

Scan me

Market Concentration, Capital Misallocation, and Asset Pricing Thu N.M. Nguyen, Job market candidate University of Amsterdam & Tinbergen Institute, n.m.t.nguyen@uva.nl

Research Question

Figure 1: The rise of superstar firms

Result 1: Negative Price of Risk

$$R_{it}^e = \lambda_{0,t} + \lambda_{MKT,t} \hat{\beta}_{i,MKT} + \lambda_{f,t} \hat{\beta}_{i,f} + \varepsilon_{i,t},$$

where $f \in \{\Delta Misall_{total}, \Delta Misall_{rest}, \Delta Misall_{top}, \Delta MPK spread\}.$

Table 1: Pricing 25	size×book-to-market a	and 10	momentum	portfolios
---------------------	-----------------------	--------	----------	------------

	(1)	(2)	(3)	(4)	(5)	(6)
λ_0 (%)	12.090***	10.792***	10.894***	11.410***	14.109***	13.966***
	(3.67)	(3.25)	(3.28)	(3.47)	(4.26)	(4.43)
MKT	-0.257	-0.057	-0.056	-0.319	-1.191	-1.093
	(-0.25)	(-0.05)	(-0.05)	(-0.31)	(-1.17)	(-1.10)
$\Delta {\sf Misall}_{\sf total}$		-0.435				
		(-0.99)				
$\Delta Misall_{rest}$			-0.410			-0.032
			(-0.87)			(-0.10)
$\Delta Misall_{top}$				-0.353		0.204
·				(-1.40)		(0.91)
Δ MPK spread					-1.077***	-1.037***
					(-3.54)	(-3.72)
R^2	0.012	0.064	0.050	0.131	0.668	0.688

Caption. Contribution of superstar firms to total market capitalization

- Stock market concentration is associated with higher capital misallocation (Bae, Bailey, and Kang, JFE 2021).
- Capital misallocation can deter economic growth (Hsieh and Klenow, QJE 2009).

Q: Do superstar firms matter for asset pricing?

My paper: Yes, via capital misallocation.

Capital Misallocation

- Capital misallocation σ_{mpk}^2 = Cross-sectional dispersion of Marginal Product of Capital (MPK).
 - Implies the economy forgoes the opportunity to increase the aggregate output by reallocating capital from low MPK to high MPK firms.

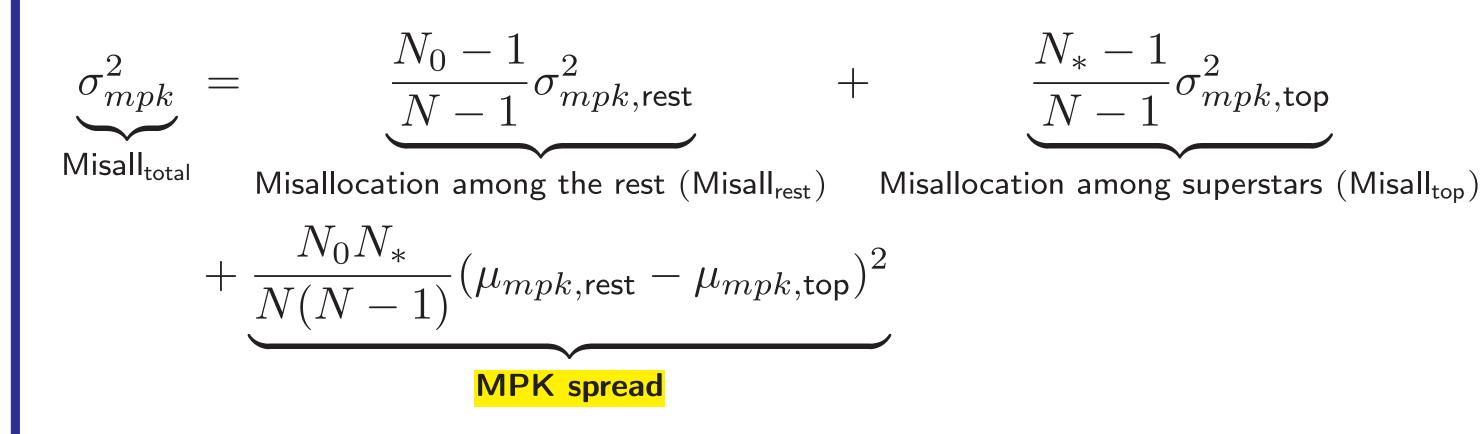
Fama-Macbeth *t*-statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

- Only $\Delta {\rm MPK}$ spread are significantly and negatively priced.
- Robust results to alternative definitions of superstars, pricing Giglio and Xiu (2021)'s 202 portfolios, value-weighted capital misallocation, etc.

Result 2: Factor-mimicking Portfolios

 $R_{it}^e = \alpha_i + \beta_{it} \Delta \mathsf{MPK} \operatorname{spread}_t + \varepsilon_{it}, \quad t = t - 20 \to t.$


Table 2: Portfolios sorted on stock exposure to $\Delta {\rm MPK}$ spread

	Low β	Q2	Q3	Q4	High β	High–Low
Ret–rf	11.633***	5.243***	3.707***	2.062***	6.816***	-4.818***
	(6.52)	(5.95)	(5.87)	(4.88)	(5.45)	(-2.64)
α_{CAPM}	0.594	0.843	1.258*	-1.617**	-3.213**	-3.807**
	(0.41)	(1.16)	(1.79)	(-2.08)	(-2.57)	(-2.12)
$\alpha_{FF3+UMD}$	1.329	1.253	1.647**	-1.673**	-2.056	-3.384*
	(0.83)	(1.51)	(2.27)	(-2.09)	(-1.59)	(-1.68)
α_{FF5}	2.419	0.569	0.103	-2.455***	-1.694	-4.113**
	(1.64)	(0.71)	(0.15)	(-3.14)	(-1.38)	(-2.06)

- Data: Quarterly listed US firms from Compustat.

• Changes in misallocation: $\Delta \sigma^2_{mpk,t} = \sigma^2_{mpk,t} - \sigma^2_{mpk,t-4}$.

Decomposing Capital Misallocation

MPK spread = Capital misallocation <u>between</u> superstars and the rest.
Superstars = top 5% firms in their industries by market cap and markup.

Main Findings

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

- Stocks (-) exposed to Δ MPK spread outperform stocks (+) exposed to Δ MPK spread by **4.8% per year**.
 - Stocks (–) exposed to shocks earn higher expected returns \rightarrow risky.
 - Stocks (+) exposed to shocks earn lower expected returns \rightarrow hedge.

Result 3: Predicting Lower Economic Growth

 $\Delta Y_{t:t+q} = \alpha + \beta \mathsf{MPK} \mathsf{spread}_t + \epsilon_{t:t+q},$

where $Y \in \{CG, IP, E, R_{mkt}^e\}$.

	1	1.1.1.1	
able 3:	Long-run	predictive	regressions
_	0		0

	q=1	q=4	q=8	q=12
Per capita real consumption growth	-0.271***	-0.750***	-0.757***	-0.336
	(-3.39)	(-3.24)	(-2.59)	(-0.87)
R^2	0.039	0.089	0.051	0.007
Industrial production growth	-0.283	-1.176**	-2.427***	-1.667*
	(-1.57)	(-2.19)	(-3.38)	(-1.70)
R^2	0.014	0.040	0.080	0.027
Employment growth	-0.152**	-0.497**	-0.888***	-0.586**
	(-2.28)	(-2.49)	(-4.05)	(-2.25)
R^2	0.013	0.056	0.096	0.032
Market excess returns	-1.084**	-1.654***	-2.613**	-2.815*
	(-2.43)	(-2.66)	(-2.53)	(-1.87)
R_{IS}^2	0.018	0.018	0.028	0.024
$R_{OOS}^{\hat{2}}$	0.002	0.003	0.005	0.011

- Changes in capital misallocation *between* superstars and the rest, i.e. ΔMPK spread, are **negatively priced** in the cross-section of stock returns.
- Higher MPK spread **predicts lower** economic growth and aggregate stock returns.
- Consistent with the ICAPM,
- MPK spread is a key state variable.
- Δ MPK spread capture a macroeconomic risk factor.
 - Higher capital misallocation *between* superstars and the rest is negative news to investors whose marginal utility depends on consumption growth risk.

t-ratio of Hodrick (1992) with k-1 lags in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

- MPK spread **predicts lower** economic growth, proxied by consumption growth, industrial production growth, employment growth, and stock market returns. \rightarrow MPK spread is a **state variable**.
- Aggregate misallocation and other components <u>do not</u> yield significant predictive power.