Data and Decisions
Paper Session
Friday, Jan. 3, 2025 8:00 AM - 10:00 AM (PST)
- Chair: Timothy B. Armstrong, University of Southern California
Empirical Bayes When Estimation Precision Predicts Parameters
Abstract
Empirical Bayes methods usually maintain a prior independence assumption: The unknown parameters of interest are independent from the known standard errors of the estimates. This assumption is often theoretically questionable and empirically rejected. This paper instead models the conditional distribution of the parameter given the standard errors as a flexibly parametrized family of distributions, leading to a family of methods that we call CLOSE. This paper establishes that (i) CLOSE is rate-optimal for squared error Bayes regret, (ii) squared error regret control is sufficient for an important class of economic decision problems, and (iii) CLOSE is worst-case robust when our assumption on the conditional distribution is misspecified. Empirically, using CLOSE leads to sizable gains for selecting high-mobility Census tracts. Census tracts selected by CLOSE are substantially more mobile on average than those selected by the standard shrinkage method.Decision Theory for Treatment Choice Problems with Partial Identification
Abstract
We apply classical statistical decision theory to a large class of treatment choice problems with partial identification, revealing important theoretical and practical challenges but also interesting research opportunities. The challenges are: In a general class of problems with Gaussian likelihood, all decision rules are admissible; it is maximin-welfare optimal to ignore all data; and, for severe enough partial identification, there are infinitely many minimax-regret optimal decision rules, all of which sometimes randomize the policy recommendation. The opportunities are: We introduce a profiled regret criterion that can reveal important differences between rules and render some of them inadmissible; and we uniquely characterize the minimax- regret optimal rule that least frequently randomizes. We apply our results to aggregation of experimental estimates for policy adoption, to extrapolation of Local Average Treatment Effects, and to policy making in the presence of omitted variable bias.Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects
Abstract
Many causal estimands are only partially identifiable since they depend on the unobservable joint distribution between potential outcomes. Stratification on pretreatment covariates can yield sharper partial identification bounds; however, unless the covariates are discrete with relatively small support, this approach typically requires consistent estimation of the conditional distributions of the potential outcomes given the covariates. Thus, existing approaches may fail under model misspecification or if consistency assumptions are violated. In this study, we propose a unified and model-agnostic inferential approach for a wide class of partially identified estimands, based on duality theory for optimal transport problems. In randomized experiments, our approach can wrap around any estimates of the conditional distributions and provide uniformly valid inference, even if the initial estimates are arbitrarily inaccurate. Also, our approach is doubly robust in observational studies. Notably, this property allows analysts to use the multiplier bootstrap to select covariates and models without sacrificing validity even if the true model is not included. Furthermore, if the conditional distributions are estimated at semiparametric rates, our approach matches the performance of an oracle with perfect knowledge of the outcome model. Finally, we propose an efficient computational framework, enabling implementation on many practical problems in causal inference.Discussant(s)
Toru Kitagawa
,
Brown University
Patrick Kline
,
University of California-Berkeley
Hiroaki Kaido
,
Boston University
Vira Semenova
,
University of California-Berkeley
JEL Classifications
- C10 - General