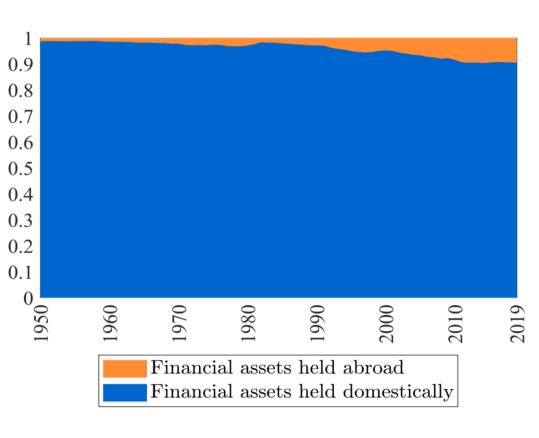
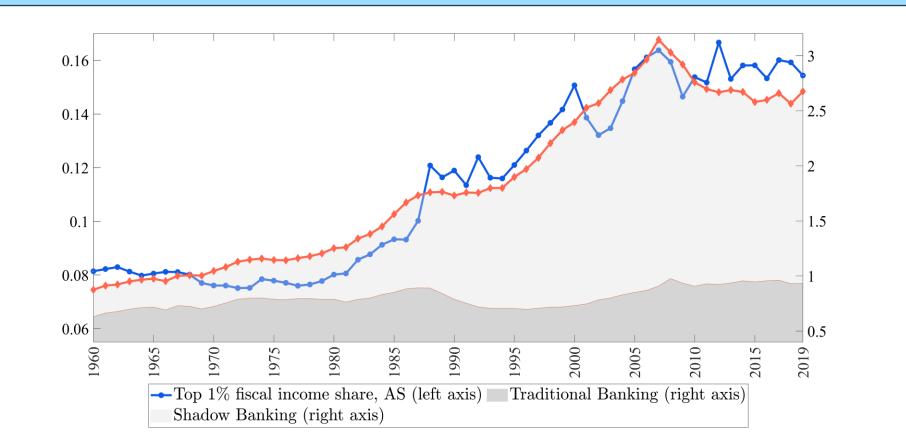
Motivation & Research Idea

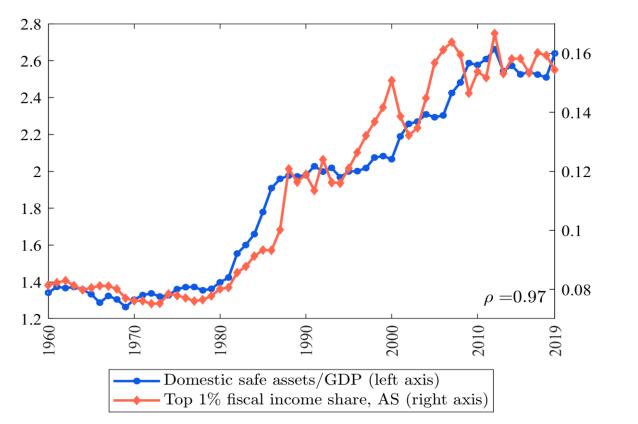
Motivation

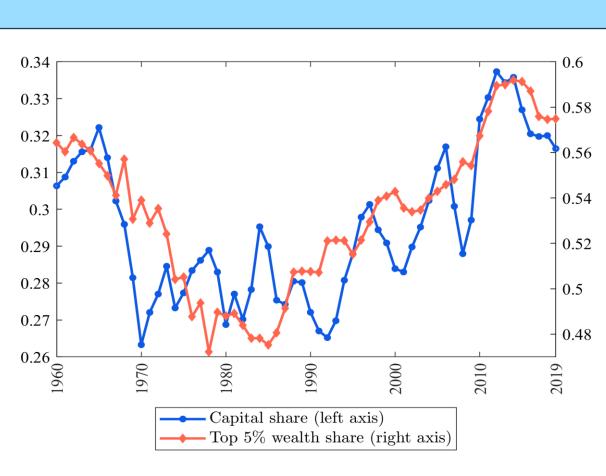

- No conclusive theory for the rise of finance since the 1980s.
- Most of the growth has been determined by the shadow banking sector.
- Inequality rising over the same period and the lack of safe assets may be key.

Research Idea


Higher inequality \rightarrow More savings to intermediate for the investors.

- → Funds to allocate between safe and
 risky assets... under incomplete markets
 ^{3.5}
 & limited public safe assets supply,
 → Endogenous rise of the shadow banking
 ^{2.5}
- system to complete a market.
- → Debt of the poor transformed into synthetic quasi-safe assets for investors.
- → Bigger financial sector


Stylized facts



Most of the rise until the Great Financial Crisis was driven by other non-bank financial institutions, (shadow banking system). The series plateaued post-2010 as for top 1%.

Consistently with a larger hedging demand by investors, safe assets (time+savings deposits, mmf, repos, CP) have co-moved with inequality

The theory allows for finance and inequality to feed back on each other \rightarrow The decline of the L share is taken as exogenous variation.

Model

Economic environment

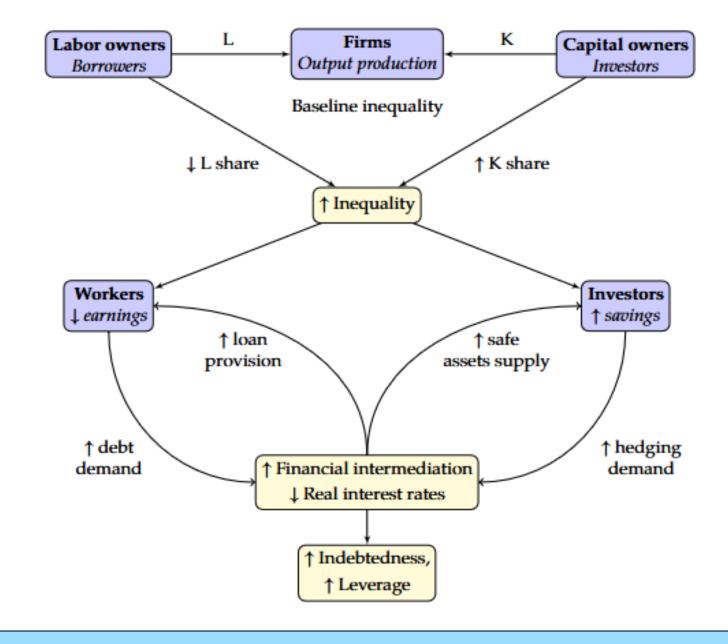
- Discrete time with infinite horizon.
- Idiosyncratic uncertainty, but no aggregate uncertainty.
- Incomplete and segmented markets (not all agents hold capital).

Preferences

• Same *homothetic*, preferences, and discount factor across agents

<u>Agents</u>

- Heterogeneous investors ("rich" households): Capital owners & lenders $V_{it}^I(m_{it},b_{it},k_{it}) = \max \left\{ln(c_{it}^I) + \beta \delta E[V_{it}^I(m_{it+1},b_{it+1},k_{it+1})]\right\}$
- sub $c_{it}^I + p_{Kt}k_{it+1} + q_{Bt}b_{it+1} + q_{Mt}m_{it+1} = (p_{Kt}(1+\varepsilon_{it}) + d_t)k_{it} + b_{it} + (1+\zeta_{Mt})m_{it}$ A continuum of poor households: Labor owners & borrowers
- $V_t^P(l_t) = \max \ln c_t^P + \beta \delta E[V_t^P(l_t)] \quad sub \quad c_t^P + l_t + \frac{\lambda}{2}(l_{t+1} L/\lambda)^2 + T^P = q_{Lt}l_{t+1} + w_t N_t$
- Both types of agents exit the economy with a probability 1 δ.
 Gov. imposes lump-sum taxes and provides safe assets up to a value b̄.
- Shadow banking transforms poor debt into investors quasi-safe assets.


Endowments/Technology

- Fixed capital (no investments), k, with non-storable dividends, d.
- Labor is risk-free and inelastically supplied, N = 1.
- Firms produce competitively a final good y by aggregating k and N.
- Shadow banking uses a linear technology.

Model mechanism

Top 1% fiscal income share, AS (right axis)

- Investors solve a portfolio problem on how to allocate their savings between safe and risky assets.
- As inequality increases, there is a larger amount of savings to invest.
- With a constrained public assets supply, interest rates compress.
- Lower interest rates mean lower debt issuance costs.
- Poorer households can issue debt more freely, and the shadow banking system grows by transforming them into private safe assets (for investors).
- The model allows for endogenous feedback effects (through higher asset price valuations).

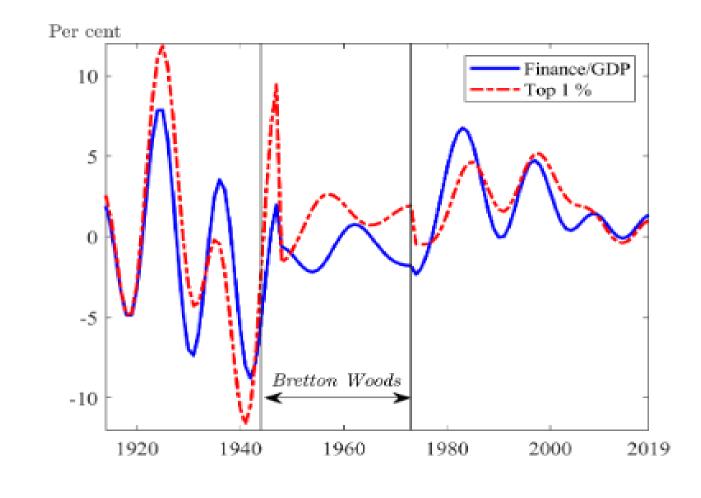
Quantitative performance and Policy experiments

Baseline quantitative exercise

- In the baseline, I assess the effect of a change in the capital share of the economy to be consistent with the micro-foundations.
- The technological structural change can explain up to 20% of the change in inequality, and 73% of the associated rise in shadow banking.
- Real interest rates get compressed in line with the real world. The model can explain 40% of variation.
- It can be proved that measured technological structural change accounting for human capital as in Eisfeldt, Falato, Xiaolan (2023) produce estimates much closer to the real world.

Policy experiments

- As a subset of counterfactual exercises, I report:
 (1) A dividend tax of 10% used to subsidize the poor;
 (2) An unconstrained Government debt issuance
- The first policy is relatively ineffective except for small inequality shocks because most of the action happens across investors
- A free public debt issuance avoids "reach for yield" and has massively larger effects on inequality


	1970	-79	2010-2019		
Targeted moment	Model	Data	Model	Data	
Top 5% wealth share	0.508	0.508	0.523	0.582	
Shadow Banking holdings $(q_{Mt}m_{t+1}/y_t)$	0.026	0.026	0.161	0.212	
Real interest rate $(R_{Mt})^{\dagger}$	0.030	0.030	0.028	0.025	
Additional moments	Model	Data	Model	Data	
Equity Premium [†]	0.088	0.055	0.093	0.081	
Risky assets share $(1 - \phi_1 - \phi_2)$	0.914	0.652	0.878	0.654	

	Base	eline	Counterfactuals		
Moments	1970-79	2010-19	$\tau = 0.10$	$ au = 0.015,$ $b_t = 0.378$	
Top 5% wealth share	0.508	0.523	0.521	0.519	
Shadow Banking holdings $(q_{Mt}m_{t+1}/y_t)$	0.026	0.161	0.129	0.027	
Real interest rate (R_{Mt})	0.030	0.028	0.029	0.030	
Risky assets share $(1 - \phi_1 - \phi_2)$	0.914	0.878	0.876	0.870	
Equity premium	0.088	0.093	0.106	0.094	

Empirical results

Testing for co-variability

- I test the extent to which variables *in growth rates* co-vary as in Muller and Watson (2018) pre-and post- Bretton Woods.
- I find evidence for such claim after the 1970s and before 1940s.

Identifying the mechanism

- I test whether an increase in inequality leads to more credit across countries
- I test the mechanism of market-based vs. bank-based structure through dummy variables accounting for the IO of banking

	Total loans							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Top 5 income share (LR effect)	0.593*** (0.167)	0.356*** (0.134)	0.309** (0.130)	0.315** (0.135)	0.663*** (0.189)	0.414*** (0.138)	0.359*** (0.136)	0.336** (0.138)
Top 5 income share \times Mkt-based dummy (LR)					-0.348 (0.311)	-0.306 (0.285)	-0.260 (0.283)	-0.117 (0.254)
Time fixed effect Domestic controls Globalization controls USA excluded	~	*	> > >	>>>	×	*	* * * *	>>>
R ² Countries/Obs.	0.588 18/674	0.636 18/674	0.649 18/670	0.650 17/621	0.591 18/674	0.637 18/674	0.650 18/670	0.650 17/621

$$\Delta y_{it} = \sum_{s=1}^{3} \beta_s \, \Delta x_{i,t-s} + \beta_0 + \kappa_t + \gamma' X_{it} + \varepsilon_{it}$$

 $\Delta y_{it} = \sum_{s=1}^{3} \beta_s \, \Delta x_{i,t-s} \, I(i \in Anglo) + \beta_0 + \kappa_t + \gamma' X_{it} + \beta_0 + \gamma' X_{it} + \gamma' X_{$

		Results	are co	nsister	nt with	model
$+ \varepsilon_{it}$	<u>.</u>	prediction	ons botl	n for	the dire	ect and
		feedbac	k effec	t of	larger	credit
- γ'X _{ii}	$_{t}+\varepsilon_{it}$	leading based b	to more anking e	•	•	narket-
		Top 5 in	come share			
2)	(3)	(4)	(5)	(6)	(7)	(8)

	Top 5 income share							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Total loans (LR effect)	-0.071* (0.040)	-0.029 (0.032)	-0.027 (0.033)	-0.032 (0.034)	-0.116*** (0.040)	-0.065* (0.055)	-0.065* (0.036)	-0.064* (0.036)
Total loans × Mkt-based dummy (<i>LR</i>)					0.200*** (0.055)	0.150*** (0.049)	0.138*** (0.051)	0.132*** (0.051)
Time fixed effect Domestic controls Globalization controls USA excluded	~	*	///	>>>>	~	*	/ / /	>>>>
R ² Countries/Obs.	0.185 18/732	0.263 18/732	0.272 18/728	0.274 17/679	0.215 18/732	0.290 18/732	0.299 18/728	0.302 17/679

Conclusions

- Inequality channel proposed/tested to explain the rise of finance
- In the model, a change in factor income share can explain jointly also other macro-finance facts in the same framework such as:
- (i) Higher inequality;
- (ii) Compression of money yield;
- (iii) Indebtedness of the U.S. households.
- (iv) Endogenous rise of "shadow banking"
- Changes larger than the observed K share are needed to move variables in a quantitative strong fashion
- The empirical tests are in line with theory predictions both in terms of:
- (i) Co-variability
- (ii) Identifying market-based banking mechanisms

References

Angeletos, G. M. (2007). Uninsured idiosyncratic investment risk and aggregate saving. *Review of Economic Dynamics*, 10(1), 1-30.

Eisfeldt, A. L., Falato, A., & Xiaolan, M. Z. (2023). Human capitalists. *NBER Macroeconomics Annual*, *37*(1), 1-61 Müller, U. K., & Watson, M. W. (2018). Long-run covariability. *Econometrica*, 86(3), 775-804.