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Abstract

I develop an economic model of how a society’s distribution of power and re‐
sources evolves over time. Multiple lineages of players compete by accumulating
power, which is modeled as an asset that increases one’s probability of winning con‐
flicts over resources. Thismodel provides sharp equilibriumpredictions for howa so‐
ciety’s distribution of power evolves and whether it approaches inclusivity, oligarchy,
or dictatorship in the long run. My main result shows that power and resources in-
evitably fall into the hands of a few when political competition is left unchecked in
large societies, which addresses a longstanding empirical puzzle.
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1 Introduction
As inequality continues to rise in the United States, so have economists’ concerns that it
may be drifting towards oligarchy.1 This trend is not exceptionally American: persistently
rising political and economic inequality has been observed in several other nations in the
OECD (2008, 2011, 2012, 2015, 2021). These developments coincide with worldwide trends
of spreading authoritarianism (FreedomHouse, 2022;UnitedNations, 2023;Reuters, 2023)
and mounting anxieties about the health of democracies (Hyde, 2020; Freedom House
2020, 2024; DW, 2024; Riedl et al., 2024). This has made the following age‐old question
as relevant as ever: what allows – or indeed prevents – power and resources from falling
into the hands of a few in a society?

The dynamics of inequality are not fully understood. A rising number of leading
economists2 have called for more attention to a crucial piece of this puzzle: power. The
reasoning is that since power and wealth are intimately linked (Stiglitz, 2011), fully un‐
derstanding how wealth inequality evolves requires further development of our system‐
atic understanding of how the distribution of power evolves in societies. Moreover, a
complete understanding of most questions in economics may be difficult without under‐
standing the underlying power dynamics (Acemoglu, 2024c; Deaton, 2024). Given all of
this, developing a systematic approach to how a society’s distribution of power evolves
over time would be of general interest to economists as well as other social scientists.

To address these pressing issues, this paper constructs an economic framework of
how a society’s distribution of power evolves due to intergenerational competition over
resources. Imodel a society that is populated by (non‐overlapping generations of) players
frommultiple lineages. Each lineage is initially endowed with a stock of power, which is
modeled as an asset that increases one’s probability of winning conflicts over consum‐
able resources.3 Every period, players inherit and accumulate power and then engage in
conflicts over resources. These individual strategic power accumulation decisions jointly
determine how a society’s distribution of power endogenously evolves over time.

Contributions This framework generates sharp, rich equilibrium predictions for how
a society’s distribution of power evolves (Propositions 2 and 3). Given any initial distri‐
bution of power, my model provides a unique prediction of the trajectory it will follow
and the stable distribution it approaches in the long run. Three types of stable distribu‐
tions can emerge in the long run: inclusive (power shared uniformly), dictatorial (only
one player holds power), and oligarchic (power shared uniformly among only a subset of
players). This is the first unified framework that can precisely predict the emergence of
dictatorial, inclusive, and oligarchic regimes. Moreover, I also provide a novel character‐
ization of the necessary and sufficient conditions for the stability of each type of regime.

My main results (Propositions 4 and 5) show that power and resources must fall into
the hands of a few in sufficiently large societies. This addresses a long‐standing open

1Krugman (2014), Piketty (2014, p. 514), Solow (2014a,b), Saez and Zucman (2019), andAcemoglu (2024b).
2Piketty (2014, 2015), Stiglitz (2011, 2016), Rausser et al. (2011), Krugman (2020), World Bank (2006, 2017),

United Nations (2020), Callander et al. (2022), Deaton (2024), and Acemoglu (2012, 2024a).
3This is a standard contest‐theoretic approach to modeling power; a detailed discussion is provided in

the Related Literature section, below.
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question: the tendency for power consolidation to take place in large groups of people
was notably observed by Michels (1915), stating it as the Iron Law of Oligarchy, but over
a century later there appears to be little agreement on why or when this Iron Law holds
true (Leach (2005, 2015); Diefenbach (2019)). This paper provides a novel theoretical
foundation for the Iron Law of Oligarchy and insights into the competitive forces that un‐
derlie it. Strikingly, my results show that this Iron Law not only holds under standard
economic assumptions, but is fundamentally driven by two standard assumptions in par‐
ticular: convex investment/adjustment costs and difference/logistic form contest success
functions.4

Additional contributions include an analysis of institutional features that make so‐
cieties more or less robust to power consolidation (in section 4). Finally, Proposition 6
analytically characterizes how larger populations induce stronger dictatorships.

Related Literature The framework I construct in this paper builds on Acemoglu and
Robinson’s (2022) model of state‐society power dynamics.5 I generalize and re‐frame the
analysis to societies made up of any finite number of players, who may be viewed as in-
dividual agents or as representative agents of a socioeconomic sub‐group like in Becker
(1983, p. 372). This allows the present paper to make several novel contributions (listed
above) that are of general interest to economists and other social scientists.

In addition to these broader contributions, this paper provides several new insights
specifically relating to Acemoglu and Robinson (2022), which will often be abbreviated as
AR. One of AR’s main conclusions was that competitive pressure is what allows inclusive
societies to emerge. My paper shows that this effect of competitive pressure – while true
in small societies – inverts in sufficiently large societies. That is: competitive pressure
drives small societies towards inclusive regimes, but as societies become large, competi‐
tive pressure is also precisely what causes such regimes to destabilize while dictatorships
and concentrated oligarchies remain stable. Second,my paper also sheds light on the key
drivers societal power dynamics. AR assume a specific functional form for power accu‐
mulation costs, which are convex in the investment rate and have sufficiently weak play‐
ers face an additional linear cost. The authors note that the latter property is a key driver
of their results. In contrast, my paper considers a general cost function that is convex in
the investment rate and weakly diminishes in inherited power (i.e. it is a generalization
– not a restriction – of the standard case where costs do not depend on inherited power).
My results demonstrate that for societies with more than two players, only the standard
assumption of convex investment costs are required. In addition to the aforementioned
generalizations, this paper also dispenses with a number of assumptions made in AR (all
four parts of their Assumption 2 and parts 2 and 3 of Assumption 3). First, this sheds light
on which assumptions are key. Moreover, this allowed for new types of regimes to be
stable, even in the two player case. Another key finding in AR is that strong dictatorships
are not possible due to lack of competitive pressure. My paper allows for both strong

4The former assumption is standard in asset accumulationmodels (Dixit and Pindyck, 1994) and contest
theory (Fang, Noe, and Strack, 2020); the latter is standard in contest theory (Hirshleifer, 1989; Skaperdas,
1996; Ewerhart, 2021; Ewerhart and Sun, 2024).

5This in turn is related to Acemoglu (2005) – which provides its microfoundation – as well as Acemoglu
and Robinson (2019) wherein the authors provide an extensive view of history through the lens theirmodel.
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and weak dictatorships, and that dictatorial strength grows without bound as societies
become large.

Prevailing explanations for how dictatorial, oligarchic, or inclusive regimes emerge
overwhelmingly hinge on the role played by structural factors, specific features of societies
such as culture, geography, economic conditions, exposure to external threats, etc. As
Acemoglu and Robinson (2022) point out, such explanations necessarily cannot account
for how otherwise similar societies can arrive at vastly different power structures, which
is a widespread occurrence (Acemoglu and Robinson, 2019). Their model addressed this
gap in the emergence of dictatorial and inclusive regimes, but not of oligarchy, which has
been the subject of academic debate for over a hundred years. Michels viewed inequality
as an inevitable eventuality in large societies, positing scalar stress and bureaucratization
as the key drivers thereof (Johnson, 1982; Perret et al., 2020). Leach (2005) notes that
“[d]espite almost a century of scholarly debate ... there is still no consensus aboutwhether
and under what conditions Michels’s claim holds true.” This assessment appears to be
supported by the thorough surveys of the modern literature provided by Leach (2015)
and Diefenbach (2019).

The framework constructed in this paper draws on the long‐standing contest theory
approach to modeling power and conflict. It formalizes Weber’s (1925) widely‐adopted
definition of power as “the probability that one actor within a social relationship will be
in a position to carry out his own will despite resistance, regardless of the basis on which
this probability rests,” and the fact that it must be accumulated by, for instance, “expendi‐
tures of time andmoney on campaign contributions, political advertising, and otherways
that exert political pressure” (Becker, 1983). As Hirshleifer (1989, 1991a, 1991b) discusses,
both military conflicts (e.g. Lanchester (1916) and Ewerhart (2021)) and political conflicts
(e.g. Becker (1983, 1985) and Tullock (1980)) can bemodeled as a contest, which “is a game
in which players compete for a prize by exerting effort so as to increase their probability
of winning” (Skaperdas, 1996). The “prize” in this model is control over resources (a con‐
sumable good such as natural resources, public funds, etc.), which is seized by the victor
of conflicts. Players accumulate power (“effort”) to increase their probability of winning
conflicts.

AContest Success Function (CSF) defines the conditional probability that a playerwins
a conflict given the amount of power they hold and the amounts of power held by each of
their opponents. This paper focuses on the commonly used difference‐form/Hirshleifer
CSF which, as its name suggests, only depends on power differences. The properties of
this formwere notably studied by Hirshleifer (1989), who discusses how it relaxes certain
overly‐idealized aspects of its counterpart, the ratio‐form/Tullock CSF (Tullock, 1980).
Both forms of CSF are axiomized in Skaperdas (1996). In the context of this framework,
the most important property of the difference‐form CSF is that each player’s marginal
benefit of accumulating power is increasing in how closely matched they are with their
opponents.

As mentioned above, power is modeled as an asset that is accumulated at a cost. I
assume that investment costs are increasing and convex, and that the marginal cost of
accumulating power (at any fixed rate) isweakly diminishing in the amount of power one
currently holds. Intuitively, this captures the notion that the more powerful one already
is, the less costly it is to obtain more of it, at least weakly. However, it is important to
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emphasize theweaknature of this property, as it nests the standard casewhere investment
costs do not depend at all on one’s current stock of power. This also sheds more light on
the theoretical insights provided by Acemoglu and Robinson (2022), who emphasized the
importance of both (i) the aforementioned property of difference‐form CSF’s and (ii) the
“increasing returns” property of power accumulation costs; this paper shows that the
former plays the key role.

As will be seen below, the equilibrium dynamics of this model feature what is known
as the discouragement effect. This phenomenon was notably observed in the Harris and
Vickers (1987) model of patent races and in a variety of other dynamic contests (Konrad,
2012).6 In the present paper, the discouragement effect emerges on the paths towards
dictatorship and oligarchy, where relatively weak players’ power accumulation incentives
erodeas they are increasingly outpacedby strongerplayers. Experimental evidenceof the
discouragement effect is reviewed in Dechenaux et al. (2015). Indirectly related to this
work are Berry (1993), Clark and Riis (1996), and Chowdhury and Kim (2014) who study
multi‐winner contests. While the model herein explicitly uses a single‐winner contest
mechanism, one may interpret there being multiple “effective” winners at the oligarchic
and inclusive power structures in this model.

The form of power considered here has parallels with the notion of personal power,
which was first systematically studied by Bowen et al. (2022). Their notion is similar in
that it increases the probability of actualizing one’s ideal outcome by asserting one’s will.
However, it is qualitatively different in that personal power derives from one’s personal
characteristics, and its effectiveness must be learned by others. This paper instead fo‐
cuses on the forms of power that are accumulated and inherited and whose effectiveness
is common knowledge.

JeonandHwang (2020) resembles thepresent paper inmotivationbut not in approach.
In contrast to the dynamic contest setup considered here, they work in a dynamic bargain-
ing framework. Their model admits two classes of stable power structures that resem‐
ble the dictatorial and oligarchic power structures seen here. Another key difference is
that Jeon and Hwang (2020) consider infinitely forward‐looking agents while the agents
considered here are short‐lived, being replaced each period. In their model, dictatorial
power structures are unstable given that agents are sufficiently forward‐looking. Inter‐
estingly, while my model does admit a dictatorial class of stable power structures, it also
admits inclusive and oligarchic classes despite agents’ short lifespan; in fact, assuming
longer‐lived agents does not provide substantive additional insight in my model.

Acemoglu andRobinson (2006) also theoretically investigate the Iron Lawof Oligarchy
(Michels, 1915), but through a different mechanism than the one seen here. Namely, they
work in a model with both de jure and de facto power. Motivated by their observation on
p. 327, the present framework focuses on de facto power. A more recent related work by
Prato and Invernizzi (2023) analyzes the distribution of power within political parties in
amoral hazard framework and also uncovers a novel explanation for why (and when) the
Iron Law of Oligarchy holds. They find that the degree of power consolidation among
parties andwithin parties tend to be inversely related. Perret et al. (2020) analyze the role

6The discouragement effect has also been observed in other settings such as the innovation investment
models of Aghion et al. (2005) and Aghion (2005).
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played by scalar stress in the Iron Law of Oligarchy.
This paper is also related to Bowen and Zahran (2012). In the present model, dic‐

tatorial and oligarchic power structures are reached by trajectories that originate suffi‐
ciently nearby. These classes respectively have qualitative similarities to the compro‐
mise and no‐compromise classes in Bowen and Zahran (2012), which are reached in an
analogous fashion. The dynamics in this paper also have parallels to those seen in Geni‐
cot and Ray (2017), who analyze how inequality and aspirations evolve and interact over
time. Namely, the magnitude of agents’ aspirations in their model has a similar encour‐
aging/discouraging effect as power differences do in my model. Another related paper is
Li et al. (2017), who study power dynamics in organizations using a principal‐agent frame‐
work.

In a relatively recent seminal work on oligarchy, Winters (2011) provides an extensive
study of how oligarchies emerge and persist in a variety of societies around the world,
where he also notes that a “consistent pattern in human history is for very small minori‐
ties to amass great wealth and power.” Rather than focusing on how particular institu‐
tional structures allow or preclude the formation of oligarchies, he instead argues that
wealth defence and the accumulation of material power are far more important factors
in the formation of oligarchies. The notion of power modeled in my paper is similar to
the notion of material power in the sense that power in my paper can be accumulated.
Note however that my notion of power is not limited to material power. Moreover, he
emphasizes how oligarchies can emerge even in the presence of democratic norms and
institutions, and the possibility of having democracies only in name. This is also stressed
in Winters and Page (2009), an empirical study on the distribution of material power in
the United States.

The rest of this paper is organized as follows. Section 2 constructs themodel. Section 3
provides equilibrium predictions for how a society’s distribution of power and resources
evolves, and how dictatorial, oligarchic, and inclusive regimes each emerge in the long
run. Section 4 characterizes the properties of stable power structures in large societies
and contains the aforementioned main result of this paper. Section 5 concludes. The
Online Appendix contains the proofs of the results in the main text of this paper (section
A) and auxiliary technical results (sectionB). SectionC showshow themain results extend
to the case where societies’ resource endowments scale with population size.

2 Model
Time 𝑡 ∈ {0, Δ, 2Δ, ...}has an infinite horizon and is initially7 taken tobediscretewithperiod
length, Δ > 0. There are 𝑁 ≥ 2 lineages of risk neutral, short‐lived8 players that are
replaced each period. Lineage 𝑖 ∈ {1, ..., 𝑁 } is formally defined as i ≡ {𝑖0, 𝑖Δ, 𝑖2Δ, …}, where
𝑖𝑡 denotes the generation‐𝑡 player from lineage 𝑖.

7Period length is later made arbitrarily small when attention is brought to model dynamics, which are
more tractably characterized in continuous time.

8 The main insights of this paper remain intact when players are forward‐looking and not exceedingly
patient. The results do qualitatively change when players are very patient, although not for an insightful
reason; this is discussed in Remark 3, as soon as the necessary context is established.
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Players compete by accumulating and passing along stocks of power, an asset that in‐
creases one’s probability of winning conflicts over resources (in a way made precise be‐
low). The amount of power held by the lineage‐𝑖 player at time 𝑡 is given by 𝑥𝑖𝑡 ∈ [0, 𝜒],
where 𝜒 > 0 is arbitrarily fixed.9

Lineage 𝑖 is initially endowed with 𝑥𝑖0 units of power; this is held by player 𝑖0, who is
assumed to remain inactive for the entirety of period 0 and simply serves to initialize the
game. Play then proceeds as follows: at the beginning of period 𝑡 ∈ {Δ, 2Δ,…}, player 𝑖𝑡 in‐
herits their predecessor’s power 𝑥𝑖,𝑡−Δ which linearly10 depreciates at rate, 𝛿 > 0 (hence by
amount 𝛿Δ each period). Players then simultaneously choose howmuch to invest in their
own power. Formally, player 𝑖𝑡 commits to accumulating power at rate, 𝐼𝑖𝑡 ≥ 0 through‐
out the period, which adds 𝐼𝑖𝑡Δ newly‐created units of power to 𝑖𝑡 ’s stock by the end of the
period. This yield’s the following law of motion for player 𝑖𝑡 ’s power:

𝑥𝑖𝑡 = max{𝑥𝑖,𝑡−Δ − Δ ⋅ 𝛿 , 0} + Δ ⋅ 𝐼𝑖𝑡
period‐𝑡 power

inherited power

depreciation rate accumulation rate

period length

Note that thepresenceof the “max{⋅, 0}” term in the lawofmotionabove reflects the fact
that only inherited power depreciates. The instantaneous flow cost of investing at rate 𝐼𝑖𝑡
given inherited power 𝑥𝑖,𝑡−Δ is given by 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ).11 The marginal cost of investment is
denoted by 𝐶𝐼 (𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ) ≡ 𝜕

𝜕𝐼𝑖𝑡 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ).
After players accumulate power, society endows a lump‐sum unit of resources, a con‐

sumable good.12 Players compete over these resources through a winner‐takes‐all13 con‐
flict whose victor is randomly chosen according to the conditional probability distribu‐
tion,

𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡 ; 𝑁 ) ≡ ℙ{Player 𝑖𝑡 wins the conflict |Power structure is 𝑥 𝑡 }. (1)

That is, each players’ probability of victory depends not only on how much power they
hold (𝑥𝑖𝑡), but also that held by others (𝑥−𝑖,𝑡 ≡ (𝑥𝑗𝑡)𝑗≠𝑖). At the end of period 𝑡, player 𝑖𝑡 earns

9Assuming that power takes values in [0, 𝜒] simplifies expositionwithout qualitatively altering themain
results of this model. This is explored in Section 4.1.

10This paper assumes linear depreciation to facilitate comparison with Acemoglu and Robinson (2022);
assuming geometric depreciation yields similar (albeit less transparent) results.

11A model with heterogeneous costs is possible, but this generalization does not provide substantive
insight and complicates the statement of the results of this paper.

12 Section C in the Online Appendix relaxes the normalization to unity. To provide a benchmark model
for how societies’ distributions of power evolve over time, it is appropriate to concentrate on an endowment
economy to focus attention on players’ power accumulation choices. I consider the case where players can
also accumulate productive capital in the follow‐up work to this paper.

13The results of this paper do not depend on the assumptions that players necessarily engage in conflict
and that said conflict is winner-takes-all. Another version of this model can allow players to peacefully
split resources through bargaining: first, players simultaneouslymake public announcements, first of their
desired share of resources, then of their acceptance or rejection the proposed split. If a feasible split is
unanimously accepted, players receive their desired shares; otherwise conflict ensues as before. Since this
bargaining stage does not affect results in any way, it is omitted for parsimony.
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an expected payoff of

𝜋𝑖 (𝑥𝑖𝑡 , 𝐼𝑖𝑡 , 𝑥−𝑖,𝑡 , 𝑥𝑖,𝑡−Δ) ≡ 𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡 ; 𝑁 ) − Δ ⋅ 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ), (2)

where 𝐶(⋅, ⋅) is weighted by period length – while 𝐻(⋅, ⋅; ⋅) is not – since the former is a flow
cost while the latter is a lump sum benefit.14

Two assumptions are made in this paper: one on the cost 𝐶 and marginal cost 𝐶𝐼 of
power accumulation (Assumption 1) and one on the benefit 𝐻 of power accumulation
(Assumption 2).

Assumption 1. 𝐶 ∶ [0,∞)2 → [0,∞) satisfies the following:
1. 𝐶(⋅, 𝑥𝑖,𝑡−Δ) is strictly increasing and strictly convex for any fixed 𝑥𝑖,𝑡−Δ.
2. 𝐶(𝐼𝑖𝑡 , ⋅) and 𝐶𝐼 (𝐼𝑖𝑡 , ⋅) are weakly decreasing for any fixed 𝐼𝑖𝑡 .
3. 𝐶𝐼 is continuously differentiable in its first argument and continuous in its second

argument.

Assumption 1.1 (increasing, convex15 power accumulation costs) is standard. Assump‐
tion 1.2 states that the cost – andmarginal cost – of power accumulationweakly16 diminish
with how much power one currently holds. This captures the idea that the more power‐
ful one already is, the less costly it is to further accumulate power, both in absolute terms
and on the margin. Finally, Assumption 1.3 is a mild smoothness assumption which is
essentially a relaxation of the assumption that 𝐶 is twice continuously differentiable that
permits 𝐶𝐼 (𝐼⋅, ⋅) to have “kinks,” given any fixed 𝐼⋅ ≥ 0.

The second assumption made in this paper concerns the benefit 𝐻 of holding power.
I assume it takes a standard form that is commonly referred to as the Difference‐Form
Contest Success Function (CSF), whose properties were notably studied by Hirshleifer
(1989) and Skaperdas (1996).

Assumption 2. Given 𝑥 ⋅, the lineage‐𝑖 player wins the conflict with probability

𝐻(𝑥𝑖⋅, 𝑥−𝑖⋅; 𝑁 ) ≡ 𝑒𝜆𝑥𝑖⋅
∑𝑁

𝑗=1 𝑒𝜆𝑥𝑗⋅
= 1

1 + ∑𝑗≠𝑖 𝑒−𝜆(𝑥𝑖⋅−𝑥𝑗⋅)
, (𝜆 > 0). (3)

Beyond assuming that𝐻 is continuous and only directly depends on power differences,
(𝑥𝑖−𝑥𝑗)𝑗≠𝑖, assuming the above functional form is equivalent to assuming that it satisfies a
collection of natural axioms (Skaperdas, 1996, Theorem3).17 AsCorchón andDahm (2010)

14See Dixit and Pindyck (1994) and Acemoglu and Robinson (2022, p. 412) formore details about this this
conventional modeling approach in asset accumulation models.

15Intuitively, this standard assumption says that larger investments in power are increasingly expensive
within a given period. Loosely put, this implies that smooth, gradual power accumulation is less costly than
rapid, large adjustments.

16Notice that the standard assumption that costs only depend on accumulation rate 𝐼𝑖𝑡 (and not on inher‐
ited power 𝑥𝑖,𝑡−Δ) is a special case of the cost function considered herein.

17The relevant axioms are summarized as follows: they require that victory probabilities are given by
a valid conditional probability distribution that only directly depends on the power held by each partici‐
pating player and that each participating player’s probability of victory is increasing (resp. decreasing) in
the amount of power they (resp. each opposing player) holds. The one axiom not covered in this summary
(Axiom 4) is similarly natural but concerns “breakaway” conflicts, which are not featured in my paper.
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note, it is standard to interpret 𝑒𝜆𝑥𝑖⋅ as the effectivity of player 𝑖⋅’s power, which corresponds
to how effectively player 𝑖⋅’s power influences their victory probability.

The main implication of this assumption is that the marginal benefit of power accu‐
mulation (“contest incentives”)

ℎ(𝑥𝑖⋅, 𝑥−𝑖⋅; 𝑁 ) ≡ 𝜕
𝜕𝑥𝑖⋅

𝐻(𝑥𝑖⋅, 𝑥−𝑖⋅; 𝑁 ) =
𝜆∑𝑗≠𝑖 𝑒−𝜆(𝑥𝑖⋅−𝑥𝑗⋅)

[1 + ∑𝑗≠𝑖 𝑒−𝜆(𝑥𝑖⋅−𝑥𝑗⋅)]
2 =

𝜆 𝑒𝜆𝑥𝑖⋅
∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅

(1 + 𝑒𝜆𝑥𝑖⋅
∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅

)
2 (4)

is increasing in how closely‐matched one is with other players in terms of power. This
captures the idea that gains over a closely‐matched opponent are more valuable than
thosemade against amuchweaker (ormuch stronger) one. This property is formalized in
the final equality of (4): the closer the relative effectivity 𝑒𝜆𝑥𝑖⋅/∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅ of player 𝑖⋅’s power is
to 1, the larger their marginal benefit of power accumulation, as shown in Figure 1. Note
that the dependence of 𝐻 and ℎ on 𝑁 will henceforth be suppressed when there is little
risk of confusion.
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Figure 1: Player 𝑖⋅’s marginal benefit of power accumulation ℎ as a function the relative
effectivity 𝑒𝜆𝑥𝑖⋅/∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅ of their power.

Remark 1. Parameter 𝜆 provides a tractable, systematic way to analyze the role played by
the institutional constraints on the effectivity of power in reduced form. Larger 𝜆 increase
the effectivity 𝑒𝜆𝑥⋅ of any given level of power 𝑥⋅. This is because larger 𝜆 correspond to
conflicts that are less noisy in that their outcome depends more heavily on players’ rela‐
tive powers (Hirshleifer, 1989). To illustrate, note that as 𝜆 → 0, the victor is essentially
decided by a fair 𝑁‐sided dice roll. As 𝜆 → ∞, (one of) the strongest player(s) win with
probability 1, like in an all‐pay auction.18

18Lanchester (1916) and Hillman and Riley (1989) consider the latter limiting case.
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I focus onMarkov perfect equilibrium (Maskin and Tirole, 2001). The state variable in
period 𝑡 is 𝑥 𝑡−Δ ∈ [0, 𝜒]𝑁 , the previous period’s power structure; the initial power structure
𝑥0 ∈ [0, 𝜒]𝑁 is exogenously fixed. Given 𝑥 𝑡−Δ, player 𝑖𝑡 ’s action set is𝑋𝑖𝑡(𝑥 𝑡−Δ) ≡ [max{𝑥𝑖,𝑡−Δ−
𝛿Δ, 0}, 𝜒].19 A strategy 𝑥𝑖𝑡 ∶ [0, 𝜒]𝑁 → 𝑋𝑖𝑡 for player 𝑖𝑡 maps each state 𝑥 𝑡−Δ to an action 𝑥𝑖𝑡 in
𝑋𝑖𝑡(𝑥 𝑡−Δ). The sequence {(𝑥∗1𝑡 , ..., 𝑥∗𝑁 𝑡)}𝑡∈{Δ,2Δ,…} is a (Markov perfect) equilibrium – henceforth
simply referred to as “equilibrium” – if at each 𝑡, 𝑥∗𝑖𝑡 (𝑥∗𝑡−Δ) is a best response to 𝑥∗−𝑖,𝑡(𝑥∗𝑡−Δ)
∀𝑖 ∈ {1, ..., 𝑁 }.

3 Equilibrium Power Structures
The problem faced by the lineage‐𝑖 player in period 𝑡 ∈ {Δ, 2Δ, ...} is given by

⎧⎪
⎨⎪
⎩

max𝑥𝑖𝑡 ,𝐼𝑖𝑡
𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) − Δ ⋅ 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ)

s.t. 𝑥𝑖𝑡 = 𝐼𝑖𝑡Δ +max{𝑥𝑖,𝑡−Δ − 𝛿Δ, 0}
0 ≤ 𝑥𝑖𝑡 ≤ 𝜒
𝐼𝑖𝑡 ≥ 0

(5)

The equilibrium of the game described above can be characterized using (5). Before
doing so, it is important to note the following:

Proposition 1. Given any initial power structure 𝑥0, the equilibrium of this game is unique for
all sufficiently small period length Δ.

Proof. Found in Online Appendix subsection A.1. ■

Proposition 1 guarantees that each initial power structure 𝑥0 yields a unique equilib‐
rium path {𝑥∗0, 𝑥∗Δ, 𝑥∗2Δ, ...} when Δ becomes small. Intuitively, this uniqueness stems from
the fact that increasing power by any fixed amount 𝐼⋅ > 0 becomes prohibitively expensive
asΔ becomes small. AsΔ approaches zero, playerswill differentially adjust their stocks of
power in equilibrium (as opposed tomaking infrequent “large” adjustments). This will be
seen explicitly in Proposition 2, where I solve the above game and make period length Δ
arbitrarily small so that that the equilibrium dynamics of 𝑥∗𝑡 can be studied in continuous
time, which is far more tractable for analysis.

3.1 Equilibrium Power Dynamics

Let ̇𝑥∗𝑖𝑡 ≡ limΔ→0
𝑥∗𝑖𝑡−𝑥∗𝑖,𝑡−Δ

Δ denote the equilibrium power accumulation rate and let 𝐶−1𝐼 (⋅, ⋅) de‐
note the inverse function of 𝐶𝐼 (⋅, ⋅) with respect to its first argument, keeping its second
argument fixed. With this notation in hand, the equilibrium dynamics of 𝑥∗𝑡 are charac‐
terized in continuous time as follows.

19Notice that since 𝑥𝑖𝑡 and 𝐼𝑖𝑡 “pin down” one another, the number of choice variables can be reduced
to one. For the purposes of defining strategies and equilibria, 𝑥𝑖𝑡 is considered the only choice variable of
player 𝑖𝑡 .
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Proposition 2. As Δ → 0, ̇𝑥∗𝑖𝑡 obeys the following law of motion for each 𝑖:

̇𝑥∗𝑖𝑡 =
⎧
⎨
⎩

−𝛿1(0,𝜒](𝑥∗𝑖𝑡 ), if ℎ(𝑥∗𝑖𝑡 , 𝑥∗-𝑖,𝑡) < 𝐶𝐼 (0, 𝑥∗𝑖𝑡 )
0, if ℎ(𝑥∗𝑖𝑡 , 𝑥∗-𝑖,𝑡) > 𝐶𝐼 (𝛿, 𝑥∗𝑖𝑡 ) and 𝑥∗𝑖𝑡 =𝜒

𝐶-1𝐼 (ℎ(𝑥∗𝑖𝑡 , 𝑥∗-𝑖,𝑡), 𝑥∗𝑖𝑡 ) − 𝛿1(0,𝜒](𝑥∗𝑖𝑡 ), otherwise,
(6)

Proof. Found in appendix subsection A.1. ■

The first two parts of (6) correspond to the corner solutions of (5) while the third cor‐
responds to the interior solution. The first part states that when the marginal benefit
ℎ(𝑥∗𝑖𝑡 , 𝑥∗−𝑖,𝑡) of power accumulation is less than the marginal cost 𝐶𝐼 (𝐼𝑖𝑡 , 𝑥∗𝑖𝑡 ) of accumulating
power at any 𝐼𝑖𝑡 ≥ 0, then it is optimal for player 𝑖𝑡 to not add any power to their stock so
that it depreciates unabated ( ̇𝑥∗𝑖𝑡 = −𝛿) or remains at zero. The second equation implies
that player 𝑖𝑡 optimally maintains the maximum level of power (𝑥∗𝑖𝑡 = 𝜒 ) when the net
marginal gain (ℎ(𝜒 , 𝑥∗-𝑖,𝑡 − 𝐶𝐼 (𝛿, 𝜒)) of doing so is positive. Otherwise the third equation
applies, and the optimal ̇𝑥∗𝑖𝑡 equalizes the marginal benefit and marginal cost of power
accumulation:

𝐶-1𝐼 (ℎ(𝑥∗𝑖𝑡 , 𝑥∗-𝑖,𝑡), 𝑥∗𝑖𝑡 ) − 𝛿1(0,𝜒](𝑥∗𝑖𝑡 ) ⇔ ℎ(𝑥∗𝑖𝑡 , 𝑥∗−𝑖,𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
marginal benefit

= 𝐶𝐼 ( ̇𝑥∗𝑖𝑡 + 𝛿1(0,𝜒](𝑥∗𝑖𝑡 ), 𝑥∗𝑖𝑡 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
marginal cost

. (7)

This characterization of players’ equilibrium power accumulation behavior provides
a natural, intuitive foundation for the main results of this paper, rooted solely in stan‐
dard assumptions on the cost (𝐶) and benefit (𝐻 ) of power accumulation.20 These two
economic forces underlie players’ equilibrium power accumulation decisions, and thus
how the society’s distribution of power 𝑥∗𝑡 evolves over time. Intriguingly, depending on
how unequal the society currently is, each force can either reinforce inequality or push
toward greater balance. This will be illustrated explicitly in Section 3.3, below.

Notice that the law of motion in equation (6) is time-invariant; how a group’s power
structure evolves in equilibrium depends only on its current power structure (𝑥∗𝑡 = 𝑥∗𝑡′ ⇔
̇𝑥∗𝑖𝑡 = ̇𝑥∗𝑖𝑡′ ∀𝑖, 𝑡 , 𝑡′). This is indicative of the results of thenext section, which characterizes the
asymptotic behavior of 𝑥∗𝑡 : as will soon be seen, the group’s initial power structure 𝑥0 will
solely determine the trajectory of 𝑥∗𝑡 and the power structure it approaches in the limit, in
the absence of shocks. Moving forward, notation will often be simplified by suppressing
time subscripts and asterisks: “ ̇𝑥𝑖” and “𝑥𝑖” should henceforth be taken to mean “ ̇𝑥∗𝑖𝑡 ” and
“𝑥∗𝑖𝑡 ,” respectively. Moreover, I will often refer to “player 𝑖𝑡” simply as “player 𝑖.”

20Recall that these familiar assumptions were, respectively, the convex accumulation costs (Assumption
1a) and difference‐form CSF (Assumption 2). The weak – possibly constant – dependence of 𝐶 on inherited
power (Assumption 1b) and the mild smoothness assumption (Assumption 1c) are not key drivers of the
results in this paper; the former serves as a generalization of the standard case and the latter provides
analytical tractability.
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𝑒𝜆𝑥 𝑖⋅ = ∑ 𝑗≠𝑖 𝑒
𝜆𝑥 𝑗⋅
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Figure 2: Player 𝑖⋅’s equilibrium power accumulation rate ( ̇𝑥∗𝑖⋅ ) as a function of their effec‐
tivity (𝑒𝜆𝑥𝑖⋅) and their opponents’ aggregate effectivity (∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅). This figure is produced
assuming 𝑁 = 3 players, depreciation rate 𝛿 = 0.1, institutional constraint parameter
𝜆 = 2.5, power cap 𝜒 = 1, and cost function 𝐶(𝐼⋅, 𝑥⋅) = 𝐼 2⋅ +max{0.5 − 𝑥⋅, 0}𝐼⋅.

3.2 Stable Power Structures
Now that the equilibriumdynamics of 𝑥 𝑡 havebeen fully characterized, attention is turned
to the the stable power structures that can arise in the long run.

Definition 1. A power structure ̄𝑥 ∈ [0, 𝜒]𝑁 is (asymptotically) stable if

a. ̇𝑥𝑖 = 0 ∀ 𝑖 at ̄𝑥, and
b. ∀𝜀 > 0, ∃𝜌 > 0 such that if ||𝑥0 − ̄𝑥|| < 𝜌, then ||𝑥 𝑡 − ̄𝑥|| < 𝜀 ∀ 𝑡 ≥ 0 and lim𝑡→∞ ||𝑥 𝑡 − ̄𝑥|| = 0,

where || ⋅ || denotes the Euclidean norm.

Part a of this definition requires the system to be at rest at ̄𝑥; when this is satisfied ̄𝑥 is
often referred to as a steady state. Part b requires that all trajectories that start near ̄𝑥 not
only remain near ̄𝑥, but also converge to ̄𝑥. Proposition 3 fully characterizes the stable
power structures that can arise under Assumptions 1 and 2, which will turn out to always
take one of the following forms:

1. Inclusive, where all players hold zero power or all hold 𝜒 units power. That is,

̄𝑥 ∈ {(0, … , 0), (𝜒 , … , 𝜒)} =∶ ℐ . (8)

I refer to (0, … , 0) as de-escalated inclusive, and to (𝜒 , … , 𝜒) as escalated inclusive.
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2. Oligarchic, where 𝑘 ∈ {2, ..., 𝑁 − 1} players (“the oligarchs”) hold 𝜒 units of power, and
the remaining 𝑁 − 𝑘 players are powerless. That is

̄𝑥 ∈ {𝑥 ∈ {0, 𝜒}𝑁 ∶ ∑𝑁
𝑖=11{𝜒}(𝑥𝑖) = 𝑘} =∶ 𝒪𝑘 . (9)

Given 𝑘 ∈ {2, … , 𝑁 − 1}, I refer to the elements of 𝒪𝑘 as 𝑘-archic power structures. I
define the set of oligarchic power structures as⋃𝑁−1

𝑘=2 𝒪𝑘.

3. Dictatorial, where only one player (“the dictator”) holds a strictly positive amount
𝑑 ∈ (0, 𝜒] of power. That is,

̄𝑥 ∈ {(𝑑, 0, … , 0), … , (0, … , 0, 𝑑)} =∶ 𝒟𝑑 . (10)

I refer to ̄𝑥 as strong dictatorial if 𝑑 = 𝜒 and weak dictatorial otherwise.

With this terminology in hand, the following proposition characterizes the necessary and
sufficient conditions (labeled with roman numerals) under which inclusive, oligarchic,
and dictatorial power structures are stable (parts 1‐5) and establishes that power struc‐
tures outside these classes are never stable (part 6).

Proposition 3. ̄𝑥 is stable if and only if it is inclusive, oligarchic, or dictatorial. More specifi-
cally:

1. The escalated inclusive power structure (𝜒 ,..., 𝜒) is stable if and only if

ℎ(𝜒, (𝜒 ,..., 𝜒))>𝐶𝐼 (𝛿, 𝜒) (I)

2. The de-escalated inclusive power structure (0,..., 0) is stable if and only if

ℎ(0, (0 , ... , 0))≤𝐶𝐼 (0, 0) (II)

3. Let 𝑘 ∈ {2,..., 𝑁 - 1}. Each 𝑘-archic power structure ̄𝑥 ∈ 𝒪𝑘 is stable if and only if

ℎ(𝜒, (
𝑘−1

⏞⏞⏞⏞⏞⏞⏞𝜒,..., 𝜒 ,
𝑁−𝑘
⏞0,..., 0))>𝐶𝐼 (𝛿, 𝜒) and ℎ(0, (

𝑘
⏞⏞⏞⏞⏞⏞⏞𝜒,..., 𝜒 ,

𝑁−𝑘−1
⏞0,..., 0))≤𝐶𝐼 (0, 0). (III)

4. Let 𝑑 ∈ (0, 𝜒). Each weak dictatorial power structure ̄𝑥 ∈ 𝒟𝑑 is stable if and only if

ℎ(⋅, (0,..., 0)) intersects 𝐶𝐼 (𝛿, ⋅) from above at 𝑑, 21 and

ℎ(0, (𝑑, 0,..., 0)) ≤ 𝐶𝐼 (0, 0)
(IV)

5. Each strong dictatorial power structure ̄𝑥 ∈ 𝒟𝜒 is stable if and only if

ℎ(𝑥⋅, (0,..., 0)) > 𝐶𝐼 (𝛿, 𝑥⋅) ∀𝑥⋅ ∈ (𝜒 − 𝜀, 𝜒) for some 𝜀 > 0, and
ℎ(0, (𝜒 , 0,..., 0)) ≤ 𝐶𝐼 (0, 0).

(V)
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6. No other stable power structures are possible.

Proof. Found in Online Appendix subsection A.2. ■

The intuition behind each of the above conditions is quite natural. Condition I says
that each player has a strictly positive net marginal gain of maintaining 𝜒 units of power.
This makes it optimal for each player to maintain 𝜒 units of power when 𝑥 = (𝜒,..., 𝜒) and
– by the continuity of ℎ and 𝐶𝐼 – guarantees that players accumulate power ( ̇𝑥𝑖 > 0 ∀𝑖) when
𝑥 is sufficiently near to (𝜒 ,..., 𝜒). The necessity of Condition I for the stability of (𝜒 ,..., 𝜒) is
most easily seen in the case where ℎ(𝜒, (𝜒 ,..., 𝜒)) < 𝐶𝐼 (𝛿, 𝜒): convex investment costsmake
it optimal for each player to allow their power to depreciate when 𝑥 = (𝜒,..., 𝜒), so that it
fails to be a steady state.22

Condition II implies thatwhen all players are powerless, it is not optimal for anyplayer
to accumulate power (so that ̇𝑥𝑖 = 0 ∀𝑖 at 𝑥 = 0). When the inequality in Condition II is
strict, then ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐶𝐼 (0, 𝑥 𝑖) ∀𝑖 when 𝑥 is sufficiently close to (0,..., 0), since ℎ and 𝐶𝐼 are
continuous. At all such 𝑥, every player optimally allows their power to depreciate at rate
𝛿, eventually causing each to hold no power.23 When Condition II fails, it follows from
the convexity of investment costs that each player begins to accumulate power (so that
̇𝑥𝑖 > 0 ∀𝑖 at 𝑥 = (0,..., 0)).
Remark 2. The de‐escalated inclusive power structure (0,..., 0) is approached by 𝑥 in equi‐
librium only when each player lets their power fully depreciate; this represents in a cer‐
tain sense the trivial case of the model (which is not ruled out by Assumptions 1 and 2).

Thefirst (resp. second) part ofCondition III plays a similar role asCondition I (resp. II).
The first part says that the net marginal gain of maintaining 𝜒 units of power is positive
when faced with 𝑘 − 1 other players who also hold 𝜒 units of power, and 𝑁 − 𝑘 players
who hold no power. The second part implies that it is not optimal for powerless players
to accumulate power at 𝑘‐archic power structures. Notice that Condition V is essentially
the 𝑘 = 1 analogue of Condition III.

Condition IV is necessary and sufficient for the stability of weak dictatorships, where
a single player 𝑖 (“the dictator”) holds 𝑥𝑖 = 𝑑 ∈ (0, 𝜒) units of power, and all other players
hold no power. The second part of this conditionmakes power accumulation sub‐optimal
for powerless players when the dictator holds 𝑑 units of power. The first part of Condition
IV says that the dictator player 𝑖’s marginal cost 𝐶𝐼 (𝛿, 𝑑) of maintaining 𝑑 units of power
is equal to its marginal benefit ℎ(𝑑, (0,..., 0)), so that maintaining 𝑑 units of power is opti‐
mal for the dictator. Furthermore, it says that ℎ(⋅, (0,..., 0)) intersects 𝐶𝐼 (𝛿, ⋅) from above,
which is crucial for the second part of Definition 1 to be satisfied. When this holds, then

21I.e. ℎ(𝑑, (0,..., 0)) − 𝐶𝐼 (𝛿, 𝑑) = 0 and ∃𝜀 > 0 s.t. ℎ(𝑥⋅, (0,..., 0)) − 𝐶𝐼 (𝛿, 𝑥⋅) > 0 ∀𝑥⋅ ∈ (𝑑 − 𝜀, 𝑑) and ℎ(𝑥⋅, (0,..., 0)) −
𝐶𝐼 (𝛿, 𝑥⋅) < 0 ∀𝑥⋅ ∈ (𝑑, 𝑑 + 𝜀).

22When ℎ(𝜒, (𝜒 ,..., 𝜒)) = 𝐶𝐼 (𝛿, 𝜒), each player maintains their power level when 𝑥 = (𝜒,..., 𝜒), so that it is
a steady state. However, if one takes 𝜀 > 0 units of power from each player, the power structure will not
return to 𝑥 in equilibrium, so that the second part of the definition of stability is violated.

23The explanation in the case where Condition II holds with equality is more involved; for more details,
please see the proof of Proposition 3.
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decreasing (resp. increasing) the dictator’s power by any “small” amount causes them to
optimally accumulate power (resp. let their power depreciate) until they return to hold‐
ing 𝑑 units of power. However, when ℎ(⋅, (0,..., 0)) intersects 𝐶𝐼 (𝛿, ⋅) from below, any such
perturbation will cause 𝑥𝑖 to drift away from 𝑑 in equilibrium. The intuition behind the
first parts of Conditions IV and V is illustrated in Figure 3. Note that unlike the two player
case, dictatorship can be stable in the standard case where 𝐶𝐼 (𝐼⋅, 𝑥⋅) is constant 𝑥⋅, as is per‐
mitted by the assumptions in this paper; the stability of inclusive and oligarchic regimes
can similarly remain stable in this standard case.
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Figure 3: Power level 𝑑 ∈ (0, 𝜒) is sustained in a stable weak dictatorship only if the dic‐
tator’s marginal benefit ℎ(⋅, (0,..., 0)) of power intersects marginal cost 𝐶𝐼 (𝛿, ⋅) at 𝑑 from
above. Power level 𝑑 = 𝜒 is sustained in a stable strong dictatorship only if a dicta‐
tor’s marginal benefit ℎ(𝜒 , (0,..., 0) of maintaining 𝜒 units of power strictly outweighs the
marginal cost 𝐶𝐼 (𝛿, 𝜒) of maintaining that power level. Notice that this intuition still
holds if costs do not depend on inherited power (e.g. when 𝐶𝐼 (𝛿, 𝑥⋅) = 𝛾 ∀𝑥 ⋅ for some
𝛾 ∈ (ℎ(𝑑1, (0, … , 0)), ℎ(𝜒 , (0, … , 0))).

Finally, the last part of Proposition 3 shows that if ̄𝑥 is not inclusive, oligarchic, or
dictatorial, it cannot be stable. First consider the case where 0 < ̄𝑥𝑖 < ̄𝑥𝑗 < 𝜒 for some
𝑖 ≠ 𝑗 (i.e. two players hold different interior power levels at ̄𝑥). If such an ̄𝑥 is a steady
state ( ̇𝑥⋅ = 0 for all players), then (6) implies that for each player ℓ ∈ {𝑖, 𝑗}, the marginal
cost 𝐶𝐼 (𝛿, ̄𝑥ℓ) of maintaining ̄𝑥ℓ units of power is equal to its marginal benefit ℎ( ̄𝑥ℓ, ̄𝑥−ℓ) =
𝐶𝐼 (𝛿, ̄𝑥ℓ) ∀ℓ ∈ {𝑖, 𝑗}. This leads to a contradiction since 𝐶𝐼 (𝛿, 𝑥𝑖) ≥ 𝐶𝐼 (𝛿, 𝑥𝑗) (Assumption 1.2)
and ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) < ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗) (shown in the proof). In the remaining cases, ̄𝑥 may be a steady
state, but not a stable one. Intuitively, this is because arbitrarily small perturbations can
cause 𝑥 𝑡 to not return to a neighborhood of ̄𝑥. Specifically, this is achieved by providing
each interior player an equal, sufficiently small, windfall of power. This has an identical,
non‐negative effect on each such player’s net marginal gain of power accumulation (and
thus their respective accumulation rates) without affecting the behavior of other players
(since thiswindfallwas chosen to be sufficiently small, and since ℎ and 𝐶𝐼 are continuous).
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Remark 3. The result in Proposition 3 remains qualitatively similar when players are
forward‐looking but sufficiently impatient. If players are exceedingly patient, the esca‐
lated inclusive power structure is the only stable power structure, since in this case the
cost of accumulating themaximum level of power 𝜒 (which is endured over a finite num‐
ber of periods) is outweighed by the high benefit of holding 𝜒 units of power (which is
enjoyed over an infinite time horizon). This is proven in virtually the same way as Propo‐
sition 3 in Acemoglu and Robinson (2022), with only trivial differences. This forward‐
looking extension is not among the several significant differences between this paper
and Acemoglu and Robinson (2022), which were discussed in the Related Literature.

3.3 Three Player Illustration
This section illustrates the global equilibrium dynamics in the case with𝑁 = 3 players. In
the interest of clearly visualizing these results, I focus on the case where the set of stable
power structures is

{ (𝜒 ,𝜒 , 𝜒)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
escalated
inclusive

, (𝑑, 0, 0),(0, 𝑑, 0), (0, 0, 𝑑)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

dictatorial

, (𝜒 , 𝜒 , 0), (𝜒 , 0, 𝜒),(0, 𝜒 , 𝜒)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

oligarchic
(2‐archic)

},

where 𝑑 ∈ (0, 𝜒]. Figure 4 visualizes the equilibrium dynamics in this case. The intuition
behind how these novel dynamics arise from standard economic assumptions are dis‐
cussed below. Interestingly, these very same incentives and costs act as equalizing forces
when players are sufficiently equal, but otherwise act as forces towards inequality.

When players’ powers are initially close to one another, the (escalated) inclusive power
structure is reached through competition. As a result of the familiar difference‐formCSF,
players’ power accumulation incentives are strongest when they are evenlymatchedwith
one another (in the sense discussed below equation (4)). Thus, when players begin suf‐
ficiently closely matched, they each begin with similarly strong power accumulation in‐
centives. Moreover, convex accumulation costs prevent each player from outrunning the
rest, since rapid power accumulation is increasingly expensive. Consequently, players
begin accumulating power at similar rates in equilibrium, resulting in each becoming
more powerful in absolute terms while their relative powers remain similar. This cycle
repeats until each player reaches 𝜒 units of power.

Dictatorialpower structures are reached throughaqualitatively different process. When
one player – say, player 1 – begins significantly more powerful than the rest, that player
will eventually be the only one holding power (the “dictator”). Players’ power accumula‐
tion incentives are weaker than before due to this power disparity, but by construction,
player 1’s incentives are strong enough for power accumulation to be optimal. Other play‐
ers may also find it initially optimal to accumulate power, but not so fast as to close the
gap with player 1, since convex investment costs make rapid accumulation relatively ex‐
pensive. Consequently, this power disparity widens, further discouraging players 2 and 3
from catching up with player 1. This process continues until weaker players 2 and 3 find
power accumulation sub‐optimal, allowing their respective powers to depreciate to zero,
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Figure 4: Simplex plot representation of simulated equilibriumpaths produced using cost
function 𝐶(𝐼⋅, 𝑥⋅) = 𝐼 2⋅ + (1 − 𝑥⋅)𝐼⋅, institutional constraint parameter 𝜆 = 5.5, depreciation
parameter 𝛿 = 0.1, and power cap 𝜒 = 1.

at which point player 1 has fully consolidated power. Notice that this process did not rely
on player 1 having a cost advantage (i.e., this intuition holds evenwhen 𝐶(𝐼⋅, 𝑥⋅) is constant
in 𝑥⋅).

Finally, oligarchic (here, 2‐archic) power structures are reached througha combination
of the above two processes. These are reached when two players (say, players 1 and 2)
begin closely matched to each other but outmatch the rest (here, player 3). Players 1 and
2 competewith one another, each driving the other player’s power up in the sameway that
the escalated inclusive power structure is reached. This causes these players to “outrun”
(in terms of power accumulation) player 3, who eventually allows their power to fully
depreciate, like in the dictatorial case.
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4 Properties of Stable Power Structures

4.1 Stable Power Structures in Large Societies
I now turn to themain result of this paper: in the following proposition, I show that there
always exists a finite group size past which the escalated inclusive power structure ceases
to be stable.

Proposition 4. The escalated inclusive power structure (𝜒 ,..., 𝜒) is not stable in groups larger
than

𝑁̄ I𝜒 ≡ ⌈𝜆 + √(𝜆 − 4𝐶𝐼 (𝛿, 𝜒))𝜆
2𝐶𝐼 (𝛿, 𝜒)

⌉ ⋅ 1[4𝐶𝐼 (𝛿,𝜒),∞)(𝜆) (11)

Proof. Found in Online Appendix subsection A.3. ■

This result implies that in a sufficiently large society, unchecked political competi‐
tion24 will inevitably leave a subset of its population marginalized. The takeaway of this
result should not be the sense of resignation evoked by Michels’s (1915) Iron Law of Oli-
garchy, but instead a sense of urgency: political competition must be regulated to make
inclusivity possible to achieve in large societies; failing to do so guarantees its impossi‐
bility.

What kinds of interventions can keep the escalated inclusive power structure stable in
large societies? Before turning to this matter, it is first important to understand why the
escalated inclusive power structure destabilizes in sufficiently large groups. Recall that by
Proposition 3.1, the escalated inclusive power structure is stable if and only if Condition
I holds:

(𝑁 − 1)𝜆/𝑁 2 = ℎ(𝜒, (𝜒 , … , 𝜒); 𝑁 ) > 𝐶𝐼 (𝛿, 𝜒).
The formula for 𝑁 I𝜒 in (11) is derived using the above condition.25

Notice that each player’s marginal benefit ℎ(𝜒, (𝜒 ,..., 𝜒); 𝑁 ) at 𝑥 = (𝜒,..., 𝜒) is decreas‐
ing in 𝑁 and decays to zero as 𝑁 grows large. Eventually – after the group grows larger
than 𝑁 I𝜒 – this marginal benefit becomes outweighed by the marginal cost 𝐶𝐼 (𝛿, 𝜒) > 0 of
maintaining 𝜒 units of power. Thismakes it suboptimal for all players tomaintain 𝜒 units
of power, and hence the escalated inclusive power structure is not stable.

To see the intuition behind this, recall that players’ power accumulation incentives ℎ
are increasing in how closely matched they are with their competitors (in the sense dis‐
cussed after equation (4)). At the escalated inclusive power structure, every player faces
𝑁 − 1 opponents that are each as strong as they are. This is why each player has strong
power accumulation incentives when 𝑁 is small; in fact they are as strong as possible
when 𝑁 = 2. However, as 𝑁 grows large, players become overwhelmed by their aggre‐
gate competition at 𝑥 = (𝜒,..., 𝜒). This is somewhat ironic, since – as was discussed in

24By “unchecked political competition,” I precisely mean that the gamemodeled in this paper proceeds
without intervention originating externally to the game.

25The presence of the indicator function in equation (11) reflects the fact that Condition I fails to hold at
any 𝑁 ≥ 2 when 𝜆/4 < 𝐶𝐼 (𝛿, 𝜒).
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subsection 3.3 – competitive pressure is what drives 𝑥 towards this power structure; when
𝑁 grows large, competitive pressure is also what snuffs it out.

I now analyze the institutional features thatmake the escalated inclusive power struc‐
ture more (or less) robust to population size. The following Corollary characterizes how
this population bound 𝑁̄ I𝜒 varies with 𝜆 and 𝐶𝐼 (𝛿, 𝜒); namely it is increasing in the former
and decreasing in the latter.

Corollary 1. When 𝜆/4 ≥ 𝐶𝐼 (𝛿, 𝜒), 𝑁̄ I𝜒 is strictly increasing in 𝜆 and strictly decreasing in
𝐶𝐼 (𝛿, 𝜒); otherwise it is increasing in 𝜆 and decreasing in 𝐶𝐼 (𝛿, 𝜒).
Proof. Found in Online Appendix section A.4. ■

Lowering 𝐶𝐼 (𝛿, 𝜒) corresponds to decreasing the marginal cost of maintaining 𝜒 units
of power; increasing 𝜆 corresponds to loosening institutional constraints on the effectivity
𝑒𝜆𝑥⋅ of power 𝑥⋅ (Remark 1). The above corollary suggests that either change increases 𝑁̄ I𝜒 ,
so that the escalated inclusive power structure is more robust to group size. This may
seem counter‐intuitive at first, since these policies seem to favor those who are already
powerful.

To see the intuitionbehind this result, observe that interventions that increase 𝜆 (resp. de‐
crease 𝐶𝐼 (𝛿)) simply serve to increase (resp. decrease) the left‐hand (resp. right‐hand) side
of Condition I,mentioned just above. Recalling the discussion of Proposition 3, Condition
I is necessary and sufficient for the stability of (𝜒 ,..., 𝜒) because it ensures that players’ net
marginal gain of power accumulation is positive when they are all sufficiently powerful.
Moreover, any finite increase (resp. decrease) in 𝜆 (resp. 𝐶𝐼 (𝛿)) is only a temporary solu‐
tion in growing societies, since they only increase 𝑁̄ 𝐼𝜒 by a finite amount.

Thehardupper bound 𝜒 onpower is also apolicy lever. RecallingAssumption 1, notice
that increasing 𝜒 raises 𝑁̄ 𝐼𝜒 only by diminishing 𝐶𝐼 (𝛿, 𝜒). However, this policy lever will
only get you so far: as I now show in Proposition 5.1, if one makes 𝜒 arbitrarily large,
𝑁̄ 𝐼𝜒 remains finite in all but a knife‐edge case where the marginal cost of maintaining an
arbitrarily large amount of power becomes arbitrarily close to zero. The remainder of this
proposition shows that dictatorships and oligarchies are far more robust to population
size.

Proposition 5. Suppose that lim𝜒→∞ 𝐶𝐼 (𝛿, 𝜒) = 𝛾 > 0. If 𝜒 is made arbitrarily large, then

1. The group size past which the escalated inclusive power structure is unstable remains fi-
nite.

2. Apart from the trivial case when 𝜆/4 ≤ 𝛾 ,26 dictatorial power structures remain stable at
arbitrarily large group sizes.

3. 𝑘-archies remain stable at arbitrarily large group sizes if 𝑘 is no greater than

𝑘̄ ≡ ⌊𝜆 + √(𝜆 − 𝛾)𝜆
𝛾 ⌋ ⋅ 1(𝛾 ,∞)(𝜆), (12)

26As seen in Figure 1, when 𝜆/4 ≤ lim𝜒→∞ 𝐶𝐼 (𝛿, 𝜒), the maximum attainable marginal benefit 𝜆/4 is less
than the marginal cost of maintaining any positive level of power (because of Assumption 1.2) ∀𝑁 ≥ 2.
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and 𝑘-archies with 𝑘 ∈ {𝑘̄ + 1, 𝑘̄ + 2, …} are not stable at any group size.

Proof. Found in Online Appendix section A.5. ■

When 𝜒 → ∞, the restriction of power to [0, 𝜒] becomes relaxed by an arbitrarily large
amount. The first part of this proposition shows that in all but a knife‐edge case,27 the
escalated inclusive power structure still becomes unstable past a finite group size, and for
the same reason as before: players become overwhelmed by their aggregate competition.
However, notice in equation (11) that relaxing institutional constraints on the effectivity
of power (i.e. making 𝜆 arbitrarily large) allows the escalated inclusive power structure
to remain stable in arbitrarily large group sizes. Recalling Remark 1, this is effectively
amounts to turning conflict into an all‐pay auction. On the other hand, if 𝜆 = 0, so that
there is no benefit to holding power, only the de‐escalated inclusive power structure 𝑥 =
(0, … , 0) is stable. Thus, extreme values of 𝜆 appear to make inclusivity robust to group
size.

Proposition 5 provides another interesting implication in its latter two parts: dicta‐
torships and oligarchies with sufficiently few oligarchs are robust to group size.28 As I
discussed in the Related Literature section of the Introduction, this provides a theoreti‐
cal foundation for a stylized fact that is far from fully understood: power tends to fall into
the hands of a few in large groups of people. In contrast to prevailing explanations, the
one provided here does not rely on the particular details of political institutions; it simply
stems from the nature of incentives in power accumulation competitions.

To see the intuition for why 𝑘 must be sufficiently small for a 𝑘‐archy to be robust to
group size, recall that in 𝑘‐archic power structures, each oligarch29 is individually equally
matched with 𝑘 − 1 other players. When 𝑘 ≤ 𝑘̄, oligarchs face more than one – but not
too many – closely matched opponents, which ensures strong competition incentives.
Otherwise, the oligarchs become overwhelmed like the players in the escalated inclusive
power structure.

This leaves one final mystery: why do dictatorships remain stable at arbitrarily large
group sizes? Since dictators have no closely matched competitors, shouldn’t their contest
incentives be weak? This is indeed the case when 𝑁 is small, but as 𝑁 becomes large
this story qualitatively shifts. While the technical details for why this is true are found in
the proof of Proposition 5, the intuition behind this result is best understood after first
considering the effect of group size on the amount of power held in stable dictatorships.

27The supposition in Proposition 5 says that 𝐶𝐼 (𝛿, ⋅) is bounded below by some 𝛾>0, which may be arbi‐
trarily small. This just leaves the knife‐edge case where 𝐶𝐼 (𝛿, 𝜒) decays to exactly zero as 𝜒 → ∞.

28Note that keeping 𝜒 fixed will artificially cause dictatorships and oligarchies to become unstable past
a finite group size (details are provided in Propositions 8 and 9 in Online Appendix B). Moreover, note that
since the trivial case of this model is not ruled out by its assumptions, the de‐escalated inclusive power
structure may remain stable at arbitrarily large group sizes (Remark 2).

29Recall that the strongest players in 𝑘‐archic power structures are termed “oligarchs.”
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Figure 5: How 𝑁̄ I∞ ≡ lim𝜒→∞ 𝑁̄ I𝜒 and 𝑘̄ vary with 𝜆 and 𝛾 ≡ lim𝜒→∞ 𝐶𝐼 (𝛿, 𝜒)

4.2 Comparative Statics of Stable Dictatorial Power
This section characterizes the comparative statics of stable dictatorial power, the amount
of power held by the strongest player (“the dictator”) in a stable dictatorship. Recall that
Proposition 3 established that weak dictatorships (with dictatorial power 𝑑 ∈ (0, 𝜒)) are
stable if and only if Condition IV holds and strong dictatorships (with dictatorial power
𝑑 = 𝜒 ) are stable if and only if Condition V holds. Depending on model primitives, it is
possible for no dictatorships to be stable or for multiple levels of power to be sustained
in stable dictatorships as in Figure 3 in subsection 3.2.30 For ease of exposition, assume
throughout this subsection that exactly one level of power 𝑑 is sustained in a stable dicta‐
torship.31 Analogous results hold when multiple types of dictatorship are stable, but are
substantially more cumbersome to state, and offer insubstantial additional insight.

Proposition 6. The amount of power held by dictators in stable dictatorships increases in group
size 𝑁 .

Proof. Found in Online Appendix subsection A.6. ■

It is natural to expect that larger group sizes lead to stronger dictators. Mechani‐
cally, this is because increasing group size 𝑁 translates the dictator’s marginal benefit
ℎ(⋅, (0, … , 0); 𝑁 ) rightward (by equation (32) in the proof of Proposition 6). This is illus‐
trated in Figure 6A, below. Intuitively, this is because under Assumption 2, powerless

30Recall that the equilibrium dynamics in (6) are always unique, hence even when multiple “kinds” of
dictatorships are stable.

31Formally put: assume that either (1) Condition IV holds for exactly one 𝑑 ∈ (0, 𝜒) and Condition V fails
or (2) IV fails at all 𝑑 ∈ (0, 𝜒) and Condition V holds.
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players have a small but non‐zero probability of victory.32 As a result, powerless players
collectively exert competitive pressure on the dictator player. This pressure grows with
the number of powerless players, thereby inducing the dictator to hold an increasingly
high level of power in stable dictatorships. Note that when this level of power is in the
interior of (0, 𝜒), it is strictly increasing in group size 𝑁 . Hence, if 𝜒 is made arbitrarily
large, the amount of power held in stable dictatorships grows without bound with group
size.

As𝑁 becomes large, dictators’ contest incentives – and hence optimal behavior – start
to resemble those of oligarchs. Theway inwhich dictators optimally respond to increases
in group size is what ultimately causes their contest incentives to grow with 𝑁 and hence
allows dictatorships to be robust to group size in Proposition 5. Strong dictators emerge
when (the rest of) society is collectively strong. While this resembles Acemoglu andRobin‐
son’s (2022) main result, there is an added twist: non‐dictator players are individually
powerless, having only collective strength in numbers.
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(A) Larger 𝑁 induce higher 𝑑𝑁 because it shifts
the dictator’s marginal benefit of power accu‐
mulation ℎ(⋅, (0,..., 0); 𝑁 ) rightward.
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Figure 6: How larger group size𝑁 induces higher levels of power 𝑑𝑁 held by the strongest
player (“dictator”) in stable dictatorships.

Other comparative statics properties of the amount of power 𝑑 held in stable dictator‐
ships are given in the result below.

Proposition 7.

1. Uniformly increasing the marginal cost of investment 𝐶𝐼 (⋅, ⋅) decreases 𝑑.
2. 𝑑 is decreasing in 𝛿.
3. d increasing in 𝜆 if and only if 𝜆𝑑−1

𝜆𝑑+1𝑒𝜆𝑑 < 𝑁 − 1.
32As discussed in Hirshleifer (1989), this reflects the inherent noisiness of conflicts.
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Proof. Found in Online Appendix subsection A.7. ■

The first two parts of this proposition consider the negative relationship between the
amount of power 𝑑 held by dictators in stable dictatorships and the marginal cost 𝐶𝐼 (𝛿, 𝑑)
of maintaining 𝑑 units of power. If the latter value were to increase – say, due to an unex‐
pected shock or a policy intervention that makes accumulating power more costly – the
dictator’smarginal cost ofmaintaining 𝑑 units of powerwould outweigh itsmarginal ben‐
efit ℎ(𝑑, (0, … , 0)). The dictator consequently lets their power depreciate until stabilizing
at a new, lower level of power.

Conflict noise parameter 𝜆 has a less straightforward relationship with stable dicta‐
torial power 𝑑. Increasing 𝜆 induces an increase in 𝑑 if and only if they are both suffi‐
ciently small, a requirement that becomes less stringent as 𝑁 increases. As 𝜆 becomes
large, simply surpassing the other players – rather than the amount by which one sur‐
passes – becomes the dominant influencing factor in winning conflicts. The role played
by group size is also natural: larger 𝑁 correspond tomore powerless players, who always
have a strictly positive probability of winning conflicts when 𝜆 < ∞. Thus, dictators in
larger groups face more pressure to maintain higher levels of power in parallel fashion
to Proposition 6.

5 Conclusion
This paper developed an economic framework of how a society’s distribution of power
and resources evolves over time. Constructed using conventional tools from contest the‐
ory and asset accumulation models, this framework provided several novel insights into
the emergenceof inclusive, oligarchic, anddictatorial regimes, and the competitive forces
that underlie them. This was studied using an intergenerational power accumulation
contest among multiple lineages of players, where power was modeled as an asset that
increases one’s chances ofwinning conflicts over resources. Given any initial distribution
of power, this model makes a unique equilibrium prediction33 of how it will evolve over
time andwhether it will tend toward inclusivity, dictatorship, or oligarchy in the long run.

The main result of this model makes a far more concerning prediction, showing how
power and resources generically fall into the hands of a few in large societies, in the ab‐
sence of external intervention. This not only addresses a century‐long open question by
providing a robust theoretical mechanism for Michels’s (1915) Iron Law of Oligarchy, it
also shows that this Iron Law is driven by standard economic assumptions.

This paper generates new insights not only on the nature of political inequality in
large societies, but also on themain conclusion of its foundation, Acemoglu andRobinson
(2019, 2022). While I confirm that competitive pressure is indeed what allows strong,
inclusive regimes to emerge, it is also precisely what causes it to destabilize in sufficiently
large societies.

33In the absence of shocks to the group’s power structure, the number of players, or any other model
primitives that affect the costs or benefits of accumulating power. The takeaway from this prediction should
not be fatalistic, as indeed these aforementioned shocks can an do occur. Rather, the implication of this
prediction is that the deeper a society is in the basin of attraction of one type of regime (e.g. dictatorship),
larger shocks are required to divert it towards another type of regime (e.g. inclusivity).
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Michels (1915) asserted that “[h]istorical evolution mocks all the prophylactic mea‐
sures that have been adopted for the prevention of oligarchy” (p. 406). In order to escape
Michels’s grim portent, we must systematically understand how societies’ distributions
of power evolve over time. This paper provides a benchmark model towards that end.
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A Proofs
This section contains the proofs to the results in the main text (Propositions 1‐7). Note
that in the main text, resources are normalized to unity, for simplicity. Section C of this
Online Appendix considers an extension where the size of resources is 𝑦𝑁 ≥ 0, which can
vary with population size 𝑁 ∈ {2, 3, …}. In preparation for this section, Propositions 1‐3
are proven assuming the aforementioned extended model. This proves the results in the
main text (since it is the special case where 𝑦𝑁 = 1 ∀𝑁 ) and avoids redundancy in Section
C.

A.1 Proof of Propositions 1 and 2
Arbitrarily fix 𝑥 𝑡−Δ ∈ [0, 𝜒]𝑁 . Notice that the optimization problem in (5) is equivalent to
the optimization problem

⎧⎪
⎨⎪
⎩

max𝑥𝑖𝑡
𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) − Δ ⋅ 𝐶 (𝑥𝑖𝑡−𝑥𝑖,𝑡−ΔΔ +min {𝑥𝑖,𝑡−ΔΔ , 𝛿} , 𝑥𝑖,𝑡−Δ)

s.t. 0 ≤ 𝑥𝑖𝑡
𝑥𝑖𝑡 ≤ 𝜒
𝑥𝑖,𝑡−Δ −min{𝑥𝑖,𝑡−Δ, 𝛿Δ} ≤ 𝑥𝑖𝑡

(5′)

wherein 𝑥𝑖𝑡 is the only choice variable. This is achieved by rearranging the equality con‐
straint of (5)

𝑥𝑖𝑡 = Δ ⋅ 𝐼𝑖𝑡 +max{𝑥𝑖,𝑡−Δ − 𝛿, 0} ⇔ 𝐼𝑖𝑡 =
𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ

Δ +min {𝑥𝑖,𝑡−ΔΔ , 𝛿}

and substituting out 𝐼𝑖𝑡 . Optimization problem (5′) is now solved. I form the Lagrangian

L = 𝐻(𝑥𝑖, 𝑥−𝑖) − Δ ⋅ 𝐶 (𝑥𝑖𝑡−𝑥𝑖,𝑡−ΔΔ +min {𝑥𝑖,𝑡−ΔΔ , 𝛿} , 𝑥𝑖,𝑡−Δ)
+𝑥𝑖𝑡𝜇1 + (𝜒 − 𝑥𝑖𝑡)𝜇2 + (𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ +min{𝑥𝑖,𝑡−Δ, 𝛿Δ})𝜇3

(13)

where 𝜇1, 𝜇2, and 𝜇3 respectively denote the Lagrange multiplier of the first, second, and
third inequality constraints of (5′). The first order condition is given by

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) = 𝐶𝐼 (
𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ

Δ +min {𝑥𝑖,𝑡−ΔΔ , 𝛿} , 𝑥𝑖,𝑡−Δ) − 𝜇1 + 𝜇2 − 𝜇3. (FOC)

Recall that ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) ≡ 𝜕
𝜕𝑥𝑖𝑡𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) (equation (4)) and 𝐶𝐼 denotes the partial derivative

of 𝐶 with respect to its first argument. The Karush Kuhn‐Tucker (KKT) conditions are
given by (CS1), (CS2), and (CS3), which respectively correspond to the first, second, and
third inequality constraints of (5′).

𝑥𝑖𝑡 ≥ 0, 𝜇1 ≥ 0, 𝑥𝑖𝑡𝜇1 = 0 (CS1)

𝑥𝑖𝑡 ≤ 𝜒, 𝜇2 ≥ 0, (𝜒 − 𝑥𝑖𝑡)𝜇2 = 0 (CS2)

𝑥𝑖,𝑡−Δ −min{𝑥𝑖,𝑡−Δ, 𝛿Δ} ≤ 𝑥𝑖𝑡 , 𝜇3 ≥ 0, [𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ +min{𝑥𝑖,𝑡−Δ, 𝛿Δ}
Δ ] 𝜇3 = 0 (CS3)
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Case 1: Suppose the first two constraints of (5′) are both binding. This implies that 𝑥𝑖𝑡 = 0
and 𝑥𝑖𝑡 = 𝜒 , which is a contradiction since 𝜒 > 0. Therefore it is never possible for the
first two constraints of (5′) to both be binding.

Case2: Nowsuppose that only thefirst constraint of (5′) is slack. This implies that 𝑥𝑖𝑡 = 𝜒
and 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ −min{𝑥𝑖,𝑡−Δ, 𝛿Δ}, which in turn jointly imply that 𝑥𝑖,𝑡−Δ = 𝜒 +min{𝑥𝑖,𝑡−Δ, 𝛿Δ}.
This equation yields a contradiction when 𝑥𝑖,𝑡−Δ > 0 (since it implies that 𝑥𝑖,𝑡−Δ = 𝜒 + 𝛿Δ >
𝜒 , which is impossible) and when 𝑥𝑖,𝑡−Δ = 0 (since it implies that 𝑥𝑖,𝑡−Δ = 𝜒 ≠ 0). Thus it is
never possible for only the first constraint of (5′) to be slack.

Case 3: I now turn to the case where only the second constraint of (5′) is binding. In
this case, 𝜇1 = 𝜇3 = 0, 𝜇2 ≥ 0, 𝑥𝑖𝑡 = 𝜒 , and 𝑥𝑖𝑡 > 𝑥𝑖,𝑡−Δ −min{𝑥𝑖,𝑡−Δ, 𝛿Δ}. In this case, it follows
from (FOC) that

ℎ(𝜒, 𝑥−𝑖) ≥ 𝐶𝐼 (
𝜒 − 𝑥𝑖,𝑡−Δ

Δ +min {𝑥𝑖,𝑡−ΔΔ , 𝛿} , 𝑥𝑖,𝑡−Δ) (14)

Since ℎ is a bounded function and 𝐶𝐼 is strictly increasing in its first argument, it follows
that there exists a sufficiently small Δ̃1 > 0 such that ∀Δ < Δ̃1 the above inequality holds
only at 𝑥𝑖,𝑡−Δ = 𝜒 and 𝜒/Δ > 𝛿.

Case 4: Now consider the case where only the third constraint of (5′) is binding. In this
case 𝜇1 = 𝜇2 = 0, 𝜇3 ≥ 0, 𝑥𝑖𝑡 ∈ (0, 𝜒), and 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ − min{𝑥𝑖,𝑡−Δ, 𝛿Δ}. If 𝑥𝑖,𝑡−Δ ∈ [0, 𝛿Δ], then
we must have 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ − 𝑥𝑖,𝑡−Δ = 0, which contradicts the fact that the first constraint of
(5′) is slack in the present case. Therefore we must have 𝑥𝑖,𝑡−Δ ∈ (𝛿Δ, 𝜒]. In this case, it
follows from (FOC) that

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) ≤ 𝐶𝐼 (
𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ

Δ + 𝛿, 𝑥𝑖,𝑡−Δ) = 𝐶𝐼 (0, 𝑥𝑖,𝑡−Δ) (15)

where the equality follows from the fact that the third constraint of (5′) is binding. There‐
fore it is established that (𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ)/Δ = −𝛿 if both ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) ≤ 𝐶𝐼 (0, 𝑥𝑖,𝑡−Δ) and 𝑥𝑖,𝑡−Δ ∈
(𝛿Δ, 𝜒] are true.

Case 5: Now suppose that only the second constraint of (5′) is slack. In this case, we
have 𝜇1 ≥ 0, 𝜇2 = 0, 𝜇3 ≥ 0, 𝑥𝑖𝑡 = 0, and 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ − min{𝑥𝑖,𝑡−Δ, 𝛿Δ}. In this case, we
must have 𝑥𝑖,𝑡−Δ ∈ [0, 𝛿Δ]. This is because when 𝑥𝑖,𝑡−Δ ∈ (𝛿Δ, 𝜒], the binding first and third
constraints of (5′) imply that 𝑥𝑖,𝑡−Δ = 𝛿Δ, which is a contradiction. When 𝑥𝑖,𝑡−Δ ∈ [0, 𝛿Δ],
these binding constraints imply that 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ − 𝑥𝑖,𝑡−Δ = 0, which is true. It follows from
this and from (FOC) that 𝑥𝑖𝑡 = 0 if ℎ(0, 𝑥−𝑖,𝑡) ≤ 𝐶𝐼 (0, 𝛿Δ) and 𝑥𝑖,𝑡−Δ ∈ [0, 𝛿Δ].

Case 6: Next, consider the case where only the first constraint of (5′) is binding. Here,
we have 𝜇1 ≥ 0 = 𝜇2 = 𝜇3, 𝑥𝑖𝑡 = 0, and 𝑥𝑖𝑡 > 𝑥𝑖,𝑡−Δ − min{𝑥𝑖,𝑡−Δ, 𝛿Δ}. The binding first con‐
straint and slack third constraint of (5′) imply that 𝑥𝑖,𝑡−Δ < min{𝑥𝑖,𝑡−Δ, 𝛿Δ}. This inequality
yields a contradiction when 𝑥𝑖,𝑡−Δ ≤ 𝛿Δ (since it implies that 𝑥𝑖,𝑡−Δ < 𝑥𝑖,𝑡−Δ) and when
𝑥𝑖,𝑡−Δ > 𝛿Δ (since it implies that 𝑥𝑖,𝑡−Δ < 𝛿Δ). Thus it is impossible for only the first con‐
straint of (5′) to bind.
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Case 7 (Interior): Finally, attention is turned to the interior case where all constraints of
(5′) are slack. Here, 𝜇𝑖 = 0 ∀𝑖 ∈ {1, 2, 3}, 𝑥𝑖𝑡 ∈ (0, 𝜒), and 𝑥𝑖𝑡 > 𝑥𝑖,𝑡−Δ −min{𝑥𝑖,𝑡−Δ, 𝛿Δ}. Equation
(FOC) then implies that 𝑥𝑖𝑡 satisfies the following equality:

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) = 𝐶𝐼 (
𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ

Δ +min {𝑥𝑖,𝑡−ΔΔ , 𝛿} , 𝑥𝑖,𝑡−Δ) . (16)

Note that ℎ(⋅, 𝑥−𝑖,𝑡) and its partial derivative with respect to its first argument are both
bounded given any 𝑥−𝑖,𝑡 ∈ [0, 𝜒]𝑁−1 and recall that 𝐶𝐼 (⋅, 𝑥𝑖,𝑡−Δ) is strictly increasing given
any 𝑥𝑖,𝑡−Δ ∈ [0, 𝜒]. It then follows that either the solution is never interior at any period
length or there exists a sufficiently small Δ̃2 > 0 such that given any fixed Δ < Δ̃2, a unique
interior value of 𝑥𝑖𝑡 satisfies (16) and that at said 𝑥𝑖𝑡

𝜕
𝜕𝑥𝑖𝑡

[ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) − 𝐶𝐼 (
𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ

Δ +min {𝑥𝑖,𝑡−ΔΔ , 𝛿} , 𝑥𝑖,𝑡−Δ)] < 0. (17)

Note that the “min {𝑥𝑖,𝑡−ΔΔ , 𝛿}” term in (16) is equal to 𝛿 when 𝑥𝑖,𝑡−Δ ∈ [𝛿Δ, 𝜒] and equal to zero
when 𝑥𝑖,𝑡−Δ = 0. When 𝑥𝑖,𝑡−Δ ∈ (0, 𝛿Δ), the right‐hand side of (16) is 𝐶𝐼 (𝑥𝑖𝑡/Δ, 𝑥𝑖,𝑡−Δ). Note
that (0, 𝛿Δ) converges to the empty set as Δ is made arbitrarily small in the sense that for
any sequence {Δ̂𝑘}𝑘∈ℕ such that Δ̂𝑘 → 0 as 𝑘 → ∞, we have ∩𝑘∈ℕ(0, 𝛿Δ̂𝑘) = ∅.

Given the above, for all sufficiently smallΔ themaximizer 𝑥∗𝑖𝑡 of equation (5′) is unique
and characterized as follows: 𝑥∗𝑖𝑡 = (𝑥𝑖,𝑡−Δ − 𝛿Δ)1(𝛿Δ,𝜒](𝑥𝑖,𝑡−Δ) if ℎ(𝑥∗𝑖𝑡 , 𝑥−𝑖,𝑡) ≤ 𝐶𝐼 (𝛿, 𝑥𝑖,𝑡−Δ),
𝑥∗𝑖𝑡 = 𝜒 if 𝑥𝑖,𝑡−Δ = 𝜒 and ℎ(𝑥 𝑖𝑡∗, 𝑥−𝑖,𝑡) ≥ 𝐶𝐼 (𝛿, 𝑥𝑖,𝑡−Δ), and otherwise 𝑥∗𝑖𝑡 satisfies (16). Making
Δ arbitrarily small yields the autonomous system in (6). Note that under Assumption 1,
(𝐶𝐼 )−1 is guaranteed to be a well‐defined function (Kumagai, 1980). ■

A.2 Proof of Proposition 3
Parts 1, 2, 3, 4, and 5, respectively establish the necessary and sufficient conditions under
which escalated inclusive, de‐escalated inclusive, oligarchic, weak dictatorial, and strong
dictatorial power structures are stable. Part 6 then shows that all other power structures
will fail to be stable. In what follows, let 𝑁 be arbitrarily fixed. Let 1𝑘 and 0𝑘 respectively
denote (1, … , 1) ∈ ℝ𝑘 and (0, … , 0) ∈ ℝ𝑘 (𝑘 = 1, … , 𝑁 ). Let 𝑒𝑖 ∈ ℝ𝑁 denote the 𝑖th standard
basis vector (𝑖 = 1, … , 𝑁 ). Finally, let 𝐵𝜀(𝑥) denote the 𝜀‐ball centered at 𝑥, where 𝜀 > 0 and
𝑥 ∈ ℝ𝑁 .

To establish the stability of inclusive and oligarchic power structures, I use Lyapunov’s
Direct/Second Method (Lyapunov, 1992). According to this method, ̄𝑥 ∈ [0, 𝜒]𝑁 is stable
if there exists a continuous, differentiable function Λ ∶ ℝ𝑁 × ℝ𝑁 → ℝ and an 𝜀‐ball of ̄𝑥,
𝐵𝜀( ̄𝑥), such that the following hold:

1. Λ(𝑥 𝑡 = ̄𝑥; ̄𝑥) = 0 and Λ(𝑥 𝑡 ; ̄𝑥) > 0 ∀𝑥 𝑡 ∈ 𝐵𝜀( ̄𝑥) ∖ { ̄𝑥}.
2. 𝑑

𝑑𝑡Λ(𝑥 𝑡 ; ̄𝑥) < 0 ∀𝑥 ∈ 𝐵𝜀( ̄𝑥) ∖ { ̄𝑥}
Λ is often referred to as a Lyapunov function and thought of as an “energy function.” In‐
tuitively, Lyapunov’s Direct Method amounts to showing that the energy of the system
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strictly decreases to zero along all trajectories starting sufficiently close to a steady state
̄𝑥. In this proof, I use the Lyapunov function,

Λ(𝑥 𝑡 ; ̄𝑥) ≡ 1
2

𝑁
∑
𝑖=1

( ̄𝑥𝑖 − 𝑥𝑖𝑡)2 (18)

whose time‐derivative is

Λ̇(𝑥 𝑡 ; ̄𝑥) ≡ 𝑑
𝑑𝑡 Λ(𝑥 𝑡) = −

𝑁
∑
𝑖=1

( ̄𝑥𝑖 − 𝑥𝑖𝑡) ̇𝑥𝑖𝑡 . (19)

Notice that by construction, given any ̄𝑥 ∈ [0, 𝜒]𝑁 , Λ( ̄𝑥; ̄𝑥) = 0 and Λ(𝑥 𝑡 ; ̄𝑥) > 0when 𝑥 𝑡 ≠ ̄𝑥.
I now proceed with the proof of Proposition 3, proving each part in turn.

Proof of Part 1 Here I show that ̄𝑥 = 𝜒1𝑁 is stable if and only if Condition I

ℎ(𝜒 , 𝜒1𝑁−1)>𝐶𝐼 (𝛿, 𝜒)
holds. First suppose that Condition I holds. Then ̇𝑥𝑖 = 0∀𝑖 at 𝑥 = ̄𝑥 by (6). Continuity
ensures that ∃𝜀 > 0 s.t. ℎ(𝑥𝑖, 𝑥−𝑖) > 𝐶𝐼 (𝑥𝑖, 𝛿) holds ∀𝑖 at every 𝑥 in 𝐵𝜀( ̄𝑥) ∩ [0, 𝜒]𝑁 =∶ 𝔹1. It
then follows from Lemma 1 that ̇𝑥𝑖 > 0 ∀𝑖 at every 𝑥 ∈ 𝔹1. It then follows that

Λ̇(𝑥; ̄𝑥) = −
𝑁
∑
𝑖=1

(𝜒 − 𝑥𝑖) ̇𝑥𝑖 < 0 ∀𝑥 ∈ 𝔹1 ∖ { ̄𝑥}.

Thus ̄𝑥 is stable.
Now suppose that ℎ(𝜒, 𝜒1𝑁−1)≤𝐶𝐼 (𝛿, 𝜒). It then follows that ℎ(𝛼, 𝛼1𝑁−1)≤𝐶𝐼 (𝛿, 𝛼) for all

𝛼 ∈ [0, 𝜒] since ℎ(𝛼, 𝛼1𝑁−1) is constant in 𝛼 and 𝐶𝐼 (𝛿, ⋅) is weakly decreasing. Thus at every
𝑥 ∈ ∪𝛼∈[0,𝜒](𝛼1𝑁 ) ̇𝑥𝑖 = ̇𝑥𝑗 = (𝐶𝐼 )−1(ℎ(𝛼, 𝛼1𝑁−1), 𝛼) − 𝛿1(0,𝜒)(𝛼) for all 𝑖 and 𝑗 (by (6)) and ̇𝑥𝑖 ≤ 0
∀𝑖 (by Lemma 1). This implies that ̄𝑥 is not stable because for any 𝛼 ∈ [0, 𝜒) trajectories
starting at 𝑥 = 𝛼1𝑁 will remain bounded away from ̄𝑥 for all 𝑡 ≥ 0.

Proof of Part 2 Here I show that ̄𝑥 = 0𝑁 is stable if and only if Condition II, ℎ(0, 0𝑁−1) ≤
𝐶𝐼 (0, 0), holds. First suppose that Condition II holds. Then ̇𝑥𝑖 = 0 ∀𝑖 at 𝑥 = ̄𝑥 by the first
piece of (6). Condition II implies that ℎ(0, 0𝑁−1) < 𝐶𝐼 (𝛿, 0) since𝐶𝐼 (⋅, 0) is strictly increasing.
Continuity ensures that ∃𝜀 > 0 such that ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐶𝐼 (𝛿, 𝑥𝑖) holds ∀𝑖 at every 𝑥 ∈ 𝐵𝜀( ̄𝑥) ∩
[0, 𝜒]𝑁 =∶ 𝔹2. The first piece of equation (6) then implies that ̇𝑥𝑖 = −𝛿1(0,𝜒](𝑥𝑖) ∀𝑖 at every
𝑥 ∈ 𝔹2. Therefore Λ̇(𝑥; ̄𝑥) = ∑𝑁

1 𝑥𝑖 ̇𝑥𝑖 < 0 ∀𝑥 ∈ 𝔹2. Thus ̄𝑥 is stable.
If Condition II fails then ℎ(𝜒, 𝜒1𝑁−1) > 𝐶𝐼 (𝛿, 𝜒). It then follows from 2 that ̇𝑥𝑖 > 0 ∀𝑖 at

𝑥 = ̄𝑥, so ̄𝑥 cannot be stable.

Proof of Part 3 Arbitrarily fix 𝑘 ∈ {2, … , 𝑁 − 1}. Here I show that ̄𝑥 = (𝜒1𝑘 , 0𝑁−𝑘) is stable
if and only if Condition III holds. Focusing on this case iswithout loss of generality. Recall
that Condition III requires that the following two equations hold:

ℎ(𝜒, (𝜒1𝑘−1, 0𝑁−𝑘)) > 𝐶𝐼 (𝛿, 𝜒), (III.1)
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ℎ(0, (𝜒1𝑘 , 0𝑁−𝑘−1) ≤ 𝐶𝐼 (0, 0). (III.2)

First assume that Condition III holds. Then at 𝑥 = ̄𝑥, ̇𝑥𝑖 = 0 ∀ ≤ 𝑘 by the second piece
of (6) and ̇𝑥𝑖 = 0 ∀𝑖 ≥ 𝑘 + 1 by Lemma 2. Notice that (III.2) implies that ℎ(0, (𝜒1𝑘 , 0𝑁−𝑘−1) <
𝐶𝐼 (𝛿, 0) since 𝐶𝐼 (⋅, 0) is strictly increasing. Continuity then ensures that ∃𝜀 > 0 such that
ℎ(𝑥𝑖, 𝑥−𝑖) > 𝐶𝐼 (𝛿, 𝑥𝑖) ∀𝑖 ≤ 𝑘 and ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐶𝐼 (𝛿, 𝑥𝑖) ∀𝑖 ≥ 𝑘 + 1 hold at all 𝑥 in 𝐵𝜀( ̄𝑥) ∩ [0, 𝜒]𝑁 =∶
B3. It then follows from Lemma 1 that for each fixed 𝑖 ≤ 𝑘, ̇𝑥𝑖 > 0 at every 𝑥 ∈ B3 ∩ {𝑥 ∶
𝑥𝑖 < 𝜒}; it follows from the first piece of (6) that for each 𝑖 ≥ 𝑘 + 1, ̇𝑥𝑖 = −𝛿 at every
𝑥 ∈ B3 ∩ {𝑥 ∶ 𝑥𝑖 > 0}. Therefore at every 𝑥 ∈ B3 ∖ { ̄𝑥},

Λ̇(𝑥; ̄𝑥) = −∑𝑁
𝑖=1( ̄𝑥 𝑖 − 𝑥𝑖) ̇𝑥𝑖 = − [∑𝑘

𝑖=1(𝜒 − 𝑥𝑖) ̇𝑥𝑖 +∑𝑁
𝑖=𝑘(−𝑥𝑖) ̇𝑥𝑖] < 0.

Thus ̄𝑥 is stable.
Now assume that ℎ(0, (𝜒1𝑘 , 0𝑁−𝑘−1) > 𝐶𝐼 (0, 0). It then follows from Lemma 2 that ̇𝑥𝑖 >

0 ∀𝑖 ≥ 𝑘 + 1 at 𝑥 = ̄𝑥, so ̄𝑥 cannot be stable. Now suppose that ℎ(𝜒, (𝜒1𝑘−1, 0𝑁−𝑘)) < 𝐶𝐼 (𝛿, 𝜒).
Then by (6), ̇𝑥𝑖 satisfies ℎ(𝑥𝑖, 𝑥−𝑖) = 𝐶𝐼 ( ̇𝑥𝑖+𝛿, 𝑥𝑖) ∀𝑖 ≤ 𝑘 at 𝑥 = ̄𝑥. In this case, ̇𝑥𝑖 < 0 ∀𝑖 ≤ 𝑘 𝑥 = ̄𝑥
because 𝐶𝐼 (⋅, 𝑥𝑖) is strictly increasing for any fixed 𝑥𝑖. It then follows that ̄𝑥 in this case.
Finally, I consider the case where ℎ(𝜒, (𝜒1𝑘−1, 0𝑁−𝑘)) = 𝐶𝐼 (𝛿, 𝜒) and (III.2) holds. Consider
the following subset 𝕃 of 𝔹3:

𝕃 ∶= {𝑥 ∈ 𝔹3 ∶ 𝑥 = 𝛼∑𝑘
𝑖=1𝑒𝑖 for some 𝛼 ∈ (𝜒 − 𝜀, 𝜒)}

Notice that by construction ̇𝑥𝑖 = 0 ∀𝑖 ≥ 𝑘 + 1 at every 𝑥 ∈ 𝕃. Furthermore, at any 𝑥 ∈ L we
also have ̇𝑥𝑖 = ̇𝑥𝑗 < 0 ∀𝑖, 𝑗 ∈ {1, … , 𝑘}. This is because

𝜕
𝜕𝛼 ℎ(𝛼, (𝛼1𝑘−1, 0𝑁−𝑘)) = 𝜆2𝑒𝛼𝜆(𝑁 − 𝑘)[(𝑘 − 2)𝑒𝛼𝜆 + (𝑁 − 𝑘)]

[𝑁 + (𝑒𝛼𝜆 − 1)𝑘]3 > 0 (20)

with the inequality following from the facts that 𝑁 > 𝑘 ≥ 2, 𝜆 > 0, and the fact that
𝑒𝛼𝜆 > 1 ∀𝛼, 𝜆. In words: at all states in L, powerless lineages (𝑘 + 1,… , 𝑁 ) maintain zero
power, and all other lineages let their power depreciate at the same rate. It then follows
that if 𝑥0 ∈ L, then there exists a 𝜏 > 0 such that 𝑥𝜏 ∉ 𝐵𝜀( ̄𝑥). At every 𝑡 ∈ [0, 𝜏 ) ̇𝑥𝑖𝑡 = ̇𝑥𝑗𝑡 < 0
∀𝑖, 𝑗 ∈ {1, … , 𝑘} and ̇𝑥𝑖𝑡 = 0 ∀𝑖 ∈ {𝑘 + 1, … , 𝑁 }, so that at future time 𝑡′ ∈ (𝑡, 𝜏 ), 𝑥 𝑡′ ∈ L. 𝑥 𝑡 moves
along 𝕃 in this fashion at all 𝑡 ∈ [0, 𝜏 ) until it leaves the 𝜀‐ball of ̄𝑥 at time 𝜏 . Therefore ̄𝑥
cannot be stable.

Proof of Part 4 Arbitrarily fix 𝑑 ∈ (0, 𝜒). Here I show that ̄𝑥 = 𝑑𝑒𝑖 is stable ∀𝑖 ∈ {1, … , 𝑁 } if
and only if Condition IV holds given 𝑑. I focus on the case where 𝑖 = 1 (i.e. ̄𝑥 = (𝑑, 0𝑁−1))
as this is without loss of generality and it simplifies notation in this proof. Recall that the
first part of Condition IV says that ℎ(𝑑, 0𝑁−1) = 𝐶𝐼 (𝛿, 𝑑) and that ∃𝛼1 > 0 such that both of
the following inequalities hold:

ℎ(𝑥𝑖, 0𝑁−1) > 𝐶𝐼 (𝛿, 𝑥𝑖)∀𝑥𝑖 ∈ (𝑑 − 𝛼1, 𝑑),
ℎ(𝑥𝑖, 0𝑁−1) < 𝐶𝐼 (𝛿, 𝑥𝑖)∀𝑥𝑖 ∈ (𝑑, 𝑑 + 𝛼1).

The second part of Condition IV says that ℎ(0, (𝑑, 0𝑁−2) < 𝐶𝐼 (0, 0).
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First assume that Condition IV holds. It then follows from Lemma 1 (resp. Lemma 2)
that 𝑥1 = 0 (resp. 𝑥𝑗 = 0 ∀𝑗 ≥ 1) at 𝑥 = ̄𝑥. The first part of Condition IV and Lemma 1 jointly
imply that ̇𝑥1 > 0 ∀𝑥 ∈ (𝑑 − 𝛼1, 𝑑) × {0}𝑁−1 and ̇𝑥1 < 0 ∀𝑥 ∈ (𝑑, 𝑑 + 𝛼1) × {0}𝑁−1. Continuity
guarantees that ∃𝛼2 > 0 such that ∀𝑖 ≥ 2 ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐶𝐼 (0, 𝑥𝑖) holds at all 𝑥 ∈ 𝐵𝛼2( ̄𝑥) ∩ [0, 𝜒]𝑁 .
It then follows from the third piece of (6) that for each fixed 𝑖 ≥ 2, ̇𝑥𝑖 = −𝛿1(0,𝜒](𝑥𝑖) at every
𝑥 ∈ 𝐵𝛼2( ̄𝑥) ∩ [0, 𝜒]𝑁 . Letting 𝛼 ∶= min{𝛼1, 𝛼2}, we know that in 𝐵𝛼 ( ̄𝑥) ∩ [0, 𝜒]𝑁 , trajectories
away from the 𝑥1 axis approach the 𝑥1 axis; those on the 𝑥1 axis do not depart from there
and approach ̄𝑥 as 𝑡 → ∞.

To complete the proof that ̄𝑥 is stable, it just needs to be shown that trajectories that
start in some neighborhood of ̄𝑥 always remain therein. For some 𝛾 > 0, the locus of
{𝑥 ∈ 𝐵𝛾 ( ̄𝑥) ∩ [0, 𝜒]𝑁 ∶ ℎ(𝑥1, 𝑥−1) = 𝐶𝐼 (𝛿, 𝑥1)} is given by a hypersurface 𝑥1 = 𝜇(𝑥−1), where
𝜇 ∶ {𝑥−1 ∶ 𝑥 ∈ 𝐵𝛾 ( ̄𝑥) ∩ [0, 𝜒]𝑁 } → [0, 𝜒] is continuous, strictly increasing in 𝑥𝑗 ∀𝑗 ≥ 2,
and 𝜇(0𝑁−1). This is because ℎ(𝑑, 0𝑁−1) = 𝐶𝐼 (𝛿, 𝑑) (by the first part of Condition 𝐼 𝑉 ) and
because increasing 𝑥𝑗 translates ℎ(⋅, 𝑥−1) rightward ∀𝑗 ≥ 2, given any 𝑥. Since 𝑥1 = 𝜇(𝑥−1)
bisects 𝐵𝛾 ( ̄𝑥) ∩ [0, 𝜒]𝑁 , it follows that all trajectories originating in 𝐵min{𝛼,𝛾 }( ̄𝑥) ∩ [0, 𝜒]𝑁 al‐
ways remain therein and approach ̄𝑥 as 𝑡 → ∞. Therefore ̄𝑥 is stable.

When ℎ(0, (𝑑, 0𝑁−2)) > 𝐶𝐼 (0, 0) then ̇𝑥𝑖 > 0 ∀𝑖 ≥ 2 at ̄𝑥 by Lemma 2, so ̄𝑥 cannot be stable.
For the remainder of this proof, assume that ℎ(0, (𝑑, 0𝑁−2)) ≤ 𝐶𝐼 (0, 0). If ℎ(𝑑, 0𝑁−1) ≠ 𝐶𝐼 (𝛿, 𝑑)
then ̇𝑥1 ≠ 0 by Lemma 1, so ̄𝑥 cannot be stable. Suppose that ℎ(⋅, 0𝑁−1)−𝐶𝐼 (𝛿, ⋅) equals zero
at 𝑥1 = 𝑑 and is constant in some 𝜀1‐ball of 𝑑. It then follows that at each 𝑥 ∈ (𝑑, 𝑑 +
𝜀1) × {0}𝑁−1, ̇𝑥1 = 0 because of Lemma 1. Moreover, at each 𝑥 ∈ (𝑑, 𝑑 + 𝜀1) × {0}𝑁−1, ̇𝑥𝑖 =
0 ∀𝑖 ≥ 2 because ℎ(0, (𝑥1, 0𝑁−2)) < ℎ(0, (𝑑, 0𝑁−2)) ≤ 𝐶𝐼 (0, 0); the first inequality follows from
the fact that 𝜕

𝜕𝑑 ℎ(0, (𝑑, 0𝑁−2)) < 0, and the second inequality follows from the assumption
mentioned in the second sentence of this paragraph. It follows that ̄𝑥 cannot be stable
under the present supposition. Finally suppose that ℎ(⋅, 0𝑁−1)−𝐶𝐼 (𝛿, ⋅) equals zero at 𝑥1 = 𝑑
and is increasing in some 𝜀2‐ball of 𝑑. In this case, ̇𝑥1 > 0 at every 𝑥 ∈ (𝑑, 𝑑 + 𝜀2) × {0}𝑁−1
because of Lemma 1. Moreover, for each 𝑖 ≥ 2, ̇𝑥𝑖 = 0 ∀𝑥 ∈ (𝑑, 𝑑 + 𝜀2) × {0}𝑁−1 for the same
reason as in the previous case. Thus ̄𝑥 cannot be stable.

Proof of Part 5 Here I show that ̄𝑥 = 𝜒𝑒𝑖 is stable ∀𝑖 if and only if Condition V holds.
Recall that the first part of this condition requires that ∃𝜀 > 0 such that ℎ(𝑥⋅, 0𝑁−1) > 𝐶𝐼 (𝛿, 𝑥⋅)
∀𝑥⋅ ∈ (𝜒 − 𝜀, 𝜒) and the second part requires ℎ(0, (𝜒 , 0𝑁−2) ≤ 𝐶𝐼 (0, 0). Here I focus on the
case where 𝑖 = 1 (i.e. ̄𝑥 = (𝜒 , 0𝑁−1)) without loss of generality.

First suppose that Condition V holds. Notice that continuity and the first part of Con‐
dition V jointly guarantee that ℎ(𝜒, 0𝑁−1) ≥ 𝐶𝐼 (𝜒 , 0𝑁−1). Thus ̇𝑥1 = 0 at ̄𝑥 because of
the second piece of (6). The second part of Condition V implies that ̇𝑥𝑗 = 0 ∀𝑗 ≥ 2 at
̄𝑥 because of the first piece of (6). Notice that the second part of Condition V implies
that ℎ(0, (𝜒 , 0𝑁−2) < 𝐶𝐼 (𝛿, 0) since 𝐶𝐼 (⋅, 0) is strictly increasing. Continuity ensures that
∃𝜀 > 0 such that ℎ(𝑥1, 𝑥−1) > 𝐶𝐼 (𝛿, 𝑥1) and ℎ(𝑥𝑗 , 𝑥−𝑗) < 𝐶𝐼 (𝛿, 𝑥𝑗) ∀𝑗 ≥ 2 hold at every state
𝑥 ∈ 𝐵𝜀( ̄𝑥) ∩ [0, 𝜒]𝑁 =∶ 𝔹5. It then follows from Lemma 1 that ̇𝑥1 > 0 at every state in
{𝑥 ∈ 𝔹5 ∶ 𝑥1 < 𝜒} and that for every 𝑗 ≥ 2 ̇𝑥𝑗 < 0 at every state in {𝑥 ∈ 𝔹5 ∶ 𝑥𝑗 > 0}. Thus,

Λ̇(𝑥; ̄𝑥) = −∑𝑁
𝑗=1( ̄𝑥𝑗 − 𝑥𝑗) ̇𝑥𝑗 = − [(𝜒 − 𝑥1) ̇𝑥1 +∑𝑁

𝑗=2(−𝑥𝑗) ̇𝑥𝑗] < 0
at every 𝑥 ∈ 𝔹5 ∖ { ̄𝑥}. Therefore ̄𝑥 is stable.
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If ℎ(0, (𝜒 , 0𝑁−2) > 𝐶𝐼 (0, 0), then it follows from Lemma 2 that ̇𝑥𝑗 > 0 ∀𝑗 ≥ 2 at ̄𝑥. Thus
̄𝑥 cannot be stable. Assume that the second part of Condition V holds for the remainder
of this part. If ℎ(𝜒 , 0𝑁−1) < 𝐶𝐼 (𝛿, 𝜒), then ̇𝑥1 < 0 at ̄𝑥, as was shown above in Part 3 of
this proof. It then follows that ̄𝑥 cannot be stable in this case. Finally, suppose that ∀𝜀 > 0,
∃𝑥⋅ ∈ (𝜒−𝜀, 𝜒) such that ℎ(𝑥⋅, 0𝑁−1) ≤ 𝐶𝐼 (𝛿, 𝑥⋅). Continuity andAssumption 1.1 guarantee that
∃𝜁 > 0 such that ℎ(0, (𝜒 , 0𝑁−2) < 𝐶𝐼 (𝛿, 0) ∀𝑥 ∈ 𝐵𝜁 ( ̄𝑥) ∩ [0, 𝜒]𝑁 . This implies that ̇𝑥𝑗 = 0 ∀𝑗 ≥ 2
at every 𝑥 ∈ (𝜒 − 𝜁 , 𝜒) × {0}𝑁−1 because of the first piece of (6). Moreover, in this case
̇𝑥1 ≤ 0 at every 𝑥 ∈ (𝜒 − 𝜁 , 𝜒) × {0}𝑁−1 because of Lemma 1. Thus, trajectories that start
in (𝜒 − 𝜁 , 𝜒) × {0}𝑁−1 will always remain bounded away from ̄𝑥; thus ̄𝑥 is not stable in this
case.

Proof of Part 6 The previous parts of this proposition established conditions on model
primitives under which stable power structures in

{0, 𝜒}𝑁 ⊔ {𝑑𝑒𝑖 ∶ 𝑑 ∈ (0, 𝜒], 𝑖 ∈ {1, ..., 𝑁 }}
exist. I now show that no ̄𝑥 outside this set is ever stable under Assumptions 1 and 2. To
prove this, it is useful to first define

K 𝑧( ̄𝑥) ≡ {𝑖 ∈ {1, ..., 𝑁 } ∶ ̄𝑥 𝑖 = 𝑧} (𝑧 = 0, 𝜒); K 𝑖𝑛𝑡( ̄𝑥) ≡ {𝑖 ∈ {1, ..., 𝑁 } ∶ ̄𝑥 𝑖 ∈ (0, 𝜒)}.
Moreover, let 𝑘𝑧( ̄𝑥) ≡ #(K 𝑧( ̄𝑥)) for each 𝑧 ∈ {0, 𝜒} and 𝑘𝑖𝑛𝑡( ̄𝑥) ≡ #(K 𝑖𝑛𝑡( ̄𝑥)), where #(⋅) outputs
the cardinality of its input. Note that when there is little risk of confusion, K 𝑧, 𝑘𝑧, K 𝑖𝑛𝑡 ,
and 𝑘𝑖𝑛𝑡 may have their inputs suppressed.

First, let us consider an arbitrarily fixed ̄𝑥 where at least two players have interior
levels of power (i.e. 𝑘𝑖𝑛𝑡( ̄𝑥) ≥ 2). I now suppose that ̄𝑥 is stable and proceed to demonstrate
that this yields a contradiction. If this supposition is true, then at 𝑥 = ̄𝑥 we have ̇𝑥𝑖 = 0 ∀ 𝑖
(by the first part of Definition 1). The following are then immediately implied by (6):

ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) = 𝐶𝐼 ( ̇𝑥𝑖 + 𝛿, ̄𝑥𝑖)| ̇𝑥𝑖=0 ∀𝑖 ∈ K 𝑖𝑛𝑡( ̄𝑥), (21)

ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) > 𝐶𝐼 (𝛿, ̄𝑥𝑖) ∀𝑖 ∈ K 𝜒 ( ̄𝑥), (22)
ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) < 𝐶𝐼 (0, ̄𝑥𝑖) ∀𝑖 ∈ K 0( ̄𝑥). (23)

First consider the case where for two players 𝑗, 𝑗′ ∈ K 𝑖𝑛𝑡( ̄𝑥)we have 0 < ̄𝑥𝑗 < ̄𝑥𝑗′ < 𝜒 . It then
follows from Assumption 1 that 𝐶𝐼 (𝛿, ̄𝑥𝑗′) ≤ 𝐶𝐼 (𝛿, ̄𝑥𝑗). It is also straightforward to verify that
ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) > ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗): let 𝑎 = 𝑒𝜆 ̄𝑥𝑗 , 𝑏 = 𝑒𝜆 ̄𝑥𝑗′ , and 𝑦 = ∑ℓ∈{𝑖}𝑁1 ∖{𝑗,𝑗′} 𝑒

𝜆 ̄𝑥ℓ. Then,

ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗) =
𝜆𝑎(𝑦 + 𝑏)
(𝑎 + 𝑏 + 𝑦)2 , (24a)

ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) =
𝜆𝑏(𝑦 + 𝑎)
(𝑎 + 𝑏 + 𝑦)2 . (24b)

Elementary algebra verifies that ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) > ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗).
The inequalities 𝐶𝐼 (𝛿, ̄𝑥𝑗′) ≤ 𝐶𝐼 (𝛿, ̄𝑥𝑗) and ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) > ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗), yield a contradiction in

light of (21):

ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) = 𝐶𝐼 (𝛿, ̄𝑥𝑗′) ≤ 𝐶𝐼 (𝛿, ̄𝑥𝑗) = ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗) < ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′).  
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Therefore, there exist no stable ̄𝑥 in the set

{𝑥 ∈ [0, 𝜒]𝑁 ∶ ∃𝑗 ∈ {1, ..., 𝑁 }, 𝑗′ ∈ {1, ..., 𝑁 } ∖ {𝑗} s.t. 0 < 𝑥𝑗 < 𝑥𝑗′ < 𝜒},

under Assumptions 1 and 2.
Now suppose that ̄𝑥𝑗 = 𝛼 ∀𝑗, 𝑗′ ∈ K 𝑖𝑛𝑡( ̄𝑥) for some 𝛼 ∈ (0, 𝜒). It is possible to choose a

sufficiently small 𝜀 so that the inequalities in (22) and (23) hold in the following subset of
an 𝜀 ball of ̄𝑥:

𝒜 ≡ {𝑥 ∈ [0, 𝜒]𝑁 ∶ 𝑥𝑖 = ̄𝑥𝑖 ∀𝑖 ∈ K 0( ̄𝑥) ∪K 𝜒 ( ̄𝑥), |𝑥 − ̄𝑥| < 𝜀}
This follows from the continuity of ℎ and the fact that within this neighborhood only inte‐
rior components of ̄𝑥 vary in𝒜 . Now consider 𝑥̂ = ̄𝑥 + 𝜌 ∑𝑖∈K 𝑖𝑛𝑡 ( ̄𝑥) 𝑒𝑖, where 𝜌 > 0 is chosen
so that 𝑥̂ ∈ 𝒜 . Then, we have for each 𝑖 ∈ K 𝑖𝑛𝑡( ̄𝑥)

ℎ(𝑥̂𝑖, 𝑥̂−𝑖) > ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) = 𝐶𝐼 (𝛿, ̄𝑥𝑖) ≥ 𝐶𝐼 (𝛿, 𝑥̂𝑖),
where the first inequality follows from the fact that

𝜕
𝜕𝛼 ℎ(𝛼, (𝛼1𝑘𝑖𝑛𝑡 ( ̄𝑥)−1, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥))) > 0,

while the last inequality follows from Assumption 1 that 𝐶𝐼 (𝐼 , ⋅) is weakly decreasing for
every fixed 𝐼 ≥ 0. Therefore if one perturbs 𝑥 𝑡 from ̄𝑥 to 𝑥̂, it follows from (6) that ̇𝑥𝑗 = ̇𝑥𝑗′ ≥
0 ∀𝑗, 𝑗′ ∈ K 𝑖𝑛𝑡( ̄𝑥) at the perturbed point. Note that by construction, ̇𝑥𝑖𝜏 = 0 ∀𝑖 ∈ K 0( ̄𝑥)⊔K 𝜒 ( ̄𝑥)
at every 𝜏 ∈ [𝑡, 𝑡′]. This implies that 𝑥 𝑡′ will leave the 𝜀‐ball of ̄𝑥 at some time 𝑡 > 𝑡′, thereby
ruling out stability.

The case that remains to be considered are the ̄𝑥 ∈ [0, 𝜒]𝑁 such that 𝑘𝑖𝑛𝑡( ̄𝑥) = 1 and
𝑘0( ̄𝑥) < 𝑁 − 1.34 By symmetry, I can focus on the case where ̄𝑥 = (𝛼, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥)) (for an
arbitrarily fixed 𝛼 ∈ (0, 𝜒)) without loss; as before, rearranging the components of ̄𝑥 does
not affect the proof (besides notation).

Suppose that ̇𝑥𝑖 = 0 ∀𝑖 ∈ {1, … , 𝑁 } at ̄𝑥 (if this were not true, then the first part of Defi‐
nition 1 has already been violated). I will now show that the second part of Definition 1
is violated. By continuity, (22) and (23) respectively hold ∀𝑖 ∈ K 𝜒 ( ̄𝑥) and ∀𝑖 ∈ K 0( ̄𝑥) when
𝑥 is inside some sufficiently small 𝜀‐ball of ̄𝑥. Since 𝜕

𝜕𝛼 ℎ(𝛼, (𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥))) > 0 and 𝐶𝐼 (𝛿, ⋅)
is weakly decreasing, it follows that at 𝑥 = (𝛼 + 𝜌, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥)), we have ̇𝑥1 > 0 ∀𝜌 ∈ (0, 𝜀).
Define the following subset of the 𝜀‐ball of ̄𝑥:

𝕃 = {𝑥 ∈ 𝐵𝜀( ̄𝑥) ∶ 𝑥1 ∈ (𝛼, 𝛼 + 𝜀), 𝑥𝑖 = 0 ∀𝑖 ∈ K 0( ̄𝑥), 𝑥𝑗 = 𝜒 ∀𝑖 ∈ K 𝜒 ( ̄𝑥)}
Given the above, it has been established that at every 𝑥 ∈ 𝕃 ̇𝑥1 > 0 and ̇𝑥𝑗 = 0 ∀𝑗 ∈
{2, … , 𝑁 }. It then follows that for any 𝜌 ∈ (0, 𝜀), if the initial power structure is 𝑥0 =
(𝛼 + 𝜌, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥)) ∈ 𝕃, then 𝑥 𝑡 ∈ 𝐵𝜀( ̄𝑥) at some 𝑡 > 0, thus violating the second part
of Definition 1. ■

34Hence 𝑘𝜒 ( ̄𝑥) ≥ 1; note that if 𝑘𝜒 ( ̄𝑥) = 0, this would correspond to the weak dictatorial case, which was
covered in Part 4 of this proof.
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The remaining proofs in this section directly assume that 𝑦𝑁 = 1 ∀𝑁 ∈ {2, 3, …}, as in
themain text. The analysis of the general casewhere {𝑦𝑁 }∞𝑁=2 ⊆ ℝ+ is continued in section
C. The following remark discusses how a qualitatively very similar (but technically much
more complicated) version of Proposition 3 can be achieved with more relaxed versions
of Conditions II, III, and IV.

Remark4. Oligarchic anddictatorial power structures remain stable in a technicallyweaker
– but visually indistinguishable – Filippov (2013) sense if one relaxes the second parts of
Conditions III, IV, and V by replacing “≤ 𝐶𝐼 (0, 0)” with “< 𝐶𝐼 (𝛿, 0).” The same is true for the
de‐escalated inclusive power structure if II is relaxed in the sameway. If the left‐hand side
of each condition is strictly between 𝐶𝐼 (0, 0) and 𝐶𝐼 (𝛿, 0), the corresponding power struc‐
ture ̄𝑥 is technically no longer a steady state (since part (a) of Definition 1 is violated) but
still behaves very similarly to before (since part (b) of Definition 1 is still satisfied). In
this case, 𝑥𝑡 still approaches ̄𝑥 within finite time (and remains arbitrarily close forever
afterwards). The only difference from before is that once 𝑥 𝑡 reaches ̄𝑥, it does not remain
exactly there; it proceeds to infinitesimally oscillate around ̄𝑥. Formally, this is known as
a type of Zeno behavior. In physical terms, the phenomenon just described is similar to a
rubber ball that is arbitrarily close to being at rest (i.e. it is vibrating by an imperceptibly
small amount).

The economic intuition is quite natural. This is illustrated in the case of a strong dic‐
tatorship ̄𝑥 = 𝜒𝑒𝑖, where 𝑖 ∈ {1, … , 𝑁 } is the dictator player; the intuition is the same in the
cases ofweak dictatorship, oligarchy, and the de‐escalated inclusive steady state. Suppose
that ℎ(𝜒 , 0𝑁−1) > 𝐶𝐼 (𝛿, 𝜒), ℎ(0, (𝜒 , 0𝑁−1)) ∈ (𝐶𝐼 (0, 0), 𝐶𝐼 (𝛿, 0)), and that 𝑥 𝑡 = 𝜒𝑒𝑖 at some fixed
time 𝑡 ∈ ℝ+. The former inequality guarantees that it is optimal for the dictator player 𝑖 to
maintain 𝜒 units of power at time 𝑡 . The latter inequality implies that powerless players
𝑗 ≠ 𝑖 will accumulate power at some positive level, since their marginal benefit of power
accumulation ℎ(0, (𝜒 , 0𝑁−1)) exceeds the marginal cost of investment 𝐶𝐼 (𝐼 , 0) when 𝐼 = 0
and because 𝐶 is convex in 𝐼 . However, these players will then proceed to let their pow‐
ers depreciate, because the net marginal gain of maintaining any positive level of power
(ℎ(𝑥𝑗 , 𝑥−𝑗) − 𝐶𝐼 (𝛿, 𝑥𝑗)) is locally negative. Formally, this is because – under the aforemen‐
tioned supposition – ℎ(0, (𝜒 , 0𝑁−1)) < 𝐶𝐼 (𝛿, 0), and because ℎ(⋅, ⋅) and 𝐶𝐼 (⋅, ⋅) are assumed
continuous.35 The behavior of these weak players has a natural, concrete interpretation:
they repeatedly try to “rise up” against the dictator by accumulating power before quickly
acquiescing.

A.3 Proof of Proposition 4
Recall that by the proof of part 1 of Proposition 3, the (𝜒 , … , 𝜒) is stable if and only if

ℎ(𝑥, (𝜒 ,..., 𝜒); 𝑁 ) > 𝐶𝐼 (𝛿, 𝜒) (25)

35Tomake this intuition fully complete, recall that due to convex adjustment costs, it is optimal for play‐
ers to differentially accumulate power, not in a discontinuous (“lumpy”) fashion. Furthermore, note that
everything stated in “The later inequality implies ... are assumed continuous” is formally a direct result of
(6).
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which is equivalent to
(𝑁 − 1)𝜆

𝑁 2 > 𝐶𝐼 (𝛿, 𝜒). (26)

Rearranging the above yields the quadratic inequality

0 > 𝐶𝐼 (𝛿, 𝜒)𝑁 2 − 𝜆𝑁 + 𝜆 (27)

When 𝜆
4 ≤ 𝐶𝐼 (𝛿, 𝜒), the escalated inclusive power structure is not stable for any 𝑁 ; this

quickly follows from Condition I.36 Otherwise, solving the above quadratic inequality for
𝑁 yields

𝜆 − √(𝜆 − 4𝐶𝐼 (𝛿, 𝜒))𝜆
2𝐶𝐼 (𝛿, 𝜒)

< 𝑁 <
𝜆 + √(𝜆 − 4𝐶𝐼 (𝛿, 𝜒))𝜆

2𝐶𝐼 (𝛿, 𝜒)
. (28)

It is easily verified that the left‐most term is always less than two:

𝜆 − √(𝜆 − 4𝐶𝐼 (𝛿, 𝜒))𝜆
2𝐶𝐼 (𝛿, 𝜒)

− 2 =
[√𝜆 − 4𝐶𝐼 (𝛿, 𝜒) − √𝜆]√𝜆 − 4𝐶𝐼 (𝛿, 𝜒)

2𝐶𝐼 (𝛿, 𝜒)
≤ 0.

Noting that 𝑁 is a natural number implies that no escalated inclusive steady state exist
for group sizes larger than

𝑁̄ 𝐼𝜒 ≡
⎡⎢⎢⎢⎢⎢

𝜆 + √(𝜆 − 4𝐶𝐼 (𝛿, 𝜒))𝜆
2𝐶𝐼 (𝛿, 𝜒)

⎤⎥⎥⎥⎥⎥
. (29)

■

A.4 Proof of Corollary 1
Suppose that 𝐶𝐼 (𝛿, 𝜒) = 𝑞 for some 𝑞 > 0 and that 𝜆 ≥ 4𝑞. Note that

𝜕
𝜕𝜆 [𝜆 + √𝜆 ⋅ (𝜆 − 4𝑞)

2𝑞 ] = 1
2𝑞 [

(𝜆 − 2𝑞) + √𝜆 ⋅ (𝜆 − 4𝑞)
√𝜆 ⋅ (𝜆 − 4𝑞)

] , (30)

and that
𝜕
𝜕𝑞 [

𝜆 + √𝜆 ⋅ (𝜆 − 4𝑞)
2𝑞 ] = −√𝜆

2𝑞2√𝜆 − 4𝑞
[(𝜆 − 2𝑞) + √𝜆 ⋅ (𝜆 − 4𝑞)] . (31)

Observe that equations (30) and (31) are respectively positive and negative if (𝜆 − 2𝑞) +
√𝜆 ⋅ (𝜆 − 4𝑞) is positive, which is always the case under the aforementioned supposition:

(𝜆 − 2𝑞) + √𝜆 ⋅ (𝜆 − 4𝑞) > (𝜆 − 4𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

+√𝜆⏟
>0

√𝜆 − 4𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

≥ 0

■
36Notice that if ℎ(𝜒 , 𝜒 ; 2) = 𝜆/4 < 𝐶𝐼 (𝛿, 𝜒), then Condition I (ℎ(𝑥, (𝜒 ,..., 𝜒); 𝑁 ) ≥ 𝐶𝐼 (𝛿, 𝜒)) fails at all 𝑁 ≥ 2

since ℎ(𝑥, (𝜒 ,..., 𝜒); 𝑁 ) = (𝑁−1)𝜆
𝑁 2 is decreasing in 𝑁 on {2, 3, …}.
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A.5 Proof of Proposition 5
Arbitrarily fix 𝜀 > 0; suppose that 𝐶𝐼 (𝛿, ⋅) is bounded by 𝜀 from below. By equation (28) in
Proposition 4, the escalated inclusive power structure is stable only in group sizes smaller
than

𝑁̄ 𝐼𝜒 ≡ ⌊𝜆 + √(𝜆 − 4𝐶𝐼 (𝛿, 𝜒))𝜆
2𝐶𝐼 (𝛿, 𝜒)

⌋

when 𝜆 > 4𝐶𝐼 (𝛿, 𝜒), and is otherwise not stable in any group size permitted in this model
(𝑁 ∈ {2, 3, …}). If 𝜆 ≤ 4𝜀, Proposition 5.1 trivially follows because of Assumption 1.2. Oth‐
erwise, 𝑁̄ 𝐼𝜒 clearly remains finite as 𝜒 → ∞ given the aforementioned supposition.

Proposition 8 in section B of this Online Appendix showed in equation (39) that for
each 𝑘 ∈ {2, 3, …}, 𝑘‐archic power structures are stable only in groups smaller than

𝑁̄𝑂𝑘𝜒 ≡ ⌊𝑘 + 𝑒𝜆𝜒 (
𝜆 + √(𝜆 − 𝐶𝐼 (𝛿, 𝜒))𝜆

𝐶𝐼 (𝛿, 𝜒)
− 𝑘)⌋

when 𝜆 > 𝐶𝐼 (𝛿, 𝜒) and not stable at any 𝑁 otherwise. Similarly to before, if 𝜆 < 𝜀 then
Proposition 5.2 trivially follows because of Assumption 1.2. In the remaining case where
∃𝑧 > 0 s.t. 𝜆 > 𝐶𝐼 (𝛿, 𝜒) ∀𝜒 > 𝑧, notice that the limit of 𝑁̄𝑂𝑘𝜒 as 𝜒 → ∞ only depends on the
sign of

lim𝜒→∞
𝜆 + √(𝜆 − 𝐶𝐼 (𝛿, 𝜒))𝜆

𝐶𝐼 (𝛿, 𝜒)
− 𝑘.

𝑁̄𝑂𝑘𝜒 → ∞ as 𝜒 → ∞ if the above is strictly negative and lim𝜒→∞ 𝑁̄𝑂𝑘𝜒 ≤ 0 otherwise.
Proposition 9 in section B of this Online Appendix showed in equation (42) that dicta‐

torships are stable only in groups smaller than

𝑁̄𝐷𝜒 ≡ ⌊𝑒𝜆𝜒 ⋅ [𝜆 − 2𝐶𝐼 (𝛿, 𝜒) + √𝜆√𝜆 − 4𝐶𝐼 (𝛿, 𝜒)
2𝐶𝐼 (𝛿, 𝜒)

]⌋

which becomes arbitrarily large as 𝜒 → ∞ given the aforementioned supposition.
■

A.6 Proof of Proposition 6

As in the above proofs, let 𝑒𝑖 denote the 𝑖th standard basis vector, and for each 𝑛 ∈ ℕ
let 0𝑛 ∈ ℝ𝑛 denote the vector of zeros. Recall that by Proposition 3, a dictatorial power
structure where the strongest player has 𝑑 ∈ (0, 𝜒) units of power is stable if and only if

ℎ(⋅, (0,..., 0); 𝑁 ) intersects 𝐶𝐼 (𝛿, ⋅) from above at 𝑑, and

ℎ(0, (𝑑, 0,..., 0); 𝑁 ) < 𝐶𝐼 (0, 0),
(Condition IV)
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holds, and that strong dictatorial power structures are stable if and only if

ℎ(𝜒, (0,..., 0); 𝑁 ) > 𝐶𝐼 (𝛿, 𝜒) and ℎ(0, (𝜒 , 0,..., 0; 𝑁 )) < 𝐶𝐼 (0, 0). (Condition V)

holds. Arbitrarily fix 𝑁 ∈ {2, 3, …} and all other model primitives (𝜒 , 𝛿, 𝜆, and 𝐶) such that
for each𝑀{𝑁 , 𝑁 +1}, either (1) Condition IV holds at exactly one 𝑑𝑀 ∈ (0, 𝜒) and condition
V fails or (2) Condition IV fails at all 𝑑 ∈ (0, 𝜒) and Condition V holds. The result of the
proof is immediate in case where Condition V holds when the group size is 𝑁 + 1.

Now suppose that for each𝑀 ∈ {𝑁 , 𝑁 +1}, Condition IV holds at exactly one 𝑑𝑀 ∈ (0, 𝜒)
and condition V fails. Note that for all 𝑛 ∈ {2, 3, …} and ℓ ∈ {0, 1, 2, …},

ℎ (𝑥𝑖 − 1
𝜆 ln (𝑛 + ℓ − 1

𝑛 − 1 ) , 0𝑛−1; 𝑛) = ℎ (𝑥𝑖, 0𝑛+ℓ−1; 𝑛 + ℓ) . (32)

That is, given an initial group size of 𝑛, adding ℓmore players is equivalent to translating
ℎ(⋅, 0𝑛−1; 𝑛) rightward by 1

𝜆 ln (
𝑛+ℓ−1
𝑛−1 ). Moreover, observe that ℎ(⋅, 0𝑁−1; 𝑁 ) can only inter‐

sect 𝐶𝐼 (𝛿, ⋅) from above after the former attains its global maximum at 𝑥𝑖 = ln(𝑁−1)
𝜆 as it is

assumed that both functions are continuous and 𝐶𝐼 (𝐼 , 𝑥) is weakly decreasing in its second
argument. It then follows that 𝑑𝑀 ∈ ( ln(𝑀−1)

𝜆 , 𝜒) ∀𝑀 ∈ {𝑁 , 𝑁 + 1}. If 𝑑𝑁 ∈ ( ln(𝑁−1)
𝜆 , ln(𝑁 )

𝜆 ),
then 𝑑𝑁 < 𝑑𝑁+1 follows from the fact that 𝑑𝑁+1 > 𝑙𝑛(𝑁 )

𝜆 . If instead 𝑑𝑁 ∈ ( ln(𝑁 )
𝜆 , 𝜒), note

that ℎ(⋅, 0𝑁−1; 𝑁 ) and ℎ(⋅, 0𝑁 ; 𝑁 + 1) are strictly decreasing on ( ln(𝑁 )
𝜆 , 𝜒). Since the latter

is a rightward translation of the former, and since 𝐶𝐼 (𝛿, ⋅) is decreasing, it follows that
𝑑𝑁 < 𝑑𝑁+1. Note that when restricting attention to the interval ( ln(𝑁 )

𝜆 , 𝜒], translating
ℎ(⋅, 0𝑁−1; 𝑁 ) rightward is equivalent to translating it upward; this immediately yields a
contradiction upon supposing that Condition V holds for 𝑁 and Condition IV holds for
𝑁 + 1 at exactly one 𝑑𝑁+1 ∈ (0, 𝜒). Noting that ℎ(0, (𝑑, 0𝑁−2); 𝑁 ) is decreasing in 𝑁 and 𝑑
∀(𝑁 , 𝑑, 𝜆) ∈ {2, 3, …} × (0,∞)2, the proof is complete. ■

A.7 Proof of Proposition 7
I consider without loss of generality case where player 1 is a (weak) dictator: 𝑥̂ = (𝑑, 0𝑁 ),
where 𝑑 ∈ (0, 𝜒) is as in the first part of Condition IV, which is reproduced and discussed
in the proof of Proposition 6, found immediately above. Assume that 𝐶(⋅, ⋅) complies with
Assumption 1. Fix some small 𝜀 > 0 and choose some 𝐶̃ such that 𝐶̃𝐼 (⋅, ⋅) = 𝐶𝐼 (⋅, ⋅) + 𝜀. Since
ℎ(⋅, 0𝑁 ) intersects 𝐶𝐼 (𝛿, ⋅) from above at 𝑑 < 𝜒 , it follows from Assumptions 1 and 2 that
ℎ(⋅, 0𝑁 )−𝐶𝐼 (𝛿, ⋅) is locally decreasing around 𝑑. Hence, for sufficiently small but positive 𝜀,
ℎ(⋅, 0𝑁 ) intersects 𝐶̃𝐼 (𝛿, ⋅) at 𝑑̃ < 𝑑. This completes the proof for part (i) of this proposition.
Note that since 𝐶 is assumed convex in its first argument, part (ii) immediately follows.

Turning to part (iii), we consider the effect of an increase in 𝜆 on 𝑑. Note that
𝜕
𝜕𝜆ℎ(𝑥𝑖, 0𝑁−1) = − (𝑁 − 1)𝑒𝜆𝑥𝑖

[(𝑁 − 1) + 𝑒𝜆𝑥𝑖]3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
<0 ∵𝑁≥2

(1 − 𝑒𝜆𝑥𝑖 − 𝑁 + 𝜆𝑥 + 𝜆𝑥𝑒𝜆𝑥𝑖 − 𝜆𝑁𝑥) (33)

Setting the second term to less than zero and rearranging yields the inequality in part (iii)
of this proposition, thereby completing its proof. ■
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B Auxiliary Results
Lemma 1. For each 𝑖 ∈ {1, … , 𝑁 }, sign ( ̇𝑥𝑖) = sign (ℎ(𝑥𝑖, 𝑥−𝑖) − 𝐶𝐼 (𝛿, 𝑥𝑖)) at every 𝑥 in {𝑥 ∈
[0, 𝜒]𝑁 ∶ 𝑥𝑖 ∈ (0, 𝜒)}.
Proof. Assume throughout that 𝑥𝑖 ∈ (0, 𝜒). First suppose that ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐶𝐼 (0, 𝑥𝑖). This
implies that ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐶𝐼 (𝛿, 𝑥𝑖) since 𝐶𝐼 (⋅, 𝑥𝑖) is assumed to be strictly increasing. Then
̇𝑥𝑖 = −𝛿 by the first piece of (6). Assume henceforth that ℎ(𝑥𝑖, 𝑥−𝑖) ≥ 𝐶𝐼 (0, 𝑥𝑖). It then
follows from (6) that ̇𝑥𝑖 satisfies

ℎ(𝑥𝑖, 𝑥−𝑖) = 𝐶𝐼 ( ̇𝑥𝑖 + 𝛿, 𝑥𝑖) (34)

since 0 < 𝑥𝑖 < 𝜒 . If ℎ(𝑥𝑖, 𝑥−𝑖) = 𝐶𝐼 (𝛿, 𝑥𝑖), then we must have ̇𝑥𝑖 = 0 in order for (34) to hold.
If ℎ(𝑥𝑖, 𝑥−𝑖) is strictly greater (resp. less) than 𝐶𝐼 (𝛿, 𝑥𝑖), ̇𝑥𝑖 must be strictly positive (resp.
negative) in order for (34) to hold because 𝐶𝐼 (⋅, 𝑥𝑖) is assumed to be strictly convex. ■

Lemma 2. Let 𝑖 ∈ {1, … , 𝑁 } and arbitrarily fix 𝑥 ∈ {𝑥 ∈ [0, 𝜒]𝑁 ∶ 𝑥𝑖 = 0}. Then ̇𝑥𝑖 > 0 if
ℎ(𝑥𝑖, 𝑥−𝑖) > 𝐶𝐼 (0, 𝑥𝑖) and ̇𝑥𝑖 = 0 if ℎ(𝑥𝑖, 𝑥−𝑖) = 𝐶𝐼 (0, 𝑥𝑖).
Proof. Assume that 𝑥𝑖 = 0 throughout. If ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐶𝐼 (0, 𝑥𝑖) then ̇𝑥𝑖 = 0 by the first piece
of (6). Suppose that ℎ(𝑥𝑖, 𝑥−𝑖) = 𝐶𝐼 (0, 𝑥𝑖). Since 𝑥𝑖 = 0, (6) implies that ̇𝑥𝑖 must satisfy

ℎ(𝑥𝑖, 𝑥−𝑖) = 𝐶𝐼 ( ̇𝑥𝑖, 𝑥𝑖). (35)

In order for (35) to hold in the present case we must have ̇𝑥𝑖 = 0, since 𝐶𝐼 (⋅, 𝑥𝑖) is strictly
increasing. Finally, suppose that ℎ(𝑥𝑖, 𝑥−𝑖) > 𝐶𝐼 (0, 𝑥𝑖). Then ̇𝑥𝑖 must satisfy (35), which
implies that ̇𝑥𝑖 > 0 since 𝐶𝐼 (⋅, 𝑥𝑖) is strictly increasing. ■

Proposition 8. Let 𝑘 ∈ {2, … , 𝑁 − 1}. 𝑘-archies are never stable past group size

𝑁̄𝑂𝑘𝜒 = ⌈𝑘 + 𝑒𝜆𝜒 (
𝜆 + √(𝜆 − 𝐶𝐼 (𝛿, 𝜒))𝜆

𝐶𝐼 (𝛿, 𝜒)
− 𝑘)⌉ (36)

Proof. To simplify notation, let 𝑞𝜒 denote 𝐶𝐼 (𝛿, 𝜒)Recall that in the proof of Part 3 of Propo‐
sition 3, it was established that

ℎ(𝜒 , (𝜒1𝑘−1, 0𝑁−𝑘); 𝑁 ) > 𝑞𝜒 and ℎ(0, (𝜒1𝑘 , 0𝑁−𝑘−1; 𝑁 ) ≤ 𝐶𝐼 (0, 0) (37)

are the necessary and sufficient conditions for the stability of each element of

{𝑥 ∈ {0, 𝜒}𝑁 ∶
𝑁
∑
𝑖=1

𝑥𝑖 = 𝑘𝜒} .

Note that the first inequality in (37) is equivalent to

𝜆 [𝑘 − 1 + (𝑁 − 𝑘)𝑒−𝜆𝜒]
[𝑘 + (𝑁 − 𝑘)𝑒−𝜆𝜒]2

> 𝑞𝜒 , (38)
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which yields the following quadratic inequality in 𝑁 . Letting 𝛼 = 𝑒−𝜆𝜒 and 𝛽 = 𝜆
𝑞𝜒 , this is

as follows:

𝛼2𝑁 2 + 𝛼[2(1 − 𝛼)𝑘 − 𝛽]𝑁 + {[(1 − 𝛼)𝑘 − 𝛽
2 ]

2
+ (1 − 𝛽

4 ) 𝛽} < 0

Note that the coefficient of 𝑁 2 is positive; by the formula for the vertex of a parabola, it
follows that no 𝑁 satisfies this inequality if 𝛽 ⋅ (1 − 𝛽

4 ) > 0 (⇔ 𝜆 < 4𝑞𝜒 ). Otherwise, solving
the above quadratic inequality yields the following:

𝑘 + 𝑒𝜆𝜒 [
𝜆 − √(𝜆 − 𝑞𝜒)𝜆

𝑞𝜒
− 𝑘] < 𝑁 < 𝑘 + 𝑒𝜆𝜒 [

𝜆 + √(𝜆 − 𝑞𝜒)𝜆
𝑞𝜒

− 𝑘] (39)

Therefore, 𝑘‐archies are never stable if 𝑁 is greater than or equal to

𝑁̄𝑂𝑘𝜒 = ⌈𝑘 + 𝑒𝜆𝜒 (
𝜆 + √(𝜆 − 𝑞𝜒)𝜆

𝑞𝜒
− 𝑘)⌉

Finally note that if the second inequality of (37) holds for some 𝑁 = 𝑁̃ ∈ {2, 3, …} then it
holds for all 𝑁 ≥ 𝑁̃ since 𝜕

𝜕𝑁 ℎ(0, (𝜒1𝑘 , 0𝑁−𝑘−1; 𝑁 ) < 0.
■

Proposition 9. Suppose Condition IV holds for some 𝑁 and 𝜒 , then there exist finite
𝑁𝐷𝑊𝜒 , 𝑁̄𝐷𝑊𝜒 , 𝑁̄𝐷𝑆𝜒 such that

1. Weak dictatorships are stable if 𝑁𝐷𝑊𝜒 ≤ 𝑁 < 𝑁̄𝐷𝑊𝜒 .

2. Only strong dictatorships are stable if 𝑁̄𝐷𝑊𝜒 ≤ 𝑁 ≤ 𝑁̄𝐷𝑆𝜒

3. Weak and strong dictatorships are unstable if 𝑁 > 𝑁̄𝐷𝑆𝜒 .

Proof. Recall that the marginal benefit of investment for player 𝑖 when her power is 𝑥𝑖 ∈
[0, 𝜒] and all other players have zero power is given by

ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) ≡ 𝜆(𝑁 − 1)𝑒−𝜆𝑥𝑖
(1 + (𝑁 − 1)𝑒−𝜆𝑥𝑖)2 (𝜆 > 0). (40)

Recall that by (32) given an initial group size of 𝑁 , adding 𝐾 more players shifts marginal
benefit ℎ(⋅, 0𝑁−1; 𝑁 ) rightward.

Suppose that 𝑑𝑁 𝑒𝑖 (𝑑𝑁 ∈ (0, 1)) is stable when group size is 𝑁 ∈ {2, 3, ...}. This is only
possible if ℎ(⋅, 0𝑁−1; 𝑁 ) intersects 𝐶𝐼 (𝛿, ⋅) from above at 𝑑𝑁 . I demonstrate this via proof
by contrapositive. If ℎ(⋅, 0𝑁−1; 𝑁 ) is strictly greater than (strictly less than) 𝐶𝐼 (𝛿, ⋅) at 𝑑𝑁 ,
then the player 𝑖’s marginal benefit of investment is strictly greater than (strictly less
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than) her marginal cost when 𝑥 = 𝑑𝑁 𝑒𝑖, hence ̇𝑥𝑖 > 0 ( ̇𝑥𝑖 < 0) at this point. Therefore
if ℎ(𝑑𝑁 , 0𝑁−1; 𝑁 ) ≠ 𝐶𝐼 (𝛿, 𝑑𝑁 ) then 𝑑𝑁 𝑒𝑖 is not a steady state. If the intersection is from be‐
low, then 𝑑𝑁 𝑒𝑖 is not stable. Let 𝜀 > 0. Perturbing 𝑥𝑖 to 𝑑𝑁 + 𝜀 (𝑑𝑁 − 𝜀) causes the marginal
benefit of investment to become strictly greater than (strictly less than) themarginal cost
for player 𝑖, thereby inducing ̇𝑥𝑖 > 0 ( ̇𝑥𝑖 < 0) at this perturbed point. 𝑑𝑁 𝑒𝑖 is not stable
if ℎ(⋅, 0𝑁−1; 𝑁 ) is tangent to 𝐶𝐼 (𝛿, ⋅) at 𝑑𝑁 . This is shown through similar reasoning. Fi‐
nally, we consider the case where ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) = 𝐶𝐼 (𝛿, 𝑥𝑖) ∀ 𝑥𝑖 ∈ (𝑑𝑁 − 𝜀, 𝑑𝑁 + 𝜀) for some
𝜀 > 0. (That is, ℎ(⋅, 0𝑁−1; 𝑁 ) and 𝐶𝐼 (𝛿, ⋅) overlap in some 𝜀‐neighborhood of 𝑥𝑖 = 𝑑𝑁 .) Note
that if 𝑑𝑁 𝑒𝑖 is a steady state, we must have that ℎ(0, (𝑑𝑁 , 0𝑁−2); 𝑁 ) < 𝐶𝐼 (𝛿, 0) Otherwise
̇𝑥𝑗 > 0 ∀𝑗 ≠ 𝑖 at this point. By the continuity of ℎ and𝐶𝐼 , theremust be some 𝜂‐neighborhood
of 𝑑𝑁 𝑒𝑖 throughout which this strict inequality holds. Consider the perturbation to 𝑥′ =
(𝑑𝑁 + 𝜈) 𝑒𝑖, where 0 < 𝜈 < min{𝜀, 𝜂}. By construction ℎ(𝑑𝑁 + 𝜈, 0𝑁−1; 𝑁 ) = 𝐶𝐼 (𝛿, 𝑑𝑁 + 𝜈), so
̇𝑥𝑖 = 0 at this point. Similarly, ℎ(0, (𝑑𝑁 + 𝜈, 0𝑁 ); 𝑁 ) < 𝐶𝐼 (𝛿, 0), so ̇𝑥𝑗 = 0 ∀𝑗 ≠ 𝑖. Therefore
a trajectory that begins at 𝑥0 = 𝑥′ does not approach 𝑑𝑁 𝑒𝑖 in the limit, thereby ruling out
its stability. Note that max𝑥𝑖∈ℝ

ℎ(𝑥𝑖, 0; 2) = 𝜆
4 ; this global maximum is attained at 𝑥𝑖 = 0. Since

(32) implies that ℎ(⋅, 0𝑁−1; 𝑁 ) is a rightward horizontal translation of ℎ(⋅, 0; 2) (𝑁 = 2, 3, ...),
it follows that max𝑥𝑖∈ℝ

ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) = 𝜆
4 for every such 𝑁 . Recall that ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) attains its

global maximum (about which it is unimodal) at 𝑥𝑖 = ln(𝑁−1)
𝜆 . Notice that this is mono‐

tonically increasing in 𝑁 when 𝑁 ≥ 2. Since 𝐶𝐼 (𝐼 , 𝑥) is weakly decreasing in its second
argument, it follows that min

𝑥𝑖∈[0,𝜒]
𝐶𝐼 (𝛿, 𝑥𝑖) = 𝐶𝐼 (𝛿, 𝜒). Finally, notice that lim𝑥𝑖→∞ ℎ(𝑥𝑖, 0𝑁 ; 𝑁 ) = 0.

The desired result is immediate.
If 𝜆 < 4𝐶𝐼 (𝛿, 𝜒) then 𝑁̄ = 2. Now assume 𝜆 > 4𝐶𝐼 (𝛿, 𝜒) throughout the remaining

duration of this proof. Since ℎ(𝑥, 0𝑁−1; 𝑁 ) is unimodal about ln(𝑁−1)
𝜆 it follows that there

exist exactly two values of 𝑁 that solve ℎ(𝜒, 0𝑁−1; 𝑁 ) = 𝐶𝐼 (𝛿, 𝜒). These are

𝑁1 = 1 + ( 𝑒𝜆𝜒
2𝐶𝐼 (𝛿, 𝜒)

) (𝜆 − 2𝐶𝐼 (𝛿, 𝜒) − √𝜆√𝜆 − 4𝐶𝐼 (𝛿, 𝜒)) (41)

and
𝑁2 = 1 + ( 𝑒𝜆𝜒

2𝐶𝐼 (𝛿, 𝜒)
) (𝜆 − 2𝐶𝐼 (𝛿, 𝜒) + √𝜆√𝜆 − 4𝐶𝐼 (𝛿, 𝜒)) . (42)

Let 𝑁̄𝐷𝑊𝜒 = ⌈𝑁1⌉. If𝑁2 ∈ ℕ, then let 𝑁̄𝐷𝑆𝜒 = 𝑁2−1; otherwise let 𝑁̄𝐷𝑆𝜒 = ⌊𝑁2⌋. WhenN = 𝑁̄𝐷𝑆𝜒 ,
we know that ℎ(𝑥𝑖, 0𝑁̄𝐷𝑆𝜒 −1; 𝑁̄

𝐷𝑆𝜒 ) > 𝐶𝐼 (𝛿, 𝑥𝑖) ∀ 𝑥𝑖 ∈ (𝜒 − 𝜀, 𝜒] for some 𝜀 > 0 and the reverse

inequality holds in [0, 𝜒 −𝜀]. Therefore the only stable dictatorships that exist are {𝜒𝑒𝑖}𝑁̄
𝐷𝑆𝜒

1 .
It follows from (32) that for all 𝑁 > 𝑁̄𝐷𝑆𝜒 , ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) < 𝐶𝐼 (𝛿, 𝑥𝑖) ∀ 𝑥𝑖 ∈ [0, 𝜒]. Therefore
no dictatorial steady state can exist at any such 𝑁 . By construction ℎ(𝑥𝑖, 0𝑁̄𝐷𝑊𝜒 −1; 𝑁̄

𝐷𝑊𝜒 ) >

𝐶𝐼 (𝛿, 𝑥𝑖) ∀ 𝑥𝑖 ∈ ( ln(𝑁̄𝐷𝑊𝜒 −1)
𝜆 , 𝜒]. It then follows that the only dictatorial steady states that

exist are {𝜒𝑒𝑖}𝑀1 . It follows from (32) that the same is true for all 𝑁 ∈ {𝑁̄𝐷𝑊𝜒 , ..., 𝑁̄𝐷𝑆𝜒 }. ■
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Remark 5. It is natural to expect that – given a fixed 𝜒 – dictatorships also become un‐
feasible once the group surpasses a certain size: powerless players, in sufficiently large
numbers, overwhelm all dictators. This subject was considered in Proposition 5, which
explores what happens when 𝜒 is made arbitrarily large. Note that a non‐trivial lower
bound 𝑁𝑊

𝜒 is possible; this follows from the fact mentioned earlier: powerless players
always have a chance of winning conflicts.

C Extension to Population‐Varying Resource Endowments
For simplicity, the baseline model in the main text assumes a fixed resource endowment
size normalized to unity. This section explores the extension where the size of a society’s
resource endowment 𝑦𝑁 ≥ 0 can vary with its population size 𝑁 ∈ {2, 3, …}. The only
assumption made on {𝑦𝑁 }∞𝑁=2 ⊆ ℝ+ is that it is a non‐negative sequence. As discussed in
Footnote 12 in the main text, focusing on an endowment economy is appropriate given
the purpose of this paper; the case with a production economy will be considered in the
follow‐up work to this paper (Papazyan, 2024).

Mechanically, this extension generalizes one specific part of the setup: player 𝑖⋅’s ben‐
efit andmarginal benefit frompower (given power structure 𝑥) are now respectively given
by 𝑦𝑁 ⋅ 𝐻 (𝑥𝑖⋅, 𝑥−𝑖,⋅) and 𝑦𝑁 ⋅ ℎ(𝑥𝑖⋅, 𝑥−𝑖,⋅); the main text focused on the special case where
𝑦𝑁 = 1 ∀𝑁 . The effect of this extension is trivial before Proposition 4: everything37 in
the main text remains identical apart from replacing each instance of “𝐻(⋅)” (resp. “ℎ(⋅)”)
with “𝑦𝑁𝐻(⋅)” (resp. “𝑦𝑁 ℎ(⋅)”).

The more intriguing finding from this extension regards the main results in the main
text (Propositions 4 and 5), which showed that in sufficiently large societies, escalated
inclusive regimes become unstable while dictatorships and concentrated oligarchies re‐
main stable in arbitrarily large societies. It is reasonable to suspect that this resultmay be
sensitive to this extension, since an increasingly large number of players compete over
a fixed economic pie.38 Interestingly, this turns out not to be the case. This is demon‐
strated by Proposition 10, below. This result also provides a tight analytical relationship
between the stability of inclusive, oligarchic, and dictatorial regimes and the growth rate
of 𝑦𝑁 .
Proposition 10. As population size 𝑁 grows arbitrarily large, the inclusive power structure
remains stable if and only if the size of the society’s economy 𝑦𝑁 grows sufficiently quickly in 𝑁 ;
dictatorial and oligarchic regimes remain stable if and only if 𝑦𝑁 grows sufficiently quickly, but
not too quickly. More precisely:

a. The inclusive power structure 𝑥 = 𝜒1𝑁 is stable at arbitrarily large 𝑁 if and only if the

37I.e. the model, exposition, results (i.e. Propositions 4 and 5), corresponding proofs, etc.
38To seewhy, recall why regimeswith sufficientlymany powerful players – that is, the escalated inclusive

regime and oligarchies withmore than 𝑘̄ oligarchs (characterized in (12)) – eventually became unstable past
some finite population size 𝑁 in the main text: as 𝑁 grows large, the marginal benefit of maintaining high
levels of power in such regimes shrinks, eventually fallingbelow its correspondingmarginal cost, rendering
the regime unstable thereafter.
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following inequality holds at arbitrarily large 𝑁 :

𝑦𝑁 ≥ 𝐶𝐼 (𝛿, 𝜒)
𝜆

𝑁 2
𝑁- 1 =∶ 𝑦 𝐼

𝑁 . (43)

b. For any fixed 𝑘 ∈ {2, 3, …}, all 𝑘-archies 𝑥 ∈ O𝑘 are stable at arbitrarily large 𝑁 if and only
if the following holds at arbitrarily large 𝑁 :

𝑦𝑂𝑘
𝑁 ∶= 𝐶𝐼 (𝛿, 𝜒)

𝜆
[(1- 𝑒-𝜆𝜒 )𝑘 + 𝑒-𝜆𝜒𝑁]2
(1-𝑒-𝜆𝜒 )𝑘 - 1 + 𝑒-𝜆𝜒𝑁 < 𝑦𝑁 ≤ 𝐶𝐼 (0, 0)

𝜆
[(𝑒𝜆𝜒 - 1)𝑘 +𝑁]2
(𝑒𝜆𝜒 - 1)𝑘 - 1 +𝑁 =∶ ̄𝑦𝑂𝑘𝑁 . (44)

c. All strong dictatorships 𝑥 ∈ D𝜒 are stable at arbitrarily large 𝑁 if and only if

𝑦𝐷𝑁 ∶= 𝐶𝐼 (𝛿, 𝜒)
𝜆

[1+(𝑁- 1)𝑒-𝜆𝜒 ]2
(𝑁- 1)𝑒-𝜆𝜒 < 𝑦𝑁 ≤ 𝐶𝐼 (0, 0)

𝜆
[𝑒𝜆𝜒+𝑁- 1]2
𝑒𝜆𝜒+𝑁-2 =∶ ̄𝑦𝐷𝑁 (45)

holds for arbitrarily large 𝑁 .

Proof. Power structure 𝑥 = 𝜒1𝑁 is stable if and only if 𝑦𝑁 ℎ(𝜒 , 1𝑁 ; 𝑁 ) > 𝐶𝐼 (𝛿, 𝜒), which
is equivlent to 𝑦𝑁 > [ℎ(𝜒 , 1𝑁 ; 𝑁 )]−1𝐶𝐼 (𝛿, 𝜒); part a of the result then immediately follows
from equation (4).

For any fixed 𝑘 ∈ {2, 3, …} and 𝑁 ∈ {𝑘 + 1, 𝑘 + 2, …}, all 𝑘‐archies 𝑥 ∈ O𝑘 are stable if and
only if inequalities 𝑦𝑁 ℎ(𝜒, (𝜒1𝑘-1, 0𝑁-𝑘); 𝑁 ) > 𝐶𝐼 (𝛿, 𝜒) and 𝑦𝑁 ℎ(0, (𝜒1𝑘 , 0𝑁-𝑘-1); 𝑁 ) ≤ 𝐶𝐼 (0, 0)
both hold; these inequalities are easily rearranged as 𝐶𝐼 (𝛿, 𝜒)[ℎ(𝜒 , (𝜒1𝑘-1, 0𝑁-𝑘); 𝑁 )]−1 <
𝑦𝑁 ≤ 𝐶𝐼 (0, 0)[ℎ(0, (𝜒1𝑘 , 0𝑁-𝑘-1); 𝑁 )]−1. Part b then immediately follows from equation (4).

All strong dictatorships 𝑥 ∈ D𝜒 are stable if and only if 𝑦𝑁 ℎ(𝜒, 0𝑁-1; 𝑁 ) > 𝐶𝐼 (𝛿, 𝜒)
and 𝑦𝑁 ℎ(0, (𝜒 , 0𝑁-2); 𝑁 ) ≤ 𝐶𝐼 (0, 0) both hold. These inequalities are simply rearranged
as 𝐶𝐼 (𝛿, 𝜒)[ℎ(𝜒 , 0𝑁-1; 𝑁 )]−1 < 𝑦𝑁 ≤ 𝐶𝐼 (0, 0)[ℎ(0, (𝜒 , 0𝑁-2); 𝑁 )]−1. Part c immediately follows
from equation (4). ■

All parts of the above characterization are non‐trivial, as there is no universal ob‐
served relationship between population size and the size of a society’s economy in terms
of monotonicity, curvature, etc.39 Note that all upper and lower bounds (𝑦 ⋅𝑁 and ̄𝑦 ⋅𝑁 , re‐
spectively) in Proposition 10 aremonotonically increasing and convex, and are asymptot‐
ically affine.

Part a of Proposition 10 shows that the escalated inclusive power structure can only
remain stable in large societies if and only if 𝑦𝑁 persistently grows sufficiently rapidly in
𝑁 ; specifically, it must persistently outpace 𝑦 𝐼𝑁 . Parts b and c show that the stability of
oligarchic and dictatorial regimes rely on 𝑦𝑁 growing sufficiently fast, but not too fast.
Specifically, in order for 𝑘‐archies (resp. strong dictatorships) to remain stable, 𝑦𝑁 must
persistently remain above 𝑦𝑂𝑘

𝑁 and below ̄𝑦𝑂𝑘𝑁 (resp. above 𝑦𝐷𝑁 and below ̄𝑦𝐷𝑁 ). This is illus‐
trated in Figure 7.

39Becker et al. (1999); Alesina et al. (2005); Acemoglu (2009); Peterson (2017); Bucci and Prettner (2020);
Jones (2022).
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Figure 7: This figure assumes 𝜆 = 5, 𝐶(𝐼 , 𝑧) = 6(1 + 𝐼 )𝐼 , 𝛿 = 0.5, and 𝜒 = 1.
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