Motivation

Implications of Options Trading for Risk Management:

- **Direct Impact:** Key hedging tool.
- **Indirect Impact:** Enhances the efficient incorporation of new information by futures markets (Easley, O'Hara, & Srinivas, 1998).

Underlying Mechanism:

- Options attract informed traders due to their leverage and signaling properties.
- Options trading volumes serve as early indicators of new information.
- When options trading is banned:
- Futures markets lack leverage, limiting informed traders.
- Market makers face greater uncertainty, increasing transaction costs.

Hypotheses

Option trading activity likely endogenous to commodity-level characteristics ⇒ Use Ban as **Natural Experiment**

1. Options Trading Stabilizes Market Volatility

- Expectation: The ban on options increases the volatility of grain futures prices.
- Methodology: Difference-in-Differences (DiD) approach (Angrist & Pischke, 2009).

2. Options Trading Enhances Hedging Effectiveness

- Expectation: Post-ban, hedging effectiveness in futures markets decreases.
- Methodology: Event-Study approach (Roth, 2022).

Related Literature

- Volatility and Option Pricing (Ball & Torous, 1986; Black & Scholes, 1973; Brenner, Courtadon, & Subrahmanyam, 1985; Ramaswamy & Sundaresan, 1985).
- Information Flow in options markets (Easley et al., 1998; Johnson & So, 2012; Pan & Poteshman, 2006; Roll, Schwartz, & Subrahmanyam, 2010).
- Options as Hedging Tools (Biais & Hillion, 1994; Frank, Irwin, Pfeiffer, & Curtis, 1989; Ross, 1976).
- Speculation in Derivatives Markets (Duvel & Hoffman, 1927; lorgulescu & Pütz, 2024; Irwin, 1937; Kang, Rouwenhorst, & Tang, 2020; Kim, 2015; Manera, Nicolini, & Vignati, 2016).
- Derivative Market Bans (Beber & Pagano, 2013; Brunnermeier & Oehmke, 2014).

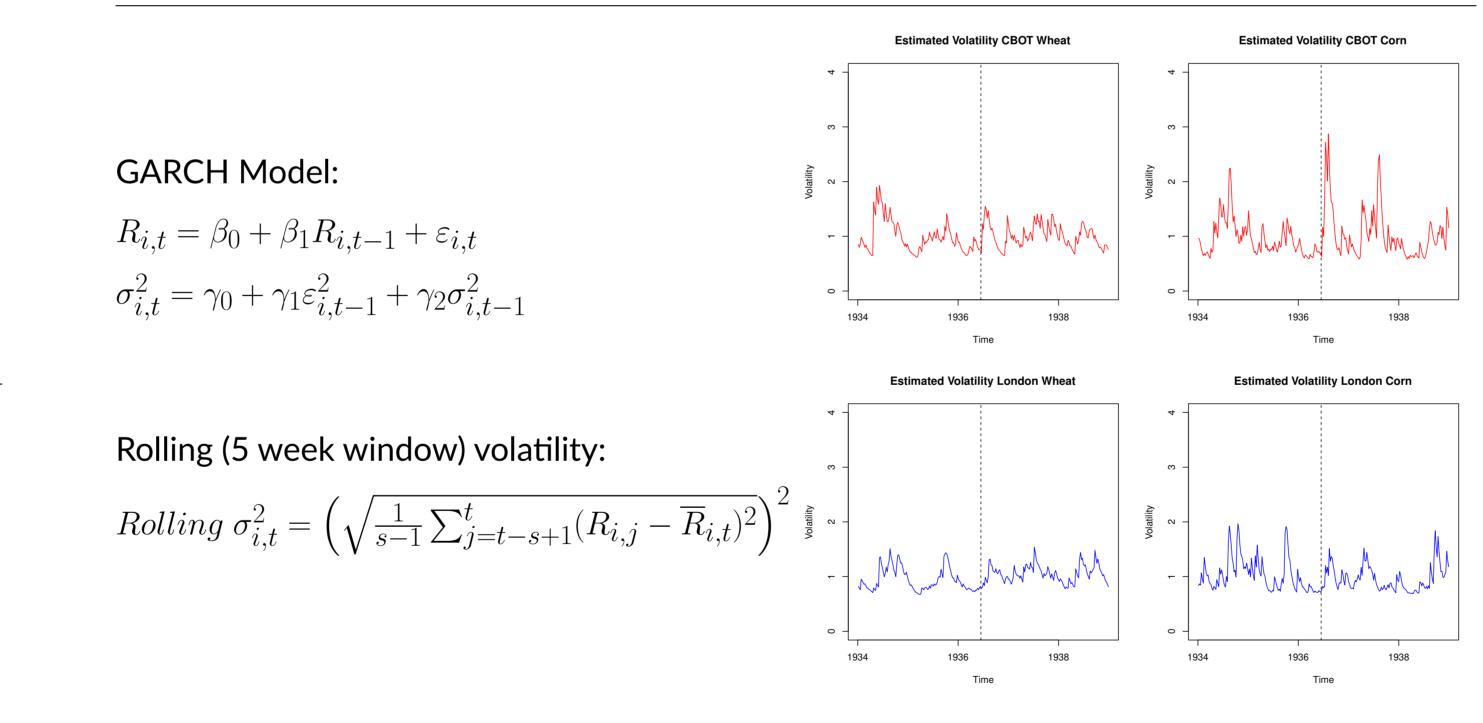
Anti-Option Era in the U.S.: What Led to the 1936 Ban?

- Populist and Agrarian Movements: Criticized speculative trading practices, viewing options as destabilizing (Cowing, 1895).
- Failed Legislative Attempts: Multiple bills aimed to curb options speculation but were unsuccessful (Markham, 1987).
- 1933 Wheat Market Manipulation: Manipulative trading led to plummeting wheat futures prices, prompting regulatory scrutiny (GFA, 1933).
- Commodity Exchange Act (1936): Enacted to prohibit all commodity options trading, addressing fraud and excessive speculation (CFTC, 2024).

Does Options Trading Matter for Risk Management? Insights from the 1936 Options Ban on Futures Markets

Elissa lorgulescu^{1,2} Fiona Hoellmann²

¹University of Hohenheim


Data / cool cool

Data (1	Data (1934-1939)	
Treated Group - US Futures Markets (CBoT)	Control Group - L	
 Group: US (CBoT) corn and wheat futures impacted by the 1936 options trading ban. Source: Daily spot and futures prices from the Annual Reports of the Board of Trade of the City of Chicago. 	 Group: London unaffected by th Source: Weekly historical record 	

Matching

- Maturity Matching: Align maturities of corn and wheat futures contracts between CBoT and London markets.
- Temporal Matching: Use Friday-to-Friday observations to ensure comparability.
- Continuous Series Construction: Implement a rolling mechanism to track the contract closest to maturity and switch on the first day of the maturity month.

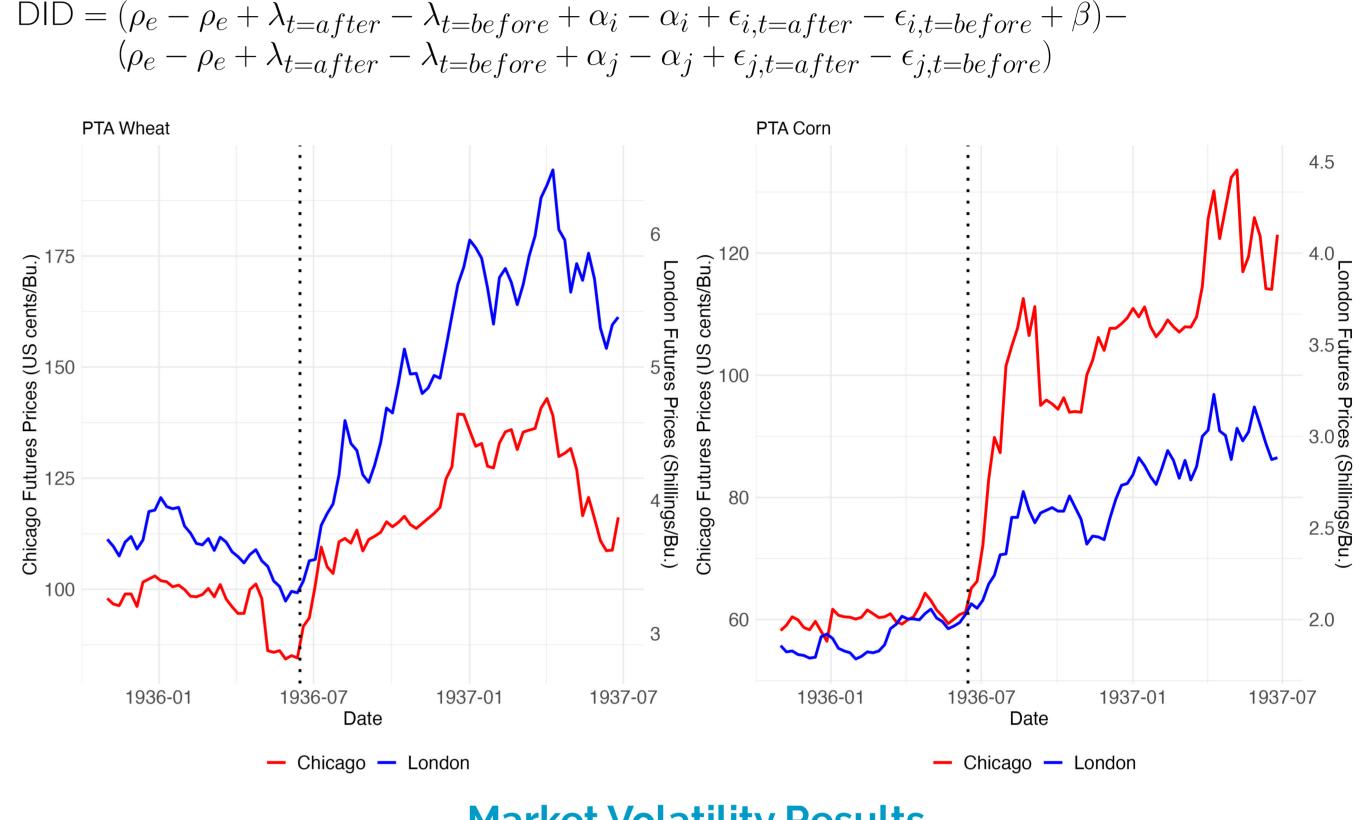
Measures of Market Volatility

Identification Strategy

Difference-in-Differences (DiD) Approach

- To what extent did the options trading ban, effective as of June 15, 1936, affect the volatility of the underlying futures markets?
- Controls for time-invariant differences and common trends between groups.

 $E[Volatility_{i,e,t}|i,e,t] = \rho_e + \lambda_t + \alpha_i + \epsilon_{i,t}$


 $Volatility_{i,e,t} = \rho_e + \lambda_t + \alpha_i + \epsilon_{i,t} + \beta \times Ban + \eta_{i,t}$

²University of Münster

London Futures Markets

- n corn and wheat futures the 1936 ban.
- ly futures prices from rds of The Times.

Parallel Trends Assumption (PTA)

Short-term	Long-term
0.42***	0.05
(0.13)	(0.09)
3.38***	3.33***
(0.03)	(0.03)
YES	YES
YES	YES
836	1146
0.56	0.55
	0.42*** (0.13) 3.38*** (0.03) YES YES 836

Hedging Effectiveness Results

Event Study: $\Delta s_t = \alpha + h_1 \Delta f_t + h_2 D$			
Δf_t	0.418***	0.419***	
	(0.042)	(0.042)	
D_t	-0.004***	-0.004***	
	(0.001)	(0.001)	
$D_t \times \Delta f_t$	-0.175**	-0.180**	
	(0.082)	(0.081)	
Commodity FE	NO	YES	
	NO	YES	
Observations	3,756	3,756	
R-squared	0.097	0.112	

Market Volatility Results

Difference-in-Differences Model: $Volatility_{i.e.t} = \rho_e + \lambda_t + \alpha_i + \beta \times Ban + \eta_{i,t}$

- **Short-term**: The options trading ban significantly increased market volatility (**0.42*****), indicating a direct destabilizing effect.
- Long-term: The impact on volatility diminishes over time and becomes statistically insignificant.
- Results are robust when using Rolling σ^2 . \Rightarrow Options Trading Stabilizes Market Volatility
- $D_t + h_3(D_t \times \Delta f_t) + \epsilon_t$
 - Hedging Effectiveness $h = \frac{Cov(\Delta s_t, \Delta f_t)}{Var(\Delta f_t)}$
 - Futures markets provide a good hedge for cash market position (0.418*** and 0.419***).
 - However, post-ban, hedging effectiveness significantly decreases (-0.175** and -0.180**), indicating disrupted information flow. \Rightarrow Options Trading Enhances Hedging Effectiveness