward).
The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Outcome: Follow On
All Investments Lead Investor

(1) (2) (3) (4) (5) (6)
Data Driven 0.026*** 0.027*** 0.029*** 0.032** 0.036*** 0.035***

(3.40) (3.34) (3.75) (2.41) (2.81) (2.70)
Data Driven×Non Hub -0.004 -0.016

(-0.40) (-0.76)
Data Driven×Low Activity -0.163*** -0.178**

(-3.61) (-2.31)
Non Hub -0.002 -0.001

(-0.27) (-0.15)
Low Activity -0.017 0.002

(-1.05) (0.09)
Log(VC Firm Age) -0.025** -0.025** -0.025** -0.043 -0.043 -0.043

(-2.08) (-2.09) (-2.11) (-1.57) (-1.58) (-1.58)
Log(# Employees) -0.006 -0.006 -0.006 -0.015 -0.015 -0.016

(-0.99) (-0.99) (-1.02) (-0.97) (-0.97) (-0.99)
Log(Total AUM) -0.001 -0.001 -0.001 0.006 0.006 0.006

(-0.21) (-0.21) (-0.20) (0.59) (0.60) (0.58)
Centrality 0.002 0.002 0.002 0.003 0.003 0.003

(0.89) (0.90) (0.92) (0.85) (0.86) (0.88)
VC-Firm FE Yes Yes Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.09 0.09 0.09 0.11 0.11 0.11
N 46871 46871 46871 14211 14211 14211
Data-Driven=Data-Driven×Non Hub (p-value) 0.0405** 0.0364**
Non Hub=Data-Driven×Non Hub (p-value) 0.8487 0.5823
Data-Driven=Data-Driven×Low Activity (p-value) 0.0001*** 0.0049***
Low Activity=Data-Driven×Low Activity (p-value) 0.0023*** 0.0412**
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Table 9: Data Technology Adoption and Exit through IPO or Achieve Unicorn Status
This table reports results for regressions at the investment level, investigating the impact of data technology
adoption on investment outcomes. The dependent variable is an indicator equal to 1 if the startup exits through
an IPO or achieves unicorn status. Columns (1) through (3) include all investments and columns (4) through (6)
include investments where the VC was the lead investor.“State” denotes the state where the VC firm is headquar-
tered. “Industry” denotes the main industry the VC firm invests in over the sample period (among seven indus-
tries: Business Services, Consumers, Financial Services, Hardware and Electronics, Health Care and Biotechnol-
ogy, Industrial and Energy, and Software and IT). “Stage” denotes the main stage the VC firm invests in over
the sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series D and onward). The
symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Outcome: Exit through IPO or Achieve Unicorn Status
All Investments Lead Investor

(1) (2) (3) (4) (5) (6)
Data Driven 0.013 0.007 0.012 -0.003 -0.014 -0.005

(0.90) (0.49) (0.83) (-0.14) (-0.63) (-0.20)
Data Driven×Non Hub 0.026** 0.041**

(2.25) (2.36)
Data Driven×Low Activity 0.045* 0.121*

(1.87) (1.72)
Non Hub -0.019* -0.021

(-1.79) (-1.52)
Low Activity -0.054*** -0.045

(-2.85) (-1.47)
Log(VC Firm Age) -0.030* -0.029* -0.030* -0.057 -0.059 -0.058

(-1.82) (-1.78) (-1.82) (-1.42) (-1.45) (-1.43)
Log(# Employees) 0.008 0.008 0.008 0.041* 0.042* 0.041*

(0.85) (0.87) (0.81) (1.71) (1.75) (1.73)
Log(Total AUM) 0.002 0.002 0.002 0.004 0.005 0.004

(0.29) (0.29) (0.29) (0.27) (0.31) (0.26)
Centrality -0.001 -0.001 -0.001 -0.006 -0.006 -0.006

(-0.35) (-0.38) (-0.35) (-0.95) (-0.97) (-0.95)
VC-Firm FE Yes Yes Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.16 0.16 0.16 0.08 0.08 0.08
N 22428 22428 22428 8526 8526 8526
Data-Driven=Data-Driven×Non Hub (p-value) 0.0245** 0.0099***
Non Hub=Data-Driven×Non Hub (p-value) 0.0077*** 0.0099**
Data-Driven=Data-Driven×Low Activity (p-value) 0.0058*** 0.0068***
Low Activity=Data-Driven×Low Activity (p-value) 0.1408 0.0401**
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Table 10: Data Technology Adoption and Exit through Acquisition
This table reports results for regressions at the investment level, investigating the impact of data technology
adoption on investment outcomes. The dependent variable is an indicator equal to 1 if the startup exits through an
acquisition and 0 otherwise. Columns (1) through (3) include all investments and columns (4) through (6) include
investments where the VC was the lead investor.“State” denotes the state where the VC firm is headquartered.
“Industry” denotes the main industry the VC firm invests in over the sample period (among seven industries:
Business Services, Consumers, Financial Services, Hardware and Electronics, Health Care and Biotechnology,
Industrial and Energy, and Software and IT). “Stage” denotes the main stage the VC firm invests in over the
sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series D and onward). The
symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Outcome: Exit through Acquisition
All Investments Lead Investor

(1) (2) (3) (4) (5) (6)
Data Driven 0.002 0.007 0.002 0.016 0.016 0.017

(0.09) (0.29) (0.08) (0.58) (0.61) (0.61)
Data Driven×Non Hub -0.022 -0.001

(-0.98) (-0.04)
Data Driven×Low Activity 0.013 -0.072

(0.14) (-0.35)
Non Hub -0.018 -0.017

(-1.30) (-0.90)
Low Activity -0.026 0.026

(-0.89) (0.54)
Log(VC Firm Age) 0.021 0.020 0.020 0.061 0.060 0.062

(0.78) (0.77) (0.77) (1.24) (1.20) (1.24)
Log(# Employees) -0.011 -0.011 -0.011 -0.044 -0.044 -0.044

(-0.72) (-0.72) (-0.74) (-1.32) (-1.30) (-1.32)
Log(Total AUM) 0.004 0.004 0.004 -0.023 -0.022 -0.022

(0.41) (0.41) (0.41) (-1.18) (-1.16) (-1.17)
Centrality 0.000 0.000 0.000 0.007 0.007 0.007

(0.06) (0.06) (0.06) (1.02) (1.03) (1.02)
VC-Firm FE Yes Yes Yes Yes Yes Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.14 0.14 0.14 0.13 0.13 0.13
N 22428 22428 22428 8526 8526 8526
Data-Driven=Data-Driven×Non Hub (p-value) 0.4333 0.6720
Non Hub=Data-Driven×Non Hub (p-value) 0.8917 0.7288
Data-Driven=Data-Driven×Low Activity (p-value) 0.9141 0.6679
Low Activity=Data-Driven×Low Activity (p-value) 0.7090 0.6520
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Table 11: Data Driven Investments in High Entrepreneurial Commuting Zones
This table reports results for regressions at the commuting zone-year level, investigating which commuting
zones attract more data-driven investments. The dependent variable is the number of investments made in a
commuting zone in a given year. Panel A shows the number of investments made by data-driven VCs and
Panel B the number of investments made by traditional VCs. Columns (1) and (2) show investments made in
all commuting zones, columns (3) and (4) show investments made in non hub commuting zones, and columns
(5) and (6) show investments made in low activity commuting zones. I estimate a Poisson Pseudo Maximum
Likelihood (PPML) regression. Standard errors are clustered at the commuting zone level. The symbols ∗, ∗∗,
and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Outcomes: # Investments
All Non Hub Low Activity

(1) (2) (3) (4) (5) (6)
Panel A: Data Driven

Log(RECPI) 0.800*** -0.089*** 0.725*** 0.815*** 0.421*** 1.691*
(5.40) (-2.99) (4.20) (2.30) (2.57) (1.78)

Log(GDP) 0.616** -0.277 0.338* 2.390 0.470 30.038**
(2.54) (-0.19) (1.85) (0.76) (1.46) (2.28)

Log(Income) 7.167*** -0.324 -3.216*** -5.455 -0.143 8.195
(6.88) (-0.21) (-3.32) (-1.45) (-0.14) (0.58)

Percent College -3.565 -0.343 13.255*** 8.007 10.886*** -142.184***
(-1.18) (-0.08) (6.29) (0.87) (3.42) (-2.98)

Comzone FE No Yes No Yes No Yes
Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.89 0.95 0.60 0.76 0.23 0.79
N 5368 5368 5328 5328 4595 4595

Panel B: Non-Data Driven

Log(RECPI) 0.792*** 0.013 0.848*** 0.006 0.395*** 0.124
(4.79) (0.91) (7.12) (0.53) (3.98) (0.40)

Log(GDP) 0.385 -1.482 0.214 -0.314 0.880*** 3.453*
(1.50) (-1.53) (1.39) (-0.36) (5.24) (1.70)

Log(Income) 3.546*** 0.671 -2.417*** 0.664 -0.545 0.029
(3.12) (0.47) (-4.13) (0.55) (-1.01) (0.01)

Percent College 2.615 2.630 11.489*** 5.613 4.886*** 2.293
(0.85) (0.78) (6.74) (1.59) (3.26) (0.18)

Comzone FE No Yes No Yes No Yes
Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.90 0.97 0.78 0.91 0.33 0.61
N 5368 5368 5328 5328 4595 4595
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Table 12: Data-Driven Investment Entry and VC Activity
This table reports results for the stacked difference-in-difference regression at the county-level, investigating how VC activity changes in counties after entry of a data-driven
VC. In columns (1) and (2), the dependent variable is the number of startups that receive their first ever funding rounds. In columns (3) and (4), the dependent variable is
the number of patents produced by VC-backed startups. In columns (5) and (6), the dependent variable is the number of patents produced by entrepreneurial firms. Panel A
includes all commuting zones with 25 or fewer VC investments in the previous five years. Panel B includes all commuting zones more than 1 but fewer than 25 VC investments
in the previous 5 years. All columns include cohort by year fixed effects and cohort by commuting zone fixed effects. All columns include pre-data-entry VC activity controls.
Even columns include pre-data-entry county level controls. Regressions are Poisson and are clustered at the commuting-zone level.

Outcome: # Funding Rounds # First VC Financing # Unique Investors # First Investor # VC Patents
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treat×Post 0.116*** 0.077** 0.120*** 0.084** 0.256*** 0.186*** 0.178*** 0.112** 0.347*** 0.282***
(2.81) (2.59) (2.93) (2.63) (3.55) (3.12) (2.82) (2.44) (3.83) (3.64)

RECPI×Post 0.004 0.004 0.011** 0.011** 0.005
(1.39) (1.23) (2.48) (2.41) (1.09)

Income×Post 0.168 0.147 0.027 0.001 0.350 0.207 0.229 0.080 0.590** 0.562**
(0.84) (0.71) (0.11) (0.00) (1.25) (0.72) (0.73) (0.25) (2.51) (2.40)

GDP×Post 0.006 -0.002 0.001 -0.008 -0.068* -0.104*** -0.051 -0.087** -0.027 -0.038
(0.23) (-0.07) (0.03) (-0.23) (-1.92) (-2.69) (-1.29) (-2.04) (-0.86) (-1.09)

Perc College×Post 0.399 0.479 0.305 0.397 1.628** 1.997** 2.266*** 2.615*** -1.121* -0.976*
(0.68) (0.80) (0.44) (0.56) (2.09) (2.50) (2.62) (2.95) (-1.95) (-1.66)

Cohort×Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cohort×Commuting Zone FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.75 0.75 0.65 0.64 0.76 0.76 0.72 0.72 0.68 0.68
N 53625 53548 53625 53548 53625 53548 53625 53548 53625 53548
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Appendix



Figure A1: Industry Classifications

(A) Software and IT (B) Health Care and Biotechnology

(C) Hardware and Electronics (D) Financial Services

(E) Business Services (F) Consumers

(G) Industrial and Energy
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Table A1: Data Technology Adoption and Number of Investments
This table reports results for regressions at the VC-year level, investigating whether data-driven VCs make more
investments per year after they adopt data technologies than traditional VCs. The dependent variable is the
number of investments made by a VC firm in a given year. Panel A restricts the sample to VCs located in Hub
areas. Panel B restricts the sample to first-time investments made by VC j in a startup. “State” denotes the state
where the VC firm is headquartered. “Industry” denotes the main industry the VC firm invests in over the sample
period (among seven industries: Business Services, Consumers, Financial Services, Hardware and Electronics,
Health Care and Biotechnology, Industrial and Energy, and Software and IT). “Stage” denotes the main stage the
VC firm invests in over the sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C,
Series D and onward). I estimate a Poisson Pseudo Maximum Likelihood (PPML) regression. Standard errors are
clustered at the VC-firm level. The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level,
respectively.

Outcomes: # Total # Hub # Non Hub # Low Activity
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Hub VCs

Data Driven 0.002 0.165** -0.055 0.118 0.028 0.175** -0.020 0.444***
(0.03) (2.22) (-0.64) (0.95) (0.39) (2.50) (-0.12) (2.55)

Log(VC Firm Age) -0.282*** -0.481*** -0.301*** -0.504*** -0.272*** -0.488*** -0.187*** -0.404**
(-10.12) (-6.98) (-7.32) (-6.69) (-9.06) (-6.61) (-3.04) (-2.45)

Log(# Employees) 0.230*** 0.245*** 0.354*** 0.337*** 0.176*** 0.217*** 0.330*** 0.060
(7.64) (5.00) (7.16) (6.59) (6.02) (4.14) (4.97) (0.43)

Log(Total AUM) 0.009 0.042 -0.009 0.101*** 0.016 0.029 -0.007 -0.062
(0.47) (1.28) (-0.34) (2.78) (0.93) (0.86) (-0.17) (-0.73)

Centrality 0.187*** 0.140*** 0.146*** 0.136*** 0.203*** 0.142*** 0.110*** 0.172***
(21.13) (13.30) (9.82) (10.36) (24.57) (12.73) (7.10) (6.29)

VC-Firm FE No Yes No Yes No Yes No Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.50 0.57 0.30 0.45 0.49 0.55 0.27 0.40
N 5960 5960 5960 8513 5960 5960 5960 5960

Panel B: First Time Investments

Data Driven -0.009 0.160** -0.077 0.118 0.023 0.173** -0.054 0.435***
(-0.14) (2.13) (-0.89) (0.95) (0.31) (2.46) (-0.33) (2.52)

Log(VC Firm Age) -0.276*** -0.492*** -0.265*** -0.504*** -0.279*** -0.492*** -0.215*** -0.387**
(-10.47) (-7.43) (-7.23) (-6.69) (-9.44) (-6.76) (-3.89) (-2.43)

Log(# Employees) 0.241*** 0.263*** 0.361*** 0.337*** 0.180*** 0.227*** 0.357*** 0.111
(8.49) (5.74) (8.46) (6.59) (6.28) (4.41) (5.98) (0.95)

Log(Total AUM) 0.013 0.045 -0.006 0.101*** 0.022 0.030 -0.008 0.016
(0.71) (1.42) (-0.22) (2.78) (1.26) (0.88) (-0.20) (0.19)

Centrality 0.184*** 0.140*** 0.139*** 0.136*** 0.203*** 0.142*** 0.108*** 0.167***
(21.46) (13.53) (10.22) (10.36) (24.73) (12.83) (7.52) (6.36)

VC-Firm FE No Yes No Yes No Yes No Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.52 0.58 0.35 0.45 0.55 0.61 0.40 0.50
N 8513 8513 8513 8513 8513 8513 8513 8513
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Table A2: Data Technology Adoption and Number of Investments
This table reports results for regressions at the VC-year level, investigating whether data-driven VCs make more
investments per year after they adopt data technologies than traditional VCs. The dependent variable is the
number of investments made by a VC firm in a given year. Panel A use the natural log of the number of data-
related employees to proxy for Data Driven. Panel B uses the number of data-related employees scaled by number
of partners to proxy for Data Driven. “State” denotes the state where the VC firm is headquartered. “Industry”
denotes the main industry the VC firm invests in over the sample period (among seven industries: Business
Services, Consumers, Financial Services, Hardware and Electronics, Health Care and Biotechnology, Industrial
and Energy, and Software and IT). “Stage” denotes the main stage the VC firm invests in over the sample period
(among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series D and onward). I estimate a Poisson
Pseudo Maximum Likelihood (PPML) regression. Standard errors are clustered at the VC-firm level. The symbols
∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Outcomes: # Total # Hub # Non Hub # Low Activity
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Log(# Data Employees)

Data Driven 0.043 0.180*** 0.013 0.171 0.057 0.177*** 0.078 0.389**
(1.34) (3.33) (0.19) (1.60) (1.56) (3.67) (0.82) (2.09)

Log(VC Firm Age) -0.162*** -0.299*** -0.167*** -0.290*** -0.158*** -0.308*** -0.131** -0.254*
(-6.77) (-5.43) (-4.47) (-4.37) (-5.78) (-5.01) (-2.30) (-1.82)

Log(# Employees) 0.202*** 0.210*** 0.313*** 0.273*** 0.150*** 0.182*** 0.294*** 0.045
(8.61) (5.34) (7.65) (5.53) (5.95) (4.21) (4.86) (0.41)

Log(Total AUM) 0.053*** 0.089*** 0.031 0.133*** 0.063*** 0.075*** 0.032 0.103
(3.26) (3.55) (1.25) (3.91) (3.81) (2.96) (0.80) (1.24)

Centrality 0.190*** 0.146*** 0.147*** 0.152*** 0.207*** 0.146*** 0.118*** 0.173***
(25.63) (16.66) (11.71) (11.91) (27.16) (15.83) (8.25) (6.82)

VC-Firm FE No Yes No Yes No Yes No Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.63 0.68 0.40 0.51 0.66 0.71 0.41 0.51
N 8513 8513 8513 8513 8513 8513 8513 8513

Panel B: Proportion of Data Employees

Data Driven 0.163 0.707** 0.037 0.378 0.228 0.812*** -0.025 1.218**
(0.98) (2.49) (0.12) (0.74) (1.14) (3.06) (-0.05) (2.32)

Log(VC Firm Age) -0.160*** -0.297*** -0.171*** -0.283*** -0.154*** -0.307*** -0.132** -0.355**
(-6.63) (-5.00) (-4.34) (-3.86) (-5.57) (-4.71) (-2.16) (-2.47)

Log(# Employees) 0.201*** 0.212*** 0.312*** 0.284*** 0.152*** 0.181*** 0.302*** 0.044
(8.19) (4.85) (7.02) (4.99) (5.74) (3.92) (4.70) (0.35)

Log(Total AUM) 0.055*** 0.081*** 0.034 0.127*** 0.065*** 0.067*** 0.020 0.088
(4.02) (3.09) (1.36) (3.46) (4.44) (2.58) (0.46) (0.97)

Centrality 0.187*** 0.146*** 0.143*** 0.150*** 0.204*** 0.146*** 0.119*** 0.178***
(27.37) (15.98) (11.49) (11.15) (28.45) (15.45) (7.91) (6.70)

VC-Firm FE No Yes No Yes No Yes No Yes
State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.63 0.69 0.40 0.51 0.66 0.71 0.39 0.49
N 7326 7326 7326 7326 7326 7326 7326 7326
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Table A3: Data Technology Adoption and Number of Investments
This table reports results for regressions at the VC-year level, investigating whether data-driven VCs make more
investments per year after they adopt data technologies than traditional VCs. The dependent variable is the
number of investments made by a VC firm in a given year. Panel A shows the number of total investments.
Panel B shows the number of investments in Hubs. Panel C shows the number of investments in Non Hubs.
Panel D shows the number of investments in Low Activity areas. “State” denotes the state where the VC firm
is headquartered. “Industry” denotes the main industry the VC firm invests in over the sample period (among
seven industries: Business Services, Consumers, Financial Services, Hardware and Electronics, Health Care and
Biotechnology, Industrial and Energy, and Software and IT). “Stage” denotes the main stage the VC firm invests in
over the sample period (among six categories: Pre-Seed, Seed, Series A, Series B, Series C, Series D and onward).
I estimate a Poisson Pseudo Maximum Likelihood (PPML) regression. Standard errors are clustered at the VC-
firm level. The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Outcomes: Treated Placebo
(1) (2) (3) (4) (5) (6)

Panel A: Total Investments

Treat×Post 0.206*** 0.202*** 0.173***
(4.94) (4.79) (4.09)

Placebo×Post 0.088*** 0.083*** 0.060*
(2.82) (2.62) (1.91)

Log(VC Firm Age)×Post -0.169*** -0.172*** -0.194*** -0.167*** -0.171*** -0.194***
(-16.44) (-15.14) (-16.11) (-16.19) (-14.97) (-16.13)

Centrality×Post 0.002 -0.007** 0.002 -0.007**
(0.79) (-2.49) (1.04) (-2.48)

Log(# Employees)×Post 0.023* 0.030**
(1.93) (2.50)

Log(Total AUM)×Post 0.033*** 0.032***
(4.37) (4.28)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×StageXYear FE Yes Yes Yes Yes Yes Yes
R-squared 0.64 0.64 0.64 0.64 0.64 0.64
N 32781 32195 29690 32781 32195 29690

Panel B: Hub Investments

Treat×Post 0.159** 0.123* 0.140**
(2.57) (1.92) (2.23)

Placebo×Post 0.116** 0.087* 0.086*
(2.27) (1.69) (1.66)

Log(VC Firm Age)×Post -0.172*** -0.192*** -0.171*** -0.191*** -0.187***
(-11.88) (-12.31) (-11.85) (-12.27) (-11.50)

Centrality×Post 0.014*** 0.013*** 0.014*** 0.014***
(4.04) (3.44) (4.08) (3.21)

Log(# Employees)×Post -0.041*** -0.049***
(-2.64) (-2.87)

Log(Total AUM)×Post 0.025**
(2.52)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.50 0.50 0.50 0.50 0.50 0.50
N 32781 32195 31843 32781 32195 29690
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Panel C: Non Hub Investments

Treat×Post 0.220*** 0.218*** 0.159***
(4.96) (4.90) (3.55)

Placebo×Post 0.085*** 0.082** 0.052
(2.67) (2.52) (1.60)

Log(VC Firm Age)×Post -0.167*** -0.168*** -0.164*** -0.166*** -0.199***
(-14.70) (-13.41) (-14.38) (-13.22) (-14.90)

Centrality×Post 0.001 -0.014*** 0.001 -0.012***
(0.29) (-4.76) (0.56) (-4.10)

Log(# Employees)×Post 0.055*** 0.057***
(4.38) (4.43)

Log(Total AUM)×Post 0.039*** 0.039***
(4.70) (4.60)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.68 0.68 0.69 0.68 0.68 0.69
N 32781 32195 29690 32781 32195 29690

Panel D: Low Activity Investments

Treat×Post 0.506** 0.500** 0.510**
(2.46) (2.41) (2.45)

Placebo×Post -0.061 -0.076 -0.090
(-0.35) (-0.44) (-0.52)

Log(VC Firm Age)×Post -0.104** -0.108** -0.097 -0.098* -0.108** -0.108*
(-1.99) (-1.97) (-1.64) (-1.87) (-1.98) (-1.81)

Centrality×Post 0.002 0.001 0.006 0.003
(0.19) (0.11) (0.57) (0.23)

Log(# Employees)×Post -0.054 -0.040
(-0.99) (-0.73)

Log(Total AUM)×Post 0.025 0.033
(0.74) (0.96)

Cohort×VC-Firm FE Yes Yes Yes Yes Yes Yes
Cohort×State×Industry×Stage×Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.56 0.54 0.55 0.56 0.54 0.55
N 32781 32195 29690 32781 32195 29690
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Table A4: AI Glossary

Artificial Intelligence (AI) Large Language Model
Artificial General Intelligence (AGI) Machine Learning
Algorithm Moats
Anthropomorphism Model Collapse
Big Data Natural Language Generation (NLG)
ChatGPT Natural Language Processing (NLP)
Chatbot Neural Network
Convolutional Neural Network (CNN) Neuromorphic Computing
Corpus OpenAI
Copilot Overfitting
Cutoff Date Prompt Engineering
Data Mining QLearning
Data Validation Recommendation Engine
Dall-E Reinforcement Learning
Deepfake Sentiment Analysis
Deep Learning Supervised Learning
Embodied Agent Speech Recognition
Expert System Synthetic Data
Inception Distance Technological Singularity
Intelligent Agent Transformer Model
Garbage in Garbage Out Turing Test
Graphics Processing Unit (GPU) Unsupervised Learning
Generative Pretrained Transformer (GPT) Variational Autoencoder
Knowledge Engineering Zeroshot Learning
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Table A5: Industry Exposure to AI

Industry Exposure %Desc w/ Match Nb. Desc w/ match Nb. Descriptions

Panel A: Most Exposed Industries

Machine Learning 99 79.58 9921 12466

Artificial Intelligence 99 74.30 15975 21501

NLP 99 63.93 906 1417

Text Analytics 99 48.67 175 359

Speech Recognition 99 47.67 215 451

Computer Vision 99 45.42 824 1814

Facial Recognition 98 43.23 83 192

Predictive Analytics 98 39.68 988 2490

Data Mining 98 37.82 462 1171

Big Data 98 35.56 3523 9315

Panel B: Least Exposed Industries

Timber 0 0 0 362

Sailing 0 0 0 323

Comics 0 0 0 197

Bakery 0 0 0 1296

Wood Processing 0 0 2 2199

Theatre 1 0.1 1 1036

Laundry 1 0.1 1 969

Cosmetic Surgery 1 0.1 6 4464

Residential 1 0.15 39 22956

Winery 1 0.17 3 1668
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