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Abstract

In this paper, we experimentally investigate whether participants exhibit a previously undocu-
mented form of attribution bias stemming from reference-dependent preferences. In our base-
line experiment, participants learned from experience about one of two unfamiliar tasks, one
more onerous than the other. Some participants were assigned their task by chance just prior to
their initial experience, while others knew in advance which task they would face. In a second
session conducted hours later, we elicited those participants’ willingness to work again at that
same task. Participants assigned the less-onerous task by chance were more willing to work
than those who faced it with certainty (or high probability). Conversely, participants assigned
the more-onerous task by chance were less willing to work than those who faced it with cer-
tainty. These qualitative results, and the fact that differences in willingness to work remained
hours after initial impressions were formed, are consistent with the idea that participants mis-
takenly attributed sensations of positive or negative surprise (relative to expectations) to the
effort cost of their assigned task.
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1 Introduction

Evidence from both the lab and field emphasizes that our experiences are reference dependent.
In particular, how we feel about an outcome often depends on both its intrinsic value and how
that value compares to expectations (e.g. Kahneman and Tversky 1979; Medvec, Madey, and
Gilovich 1995; Card and Dahl 2008; Abeler et al. 2011). As expectations and reference points
may change over time, learning about our intrinsic preferences is complicated because it demands
that we disentangle these two sources of utility. Guided by research in psychology, we designed
experiments to explore whether people incorrectly attribute sensations of surprise—either elation
or disappointment—to their intrinsic (dis)utility of a real-effort task.1

To motivate our experimental design, consider a worker completing a series of short-term tasks.
Suppose that each day the worker is randomly assigned to one of two tasks—one more desirable
than the other—meaning the job she faces each day comes as either a positive surprise or a disap-
pointment. If she fails to account for these sensations as she forms her impressions of the jobs, she
will develop incorrect beliefs about how much she enjoys each. Concretely, when she is fortunate
and assigned to the desirable job she may incorrectly attribute the positive feelings arising from
surprise to the intrinsic enjoyment of the task, and hence become too willing to perform that duty
in the future. By contrast, when she is unfortunately assigned to the less desirable task she may
misattribute the sensation of disappointment to the disutility of that task, and become too hesitant
to work in that role. In both cases, the worker may form biased impressions of the task because
she neglects the degree to which her (past) experienced utility depended on her expectations.

In this paper, we present two experiments that explore whether people wrongly attribute sen-
sations of surprise or disappointment to the intrinsic value of a real-effort task. In Experiment 1,
participants completed one of two previously-unexperienced tasks. Hours later, we elicited their
willingness to complete additional work on their assigned task. Their responses are consistent with
the idea that participants incorrectly learned the disutility associated with their task as a function
of the exogenously imposed expectations they held before first encountering that task. We discuss
how our results are inconsistent with rational learning models that assume either classical prefer-
ences or reference-dependent preferences without misattribution. In our second experiment, we
manipulate initial expectations within subjects and examine how willingness to work changes over
the course of a week as participants’ expectations change. We again find that surprise and disap-

1 Studies in both psychology and economics demonstrate that memories are imprecise and people may make
mistakes when attributing the sources of their feelings. Dutton and Aron (1974) show that opinions of a newly-met
person depend on unrelated situational factors—e.g., current state of excitement or fear. Meston and Frohlich (2003)
replicate and extend this seminal result to broader settings. Recent evidence in economics (Simonsohn 2007, 2010;
Haggag et al. 2019) demonstrates that, when assessing the value of a good or service, people incorrectly attribute
state-dependent sensations caused, for instance, by weather or thirst to the underlying quality of the good. We discuss
additional evidence for such mistakes in attribution in Section 2.
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pointment shape participants’ willingness to work. In addition to contributing to the growing body
of evidence on expectations-based reference points, our contribution is therefore the identification
of a specific, previously unstudied form of attribution bias.

We first present an abridged version of the model from our companion paper which informs our
experimental design and helps us derive behavioral predictions. Following Bell (1985) and Kőszegi
and Rabin (2006), we assume the decision maker experiences expectations-based reference-dependent
utility composed of two parts: consumption utility, which corresponds to the classical notion
of payoffs, and gain-loss utility, which is proportional to the difference between the consump-
tion utility earned and what the person expected. As alluded to above, a “misattributor” cor-
rectly recalls how she felt after each experience, but wrongly attributes sensations of surprise or
disappointment—the gain-loss component of her utility—to the underlying outcomes—the con-
sumption component. She thus forms biased impressions of the outcomes she faced. We describe
the model’s predictions in greater detail below.

Guided by our model, we designed a pair of experiments. Experiment 1 involved 886 subjects
recruited from Amazon’s Mechanical Turk (MTurk). In an initial learning session, each subject
listened to Amazon book reviews read by a computer, and had to determine whether each review
was endorsing or criticizing the book. This simple-yet-tedious classification task came in two
variants. One variant—which we call noise—included an annoying sound layered on top of the
audio review. The second variant—which we call no-noise—had no additional sound added to the
audio review.

Our primary experimental manipulation stemmed from varying subjects’ beliefs over which task
they would complete in the experiment. One third of participants were assigned to a task from the
onset of the experimental instructions. Another third of participants flipped a coin to determine
which task they would face moments before their first experience with that task. Finally, the re-
maining participants faced near-certain task assignment. Put together, this design generates six
groups, which result from crossing the three manipulations in expectations described above with
the ultimate task a participant faced: {control, coin flip, high probability}×{noise, no noise}. Af-
ter reading the instructions (and, if applicable, resolving any uncertainty), participants completed
eight trials of their assigned task. Knowing that they would later be asked about their willingness
to work on this task, these initial trials gave participants an opportunity to learn about their pref-
erences. More than eight hours later, we elicited their willingness to complete more trials of their
assigned task for additional pay.

We first examine how willingness to work differed between the control and coin-flip treatments.
Our misattribution model (sketched above) predicts that participants who face the task without
noise as a result of the coin flip will form overly positive beliefs about that task, since their initial
impressions will be influenced by a sense of positive surprise. Thus, we predict that participants
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in the coin flip + no noise group will be more willing to work than those in the control + no noise

group, despite the two groups ultimately completing the same task. By contrast, we predict those
assigned the noisy task via the coin flip will form overly negative impressions of the task, as their
initial experience was colored by their disappointment. Therefore, participants in the coin flip +

noise group who suffer misattribution will be less willing to work than those in the control + noise

group. Matching the predictions above, we find that participants who faced the task without noise
by chance were more willing to work than those who faced that task with certainty. This effect is
clearly seen in Figure 1 where the labor supply curve for the coin flip + no noise group is shifted
outward relative to the control + no noise group.2 In contrast, those who faced to the noisy task
by chance were less willing to work than those who faced the noisy task for certain—manifesting
in an inward shift of the labor supply curve for the coin flip + noise group relative to the control

+ noise group. We interpret this result as evidence that participants formed different beliefs about
the task as a result of misattributing sensations of positive and negative surprise that arose during
the initial learning session.3 Additionally, we demonstrate that neither a classical model nor a
reference-dependent model without misattribution predicts this differential willingness to work
between participants assigned by coin flip versus certain assignment. These results are also robust
to a modified experiment where all participants are exposed to both tasks.4

In Experiment 2, we elicited each participant’s willingness to work during two different sessions,
separated by one week. Our identification of misattribution in this setting stems from changes in a
participant’s reference point over the course of the week. In a first session, each participant flipped
a coin to determine whether she faced the good or bad task and then immediately completed five
trials of that task. Directly after this learning phase, we elicited the participant’s willingness to
continue working at that task. One week later, the same participants returned and repeated the

2 For ease of visual presentation, we omit error bars but we discuss the significance of these differences in detail
in the text.

3 The time gap between participants forming their impressions and our elicitation of willingness to work helps
distinguish our effect from that of short-term “transient moods”, as any influence of the coin flip on mood should
fade over more than eight hours. This was a central design concern because transient factors have, for example, been
demonstrated to influence investor sentiment. Fluctuations in the weather (Saunders 1993, Hirshleifer and Shumway
2003) and sports outcomes (Edmans, Garcia and Norli 2007) both lead to systematic changes in stock returns. In
psychology, the more general idea that positive or negative affect can distort unrelated behavior is well documented.
For example, Isen and Levin (1972) showed that participants were more likely to help others after they themselves
experience positive, unrelated events.

4 In this alternative treatment, we followed the same instructions as the coin-flip version of Experiment 1, but
replaced the coin flip with a high-probability environment: participants were nearly certain to face one of the tasks,
but were told of both. We then compared the willingness to work of the coin-flip groups with that of participants in
each high-probability + noise and high-probability + no noise. Our initial findings replicate for participants facing no
noise (p = .033), and our results are directionally consistent but not significant (p = .103) for participants who face the
task with noise. This high-probability treatment addresses concerns that might arise due to the fact that participants
who were assigned their task with certainty only knew about that one task. For instance, the knowledge of an alternate
task could lead to widened priors through some form of (plausibly rational) inference. Our robustness treatment rules
out this and other alternative explanations that we discuss in greater detail in Section 3.1.
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Figure 1: Labor supply curves across four treatments—each point represents the average will-
ingness to work for a fixed payment as elicited under the BDM mechanism. Relative to groups
whose assignment did not induce surprise, those assigned by chance (coin flip groups) demon-
strate greater willingness to work when assigned to the task without noise and less willingness to
work when assigned to the task with noise.

process above, except there was no coin flip: each knew with certainty that she would face the
same task in the second session as she did in the first session. That is, each participant again
completed five trials of her assigned task and then revealed her willingness to continue working.

Given we elicited willingness to work twice for each subject, our variable of interest is the
difference in a participant’s willingness to work between week one—when her task came as a
surprise—and week two—when that same task was completely expected. We find that participants
who where were pleasantly surprised in the first session were less willing to work in the second
week than in the first, while those who were negatively surprised in the first session were more

willing to work in the second week than the first. This result is consistent with our model: a
participant who was, say, positively surprised (i.e., faced the good task) may have attributed this
sensation to a quality of the underlying task and thus worked too much in the first week. Upon
trying that same task again a week later—when it was no longer pleasantly surprising—the task
may have failed to live up to the previous experience, and thus willingness to work decreased.

Attribution bias applied to the gain-loss element of reference dependence can generate a number
of known biases in belief updating.5 For instance, a misattributor relies too heavily on her per-
sonal experience—in particular, recent experiences—when making decisions. Additionally, when
comparing her outcomes against past experiences, a misattributor may exhibit sequential contrast

5 We explore the implications of misattribution of reference dependence in greater detail in Gagnon-Bartsch and
Bushong (2019).
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effects, whereby she perceives today’s outcomes as better the worse was yesterday’s. Finally, fix-
ing the outcomes she faces, a misattributor forms the most optimistic beliefs after experiencing a
sequence of increasing outcomes.6

Misattribution of reference dependence also provides a novel explanation for the findings of
Gneezy and List (2006) and similar experiments. In their field experiment, surprisingly high earn-
ings lead workers to increase efforts, but those increased efforts diminish over time. The evidence
we provide herein speaks to both why these payments increase effort in the short-term and why
these surprising wages fail to motivate longer-term changes in behavior as workers learn the un-
derlying difficulty of their assigned task.

2 Theoretical Framework and Motivation

In this section, we present a streamlined version of our model of misattribution of reference de-
pendence (Bushong and Gagnon-Bartsch 2019), which guides our experimental design. We also
discuss motivating evidence for the central assumptions underlying this model.

Preferences and Misattribution. Following Kőszegi and Rabin (2006; henceforth KR), we as-
sume that the agent’s overall utility from an outcome has two additively-separable components.
The first component, “consumption utility”, corresponds to the material payoff traditionally stud-
ied in economics, which we denote by v ∈ R.7 The second component, “gain-loss utility”, derives
from comparing v to a reference level of utility or a “reference point”. Following Bell (1985), we
take this reference point to be the agent’s expectation of v, and we consider a simple piecewise-
linear specification of gain-loss utility. Specifically, if the agent believes that consumption utility
is distributed according to CDF F̂V with a mean value Ê[V ], then gain-loss utility from outcome v

is

n
(

v
∣∣ Ê[V ]

)
=

 v− Ê[V ] if v≥ Ê[V ]

λ

(
v− Ê[V ]

)
if v < Ê[V ],

(1)

where parameter λ ≥ 1 captures any potential loss aversion. Accordingly, given expectations Ê[V ],

6 Evidence suggests that people both prefer improving sequences and form the most optimistic evaluations there-
after. For example, Ross and Simonson (1991) allow participants to sample two video games and find that willingness
to pay for the bundle is significantly higher among those who sampled the better game second. Similarly, Haisley
and Loewenstein (2011) show that advertising promotions are most effective when sequenced in increasing order of
value—that is, the high-value promotional item is given last. Several authors argue that such assessments follow a
mechanism like ours (e.g. Tversky and Griffin 1990; Loewenstein and Prelec 1993; Baumgartner, Sujan and Padgett
1997). Other forms of sequential contrast effects have been documented in decisions made by teachers (Bhargava
2007), speed daters (Bhargava and Fisman 2014) judges assessing asylum seekers, reviewers of loan applications,
baseball umpires (Chen, Moskowitz, and Shue 2016) and in stock returns (Hartzmark and Shue 2016).

7 We interpret v as if it derives from a classical Bernoulli utility function uC : R+→ R over consumption realiza-
tions x ∈ R+ such that v = uC(x), but we work directly with consumption utility v to reduce notational clutter.
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the person’s total utility is
u
(

v
∣∣ Ê[V ]

)
= v+ηn

(
v
∣∣ Ê[V ]

)
, (2)

where η > 0 is the weight given to sensations of gain and loss relative to absolute outcomes.
Although we assume the reference point is expectations, we highlight in Section 3.2 that our ex-
perimental predictions are robust to many different specifications.8

Our notion of misattribution arises in environments where an individual attempts to learn about
the consumption utility v she derives from an unfamiliar alternative. We assume a misattributor
only observes her total utility, and when doing so she under-appreciates the extent to which her
past experiences were influenced by reference dependence.9 Thus, she infers v using a misspeci-
fied model that weights the gain-loss component of her utility by a diminished factor η̂ ∈ [0,η).
That is, a misattributor infers as if her utility function were û

(
v̂
∣∣ Ê[V ]

)
= v̂+ η̂n

(
v̂
∣∣ Ê[V ]

)
: she

correctly recalls how happy she felt following outcome v, but she fails to fully account for how
sensations of surprise or disappointment affected her total utility. Specifically, she infers v̂ such
that û

(
v̂
∣∣ Ê[V ]

)
= u

(
v
∣∣ Ê[V ]

)
. Equations 1 and 2 imply that this misencoded outcome, v̂, takes

the following simple form:

v̂ =


v+
(

η−η̂

1+η̂

)(
v− Ê[V ]

)
if v≥ Ê[V ]

v+λ

(
η−η̂

1+η̂λ

)(
v− Ê[V ]

)
if v < Ê[V ].

(3)

Thus, the encoded outcome is biased upward when the true outcome beats expectations, and bi-
ased downward when the outcome falls short of expectations. This bias is proportional to the
deviation between the true outcome and expectations. Furthermore, the bias increases in the de-
gree of misattribution—i.e., as η̂ decreases. When the agent is loss averse—i.e., λ > 1—losses are
misencoded by a greater extent than gains. Finally, the agent uses this wrongly encoded outcome
v̂ to update her beliefs about the underlying consumption utility.

To illustrate how misattribution leads to biased beliefs, recall the example from the introduction

8 While we assume that the reference point corresponds to mean expectations, the predictions we examine do
not substantially depend on whether we assume a deterministic reference point (à la Bell and Equation 1, above) or
stochastic reference point (à la KR, where an outcome is compared to each possible alternative outcome under F̂V
and every such comparison is weighted by the likelihood of the alternative). This is because misattribution in our
setting does not influence the planning stage of actions. This planning stage—where the person forms plans and,
accordingly, expectations—is crucial for many of KR’s predictions. Given any particular model of the reference point,
misattribution is applied after the resolution of uncertainty.

9 There are at least two plausible interpretations of how these biased perceptions are formed. (1) The agent
improperly encodes each outcome as they happen—which seems most plausible in settings where the determinants of
consumption utility are not directly observable (e.g., one’s disutility of working on an unfamiliar task or the quality of
a meal). (2) The agent retrieves a distorted memory of an outcome when attempting to recall its value—which seems
most plausible in settings where outcomes are easily observed (e.g., one might remember an unexpectedly high price
from a previous transaction as higher than it truly was despite knowing the true price when the transaction took place).
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wherein a worker’s daily task is assigned at random: some days she faces a relatively task and
other days she faces a more-onerous one. When the worker is assigned the onerous task, she
simultaneously experiences both a bad material outcome and a sensation of disappointment—her
task is worse than average. If she fails to properly disentangle this sensation of disappointment and
wrongly attributes it to the underlying disutility of the task, she will recall her assigned task as more
onerous than it really was. When the worker is assigned the more pleasant task, she simultaneously
faces an easier job and a pleasant surprise, and may recall the task as even better than it really was.

For ease of presentation, we have thus far discussed the case where consumption, v, is unidi-
mensional. However, our experiments examine a setting with two dimensions—money and effort.
To accommodate this, we extend the model outlined above: given expectations Ê[V k] along each
dimension k ∈ {m,e}, the agent’s total utility from realization v = (vm,ve) is

u
(

v
∣∣ Ê[V ]

)
= ∑

k∈{m,e}

 vk︸︷︷︸
Consumption utility

+ η n
(

vk ∣∣ Ê[V k]
)

︸ ︷︷ ︸
Gain-loss utility

 . (4)

The misencoded outcomes due misattribution, v̂k, are then defined as above (Equation 3) along
each dimension. That is, a misattributor recalls an outcome v̂k such that v̂k + η̂n

(
v̂k
∣∣ Ê[V k]

)
=

vk +ηn
(

vk
∣∣ Ê[V k]

)
.

Motivating Evidence. Research in both economics and psychology showcases empirical evi-
dence consistent with the basic idea of reference dependent utility. Early studies by Kahneman
and Tversky (e.g., 1979) demonstrated that changes in wealth relative to some reference point
lead to sensations of positive surprise and disappointment, which shape behavior. More recently,
studies have demonstrated that reference dependence affects behavior across a wide range of con-
texts. This evidence spans labor supply among taxi drivers (Camerer et al. 1997; Crawford and
Meng 2011), domestic violence resulting from unexpected football losses (Card and Dahl 2011),
decisions in game shows and sports (Post, van den Assem, Baltussen and Thaler 2008; Pope and
Schweitzer 2011; Allen et al. 2015; Markle et al. 2015), and even the behavior of capuchin
monkeys (Chen et al. 2006).

While the general idea of a reference point that shapes behavior is well-established, the evi-
dence that the reference point corresponds to forward-looking expectations is much less clear. In
favor of expectations, Abeler et al. (2011) study real-effort provision in the presence of stochastic
wages and demonstrate that varying expectations over these wages changes effort. Gill and Prowse
(2012) look at a two-person sequential game in which players exert real effort and the probability
of winning a prize depends on the total effort exerted. Importantly, the probability of winning in
their experiment is linear in effort, meaning that the second player’s behavior should not depend
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on that of the first. However, the authors find a discouraging effect of low first-player effort that
is consistent with a model of expectations-based reference dependence. Sprenger (2015) provides
evidence that choices are driven by stochastic reference points—that is, the reference point de-
pends on the full distribution of a lottery. Exploring a prediction of Kőszegi and Rabin (2007),
Sprenger demonstrates that participants choose risky options more often when expecting a risky
lottery rather than a sure payoff. Finally, Karle et al. (2015) show that food choices depend on the
realization of uncertain prices in a way that is consistent with expectations-based reference depen-
dence. Although these studies provide evidence in favor of expectations as the reference point, a
growing literature contradicts the evidence above. In a similar experiment to that of Karle et al.,
Wenner (2015) finds no evidence for the KR model, but attributes his results to non-equilibrium
behavior. And while Ericson and Fuster (2009) demonstrate that the endowment effect is at least
partially driven by expectations of future endowments, Heffetz and List (2014), Heffetz (2018),
and others provide contradictory evidence.10 Our particular experimental setting does not require
any specific model of expectations—many reference points and solution concepts will generate the
patterns of behavior we observe. Therefore while our paper is closely related to this literature, we
cannot address the mixed evidence contained therein.

In contrast to reference-dependent preferences, misattribution has received little attention in the
economics literature, though various errors in attribution have been explored in psychology. Often
referred to as the “fundamental attribution error” or “correspondence bias” in that literature (e.g.,
Ross 1977; Gilbert and Malone 1995), these errors may share a common psychology with that of
misattribution of reference-dependent utility: transient sensations (e.g., sensations of surprise or
disappointment) are incorrectly attributed to an underlying, stable source.11 In the economics liter-
ature, Simonsohn (2007, 2009) explores the effect of a transient shock (weather) on the subsequent
preferences of would-be college students and admissions officers. Simonsohn (2007) demonstrates
that college applicants with particularly strong academic qualities were evaluated higher by admis-

10 Both Ericson and Fuster (2009) and Abeler et al. (2011) were included in replication studies by Camerer et al.
(2016) and both studies were replicated with smaller effect sizes narrowly outside of the p = .05 standard.

11 Although Kahneman and Tversky’s (1979) “Prospect Theory” supposes that people behave as if they experience
reference-dependent sensations or hedonics, those authors do not take a strong stand on whether this behavior truly
reflects hedonic sensations. Many studies provide suggestive evidence that sensations of positive and negative surprise
are a hedonic phenomenon. More directly, Rutledge et al. (2014) shows that a reference-dependent model predicts self-
reported happiness during a simple gambling experiment. Additionally, the authors use fMRI to find a neural signal
in the midbrain that follows this reference-dependent model. These signals are commonly interpreted as stemming
from a non-hedonic reinforcement-learning model that is encoded by midbrain dopamine neurons (Schultz, Dayan and
Montague 1999). These reinforcement-learning models predict a signal very similar to that of the gain-loss function
(absent loss aversion). Accordingly, previous neuroscience evidence on reinforcement learning, when reinterpreted
through this lens, may provide some evidence on reference-dependence. Finally, recent papers show these reference-
dependent signals extend beyond the midbrain to higher levels of cortex in both humans (e.g., Hayden et al. 2011;
Hill, Boorman and Fried 2016) and other primates (e.g., Bayer and Glimcher 2005). Such signals in the ventral medial
prefrontal cortex (an area associated with experienced utility) may suggest a neural basis for reference-dependent
hedonics.
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sions officers when the weather on that evaluation day was poor. Simonsohn (2009) shows that
incoming freshman are more likely to matriculate at an academically rigorous school when the
weather on their visit day to that school was cloudy versus sunny. Relatedly, a series of papers
show that CEOs (Bertrand and Mullainathan 2003) and politicians (Wolfers 2007; Cole, Healy,
and Werker 2012) are rewarded for luck.

Closely related in motivation, Haggag et al. (2019) provide evidence of a different form of at-
tribution error: wrongly attributing state-dependent fluctuations in utility to underlying quality. In
an experiment, the authors show that participants value an unfamiliar beverage more if they first
drink it while thirsty rather than sated. Likewise, using field evidence they show that good weather
during a person’s visit to a theme park increases the likelihood that person plans to return. Our
model and evidence departs from theirs in a number of ways. In terms of our predictions, errors
in attribution in their model leads decision-makers to underestimate the utility difference between
two outcomes. Our model predicts—and we observe—the opposite. Moreover, biased forecasts
that result from Haggag et al.’s formulation may, in some settings, wash out with ample experi-
ence. These errors can persist under misattribution of reference dependence.12 This distinction
stems from the fact that Haggag et al. rule out complementaries where past experiences influence
today’s consumption utility. Reference dependence clearly introduces this complementarity, as
past experiences form the reference point against which today’s consumption is evaluated.

3 Experiment 1

In this section, we present our between-subject experiment, which we conducted on Amazon’s
Mechanical Turk (MTurk). We first describe the experimental design. Next, we provide theo-
retical predictions of both rational-learning models and our model of misattribution. Finally, we
analyze our experimental data, noting throughout how the results are consistent with our notion
of misattribution yet inconsistent with various rational-learning models with or without reference
dependence.

12 For example, misattribution of state-dependent utility can cause an agent to mislearn the mean outcome in the
short run, but the bias will vanish in the long-run if states are independent from the timing of consumption. To illustrate,
consider a diner learning about the quality of a restaurant. If she visits the restaurant when she’s both hungry and not
hungry, she will correctly learn the average quality. Accordingly, the framework from Haggag et al. (2019) may best
apply to situations where choices are based on limited experience. In contrast, misattribution of reference-dependent
utility in this example will lead a loss-averse agent to develop persistent misperceptions about the average quality.
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3.1 Design

We recruited approximately 900 participants on MTurk to complete a two-session experiment.13

The first session was an “initial-learning phase” designed to give participants experience with a
new real-effort task. During the second session, we elicited participants’ willingness to work
on that task for additional pay. It took participants an average of 10 minutes to complete the
first session and 15 minutes to complete the second. We paid participants a fixed fee of $4 for
successfully completing both sessions, which translates to an hourly wage of approximately $9.60.
Participants could earn up to $2.50 additional money for completing additional work depending on
their willingness to work and chance.

Each participant worked on one of two tasks. Both involved listening to reviews of books read
aloud. Specifically, we used digital-voice software to “read” reviews collected from Amazon.com.
Participants had to guess whether each review was positive or negative.14 In order to classify a
review as positive or negative, participants pressed one of two buttons after listening to it, and
they were given a warning if their classification was incorrect. Figure 2 depicts this interface. Our
two versions of the task differed in a single way: some participants listened to unaltered audio,
while others listened to audio with an annoying noise played in the background. This noise was
a composite of a fork scraping against a record and a high-frequency tone.15 The noise played
approximately 15 decibels lower than the peak levels of the audio in the review. Hence, the noise
was annoying but did not hinder participants’ ability to classify the audio reviews.16

We now outline each of the two sessions of the experiment.
Session 1: Initial-Learning Phase. Participants completed eight reviews in the first session of

the experiment, which we call the “initial-learning session.” We instructed participants that the
goal of this session was to learn about how much they enjoy the task, since they would later have
an opportunity to complete additional rounds of that task for extra pay.

In order to examine how initial expectations altered subsequent evaluations, we randomly as-
signed participants into three groups: known assignment (n= 292), coin-flip assignment (n= 294),
and high-probability assignment (n = 300). Participants in the known-assignment group were told
from the start which task they would face, while participants in the coin-flip and high-probability

13Participants were required to be U.S. residents and to have completed at least 100 prior jobs on MTurk with a
95% approval rating.

14 Reviews were edited to last approximately 20 seconds, to remove any specific references to author names or
book titles, and for grammar. Unbeknownst to participants, all reviews were either 1-star reviews or 5-star reviews to
make the task straightforward if tedious. See the Appendix for sample text of the reviews.

15 The Nock Lab at Harvard generated this noise and used the stimuli in work unrelated to our own. In their studies,
this sound was played at modest volume (slightly louder than we played the noise). Participants in their studies found
the sound unpleasant, but there were no lasting effects (e.g., ringing ears).

16 We ran a small pilot (n = 12) with reduced stakes (show-up fee of $1.50) to check the programming and to verify
that participants in the noise and no-noise groups could both successfully complete the task. All participants in that
pilot successfully completed the task, regardless of whether they faced the noise or not.
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Figure 2: Screenshot of the classification task from Experiment 1. Buttons appeared after 10s.
Participants clicked the appropriate button to classify whether a review was positive (i.e., endorsing
the book) or negative.

groups were initially uncertain. We call these groups control, coin flip, and high probability, re-
spectively.

Participants in the control treatment were randomly assigned—unbeknown to them—to one of
two subgroups prior to entering the experiment: noise or no noise. Participants in the control +

noise group were told that they would hear audio reviews with an annoying noise played overlaid.
Participants in the control + no noise group completed classifications without the overlaid noise
and were never told about the noise. Participants in each subgroup were not aware of the possibility
of facing the alternate task—they were only told about the one they were assigned. Each participant
completed eight mandatory trials of their assigned classification task to conclude the first session.17

In contrast, participants in the coin-flip treatment were told that they faced a 1/2 chance of
doing the task without noise and a 1/2 chance of doing the task with noise. They were then given a
sample task (without noise) and a short sample of the audio (8s in duration; repeatable if desired).
After the description and samples, each participant “flipped” a digital coin to determine whether
she would ultimately face the task with noise or without. Each participant then completed the eight
mandatory classifications prescribed by the result of their coin flip.

Lastly, participants in the high-probability treatment were told that they were very likely to face
a given task (either noise or no noise). Half of participants were assigned to a “p = .99” treatment
and the other half were assigned to a “p = .01” treatment, where p corresponds to the probability
of facing the task with noise. For each participant, we uniformly drew a random integer z from
[1,100]. Participants in the p = .99 arm were assigned the task without noise if z = 100; otherwise,

17 Prior to completing mandatory work, participants in each subgroup completed one practice trial (which matched
their assigned version of the task) to teach them how to use the interface.
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they faced the task with noise. Participants in the p = .01 treatment were assigned the task with
noise if z = 100; otherwise, they faced the task without noise. As in the groups above, each
participant completed eight trials of their assigned task.

Session 2: Eliciting Willingness to Continue Working. In each group, the first session concluded
after a participant completed their eight mandatory trials of their assigned task. We emailed each
participant a link to the second session exactly eight hours after they finished the first.18 In the sec-
ond session, participants were reminded of their prior task assignment (noise or no noise) and given
the option to complete additional trials (of that same task) for a bonus payment. Conditional on
a participant’s assigned task, the second session was identical across all treatment groups. Hence,
the key difference across treatments is simply the different ex-ante likelihoods of being assigned
the noisy task.

We elicited participants’ willingness to continue working in exchange for five different payment
values: {$0.50, $1.00, $1.50, $2.00, $2.50}. We utilized the Becker-Degroot-Marshak (BDM)
mechanism to incentivize their responses. The mechanism operated as follows: for each possible
bonus payment m ∈ {$0.50, $1.00, $1.50, $2.00, $2.50}, we asked participants the maximum
number of tasks they would complete in order to receive $m. They responded by using a slider
to select any integer e∗ ∈ [0,100], which we call “willingness to work”. We then uniformly drew
a random integer e ∈ [0,100]. If e ≤ e∗, then the participant completed e additional tasks and
received $m. If e > e∗, then the participant completed no additional tasks and earned no bonus pay.

Our overlaid-audio design has an important feature: participants who faced the annoying noise
could not avoid the noise and still successfully complete the task. We ensured participants actually
listened to the audio reviews using three techniques. First, participants were required to answer
at least six out of the eight mandatory classifications correctly during the first session or else they
would be removed from the study without pay. Additionally, we hid the response buttons for the
first ten seconds of each review, which required participants to listen to a substantial portion of
the review before guessing. Finally, many of the reviews featured important details in the late part
of the review.19 To prohibit participants from reloading the web session (and thus generate new
random numbers) in attempt to avoid the noise, we blocked multiple logins and required unique
email authentication to access each session of the experiment.

18 Fourteen subjects emailed the authors stating that they had not received an invitation to the second session after
more than eight hours. All were sent an additional invitation and are therefore included in our main analyses. However,
we suspect that others may have faced the same issue (due to emails getting caught in spam filters or participants
providing an old or incorrectly-entered email address), leading to slightly higher attrition than desirable. Nevertheless,
more than 90% of participants returned for the second session.

19 Given this feature of the reviews, we may have helped participants answer correctly by withholding the response
buttons. In our data, patient responders tend to be more accurate. However, there were very few mistakes overall: only
two participants were dropped for inaccurate classifications.
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3.2 Theoretical Predictions

In this section, we derive theoretical predictions for how a participant’s willingness to work may
depend on her initial expectations about the task she will face. Misattribution predicts that the
participant’s willingness to work will depend on her initial expectations about her task assignment.
Rational learning—with or without reference dependence—does not generate such dependence.
To clearly illustrate our predictions, we make several simplifying assumptions below. Many of
these are unnecessary, and we conclude this section with a discussion of the key assumptions and
robustness.

Setup. We consider a participant who is uncertain about her cost function associated with her
assigned task, and who updates her perception of this function based on her work experience.
Mirroring our experimental design, there are two periods. In the first period (t = 1), participant i

is randomly assigned to one of two tasks a ∈ {h, l}, where h is the noisy task and l is the noiseless
one. Let probability pi ∈ {0, .01, .5, .99,1} denote the participant’s ex ante chance that she will
be assigned to task a = h. Participant i completes 8 trials of her assigned task a in period 1 and
is informed that she will face this same task with certainty in period 2. In the second period
(t = 2), the participant chooses the maximum number of trials of task a she is willing to complete
in exchange for a monetary payment m > 0 (incentivized via the BDM mechanism).

Along the effort dimension, we assume participant i’s consumption utility from completing ei,t ≥
0 rounds of task a in period t is

ve
i,t =− [θi(a)+ εi,t(a)]c(ei,t), (5)

where c(·) is an increasing function with c(0) = 0, θi(a) is a cost parameter that depends on the
task a ∈ {h, l}, and εi,t(a) are i.i.d. mean-zero random cost shocks that are independent of θi(a).
We assume participant i knows that ve

i,t has the structure presented in Equation 5 and knows c(·).
However, she is initially uncertain about the cost parameter, θi(a). Let πi,0(a) denote her prior over
θi(a). We assume that the participant correctly anticipates that θi(h) > θi(l) > 0—i.e., the noisy
task is more onerous than the noiseless one—and that her prior is independent of her treatment
group—i.e., πi,0(a) is independent of pi.

Belief Updating. Since the participant must decide how much to work on task a in period 2,
she seeks to learn about her cost parameter θi(a) based on her experience working in period 1.
We assume the participant cannot separately observe θi(a) and εi,1(a), so she uses her experienced
utility in period 1 as a signal to update her beliefs about θi(a). Importantly, this experienced utility
may depend on the participant’s initial expectations due to reference dependence.

To describe how reference dependence may influence the participant’s experienced utility, we
must fully specify her reference point. Because she is assigned task a = h with probability pi,
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the participant’s expected consumption value on the effort dimension entering period 1 (and thus
her reference point) is Êi,0[V e

i,1] =−[piθ̂i,0(h)+(1− pi)θ̂i,0(l)]c(8), where θ̂i,0(a) denotes the ex-
pected value of θi(a) under her prior. This follows from Equation 5 along with the fact that each
participant must complete exactly eight rounds of the task in period 1, so ei,1 = 8. Participant i’s
total experienced utility in period 1 (Equation 4) is thus

ui,1 = ve
i,1 +ηn

(
ve

i,1
∣∣ Êi,0[V e

i,1]
)
.20 (6)

Upon realizing ui,1, let v̂e
i,1 denote the participant’s perceived value of ve

i,1. As described in Section
2, a misattributor encodes an “exaggerated” value v̂e

i,1 according to Equation 3. In particular, if
ve

i,1 > Êi,0[V e
i,1], then v̂e

i,1 > ve
i,1—she overestimates the signal—and if ve

i,1 < Êi,0[V e
i,1], then v̂e

i,1 < ve
i,1

—she underestimates the signal. In contrast, a rational agent who fully appreciates the extent to
which her utility depends on expectations (i.e., η̂ = η) encodes the correct value, v̂e

i,1 = ve
i,1.

Given the participant’s perception of her period-1 (dis)utility of effort, v̂e
i,1, we denote her up-

dated expectation of θi(a) by θ̂i,1(a|v̂e
i,1). We do not require that updating precisely follows Bayes’

rule, but we do assume that these revised expectations, θ̂i,1(a|·), obey two basic properties con-
sistent with Bayesian updating. First, updating is monotonic in the signal: for any two encoded
values of consumption utility v̂, v̂′ ∈ R+, θ̂i,1(a|v̂) > θ̂i,1(a|v̂′) if and only if v̂ < v̂′. Second, the
participant updates in the direction of her signal: if v̂ > Êi,0[V e

i,1], then θ̂i,1(a|v̂)< θ̂i,0(a); if instead
v̂ < Êi,0[V e

i,1], then θ̂i,1(a|v̂) > θ̂i,0(a). That is, when effort is less onerous than expected, beliefs
about θi(a) revise downward; otherwise, they revise upward.21,22

Effort Choice in Period 2. In period 2, the participant announces how many additional tasks she
is willing to do for a bonus payment of m dollars. Our main question is whether this willingness
to work in period 2 depends on the likelihood that the participant was assigned to the noisy task,
pi. This likelihood is irrelevant in the rational model given that the participant was told well
in advance that her period 2 task will exactly match her period 1 task. Under misattribution,
however, sensations of elation or disappointment experienced in period 1 are wrongly attributed to
the underlying task, and these sensations of surprise naturally depend on the chance of facing the
noisy task, pi. To allow for such an effect, let e∗i (a|pi) denote participant i’s willingness to work as

20Recall that there is no opportunity to earn additional pay in period 1. Hence, total utility in period 1 depends
solely on the effort dimension.

21The second assumption is not required for analysis of Experiment 1, but we present here for clarity and ease of
interpretation. Updating in the direction of the signal results from Bayesian learning for some commonly assumed dis-
tributions for [θi(a)+ εi,t(a)]c(e), including the case where θi(a) and εi,t(a) are independent and normally distributed.
See Chambers and Healy (2012) for details.

22To simplify some additional analysis (specifically in Appendix A), we also assume that for any value of v̂, the
participant’s posterior over θ corresponds to the random variable θ̂i,1(a|v̂)+Zi,1, where the expectation term θ̂i,1 is a
constant and Zi,1 is symmetric and independent of v̂—that is, the person’s updated expectation of θ depends on v̂ but
the residual noise around this expectation is invariant of v̂.
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a function of pi.
Throughout our primary analyses in the main text, we assume that the participant’s response,

e∗i (a|pi), represents the number of tasks that renders her indifferent between completing e∗i (a|pi)

tasks for a payment of $m and not working at all. That is, e∗i (a|pi) is the number of tasks such
that her expected total effort cost is equal to m.23 For sake of a complete analysis, we take an
alternative approach in Appendix B, where we assume that a participant with reference dependence
incorporates the uncertainty induced by the BDM into her reference points along the effort and
money dimensions and best responds accordingly. Importantly, either approach gives rise to the
same key predictions: under misattribution, e∗i (a|pi) depends on the participant’s expectations over
her initial task assignment, captured by pi, while under rational updating e∗i (a|pi) is independent
of pi. We discuss these predictions in greater detail next.

We first consider predictions under rational learning (i.e., no misattribution). To build intuition
using the simplest case, suppose utility is not reference dependent (i.e., η = 0). As described above,
the participant chooses effort e∗i (a|pi) so that she is indifferent between completing e∗i (a|pi) tasks
for m dollars and not working at all; hence e∗i (a|pi) solves

Êi,1
[
ui,2
∣∣ ei,2

]
= Êi,1

[
V e

i,2
]
+m = 0, (7)

where V e
i,2 =−[θi(a)+εi,2(a)]c

(
ei,2
)

and thus Êi,1
[
V e

i,2
]
=−θ̂i,1(a|v̂e

i,1)c(ei,2). Condition 7 implies
that e∗i solves

θ̂i,1(a|v̂e
i,1)c(e

∗
i ) = m, (8)

and e∗i (a|pi) is therefore a decreasing function of her expected cost parameter, θ̂i,1(a|v̂e
i,1). Crit-

ically, the only channel for pi to influence e∗i (a|pi) is through θ̂i,1(a|v̂e
i,1). However, a rational

agent’s beliefs are independent of pi since the rational agent’s signal, v̂e
i,1, is independent of her

expectations—and hence pi.
This result holds for a rational agent with reference-dependent preferences as well. In this case,

indifference between completing e∗i (a|pi) tasks for m dollars and not working at all implies that

23 This effort level is the optimal response to the BDM mechanism when the participant has a “standard” utility
function that does not exhibit expectations-based reference dependence. However, given that the BDM mechanism
creates additional uncertainty over how much the participant will eventually work, the mechanism can conceivably
alter the optimal response of a participant with reference dependence who incorporates this BDM-specific uncertainty
into her reference point. Despite this caveat, we assume the participant’s effort choice e∗i (a|pi) ignores the uncertainty
induced by the BDM mechanism. This approach simplifies the exposition, and it is most consistent with the wording
of our survey, which asked participants to truthfully report the maximum number of tasks they are willing to do for
each payment level. This approach additionally highlights that our main predictions hold when participants answer in
this “intuitive” way even when it’s not perfectly optimal under the BDM, and that our predictions do not stem from
some interaction between the BDM mechanism and reference dependence.
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e∗i (a|pi) solves

Êi,1
[
ui,2
∣∣ ei,2

]
= Êi,1

[
V e

i,2
]
+ηÊi,1

[
n
(

V e
i,2
∣∣ Êi,1

[
V e

i,2
])]

+m = 0, (9)

Building on Equation 9, we show in Appendix A that e∗i (a|pi) solves

h
(
θ̂i,1(a|v̂e

i,1)
)

c(e∗i ) = m, (10)

where h(·) is an increasing function of θ̂i,1(a|v̂e
i,1) that depends on η and the participant’s subjective

distribution of Vi,2, but which does not depend on pi.24 Thus while the condition characterizing
e∗i (a|pi) is more complicated due to reference dependence, the same punchline applies: the only
way for pi to influence e∗i is through beliefs about θi(a). That said, these beliefs are independent
of the chance that task was assigned under rational updating.

Observation 1. Rational Learning with or without Reference-Dependent Preferences. Let e∗(a|p)
denote the average effort choice among participants who face task a in period 2 and held prior
beliefs that there was chance p of facing the noisy task in period 1. If participants’ reference points
adapt between periods 1 and 2, then both the classical and reference-dependent model without
misattribution predict that average effort is independent of p: e∗(a|p) = e∗(a|p′) for all p, p′.

Note that Observation 1 does not say that a participant behaves the same with or without reference-
dependent preferences. Rather, it says that—regardless of the underlying preferences—behavior
should not depend on the prior probability of facing each task.

We now describe e∗i (a|pi) under misattribution. As in the case above, e∗i (a|pi) solves Equation
10. However, the misattributor makes this choice based on her (potentially) biased assessment of
θi(a). Since she wrongly attributes sensations of elation or disappointment to θi(a), the misattrib-
utor errs when inferring her disutility of effort—ve

i,1—from her total experienced utility in period
1. In particular, she encodes an overly optimistic signal v̂e

i,1 whenever the true signal ve
i,1 beats

expectations, and she encodes an overly pessimistic signal whenever the true signal falls short of
expectations. Thus, fixing the outcome, raising initial expectations leads to a more pessimistic view
of the underlying task, and lowering expectations leads to a rosier view of the underlying task. We
therefore predict that for each option a ∈ {h, l}, participants’ average willingness to work, e∗(a|p),
is increasing in p.

To illustrate more concretely, consider participant i who faces a chance p > 0 of being assigned
the noisy task. For simplicity, assume that cost shocks are negligible, εi,t(a) ≈ 0, and that the
participant initially holds “unbiased” priors about the cost of effort: θ̂i,0(a) = θi(a) for both a ∈

24 Given this statement, we have implicitly assumed that the person chooses according to her true η ; however, our
qualitative results are robust to the agent choosing according to her misspecified model η̂ .
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{h, l}. Hence, before realizing her assigned task, she expects an effort cost in period 1—in which
she completes eight mandatory trials of the task—equal to Êi,0[V e

i,1] =−[pθi(h)+(1− p)θi(l)]c(8).
Suppose the participant is assigned the no-noise task. Her total utility in period 1 is ui,1 = ve

i,1 +

ηn
(

ve
i,1

∣∣ Êi,0[V e
i,1]
)

where vi,1 =−θi(l)c(8). Since θi(l)< pθi(h)+(1− p)θi(l), it follows that this
outcome beats expectations and her gain-loss utility is positive. Thus, ui,1 > ve

i,1—the participant
experiences a utility higher than the intrinsic consumption utility associated with the task—and
misattribution leads her to think that her consumption utility was higher than it actually was (i.e.,
v̂e

i,1 > ve
i,1). As such, she wrongly infers that the noiseless task is less onerous than it really is and

forms an inappropriately low estimate of its cost parameter, θ̂i,1(l|v̂e
i,1) < θi(l). Furthermore, if

p is larger—the noisy task is more likely—then the noiseless task generates greater elation and
the misattributor’s estimate of θi(l) is biased downward by more. The converse is true if the
misattributor were instead assigned the noisy task: her estimate of θi(h) is biased upward by more
when the noisy task comes as a greater disappointment; that is, the lower is p.

Observation 2. Learning With Misattribution of Reference Dependence. Let e∗(a|p) denote the
average utility-maximizing effort choice among participants in period 2 who face task a and held
prior beliefs that there was chance p of facing the noisy task in period 1. Suppose η̂ < η and sup-
pose each participant’s prior beliefs over θ(a) are independent of treatment with θ̂i,0(l)< θ̂i,0(h).
If participants’ reference points adapt between periods 1 and 2, then elicited effort e∗(a|p) is in-
creasing in p for each a ∈ {h, l}.

The two observations together highlight our empirical strategy. Fixing the task participants
ultimately faced, we compare willingness to work across treatment groups to test whether the prior
probability affects the resulting willingness to work and whether it matches the comparative static
discussed in Observation 2.

3.2.1 Discussion of Assumptions

We now discuss some of the assumptions underlying the results above. First, we clarify the extent
to which they rely on a participant’s reference point changing between the two sessions of the ex-
periment. Second, we discuss robustness to participant’s prior beliefs and highlight the relationship
between these priors and the motivation behind our high-probability treatment.

Adjustment of the Reference Point Across Periods. The observations above assume that the par-
ticipant’s reference point does not adapt between the coin flip and her initial work. In assuming
this, we leveraged the fact that the participant begins working immediately after the coin flip and
thus there is almost no time for a reference point to adapt. We do, however, assume that the partici-
pant’s reference point adapts between sessions 1 and 2; that is, the lottery over task assignment that
determines expectations in period 1 no longer influences expectations in period 2, which comes at
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least 8 hours after the resolution of the gamble. While this assumption generates crisp distinctions
between effort under misattribution and rational learning (with or without reference dependent
preferences), reference points that adapt very slowly can muddle these distinctions. In particu-
lar, if participants have sluggish reference points (i.e., expectations still depend on the lottery in
session 2) and experience reference-dependent utility over effort and not money, then reference
dependence without misattribution predicts effort patterns similar to those predicted by our model
of misattribution. We find this particular constellation of assumptions unlikely; moreover, it is
inconsistent with existing evidence demonstrating reference-dependent preferences over money.

Our design utilizes a relatively long gap between sessions to help ensure that reference points
adapt by the time Session 2 begins. The evidence to date supports the idea that reference points
adapt over modest time periods (and indeed informed our experimental design). As mentioned
previously, Song (2016) demonstrates that reference points incorporate new information over the
course of approximately ten minutes. Likewise, Smith (2012) and Buffat and Senn (2015) both pro-
vide evidence of relatively quick reference-point changes in laboratory settings with small stakes.25

Taken together, we share Song’s (2016) interpretation of the broader literature: for small-stakes
laboratory experiments, reference points seem to adjust on the scale of tens of minutes. Further-
more, we empirically explore this concern in the analysis below. Recall that subjects could choose
when to complete session 2 so long as they waited at least 8 hours after session 1. We find no dif-
ference between participants who completed session 2 relatively soon after the mandatory 8-hour
waiting period and those who waited longer.

Robustness to Poorly-Calibrated Priors. The observations above do not require subjects to have
well-calibrated priors about the tasks (i.e., about the θi(a)’s). If prior beliefs are biased on average,
our observations will hold so long as these participants’ priors do not systematically vary across
treatment groups. In this case, fixing the task a participant faced, rational learning will lead to
the same posterior beliefs regardless of the treatment—the treatment does not influence in the
interpretation of signals nor priors. In contrast, misattribution creates an interaction between poorly
calibrated priors and the treatment. However, so long as those priors are reasonable—specifically,
participants believe the noisy task is more onerous than the noiseless one—then the prediction from

25 Smith (2012) endows participants with a lottery to receive a water bottle. Some participants face a low-
probability of winning while others face a higher chance. Once prizes are awarded, winners reveal their willingness-to-
accept (WTA) to sell their bottle, and losers are asked their willingness-to-pay (WTP) for the water bottle. The author
highlights that WTA and WTP for the bottle should increase in the probability of winning the water bottle—however,
he does not find evidence of such an “attachment effect”. Smith interprets this as evidence that reference points adjust
quickly. Buffat and Senn (2015) examine preferences after the resolution of sequential lotteries over money. In that
study, all participants face one of three possible gambles and, after the realization of that gamble, participants give their
WTP for a 50/50 chance to gain CHF 10. In this setting, a slowly-adapting reference point would lead participants to
react differently to the three initial gambles—however, the authors find no evidence of this for small stakes. For larger
stakes, there is some evidence of a house-money effect, wherein risk attitudes depend on the outcome of the initial
gamble.
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Observation 2 still holds. We believe that such “reasonable” priors are likely given that participants
sampled each task during the instructions, and our data indeed suggests that participants disliked
the noisy task relative to the task without noise.

Priors Independent of Treatment-Group Assignment. The claims above (specifically, Observa-
tions 1, 2 and robustness to poorly calibrated priors) rely on independence between a participant’s
priors about the tasks and her treatment group (i.e., the likelihood she is assigned the noisy task).
However, it is is plausible that participants in the coin flip treatment—who are exposed to both
tasks during the instructions—form beliefs about a given task that systematically differ from par-
ticipants in the control who were exposed to only the that task they will face. (For instance, the
existence of both an easy and hard version of the task might lead a participant in the coin-flip group
to infer that the noisy task is particularly onerous, while a participant in the control group is only
aware of the noisy task and might expect it to resemble a “typical” MTurk task.) This would violate
our assumption that priors are independent of treatment. This (plausibly) rational-inference story
could generate willingness to work that is more exaggerated across tasks for those in the coin flip

group, much like our misattribution theory predicts. Our high-probability treatment addresses this
concern: exposure to the two tasks in this treatment exactly match the coin flip treatment, miti-
gating concerns about differential inference. In this sense, we use the high-probability group (i.e.,
participants very likely to face task a) as a less-confounded version of the associated control group
(i.e., participants certain to face task a ). In both groups, participants strongly expect to face task
a, but in the high-probability version they are perfectly aware of the alternative task.

3.3 Results

In this section, we analyze the results of Experiment 1. Guided by the theoretical discussion above,
we first present a non-parametric analysis demonstrating that willingness to work in Session 2
strongly depends on participants’ initial expectations regarding their task assignment. We then
estimate parameters of our model and demonstrate that behavior is consistent with participants
wrongly learning about the underlying difficulty of their assigned task as a function of their priors.

Summary of the Data. Our experimental design generates six subgroups: treatment (i.e. whether
participants faced certain assignment, coin-flip assignment, or high-probability assignment) crossed
by eventual task assignment (i.e. noise or no noise). For each subgroup, Table 1 shows the demo-
graphic characteristics of participants who successfully completed the first session (886 partici-
pants in total) and the proportion of those who returned for the second session.26 Note that vari-

26 There is a significant age difference between the first two treatments and the high-probability treatment. The first
two treatments were run approximately 1 month prior to the latter and the high-probability treatment was launched
at a slightly later time of day. We suspect time-of-day effects account for the age difference between groups. Our
regression analyses control for age and time-of-day effects.
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ability in subgroup sizes resulted from random treatment assignment. Also, while there are some
differences in attrition rates across groups (e.g., between the coin-flip + noise and high probability

+ noise), we discuss below how this pattern is unlikely to drive our results.

Table 1:
DEMOGRAPHICS AND SUMMARY STATISTICS, EXPERIMENT 1

Control Coin Flip High Prob.

Variable noise=0 noise=1 noise=0 noise=1 noise=0 noise=1

Age 38.24 39.71 39.36 39.63 33.29 33.61
(12.04) (12.30) (11.45) (11.96) (9.35) (9.78)

1(Male) .468 .464 .428 .387 .488 .529
(.501) (.500) (.496) (.489) (.489) (.501)

Income 2.71 2.58 2.90 2.61 2.46 2.36
(1.009) (1.092) (1.066) (1.103) (1.069) (1.011)

1(Return) .921 .882 .862 .944 .932 1
(.271) (.323) (.346) (.231) (.253) (0)

Observations 139 153 152 142 160 140

Notes: Standard errors are in parentheses. Income is coded as a discrete variable which
takes values 1-5, corresponding to the following income brackets:
(1) Less than $15,000; (2) $15,000-$29,999; (3) $30,000-$59,999; (4) $60,000-$99,999;
(5) $100,000 or more

We implemented some data-cleaning procedures to form our primary dataset. We removed
participants who either (i) did not answer all five elicitations of willingness to work27 (three par-
ticipants), or (ii) stated a willingness to work equal to the maximum amount (100 tasks) for every
payment level, which prevented us from estimating their responsiveness to payment (six partici-
pants).28 Additionally, we omit participants who did not return for the second session—and whose
willingness to work we therefore did not measure—though we present their demographics where
applicable. With this set of restrictions, we are left with a sample of 803 participants.

27 This first restriction was the result of coding that should have forced all participants to answer all questions, but
did not function properly on some obsolete browsers.

28 Of the six participants dropped due to the latter criterion, three were from control + no noise, two were from
coin flip + no noise, and one was from coin flip + noise. We believe these statements likely result from confusion,
inattention, or wrongly attempting to manipulate the BDM mechanism. Note that a participant who is supposedly
willing to complete 100 tasks for $0.50 is revealing that they command an extremely low hourly wage rate.
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3.3.1 Nonparametric Analysis

Our main hypothesis was that participants’ willingness to work on a given task would depend on
their expectations regarding their task assignment prior to the initial-learning session. As a first
step to investigate this hypothesis, we compare the average willingness to work in the control and
coin-flip treatments, where we average over both individuals and the five payment levels about
which we elicited WTW. This is presented in Columns 1 to 4 of Table 2. This comparison provides
a simple assessment of whether uncertainty over task assignment in the initial-learning session
affected subsequent behavior. Relative to the control group, participants who faced the noiseless
task were willing to work significantly more when their initial impressions were formed after the
resolution of the coin flip (p = .039 for difference; standard errors clustered at individual level). In
contrast, participants who faced the noisy task were willing to work significantly less (relative to
control) when their initial impressions were formed after the resolution of the coin flip (p = .025
for difference; standard errors clustered at individual level).

Table 2:
BASELINE RESULTS, EXPERIMENT 1

Control Coin Flip High Prob.

Variable noise=0 noise=1 noise=0 noise=1 noise=0 noise=1

Willingness to Work 24.23 22.29 28.60 17.64 24.20 21.34
(1.354) (1.570) (1.618) (1.358) (1.292) (1.267)

Observations 615 665 645 665 690 740

Notes: Willingness to work is averaged over five payment levels. Standard errors (in parentheses) are
clustered at the individual level. Differences between Columns (1)-(3), (3)-(5), (2)-(4) and (4)-(6)
are all significant p < .05.

While Table 2 gives a rough sense of the treatment effect, we further disaggregate willingness
to work by payment level in Figure 3. Continuing our comparison of the control and coin-flip

treatments, the top panel of Figure 3 shows the average willingness to work at each of the five
payment levels {$0.50, $1.00, $1.50, $2.00, $2.50} for each of the four groups (crossing treatment
with task assignment). At all payment levels, we find that those who formed initial impressions
of the noiseless task when it came as a positive surprise were less willing to work than those who
faced the same task with certainty. In contrast, those who formed initial impressions of the noisy
task when it came as a negative surprise were less willing to work than those who faced the same
task with certainty.

The bottom panel of Figure 3 shows the cumulative distributions of willingness to work in each
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Figure 3: (a) Labor supply curves and (b) cumulative bid distribution by group assignment. Cu-
mulative distribution curves aggregate over all five payment levels and are smoothed using the
Epanechnikov kernel.
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of the four groups, aggregated over all payment levels (and smoothed using the Epanechnikov ker-
nel). As a simple check, a Kolmogorov-Smirnov equality-of-distributions test reveals that control
participants were more willing to work at the noiseless task than the noisy one—verifying that the
noisy task was, in fact, more onerous.29 Speaking to our main hypotheses, the figure highlights
that willingness to work in the contol + no noise was significantly lower than the coin flip + no

noise group—the latter almost first-order stochastically dominates the former. By contrast, the cu-
mulative distribution of willingness to work in the control + noise group first-order stochastically
dominates that of the coin flip + noise group.

These baseline results reveal economically-meaningful magnitudes. For instance, consider a
hypothetical firm seeking workers to complete 25 of our classification tasks. Workers who faced
no uncertainty when forming their initial impressions required (on average) $1.70 and $1.50 to
complete 25 noisy and noiseless tasks, respectively. This difference is significantly exaggerated
when workers experience sensations of surprise when forming initial impressions: workers whose
initial impressions were confounded by sensations of disappointment or elation required $2.30 and
$1.20 to complete 25 noisy and noiseless tasks, respectively. Thus, required payments increased
by 35% for the noisy task and decreased by 20% for the no-noise one. Furthermore, the payment
premium for the noisy task—the additional payment required to incentivize the noisy task over the
noiseless one—increased from $0.20 to $1.10.

We now address three plausible alternative explanations for these baseline results: differential
information across treatments, reciprocity toward the experimenter, and attrition. For each, we
discuss how we can limit the scope for the alternative explanation.

Independent Priors Across Treatments. As discussed above (Section 3.2.1), the observed differ-
ences between the control and coin-flip groups may reflect differences in information rather than
misattribution: recall that the a participant in the control group was told only about the task she
worked on, while a participant in the coin-flip group was told about both tasks regardless of her
assignment. This differential exposure to the possible tasks may create priors about task difficulty
that differ across groups (as previous noted in the discussion concluding Section 3.2). The high-

probability treatment helps address this potential confound: participants in the control vs coin-flip

treatments had different exposure to the two tasks and thus they may have formed different prior
beliefs. The high-probability treatment helps rule out such concerns. A participants in that group
was very likely to face a particular task (and therefore had expectations about assignment that were
similar to a participant in the control group) yet was exposed to both tasks in the experimental in-
structions (similar to a participant in the coin-flip group). By comparing willingness to work in the

29 While this test fails to account for redundancy in the data stemming from multiple observations from each
individual, we calculated a conservative version of the statistic by running individual K-S tests for each payment level.
Three out of five payment levels showed significant differences between the cumulative distributions of willingness to
work for control + noise and control + no-noise; the five p values were .024, .189, .041, .019, .090.
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coin-flip and high-probability treatments, we can assess the effect of different expectations about
task assignment while eliminating the differences in information that exist between the control and
coin-flip groups

Columns 3 to 6 of Table 2 summarize behavior under the high-probability and coin-flip treat-
ments. As before, we find a significant difference in willingness to work depending on expectations
during the initial-learning session. Participants who were assigned the noiseless task based on the
coin flip were, on average, willing to work significantly more than those who strongly expected the
noiseless task (p = .034 for difference; standard errors clustered at individual level). In contrast,
participants who were assigned the noisy task based on the coin flip were willing to work signif-
icantly less than those who strongly expected the noisy task (p = .047 for difference; standard
errors clustered at individual level).

In the comparison above, we use our high-probability treatment as a replacement for the con-

trol group in order to equalize information across treatments. However, it is not a direct replace-
ment: because of the (albeit small) uncertainty over task assignment present in the high-probability

groups, our model predicts that participants in those groups will demonstrate greater differences
in willingness to work across the two tasks than those in the control groups (e.g., relative to being
assigned the noisy task for sure, the noisy task is slightly more disappointing when expecting a
high, but not certain, chance of that task). Thus, fixing the assigned task, our model predicts that
the average willingness to work of those in the high-probability group should fall in between that
of the control and coin-flip groups. Indeed, we find suggestive evidence to this effect (see Figure
4) although we are underpowered to properly compare these treatments.

Furthermore, probability weighting—people’s tendency to overweight small probabilities (e.g.
Kahneman and Tversky 1979; Prelec 1998; Gonzalez and Wu 1999)—implies that behavior in the
high-probability groups may substantially deviate from the corresponding control group. Probabil-
ity weighting would suggest that the 1% chances presented in the high-probability treatment loom
much larger than the objective probability. If this is the case, participants may treat the high prob-

ability as closer to the coin flip than is merited by the objective probabilities, hindering our ability
to detect differences across these treatments. Thus, although we do find significant differences
between the high-probability and coin-flip treatments, the statistical tests are perhaps overstating
the likelihood of the null hypothesis being true.

Differential Attrition Across Treatments. The summary statistics presented in Table 1 suggest
that differential attrition—that is, failing to return to the second session—cannot explain our treat-
ment effects. As that table demonstrates, there is not a consistent pattern of attrition between
treatments and whether participants were assigned the noisy task. In Table A4 in the appendix,
we demonstrate that no observables (e.g., task assignment, treatment, nor demographics) predict
attrition. However, an alternative type of attrition is possible given the MTurk setting: some partic-
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Figure 4: Labor supply curves across all treatments. Each point represents the average willingness
to work for a fixed payment as elicited under the BDM mechanism.

ipants may have exited the survey when assigned to the noise task without ever completing Session
1. We reviewed all partially completed surveys and found that only nine participants closed the
survey prematurely after the task assignment was revealed. Of those partial-completions, six were
assigned to the no-noise task and three were assigned to the noisy task. We accordingly reject
attrition-based explanations for the observed effects.

Reciprocity. Instead of misattribution, our baseline findings could plausibly result from reci-
procity toward the experimenter: a positive surprise encourages participants to work hard to reward
the experimenter, yet a negative surprise leads participants to punish the experimenter through low
effort. However, such an explanation requires a set of assumptions that is, in fact, similar to our
notion of misattribution. Specifically, it must be the case that the ex-ante probability of task assign-
ment alters the degree to which a person feels reciprocity towards the experimenter.30 Furthermore,
this explanation requires that the participant continues to feel positively toward the experimenter
more than eight hours later. Given the relatively small stakes involved in this experiment, we sus-
pect this is an unlikely explanation but such probability-dependent reciprocity is not directly ruled
out by our design.

30 Experimental demand effects are similar to the reciprocity argument above. Recently, de Quidt, Haushofer and
Roth (2019) directly estimated and bounded those demand effects at approximately .17 standard deviations. This
magnitude is insufficient to account for the effects we observe.
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Transient Moods. Finally, we note that our experiment was designed with the concern that
short-term moods induced by resolving uncertainty might explain our effects.31 Specifically, the
time gap between participants forming their impressions and our elicitation of willingness to work
helps distinguish our effect from that of short-term “transient moods”, as any influence of the coin
flip on mood should fade over more than eight hours. We provide an additional empirical test in
Supplemental Tables A1 and A2. There, we reproduce Table 2 but divide the sample in two: those
who returned after more than the median amount of time between Sessions 1 and 2, and those who
returned after less than the median return time. We find qualitatively similar results, though our
statistical power is greatly diminished.

3.3.2 Parametric Analysis

Motivated by our simple nonparametric results, we now consider a more structured, regression
approach. We follow the model outlined and discussed in Section 3.2. This allows us to properly
account for the fact that effort costs in our experiment may be non-linear. In doing so, we pro-
vide better estimates of the aggregate effort-supply curves illustrated in Figure 3 while supplying
appropriate confidence intervals.

Following the learning model in Section 3.2, we estimate participants’ revealed perception of
the underlying cost parameters for each task, θ(a), conditional on their treatment group.32 For
participant i who expected to face the noisy task with probability p ∈ {0, .01, .5, .99,1} and is
ultimately assigned task a, let θ̂i,1(a|p) denote her expectation of θi(a) following Session 1. We
will estimate the average value of this expectation, denoted θ̂1(a|p), among participants in each
subgroup; that is, for each relevant combination of ex-ante probability of task assignment, p, and
assigned task, a.

In order to estimate these parameters, we impose a particular form of effort-cost function: fol-
lowing Augenblick, Niederle and Sprenger (2016) and others, we assume c(e) = (e+ω)γ , where
ω is a Stone-Geary background parameter.33 Given this functional form, identification of the com-
mon cost function and the relevant parameter θ(a) is straightforward. Utilizing Equation 8 along

31 This was a central design concern because transient factors have, for example, been demonstrated to influence
investor sentiment. Fluctuations in the weather (Saunders 1993, Hirshleifer and Shumway 2003) and sports outcomes
(Edmans, Garcia and Norli 2007) both lead to systematic changes in stock returns. In psychology, the more general
idea that positive or negative affect can distort unrelated behavior is well documented. For example, Isen and Levin
(1972) showed that participants were more likely to help others after they themselves experience positive, unrelated
events.

32 As discussed in Appendix B, the reference to θ(a) above should technically be an increasing function of θ which
we denote h(·). For ease of readability, we retain the notation from our theoretical section and direct the interested
reader to the Appendix for appropriate additional details.

33 For the analysis presented below, we take ω = 0. Although numerical estimates of γ and the collection of
parameters θ are sensitive to this assumption, our qualitative results are robust. Over a wide range of ω , we estimate
significant differences in parameters across our treatments. We present this analysis in Table A3.
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with our assumed cost function implies that participant i chooses e∗i such that θ̂i,1(a|p)(e∗i +ω)γ =

m. Rearranging, setting ω = 0, and taking logs yields

log(e∗i ) =
log(m)

γ
−

log(θ̂i,1(a|p))
γ

. (11)

Assuming an additive error structure, Equation 11 suggests the following regression model:

log(e∗i ) = β0 log(m)+
6

∑
j=1

β j
(
Di(treatment)× Ii(noise)

)
+δi, (12)

where Di(treatment) is a dummy variable indicating whether person i was in a particular treatment
(control, coin flip, or high probability) and Ii(noise) is an indicator variable designating whether
that person ultimately faced the task with or without noise. Variation in payouts, m, delivers
identification of the curvature parameter, γ , and variation in treatment assignment crossed with
the task the participant ultimately completed delivers identification of θ̂1(a|p). Thus mapping
Equation 11 onto our econometric specification, we find the parameters of interest are γ = 1

β1
and

θ̂1(a|p) = exp
(
−β j
β0

)
. For example, in order to estimate aggregate beliefs of participants in the

control + noise subgroup—θ̂1(h|p = 1)—we combine the coefficient on Di(control)Ii(noise) with
the coefficient on log(m) as prescribed above.

In Table 3, we present the results of two-limit Tobit regressions with random effects at the
individual level, where standard errors are computed using the delta method.. This estimation
technique is appropriate given that (i) observed willingness to work is censored at a minimum
value of 0 tasks and a maximum value of 100, and (ii) we have five observations for each person.
Column (1) presents the estimates of the baseline specification in Equation 12. First, we estimate
the cost-curvature parameter to be γ = 1.207 (0.023); we can accordingly reject a linear cost
function despite the linear appearance of the aggregate data in Figure 3.34

Table 3, Column (1) demonstrates our main result: willingness to work—and accordingly our
estimate of perceived effort costs—are shaped by participants’ prior expectations over task assign-
ment. For ease of interpretation, the rows of Table 3 (after the first) are ordered to match the ranking
of cost perceptions predicted by our model of misattribution. Participants whose task assignment
was determined by coin flip acted as if they formed the most extreme views of the underlying
difficulty of the task. Specifically, when participants formed their initial impressions immedi-
ately after an unfavorable coin flip, they acted as if they formed more pessimistic views of the

34 As a form of robustness check, we estimated a model that mirrored Column (1) but introduced a more flexible
cost function that allowed γ to depend on whether the person faced the noise or no-noise task. This did not change the
qualitative results. Moreover, in that analysis we fail to reject the null hypothesis H0 : γ(h) = γ(l); χ2(1) = 0.24; p =
0.624.
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underlying task than those who faced near-certain task assignment (θ̂1(h|.5)− θ̂1(h|.99) = .0142;
χ2(1) = 4.13, p = .042) or faced no uncertainty prior to task assignment (θ̂1(h|.5)− θ̂1(h|1) =
.0149; χ2(1) = 4.27, p = .039)). Conversely, when participants formed their initial impressions
after a favorable coin flip, they acted as if they formed more optimistic views of the underlying task
(i.e., of θ(l) ) than those who faced near-certain task assignment (θ̂1(l|.5)− θ̂1(l|.01) = −.0087;
χ2(1) = 4.06, p = .044) or faced no uncertainty prior to task assignment (θ̂1(l|.5)− θ̂1(l|0) =
−.0064; χ2(1) = 2.49, p = .115).

For robustness, Column (2) of Table 3 controls for demographic characteristics (age, gender, and
income) and for the time spent completing the first session, which we view as a coarse proxy for
subjective task difficulty. Finally, Column (3) drops participants whose responses were not weakly
monotonic in payment—that is, their willingness to work did not weakly increase across all five
payment levels. This drops a significant portion of the sample, but the point estimates of our effect
remain similar.35

Perhaps most notable from Table 3 is that the ordering of parameter estimates closely matches
the predictions of our misattribution model. Indeed, the hypothesis that θ̂1(a) does not depend on
p is rejected (χ2(4) = 9.88, p = .043). Given our non-parametric results in combination with these
structural estimates, we conclude that manipulating prior expectations had a significant effect on
subsequent willingness to work in a pattern that is consistent with attribution bias of reference-
dependent utility.

Finally, we note that the results above demonstrate a large and economically significant effect
of expectations over task assignment on our estimates of perceived effort costs. For example, we
estimate a roughly 20 percent difference in perceived effort costs between those participants facing
the noisy task in the coin-flip treatment and those participants who ultimately faced the same task
but began in the high-probability treatment. This finding mirrors our earlier non-parametric results.

4 Experiment 2

In this section, we present our within-subject experiment, which was conducted at the Harvard
Decision Science Lab. We first describe the design, highlighting how the approach allows us to
rule out any interaction between treatment and priors that may have taken place in Experiment

35 Although we observe a seemingly high number of non-monotonic responses, we believe that our response mode
(slider) was conducive to small mistakes. There were a total of 111 total responses that were non-monotonic—that
is, the willingness to work for some higher fixed payment was less than that at a lower fixed payment. The average
mistake (that is, the magnitude of the deviation from responses that increase in stakes) was small.
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Table 3: PARAMETRIC ANALYSIS, EXPERIMENT 1

Estimated w/ Random-Effects Tobit Regression

(1) (2) (3)
Cost curvature parameter, γ 1.199 1.197 1.159

(.018) (.017) (.016)

θ̂1(noise | p = 0.5) .0673 .0635 .0728
(0.006) (.0120) (.007)

θ̂1(noise | p = 0.99) .0531 .0510 .0573
(.005) (.009) (.005)

θ̂1(noise | p = 1) .0524 .0493 .0553
(.004) (.008) (.006)

θ̂1(no noise | p = 0) .0408 .0385 .0441
(.004) (.007) (.004)

θ̂1(no noise | p = 0.01) .0431 .0416 .0468
(.004) (.007) (.004)

θ̂1(no noise | p = 0.5) .0344 .0325 .0384
(.003) (.006) (.004)

H0 : θ̂1(noise | p = 0.5) = θ̂1(noise | p = 0.99) χ2(1) = 4.13 χ2(1) = 2.90 χ2(1) = 3.92
(p = .042) (p = .089) (p = .048)

H0 : θ̂1 (no noise | p = 0.5) = θ̂1 (no noise| p = 0.01) χ2(1) = 4.06 χ2(1) = 4.77 χ2(1) = 2.73
(p = .044) (p = .029) (p = .098)

Joint test of above χ2(2) = 8.18 χ2(2) = 7.47 χ2(2) = 6.64
(p = .017) (p = .024) (p = .036)

Observations 4020 4020 3470

Clusters 804 804 694

Demographics and Session 1 Length No Yes No

Restricted to “Monotonic” Sample No No Yes

Notes: Recall that p in the left column refers to the ex ante probability of completing the task with noise. Standard errors
(in parentheses) are clustered at the individual level and recovered via delta method. 18 observations are lef-censored and
43 are right-censored in the main sample; 11 are left-censored and 43 are right-censored in the “monotonic” sample.
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1. We then discuss our theoretical predictions, which are similar to those from Experiment 1
when applied to a within-subject setting. Finally, we analyze the experimental data. Experiment
2 yields similar conclusions to Experiment 1, but extends our findings to a different experimental
population, albeit with a greatly reduced sample size. Importantly, this design allows us to (noisily)
estimate within-subject measures of misattribution, an exercise not possible with Experiment 1.

4.1 Design

We recruited participants from the Harvard student body for a two-session experiment, with ses-
sions separated by a week. A total of eighteen sessions (nine groups) were conducted over the
course of one month. Our primary sample consists of 87 subjects.36 Participants were paid $7 for
successfully completing each of two sessions in addition to any earnings from their choices. In
order to prevent attrition, we paid participants contingent on completion of both sessions.

Before specifying the details of Experiment 2, we first provide a broad overview of the design to
highlight how it differs from Experiment 1. In the first session, each participant was assigned via
coin flip to work on one of two tasks. Each participant then returned one week later to work on that
same task in a second session. Thus, participants faced uncertainty over their task assignment in
the first session, but not in the second. To ensure that participants did not perceive any uncertainty
when entering the second session, we instructed them ahead of time that their coin flip in the
first session would apply to both sessions, and we sent them an email reminder of their coin-flip
outcome approximately two days before their second session.

We measured participants’ willingness to work in both sessions of the experiment. Assuming
participants’ expectations about task assignment change across sessions, then the change in par-
ticipants’ willingness to work across sessions allows us to identify misattribution. That is, our
variable of interest is the difference in a participant’s willingness to work in week one—when her
task came as a surprise—and week two—when that same task was expected.

During both sessions, participants worked on a real-effort task similar to that of Augenblick,
Niederle, and Sprenger (2015) and Augenblick and Rabin (2019): “transcribing” handwritten
Greek and Russian letters.37 Each trial of the task consisted of a string of 35 handwritten charac-
ters; participants “transcribed” each character by clicking the matching letter from an alphabet of

36 Ex-ante power tests suggested that n≈ 100 would provide 80% power, assuming a modest effect size. We under-
recruited because our sampling window coincided with the end of the academic school year. Additionally, two of the
groups that we recruited later in the sampling window had higher-than-average attrition, which we suspect was due to
final exams. One participant withdrew moments into the first session due to a scheduling conflict; a second withdrew
in the middle of the first session because she did not want to take part in the study (and offered no further explanation).
These two participants are excluded from all analyses.

37Although our task mimics that of Augenblick, Niederle, and Sprenger (2015), we used different visual stimuli
which ended up being easier to transcribe. Participants in our study needed 40 seconds on average to complete one
trial, while participants in the first week of Augenblick, Niederle and Sprenger’s study needed 54 seconds on average.
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the relevant language. See Figure 5 for a screenshot. Participants were randomly divided into one
of two language treatments: half transcribed Greek during the first session and Russian during the
second, while the other half faced the opposite order.Aside from variation in the language, each
session had the same structure: participants first completed an initial-learning phase which con-
sisted of five mandatory trials, and then we elicited their willingness to complete additional trials
for a bonus payment.

Figure 5: Screenshot of the transcription task from Experiment 2. Participants clicked the gray
button that matched the handwritten letter to “transcribe” the text. Participants were required
to achieve 80% accuracy to advance to the next transcription. Each participant randomly faced
one language—Greek or Russian (Cyrillic)—during their first session, and then faced the other
language during their second session.

As in the coin-flip condition of Experiment 1, we presented each participant with two variants of
the task: a noisy version and a noiseless one. In both variants, participants wore headphones while
completing transcriptions. In the noisy version, the annoying noise played through the headphones
(calibrated to roughly 70-75 decibels); the noise was identical to Experiment 1, except it played
on loop for the entire transcription time. In the noiseless version, no sound played through the
headphones. In order to endow participants with reasonable priors about each task, the initial
instructions included an interactive sample of the transcription task, and participants listened to an
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eight-second sample of the annoying noise (repeatable if desired).
Session 1: Coin Flip and Eliciting Willingness to Continue Working. Upon entering the ex-

periment, all participants were told that they faced a 1/2 chance of being assigned the noisy task
versus the noiseless one. In order to make this probability salient—and to enhance the sensation
of surprise or disappointment—each participant flipped a U.S. quarter to determine their assign-
ment. We instructed participants that a flip of heads would result in the noiseless task, while tails
would result in the noisy one. After resolving the coin flip, each participant immediately started
their initial-learning phase in which they completed five mandatory trials of their assigned task. 44
participants were ultimately assigned the noiseless task, while 43 faced the noisy one.

After completing the initial-learning phase in Session 1, subjects were given the option to com-
plete additional trials for a bonus payment. As in Experiment 1, we asked each participant how
many additional tasks they were willing to complete for each of five payments: {$4,$8,$12,$16,$20}.
As in Experiment 1, participants responded by using a slider to select any integer e ∈ {0, . . . ,100},
and we used the BDM mechanism to incentivize these responses.

Session 2: Different Language and Eliciting Willingness to Continue Working Again. Upon re-
turning to the second session of the experiment, each participant first completed five mandatory
trials of the same task variant they faced in Session 1 (i.e., noisy or noiseless). After the five
mandatory trials, we elicited participants’ willingness to continue working on that task. The exper-
iment concluded after participants completed any additional trials. Subjects were paid only upon
completion of both sessions.

As noted above, participants transcribed a different language in the second session. We intro-
duced this minor variation in the task across sessions so that participants could plausibly form
different perceptions of the task over time and hence update their willingness to work. This de-
sign feature was intended to help reduce anchoring effects: since participants faced a somewhat
different task in the second session, they may have been less likely to answer exactly the same as
they did during the first session. That is, we provided subjects with a potential “cover story” for
changing their desired amount of work across sessions.

4.2 Theoretical Predictions

We now sketch how our theoretical predictions from Experiment 1—presented earlier in Section
3.2—extend in this within-subject design. In contrast to Experiment 1, a participant in this setting
receives two signals about her cost function, and we measure her willingness to work twice—once
after receiving the first signal, and then again after receiving the second. These two signals derive
from the participant’s consumption utility of effort in the initial-learning phase of Sessions 1 and 2.
We focus our analysis on participants who do not complete additional tasks during the first session.
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Thus, aside from the experimental instructions, a participant’s signals from the two initial-learning
phases are her only information about the tasks.

We first describe the predictions of rational learning. Throughout this section, we maintain the
same basic setup and assumptions introduced in the theoretical analysis of Experiment 1 (Section
3.2), and we further assume that each participant’s priors over θi(a) are unbiased on average.
In this case—where participants hold reasonable expectations about the difficulty of the tasks—
rational learning without reference-dependent preferences predicts that a participant’s willingness
to work will not systematically vary across the two periods. In contrast, rational learning with

reference dependence but without misattribution can lead a participant to systematically change
her willingness to work across periods. Namely, as shown in the Online Appendix, reference
dependence absent misattribution creates an incentive for those facing the noisy task to decrease
effort over time, and those facing the noiseless task to increase it.

We will now demonstrate how misattribution predicts an opposing effect. Specifically, our model
predicts that those assigned the noisy task will typically increase effort between periods 1 and 2.
In contrast, those assigned the noiseless task will decrease effort. As with the KR model, these
behavioral changes stem from a participant’s reference point evolving over the two periods. In the
first period, her reference point puts a 50% chance on each of the two tasks. We assume that by
the second period, the participant fully anticipates her assigned task and her reference point adapts
accordingly. Thus, the participant’s two experiences with her assigned task—the initial-learning
phase at the start of each session—happen under different reference points. Misattribution will
thus cause her to encode these similar experiences differently.

More formally, suppose that consumption utility takes the same form as the model underly-
ing Experiment 1. Thus, following Equation 5, consumption utility from each initial-learning
phase—in which the participant completes five trials of her assigned task a ∈ {h, l}—is ve

i,t =

[θi(a)+ εi,t(a)]c(5).38 On average, a participant assigned the noisy task (a = h) will encode these
values such that v̂e

i,1 < v̂e
i,2. This is because her first signal incorporates a sense of disappointment—

in period 1, she anticipates a 50% chance of facing the better task. But her second signal comes
with less disappointment—in period 2, she fully expects the worse task. Put differently, the partic-
ipant’s first experience falls short of expectations by a greater amount than the second and is the
misattributor remembers it as worse. In contrast, an average participant assigned to the noiseless
(a = l) task will encode values such that v̂e

i,1 > v̂e
i,2: the first signal incorporates a sense of elation

from the coin flip, but the second signal comes with less (if any) such elation.
To illustrate the logic at play above, first consider a participant in the no-noise condition. As-

38 We do not assume that the cost function in Experiment 2 is the same as Experiment 1 given that the tasks in these
two experiments are quite different. That said, we model the cost function in a similar way for both experiments. As
such, we assume value of θ and functional form of c(·) vary across the two experiments.
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suming priors about θ(a) are initially unbiased, a participant will form a distorted perception of
her assigned task in the initial-learning phase immediately after the coin flip—since the no-noise
task comes as pleasant surprise, the participant underestimates the true cost. Given that her stated
willingness to work in Session 1 is based on this overly-optimistic perception of the underlying
disutility of effort, her statement will be biased upward relative to the case without misattribu-
tion. This follows from the theoretical discussion of Experiment 1. In Experiment 2, however,
the participant has a second experience with her assigned task, and this experience in the learning
phase of Session 2 tends to come as an unpleasant surprise. Since her expectations developed in
Session 1 overestimate her enjoyment, her second experience—now devoid of the positive surprise
from the coin flip—will not live up to those unrealistic expectations. This typically-bad experience
pushes her estimated cost upward, reducing her willingness to work in the second session. If this
“contrast effect” between the first and second rounds is sufficiently strong, then the no-noise par-
ticipant’s revealed willingness to work will decrease over the two sessions. Similar logic extends
to a misattributor in the noisy condition increases her effort across sessions: in the first session,
the negative surprise of her unfavorable task assignment leads her to overestimate the disutility of
effort. Her experience with that same task in the second session, however, will typically surpass
her overly-pessimistic expectations. This positive surprise then increases her willingness to work
in the second session.

These systematic changes in the participant’s encoding of her experiences have direct implica-
tions for her perceptions of the task and effort choices across periods. We continue to assume
that a participant’s updated expectation of θi(a) following each of her encoded signals, denoted by
θ̂i,t(a|v̂e

i,t), has the two properties introduced in Section 3.2: it is monotonic in v̂e
i,t , and it updates

in the direction of the signal. Under our maintained assumptions, these encoding patterns imply
that participants assigned to the noisy task will typically find their task less onerous in period 2
than period 1—that is, on average θ̂i,2(h) < θ̂i,1(h). In contrast, those assigned the noiseless task
will typically find it more onerous in period 2 than period 1—that is, on average θ̂i,2(l) > θ̂i,1(l).
These are the main predictions we empirically test.

The behavioral implications of these predictions, however, are met by a countervailing force
stemming from rational reference dependence noted above.39 Accordingly, mapping these pre-
dictions to effort choices—the observable in our experiment—is not trivial. If the countervailing
force is small (for instance, if loss aversion is relatively small) then the predictions extend to effort
choices. Let e∗i,t(a) denote the observed effort choice for participant i facing task a in period t.

39 This countervailing force—an incentive for those facing the noisy task to decrease effort over time and those
facing the noiseless task to increase it—stems from a (rather sophisticated) forward-thinking equilibrium notion intro-
duced in Kőszegi and Rabin (2006). (See the Online Appendix for details.) If, alternatively, participants did not make
such forward-thinking plans, the countervailing force would not be present and the results above are an immediate
extension of the theoretical results from Experiment 1.
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With either strong misattribution or sufficiently weak loss aversion, we predict e∗i,1(l)> e∗i,2(l) and
e∗i,1(h)< e∗i,2(h) on average.

Discussion. Our analysis above assumed that priors were unbiased. If priors are systematically
biased in a specific way—namely, they significantly overestimate the disutility of the task with
noise and underestimate the disutility of the task without noise—then changes in willingness to
work across sessions may result from rational learning, even absent reference-dependent prefer-
ences or misattribution. We believe our assumption of correct priors (on average) is justified from
the experimental design: participants were exposed to both versions of the task before commenc-
ing work, and therefore should have reasonably well-calibrated priors. Fortunately, as highlighted
previously, this limitation does not apply to Experiment 1, where comparing our high probability

and coin flip treatments removes any scope for biased priors.
Finally, the discussion above assumed that reference points adapt to the assigned task by the

beginning of Session 2. This seems warranted given that there was no uncertainty in task assign-
ment in the second session, and participants knew about their task assignment a week in advance.
Furthermore, they were reminded by email midway through the week. Before beginning Session
2, all participants were required to verbally state which task they had faced in Session 1, and all
participants did so successfully. This suggests that the assignment was salient and memorable.

4.3 Results

For our primary analysis, we only consider participants who returned to both sessions. Thus, our
data comes from 70 participants who completed the experiment across a total of nine different
experimental groups. For completeness, we present a (simple) analysis of participant attrition in
Table A6.

We first present nonparametric analyses demonstrating that willingness to work systematically
changes over time depending on the resolution of the coin flip in Session 1. We then structurally
estimate the parameters of a model similar to Experiment 1, but utilizing the within-subject na-
ture of this design. We conclude by demonstrating that our results are robust to informational
explanations stemming from those participants who completed additional tasks in the first session.

4.3.1 Nonparametric Analysis

Relative to Experiment 2, this experiment consisted of only one “treatment”: all participants faced
uncertain assignment (via coin flip). However, we elicited each participant’s willingness to work
twice—once when the participant had very recently resolved uncertainty over task assignment
and once when assignment was known for a long period. Accordingly, Sessions 1 and 2 of this
experiment mirror the coin-flip and control treatments from Experiment 1, respectively, where

35



the difference stemmed from either a stochastic or deterministic reference point. Table 4 presents
participants’ average willingness to work—averaged over the five payment levels—in each session.

Our design is not intended to detect between-subject differences in WTW, and the aggregate
results in Table 4 obscure important within-subjects variation. Instead, our design allows us to
account for individual differences in overall willingness to work by examining changes in WTW
across Sessions 1 and 2. Accordingly, our variable of interest in this case is the change in an
individual’s willingness to work conditional on her task assignment in Session 1. First, we find
that willingness to work significantly changes across sessions (see Columns (5)-(6) of Table 4).
Furthermore, consistent with our theoretical predictions, participants’ assigned the noiseless task
tend to decrease their willingness to work across sessions while those assigned the noisy task tend
to increase it. When assigned the noiseless task, participants were on average willing to complete
7.1 more tasks in Session 1 than in Session 2 (p = .0014, standard errors clustered at individual
level). In contrast, when assigned the noisy task, participants were on average willing to complete
4.3 fewer tasks in Session 1 than in Session 2 (p = .006, standard errors clustered at the individual
level.)

Figure 6 depicts this result by plotting the density of e∗i,1− e∗i,2 for each task, averaged over the
five payment levels.40 Figure 6 demonstrates that the difference in willingness to work is primarily
positive for participants assigned the noiseless task; it is primarily negative for those assigned the
noisy task.

To assess the economic magnitudes of these results, we again consider a hypothetical firm seek-
ing workers to complete 25 transcriptions (as done the discussion of Experiment 1, Section 3.3).
To incent the average participant to complete 25 noiseless transcriptions, a firm would have to pay
$7.75 right after the worker forms her initial impression (i.e., just after the positive outcome of
the coin flip); this increases to $11 when the participant returns and her assessment of the task is
no longer confounded with a sense of elation. In contrast, a firm would have to pay $12 to incent
the average participant to do 25 noisy transcriptions right after she forms her initial impression
(i.e., just after the negative outcome of the coin flip); this decreases to $10.50 when the participant
returns and her assessment of the task is no longer confounded with disappointment. These effect
sizes have similar magnitude to those in Experiment 1.41

40 We present these densities using kernel smoothing (Epanechnikov kernel) for readability; raw histograms appear
in the Appendix as Figure A2.

41 There are two important caveats to consider before comparing this calibration exercise to the results of Experi-
ment 1. First, because the task in Experiment 2 is more time-consuming than that of Experiment 1 and because the lab
subjects are paid more in general, the magnitudes of payments are significantly different across experiments. Second,
because the sample size in Experiment 2 is much smaller, the estimated effect size is quite imprecise, and we cannot
make claims across experiments with much confidence.
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Table 4:
BASELINE RESULTS, EXPERIMENT 2

Session 1 Session 2
(

e∗i,1− e∗i,2
)

Variable noise=0 noise=1 noise=0 noise=1 noise=0 noise=1

Willingness to Work 30.95 25.93 26.01 26.41 7.14 -4.25
(3.672) (3.526) (3.092) (3.575) (2.429) (1.645)

Observations 215 220 175 185 175 185

Notes: Standard errors (in parentheses) are clustered at the individual level. Differences between
Columns (1)-(3) significant at p = .026; between Columns (2)-(4): p = .865. Columns (5)-(6) both
significantly different from zero: p = .0014 and p = .006, respectively.

4.3.2 Parametric Analysis

We now present our qausi-structural estimation. Given the experiment closely follows the ap-
proach from Experiment 1, the decision problem in each session is the same as in the previous
experiment, and is thus described by the logic in Section 3.2. Mirroring our parametric approach
to Experiment 1—and adopting the previous notation—Equation 11 implies that for each period,
log(e∗i,t) =

log(m)
γ
− log(θ̂i,t(a|p))

γ
. However, now that we have multiple observations for each indi-

vidual, we can examine the difference log(e∗i,1)− log(e∗i,2). This difference is independent of m,
thereby eliminating a potential source of (unmodeled) heterogeneity. Our econometric model is
thus (

log(e∗i,1)− log(e∗i,2)
)
= β Ii(noise)+ εi. (13)

Given this specification, we can recover aggregate estimates θ̂1(a|p)
θ̂2(a|p)

= exp(−γβ ). Since γ is not
identified in this specification, we separately model the first session only (following Equation 12)
to generate an in-sample estimate of γ ≈ 1.14; note this estimate falls close to our estimate from
Experiment 1.42 We then plug this estimate into the recovery equation above to numerically ap-
proximate the ratio of interest.

As with Experiment 1, we estimate Equation 13 using a random-effect Tobit model. The re-
sults are shown in Table 5. Our structural estimates align closely with those of Experiment
1. Compare the ratio θ̂1(noise)

θ̂2(noise)
= 1.29 to the analogous ratio implied by Column (1) of Table 3:

θ̂(noise|coin flip)
θ̂(noise|control)

= 1.28. Likewise the ratio θ̂1(no noise)
θ̂2(no noise)

= 0.79 falls close to that implied by Column

42 As in Experiment 1, we tested whether γ(h) = γ(l). Testing the first session only, we fail to reject the null
H0 : γ(h) = γ(l); χ2(1) = 0.13, p = 0.722. Aggregating data across both sessions, we fail to reject the null H0 : γ(h) =
γ(l); χ2(1)≈ 0, p = 0.946.
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Figure 6: Kernel density of the difference in willingness-to-work between the first and second
sessions, separated by task faced. Each underlying observation from this figure is the change in a
participant’s willingness to work for a fixed payment between Sessions 1 and 2 of the experiment.
The black curve represents participants who were assigned to the no-noise task; the red curve
represents participants who were assigned to the noisy task.

(1): θ̂(no noise|coin flip)
θ̂(no noise|control)

= 0.84. In both studies and across all specifications, we find that uncertain
assignment via coin flip distorts willingness to work in the range of approximately 17% to 40%
relative to certain assignment.

Discussion. As with Experiment 1, we suspect attrition is an unlikely explanation for our re-
sults. In Supplemental Table A6—presented in Appendix C—we demonstrate that participants
who face the noise and no-noise tasks do not exhibit differential attrition rates. Additionally, that
table demonstrates that attrition is independent of both mean willingness to work in Session 1 and
whether a participant first faced Russian or Greek.

A potential concern in this setting is that the participants who completed additional tasks during
the first session formed different beliefs than those who did not complete additional tasks. The
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Table 5:
PARAMETRIC ANALYSIS, EXPERIMENT 2

Dep. var: log
(

et=1
et=2

)
(1) (2)

Estimated ratio θ̂1(noise)
θ̂2(noise)

1.288 1.451

(0.124) (0.252)

Estimated ratio θ̂1(no noise)
θ̂2(no noise)

0.786 0.883

(0.091) (0.113)

H0 : θ̂1(noise)
θ̂2(noise)

≥ 1 χ2(1) = 5.43 χ2(1) = 3.19

p = .010 p = .037

H0 : θ̂1(no noise)
θ̂2(no noise)

≤ 1 χ2(1) = 5.51 χ2(1) = 1.08

p = .009 p = .149

Observations 348 348

Clusters 70 70

Controls No Yes

Notes: Standard errors (in parentheses) are clustered at the individual level and derived via delta method.
12 observations are left-censored and 26 are right-censored in Columns (1)-(2). Dropped observations result

from taking logs under the assumption that ω = 0. Each estimate θ̂1(a)
θ̂2(a)

is derived assuming that γ = 1.14.
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BDM mechanism induces randomness in whether a person will actually complete any additional
tasks, and only one third of participants completed additional tasks in the first session. Comparing
participants who completed additional tasks with those who did not complicates the analysis, as
the two groups have accumulated different amounts of experience. Column (2) of Table 5 demon-
strates that controlling for these additional tasks does not qualitatively change our main result.
Furthermore, Supplemental Table A5 demonstrates that the non-parametric result is robust if we
simply drop participants who completed extra tasks. While statistical power decreases when drop-
ping participants, our overall estimates remain quite close.

5 Conclusion

In this paper we provide evidence that people retrospectively fail to account for their reference-
dependent utility when learning about an unfamiliar real-effort task. In a series of experiments, we
manipulate participants’ expectations prior to their initial experiences. Consistent with our model,
we observe systematic and persistent changes in subsequent willingness to work depending on
subject’s initial expectations, despite the fact that these initial beliefs are no longer relevant. We
now briefly discuss some reasons for caution in interpreting our results as well as directions for
future research.

Our model predicts that loss averse participants will form more distorted perceptions of bad
outcomes than good ones. In our first experiment, we find weak but suggestive evidence of loss
aversion reflected through misattribution: the average willingness to work for those assigned to
the noisy task by chance was more distorted than the willingness to work of those assigned to
the no-noise task by chance. Although the aggregate results in Experiment 2 do not demonstrate
signs of loss aversion, it is possible that we are unable to see loss aversion because of an overall
diminished willingness (among all participants) to work in the second session. Additionally, asym-
metric distortion of bad outcomes (relative to good outcomes) may be difficult to observe in our
paradigm due to compression of the response scales at low values. With low willingness to work,
participants may utilize the response scale differently than those with higher willingness to work,
which may make detecting loss aversion more difficult. Loosely, choices may be more finely tuned
near the bottom of scale and hence less susceptible to big changes. Finally, as noted previously,
loss aversion may act against our results in Experiment 2 and we may thus be unable to detect
loss aversion in that paradigm. As loss aversion is central to our theoretical model and drives a
number of predictions for long-run beliefs, future work should address the extent to which losses
drive asymmetric belief updating.

Future experimental work could explore an additional theoretical prediction of the model: se-
quential contrast effects. Taking our Experiment 2 design as an example, our model predicts that
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the disutility of effort on Session 2 is compared against the wrongly-encoded disutility from Ses-
sion 1. For participants facing the noisy task, this should to an increase in willingness to work that
may even “overshoot” the willingness to work of a participant who knew their task assignment all
along. Contrastingly, for those facing the no-noise task, willingness to work may “undershoot” the
willingness to work of a participant who knew their task assignment all along. Our results hint in
this direction—e.g., in Table 4 the difference in willingness to work between noise and no noise on
the second session is small and the sign does not match intuition. However, we would need more
data to make such claims with statistical power.

Indeed our theoretical paper describes a number of further avenues for experimental work. For
instance, our model predicts that as bad outcomes become less common, a misattributor will per-
ceive those outcomes as worse. In contrast, as good outcomes become less common, a misattributor
will perceive those outcomes as better. This basic comparative static has important implications
for product evaluation and firm strategy. A straightforward test of this comparative static would
involve manipulating prior expectations such that participants face a wide range of probabilities of
facing the bad task. While the varied treatments in Experiment 1 provide a first look at the role
of probabilistic assignment in subsequent evaluations, future research should explore this more
completely.

Our results suggest that firms can shape employees’ evaluations in the short run by managing
expectations. For instance, consider a firm in which employees must complete a number of short-
term tasks—some less desirable than others. Our results suggest that employees would form the
most favorable impressions of an undesirable tasks if they knew well ahead of time that they
would have to complete it, rather than facing uncertainty when forming impressions. This accords
with evidence on firms that give realistic job previews prior to hiring. As Phillips (1998) shows,
employees that face a realistic job preview are higher performing and less likely to leave their job
than their peers who do not experience a job preview. Misattribution along the lines discussed in
this paper may provide an underlying mechanism for this effect.

More broadly, we believe that this paper provides the first direct evidence of misattribution
of reference dependence. Misattribution has been well-documented in psychology and nascent
research in economics has explored some implications of other forms of misattribution in other
domains. In our companion paper, we provide a portable, tractable model of a specific form of
misattribution that has broad implications. Here, we provide direct evidence of this mistake.
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A Derivation of Optimal Effort in Experiment 1

In this appendix we show that, under reasonable assumptions, a rational participant with reference-
dependent preferences will choose an effort level in Experiment 1 that is decreasing in her expected
value of her cost parameter, θi(a). Recall that this effort level solves Equation 9 in the main text:
indifference between completing e∗i (a|pi) tasks for m dollars and not working at all implies that
e∗i (a|pi) is the value of ei,2 that solves

Êi,1 [ui,2|ei,2] = Êi,1
[
V e

i,2
]
+ηÊi,1

[
n
(

V e
i,2
∣∣ Êi,1

[
V e

i,2
])]

+m = 0

⇒ Êi,1
[
ui,2
∣∣ ei,2

]
=−θ̂i,1(a)c(ei,2)+ηÊi,1

[
n
(
V e

i,2
∣∣ θ̂i,1(a)c(ei,2)

)]
+m = 0. (14)

Recall that, conditional on ei,2, the participant’s effort cost in period 2 is a random variable V e
i,2 =

−[θi(a) + εi,2]c(ei,2). Define the random variable Xi,2(a) = θi(a) + εi,2 and let F̂X
i,1 denote the

participant’s CDF over Xi,2 conditional on the information obtained in period 1. Let xi,2 denote
the realization of Xi,2. Furthermore, note that n

(
V e

i,2

∣∣ θ̂i,1(a)c(ei,2)
)
= −[xi,2(a)− θ̂i,1(a)]c(ei,2)

if xi,2(a)≤ θ̂i,1(a), and otherwise n
(

V e
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∣∣ θ̂i,1(a)c(ei,2)
)
=−λ [xi,2(a)− θ̂i,1(a)]c(ei,2). Thus,
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(15)

and thus
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. (16)

Plugging Equation 16 back into Equation 14 yields:
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where

h
(
θ̂i,1(a)

)
≡ θ̂i,1(a)+η(λ −1)

[
1− F̂

(
θ̂i,1(a)

)
]Êi,1

[
Xi,2(a)− θ̂i,1(a)

∣∣ Xi,2(a)> θ̂i,1(a)
]
. (18)

Recall that we have assumed that for any value of θ̂i,1, the participant’s posterior over θ corre-
sponds to the random variable θ̂i,1 +Zi,1 where Zi,1 is symmetric and independent of Xi,1. That is,
the person’s updated expectation of θ depends on xi,1 but the noise about this expectation is invari-
ant of xi,1. This is the case, for instance, when the participant’s priors follow a normal distribution
over θ and εi,t are normally distributed. Under this assumption, the expectation term in Equation
18 is independent of θ̂i,1(a) and thus h is increasing in θ̂i,1(a). Hence, the participant will select e∗i
such that h(θ̂i,1(a))c(e∗i ) = m, and therefore e∗i is decreasing in θ̂i,1(a).

B Reference Points that Incorporate the BDM Mechanism

In this section we consider how our theoretical predictions of Experiment 1 extend when a partici-
pant’s reference point incorporates the uncertainty introduced by the BDM mechanism.

Recall that participant i’s desired effort, e∗i , is elicited via a BDM mechanism: the partici-
pant announces e∗i ∈ [0,100] and then a number e is uniformly drawn from [0,100] at random.
If e < e∗i , the participant completes e tasks in exchange for a bonus of m dollars. Otherwise,
she does no additional work and does not earn a bonus. Thus, conditional on submitting e∗i to
the mechanism, the participant will do additional work with probability G(e∗i ), where G denotes
the CDF of a uniform random variable on [0,100] (and g denotes the associated PDF). Further-
more, upon submitting e∗i , the participant’s expected consumption utilities on the money and ef-
fort dimensions are, respectively, rm(e∗i )≡ G(e∗i )m and re(e∗i ; θ̂i,1)≡ G(e∗i )Êi,1[V e

i,2|e < e∗i ] where

Êi,1[V e
i,2|e < e∗i ] = θ̂i,1(a|v̂e

i,1) ·
∫ e∗i

0 c(e) g(e)
G(e∗i )

de. Thus, the values rm
i (e
∗
i ) and re

i (e
∗
i ; θ̂i,1) serve as

the participant’s reference points along each dimension in period 2. As such, she chooses e∗i to
maximize

Êi,1[ui,2|e∗i ] = G(e∗i )
{
Êi,1
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V e

i,2 +ηn
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V e

i,2
∣∣re(e∗i ; θ̂i,1)

)∣∣e < e∗i
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}
+[1−G(e∗i )]

{
η
(
0− re(e∗i ; θ̂i,1)

)
+ηλ (0− rm(e∗i ))

}
, (19)

where the expectation Êi,1 is with respect to the random number e drawn by the mechanism, εi,2(a),
and the participant’s updated beliefs over θi(a). The first term in braces in Equation 19 is the par-
ticipant’s expected utility conditional on the BDM assigning additional work. In this contingency,
her disutility of effort will (on average) come as a loss relative to her expected value on this dimen-
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sion, re(e∗i ; θ̂i,1), since this expectation incorporates a chance of not working at all. Similarly, the
monetary bonus comes as a gain relative to her expected monetary gain, rm(e∗i ), which incorpo-
rates a chance of no bonus. The second term in braces is the participant’s expected gain-loss utility
conditional on the BDM assigning no additional work. In this contingency, she experiences a gain
on the effort dimension but a loss on the monetary dimension.

Similar to the analysis in the main text (which assumes that the BDM does not influence the
person’s reference point), the only way for the treatment probability p to influence e∗i is through
its affect on the participant’s perception of θi. Thus, we will examine how e∗i depends on this
perception, θ̂i,1. To simplify the analysis below, we assume the participant forms certain beliefs
about θ following period 1, and thus the contingency in which she is assigned additional work
necessarily comes as a loss on the effort dimension.

First consider the case without reference dependence (i.e., η = 0). The objective function from
Equation 19 reduces to

Êi,1[ui,2|e∗i ] = G(e∗i )
(
Êi,1
[
V e

i,2
∣∣e < e∗i

]
+m

)
= θ̂i,1(a|v̂e

i,1) ·
∫ e∗i

0
c(e)g(e)de+G(e∗)m, (20)

and the first-order condition implies an optimal choice of e∗i (a|pi) = c−1(m/θ̂i,1(a|v̂e
i,1)
)
. Clearly

e∗i is decreasing in θ̂i,1.
We now consider the case with reference dependence (i.e., η > 0). Beginning from the objective

function in Equation 19, it is helpful to rewrite it as the sum of two components: the expected
monetary benefit from statement e∗i , which we denote by

B(e∗i )≡ G(e∗i )
{

m+η (m− rm(e∗i ))
}
−ηλ [1−G(e∗i )]r

m(e∗i ), (21)

and the expected effort cost from e∗i , which we denote by

K(e∗i ; θ̂i,1)≡−G(e∗i )Êi,1
[
V e

i,2 +ηn
(
V e

i,2
∣∣re(e∗i ; θ̂i,1)

)∣∣e < e∗i
]
+η [1−G(e∗i )]r

e(e∗i ; θ̂i,1). (22)

Thus, the objective from Equation 19 reduces so that the person chooses e∗i to maximize expected
monetary benefit minus expected effort cost:

Êi,1[ui,2|e∗i ] = B(e∗i )−K(e∗i ; θ̂i,1). (23)

Given the objective above, we now analyze when the maximizing value of e∗i is a decreasing
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function of θ̂i,1. Let L(e∗i ; θ̂i,1) denote the first derivative of the objective function:

L(e∗i ; θ̂i,1)≡
∂B(e∗i )

∂e∗i
−

∂K(e∗i ; θ̂i,1)

∂e∗i
, (24)

so the FOC requires L(e∗i , θ̂i,1) = 0. Using the Implicit Function Theorem,
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Thus, so long as the SOC holds and the FOC thus describes the optimum, then ∂L(e∗i ;θ̂i,1)
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)
. (26)

Furthermore, since only the cost component of the objective depends on θ̂i,1, we have

∂L(e∗i ; θ̂i,1)
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. (27)

From 22 and the definition of re(e∗i ; θ̂i,1) (along with our assumption of no uncertainty over θ ), we
have
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{
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Note that Êi,1[ve
i,2|e < e∗i ] = −θ̂i,1

1
G(e∗i )

∫ e∗i
0 c(e)g(e)de. Since g is a uniform PDF, it is con-

stant. We denote this constant by g, and thus G(e) = ge. (Given that our experiment uses
e ∼ Uniform[0,100], g in this case is 1

100 .) Furthermore, let c̄(e∗i ) ≡
∫ e∗i

0 c(e)de, so Êi,1[ve
i,2|e <

e∗i ] =−θ̂i,1
g

G(e∗i )
c̄(e∗i ). From 28, we thus have

K(e∗i ; θ̂i,1) = θ̂i,1gc̄(e∗i ){1+Λ[1−G(e∗i )]} , (29)
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where Λ≡ η(λ −1). Similar simplification of B(e∗i ) in Equation 21 yields

B(e∗i ) = mG(e∗i ){1−Λ[1−G(e∗i )]} . (30)

From Equations 29 and 30, it is immediate that the solution depends on the reference-dependence
parameters only through the “composite parameter” Λ = η(λ −1). Furthermore, for any η , λ = 1
implies Λ = 0 and K and B reduce to the standard cost and benefit functions absent reference
dependence as in Objective 20. Thus, without loss aversion, the optimal choice of e∗i is same
regardless of whether the agents has reference dependence preferences or not, and therefore e∗i is
clearly decreasing in θ̂i,1.

We now consider cases with loss aversion, so Λ > 0. Together, Equations 26 and 27 imply that
e∗i is decreasing in θ̂i,1 if ∂ 2K(e∗i ;θ̂i,1)

∂ θ̂i,1∂e∗i
> 0. From 29, ∂ 2K(e∗i ;θ̂i,1)

∂ θ̂i,1∂e∗i
> 0 iff

c(e∗i ){1+Λ[1−G(e∗i )]}−gΛc̄(e∗i )>0

⇔{1+Λ[1−G(e∗i )]}>gΛ
c̄(e∗i )
c(e∗i )

(31)

Furthermore, using Equations 30 and 29, the SOC implies that

∂B(e∗i )
∂e∗i

−
∂K(e∗i ; θ̂i,1)

∂e∗i
< 0⇔ 2mgΛ < θ̂

[
c′(e∗i ){1+Λ[1−G(e∗i )}−2gΛc(e∗i )

]
⇔ 0 < c′(e∗i ){1+Λ[1−G(e∗i )]}−2gΛc(e∗i )

⇔{1+Λ[1−G(e∗i )]}> 2gΛ
c(e∗i )
c′(e∗i )

. (32)

Substituting inequality 32 into 31 establishes that ∂ 2K(e∗i ;θ̂i,1)

∂ θ̂i,1∂e∗i
> 0 if

2
c(e∗i )
c′(e∗i )

>
c̄(e∗i )
c(e∗i )

⇔ 2c(e∗i )
2 > c′(e∗i )c̄(e

∗
i ). (33)

Condition 33 holds, for instance, for any c(·) that is a power function, as we assume in our para-
metric estimation. Under our specification of c(e) = eγ for γ > 1 (see Section 3.3), Condition 33
is equivalent to

2e2γ >
γ

γ +1
e2γ . (34)

We therefore have shown that under this cost structure (or any other that meets Condition 33), we
have the optimal action, e∗i , is a decreasing function of θ̂i,1 when the participant’s reference point

51



is expected value of the lottery induced by the BDM mechanism. Given that e∗i is a decreasing
function of θ̂i,1, the predictions of Observations 1 through 3 carry over to this setting. Namely:
p does not directly influence a participant’s objective function. But under misattribution, e∗i is an
increasing function of p because θ̂i,1 is a decreasing function of p.

C Supplemental Tables and Figures

In this Appendix, we provide additional results that supplement the main text and provide robust-
ness checks for our results.

We first show that dividing the Experiment 1 sample in half according to the total amount of
time the participant spent on the experiment (from the start of Session 1 to completion) does not
drastically change our nonparametric results. This is demonstrated in Tables A1 and A2 below.
However, this exercise is limited by unequal group sizes. Regression analysis (included in Table 3
in the main body) demonstrates that this effect does not alter the results of our parametric analysis.

We next include robustness analysis to changing the Stone-Geary background parameter (Table
A3). Although our numerical estimates are not stable, our qualitative results hold for two alterna-
tive specifications of the background parameter.

Third, we utilize a simple logit model to explore whether any observables predict attrition in
Experiment 1 (Table A4). We find no such observables across the three primary treatments.

We then turn to the second experiment. To address potential concerns about differential learn-
ing, we present simple, non-parametric results for Experiment 2 in which we have dropped any
participants who completed extra tasks in the first session (Table A5). This analysis leaves far
fewer participants in our sample, but our qualitative results hold.

Finally, following the robustness exercise in Experiment 1 concerning attrition, we present a logit
model for Experiment 2 (Table A6). We did not collect demographic information from participants,
and thus we have fewer potential explanatory variables. We analyze a few here without finding any
convincing pattern of attrition.
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Table A1:
EXPERIMENT 1. BASELINE RESULTS (LESS THAN MEDIAN TOTAL DURATION)

Control Coin Flip High Prob.

Variable noise=0 noise=1 noise=0 noise=1 noise=0 noise=1

Willingness to Work 22.38 20.69 27.67 17.43 23.27 21.25
(1.458) (1.876) (2.034) (1.689) (2.203) (2.759)

Observations 430 385 365 390 245 195

Notes: Willingness to work is averaged over five payment levels. Standard errors (in parentheses) are
clustered at the individual level with 402 clusters.

Table A2:
EXPERIMENT 1. BASELINE RESULTS (GREATER THAN MEDIAN TOTAL DURATION)

Control Coin Flip High Prob.

Variable noise=0 noise=1 noise=0 noise=1 noise=0 noise=1

Willingness to Work 28.53 24.5 29.81 17.941 24.71 21.38
(2.846) (2.670) (2.617) (2.253) (1.596) (1.412)

Observations 185 280 280 275 445 545

Notes: Willingness to work is averaged over five payment levels. Standard errors (in parentheses) are
clustered at the individual level with 402 clusters.
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Table A3:
EXPERIMENT 1. ROBUSTNESS OF PARAMETRIC ANALYSIS

Estimated w/ Random-Effects Tobit Regression

(ω = 1) (ω = 10)

Cost curvature parameter, γ 1.327 2.168
(.018) (.031)

θ̂1(noise | p = 0.5) .0420 .0013
(.004) (.0002)

θ̂1(noise | p = 0.99) .0329 .0010
(.004) (.0001)

θ̂1(noise | p = 1) .0324 .0099
(.003) (.0001)

θ̂1(no noise | p = 0) .0255 .0008
(.002) (.0001)

θ̂1(no noise | p = 0.01) .0267 .0008
(.002) (.0001)

θ̂1(no noise | p = 0.5) .0213 .0006
(.002) (.0001)

H0 : θ̂1(noise | p = 0.5) = θ̂1(noise | p = 0.99) χ2(1) = 4.59 χ2(1) = 5.00
(p = .032) (p = .025)

H0 : θ̂1(no noise | p = 0.5) = θ̂1(no noise | p = 0.01) χ2(1) = 4.25 χ2(1) = 4.65
(p = .039) (p = .031)

Joint test of above χ2(2) = 8.83 χ2(2) = 9.45
(p = .012) (p = .009)

Observations 4020 4020

Clusters 804 804

Notes: Standard errors (in parentheses) are clustered at the individual level and recovered via delta method.
18 observations are left-censored and 43 are right-censored in the main sample.
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Table A4:
EXPERIMENT 1. DETERMINANTS OF RETURNING FOR SECOND SESSION

Logit. Dependent variable: 1(return)

Raw AMEs Raw AMEs Raw AMEs

1(Noise) 0.199 0.019 0.204 0.019 0.207 0.019
(0.73) (0.73) (0.75) (0.75) (0.75) (0.75)

1(Coin Flip) 0.126 0.012 0.176 0.016
(0.46) (0.46) (0.64) (0.64)

Age -0.001 -0.0001
(-0.07) (-0.07)

1(Male) 0.514 0.047
(1.77) (1.76)

Constant 2.056∗∗∗ 1.992∗∗∗ 1.931∗∗

(11.12) (8.70) (3.15)

Observations 586 586 586 586 586 586

Notes: Standard errors in parentheses. Third regression includes fixed effects for income of
respondent; no income variables significant.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A5:
EXPERIMENT 2. DIFFERENCE IN WILLINGNESS TO WORK; NO EXTRA TASKS

Dependent variable: e1 - e2

No Noise Noise

Constant 4.308 7.268∗ -5.425∗∗∗ -7.900∗∗

(2.754) (3.846) (1.653) (4.025)

Fixed payment ($) 0.106 -0.258
(0.148) (0.170)

1(Russian, Session 1) -10.162∗ 7.433∗

(5.285) (4.001)

Observations 120 120 120 120

Notes: Standard errors, clustered at individual level, in parentheses. All regressions
include random effects at individual level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A6:
EXPERIMENT 2. DETERMINANTS OF RETURNING FOR SECOND SESSION

Logit, dependent variable: 1(return)

Raw AMEs Raw AMEs

Avg WTW , Session 1 0.004 0.001 0.028 0.00389
(0.015) (0.002) (0.025) (1.17)

Avg WTW , Session 1*1(Noise) -0.022 -0.003 -0.063∗∗ -0.009∗∗

(0.015) (0.002) (0.029) (0.004)

1(Noise) 1.802∗ 0.247∗

(0.984) (0.130)

1(Russian, Session 1) 0.289 0.040
(0.606) (0.083)

Constant 1.717∗∗∗ 0.586
(0.449) (0.718)

Observations 87 87 87 87

Note: Standard error in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure A1: Raw willingness-to-work data from Experiment 2. Each observation in this figure
represents a participant’s willingness to work for a fixed payment in sessions one and two of the
experiment. Black dots represent participants who faced the no-noise task; red diamonds represent
participants who faced the noisy task.
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Figure A2: Histogram of the difference in willingness-to-work between the first and second ses-
sions in Experiment 2. Each observation in this figure represents the change in a participant’s
willingness to work for a fixed payment between sessions one and two of the experiment. Clear
bars represent participants who faced the no-noise task; solid red bars represent participants who
faced the noisy task.

D Experimental Instructions

In this section, we provide the full text of experimental instructions. We use braces to denote
alternative instructions corresponding to different treatments. All instructions commenced with an
informed consent form.

D.1 Sample Reviews, Experiment 1

For a full text of the reviews used in Experiment 1, please contact the authors.

“To read this book is to go on a journey to places at once unexpected yet familiar; for example, one
point is supported by reference to a diagram of nose shapes and sizes. His books teach rather than

59



exposit; they do not lack for a direct thesis–they make arguments and reach conclusions.”
Score: 5; Positive Review

“Sometimes you don’t go out and find a book; the book finds you. Facing an impending loss
without a foundation of faith to fall back on, I asked myself: ‘What is the meaning of life if we’re
all just going to die?’ The author answers that question in the most meaningful way possible.”
Score: 5; Positive Review

“To be sure, this is a very quick read. The book is already very tiny, and the inside reveals large
font and double spacing. It took me about two hours to finish this book. I believe I am an somewhat
slow reader compared to other bookworms. On the other hand, I found many other books to be
much more compelling and memorable takes on the meaning of life.”
Score: 1; Negative Review

“Sometimes books like this are a real bore. Even worse, sometimes the science is terrible or
inconsistent. I was pleased to find that this book is consistent with the established literature while
also providing new insight.”
Score: 5; Positive Review

“This book is nothing you expect it to be. I was looking forward to fun, witty tales of some of the
author’s romances. But no. He teamed up with a sociologist, and wrote a sociology textbook. It’s
bland and it’s boring, with research percentages and the odd pie chart thrown in to liven things up.”
Score: 1; Negative Review

D.2 Complete Experiment Instructions: Experiment 1

D.2.1 Session 1

We will begin with some simple demographic questions. What is your gender? � Male � Female
What is your annual income?
� less than $15,000
� $15,000 - $29,999
� $30,000 - $59,999
� $60,000 - $99,999
� $100,000 or more
What is your age (in years)?
What is your zip code? [Format: 00000]
We will not deceive you whatsoever in this experiment. All of the instructions provide examples

and guidance for the actual tasks you will do. There will be no surprises or tricks. This study will
consist of two sessions. You will do the first session now. You will sign in to do the second session
later. In each session, you will do a simple job that takes roughly 3 to 5 minutes. You will earn a
fixed payment of $4 for completing both sessions. In the second session, you will have the chance
to earn extra pay if you elect to do extra work. You must complete both sessions to earn any pay
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for this study. There will be absolutely no exceptions to this rule. All payments will be credited to
your MTurk account within one week of completing the study.

The second session will be unlocked 8 hours after the first session. In order to unlock the second
session, a link will be emailed to you. We ask that you complete the second session as soon as you
are able to. You must complete the second session within one week of the email in order to receive
payment.

Your task in both sessions will be listening a series of audio recordings of book reviews (from
Amazon) to determine whether each review is generally positive or negative.

You must wait at least 10 seconds before any buttons will appear. You must then decide if the
review is positive or negative. A positive review means that the reviewer generally liked the book
and is providing a recommendation. A negative review means that the reviewer generally disliked
the book and is cautioning against reading it.

We will now give you a sample task to practice. Once you have listened to the review and
correctly determined if it is a positive or negative review, please close the pop-up window and
click the arrow below to continue. Please click the link below for a sample of the task. [LINK]

During each of the two participation sessions, you will have to complete eight tasks. Note: the
average time of each recording is about 20 seconds.

During the eight required reviews, you cannot get more than two answers wrong. If you get
more than two answers wrong, you will be dropped from the study and will not receive payment.
However, if you listen to the entire audio recording, the answers should be quite easy.

During the second session, we will ask you about your willingness to do additional reviews for
extra pay. Your job in this first session is to learn about the difficulty of the task and think about
your willingness to do additional reviews next session.

[Coin flip: Depending on chance, a background noise may be played on top of the audio review.
We’ll describe what determines whether you hear the noise in a moment. However, we’d like to
make sure you know what the sound will be. Please click the play button below for a sample of the
noise. When you are finished listening to the sample noise, click the arrow below to continue.]

[Coin flip: In a moment, you will begin the eight initial reviews. Before that, however, we must
determine if you will have to hear the annoying noise over the audio review.In order to do this, you
will flip a (digital) coin. If the coin lands Heads, you will not have to hear the noise. If it lands
Tails, you will have to hear the noise.]

[Coin flip: Importantly, your flip today determines what you’ll do on the second session of the
experiment. If the coin flip lands Tails and you hear the annoying noise today, you will also hear
it next session. If the coin flip lands Heads and you do not hear the annoying noise today, you will
not hear it next session. So the result of this coin flip really matters!]

Click the button below to flip the coin: [BUTTON]
Sorry [Congratulations]. You will [not] have to hear the noise while you listen to the audio

reviews. We will now begin the eight initial tasks. At the end of the task, you will see a code. You
will need that code to continue. Click the words below to begin. [BEGIN TASK]

Remember - this experiment has two parts. The link to the second session will be emailed to
you in 8 hours.

Since you heard [did not hear] the annoying noise today, you will also hear it next session. Please
click the arrow to submit your work.
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D.2.2 Session 2

Welcome to the second session of the experiment.
As with the first session, if you choose not to participate in the study, you are free to exit.

You must finish this session in order to receive payment. As a reminder: we will not deceive you
whatsoever in this experiment. All of the instructions provide examples and guidance for the actual
tasks you will do. There will be no surprises or tricks.

As with last session, you will listen to an audio recording of a review and must determine
whether the reviewer is giving a generally positive or negative review. Be careful to listen to
the whole review!

You heard [did not hear] the noise on top of the audio last session, and you will [not] hear it
again this session. [Noise only: If you need a reminder of the noise, there is a sample below. To
play, click the play button twice.]

As before you will have to complete eight reviews. However, this session you will have the
option to complete extra reviews for additional payments. These extra tasks will come after the
eight initial reviews. You will first decide how many extra reviews you would like to do on top of
the eight initial reviews. You will then do the first eight reviews. Finally, you will have a chance
to complete extra reviews if you were willing to do so. We will describe how this is determined on
the next slides.

The method we use to determine whether you will complete extra reviews may seem compli-
cated. But, we’ll walk through it step-by-step. The punchline will be that it’s in your best interest
to just answer truthfully. First, we will ask you how many additional reviews you are willing to
do for a fixed amount of money. For instance, we might ask: ”What is the maximum number of
extra reviews you are willing to do for $0.40?” This question means that we will give you $0.40 in
exchange for you completing some amount of additional work.

On the decision screen, you will be presented a set of sliders that go between 0 and 100 tasks.
You will also see an amount of money next to each slider. You will move each slider to indicate
the maximal number of reviews you’d be willing to do for each amount of money. That is, if you
would be willing to do 15 additional reviews but not 16, then you should move the slider to 15.

You will make five decisions, but only one will count for real. We will choose which decision
counts for real using a random number generator. Therefore, it is in your best interest to take each
question seriously and choose as if it were the only question.

Once we determine which question counts for real, we will draw a random number between
0 and 100. If your answer is less than that random number, you will not do additional reviews.
However, if your answer is greater than or equal to that random number, you will do a number of
additional tasks equal to the random number.

Example: Suppose you indicated you were willing to do 15 additional reviews for $0.40 and this
question was chosen as the one that counts. If the random number was 16 or higher, you would do
no additional tasks. However, if the random number was 12, you would do 12 additional reviews.
The next pages have a short quiz to help clarify how this works.

Suppose you were asked ”What is the maximum number of additional reviews you are willing
to do for $0.80?” and you responded 60. If the random number is 17, how many reviews will you
complete?
� 0 and I will be paid $0 in supplementary payments
� 60 and I will be paid $0.80 in supplementary payments
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� 17 and I will be paid $0.80 in supplementary payments
� 17 and I will be paid $2.67 in supplementary payments
[On answering correctly] Correct. You will earn the extra payment if the random number is less

than the number you indicated, and you will complete a number of additional reviews equal to the
random number.

Suppose you were asked ”What is the maximum number of additional reviews you are willing
to do for $0.80?” and you responded 60. If the random number is 76, how many additional reviews
will you complete?
� 0 and I will be paid $0 in supplementary payments
� 76 and I will be paid $0.80 in supplementary payments
� 60 and I will be paid $0.80 in supplementary payments
� 76 and I will be paid $0 in supplementary payments
[On answering correctly] Correct. If the random number is greater than your choice, you will

complete zero reviews and you will not receive an extra payment.This method of selecting how
many additional reviews you will do might seem very complicated, but as we previously high-
lighted, there’s a great feature to it: your best strategy is to simple answer honestly. If, for example,
you’d be willing to do 20 reviews for $0.40 but not 21, then you should answer 20. You may very
well do less than 20 reviews (depending on the random number) but you certainly will not do more
than 20. Put simply: just answer honestly.

Remember, you will decide whether to do additional reviews, then complete the eight initial
reviews. Then we will draw a random number which determines if you will do extra reviews.

We will now ask you the questions about your willingness to do additional reviews for additional
payment. Remember, we are using the method just described, so answer honestly. These are the
real questions. One of the sliders will count for payment, so pay close attention.

What is the maximal number of additional reviews you’re willing to complete for:
$2.50? [SLIDER]
$2.00? [SLIDER]
$1.50? [SLIDER]
$1.00? [SLIDER]
$0.50? [SLIDER]
We will determine whether you will do additional reviews after you complete the eight initial

tasks. We will begin those on the next page.
Like last session, you will [not] have to hear the noise during the audio reviews. We will now

begin the eight initial reviews. When you have completed these eight reviews, you will see a code.
You will need that code to continue. Click the words below to begin. [BEGIN TASK]

We’ll now draw the random number that determines which question counts for payment.
The random number selected the question where you were asked the maximum number of tasks

you would do for [AMOUNT]. You answered [RESPONSE]. We’ll now draw a second random
number that determines whether you do additional tasks and, if so, how many.

The random number is: [RANDOM NUMBER]. You answered: [RESPONSE].
[Random number too high: Since the random number was higher than the number you were

willing to do, you will not complete any extra reviews and you will not receive any extra payments.]
Since the random number was lower than the number you were willing to do, you will complete
extra reviews. You will do [RANDOM NUMBER] extra reviews and receive [AMOUNT]. In order
to verify that you completed all the additional reviews, we will give you a code when you finish.
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[BEGIN SUPPLEMENTAL TASKS]
Thank you for participating. Your MTurk code is on the screen that follows. Payments will be

processed within one week. Please click the final button below to submit your work.

D.3 Experiment 1b Modified Lines
Experiment 1b used the same instructions as above, except the paragraphs labeled Coin flip were
replaced with the following:

[High Probability: In a moment, you will begin the eight initial reviews. Before that, however,
we must determine if you will have to hear the annoying noise over the audio review. In order to
do this, we will draw a random number from 1-100. If the random number is 100, you will not
have to hear the noise. If it is any other number, you will have to hear the noise.]

[High Probability: Importantly, the random number today determines what you’ll do on the
second session of the experiment. If the number is 1-99 and you hear the annoying noise today,
you will also hear it next session. If the random number is 100 and you do not hear the annoying
noise today, you will not hear it next session. So the result of this random draw really matters!]]

D.4 Full Experiment Instructions: Experiment 2
D.4.1 Session 1

In front of you is an informed-consent form to protect your rights as a participant. Please read it.
If you choose not to participate in the study, you are free to leave at any point. If you have any
questions, we can address those now. We will pick up the forms after the main points of the study
are discussed.

We will not deceive you whatsoever in this experiment. All of the instructions provide examples
and guidance for the actual tasks you will do. There will be no surprises or tricks. If you have any
questions at any time, please raise your hand and we will do our best to clarify things for you.

In this experiment, you will have the chance to earn supplemental payments ranging from $2-
$25/hour. It is very important for the study that you participate in both days. Unfortunately, if you
miss one of your participation dates, you will forgo any completion payments and supplemental
payments and will be removed from the study (you will receive the show-up fee). There will
be absolutely no exceptions to this rule, regardless of the reason. Completion and supplemental
payments will be made as one single payment in cash at the end of the study.

Your task will be transcribing a line of handwritten text in a foreign language. We will explain
the task and then allow you to spend a few moments practicing this job on the computer. Note that
the example text may not exactly match what you will face in the experiment.

Letters will appear in a Transcription Box on your screen. For each handwritten letter, you will
need to enter the corresponding letter into the Completion Box. In order to enter a letter into the
Completion Box, simply click the letter from the provided alphabet. We refer to one row of text is
one task. In order to advance to the next task, your accuracy must be above 90%.

We will now give you a sample task to practice. You will see handwritten characters and must
enter the corresponding character into the Completion Box by clicking on the appropriate button.
When you have transcribed a whole row, press ”Submit”. You may spend as much time as you like
transcribing the text. If you succeed, a new line of text will appear. Once you have transcribed one
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row successfully, please close the pop-up window and click the arrow below to continue. Please
click the link below for a sample of the task. [SAMPLE TASK]

During each of the two participation days, you will have to complete five tasks (five lines of
foreign text). Note: the average time to complete a similar task in a different experiment was about
52 seconds (about 70 tasks/hour).

After completing five initial tasks, you will have the option to complete additional supplementary
tasks for supplementary payments. The number of supplementary tasks you must complete on each
participation day and the supplementary payment will depend on your own willingness to work.
The supplementary tasks will come shortly after the five initial tasks.

In order to determine whether you will complete additional tasks, we will ask you how many
additional tasks you are willing to do for a fixed amount of money. For instance, we might ask:
”What is the maximum number of additional tasks you are willing to do for $5?” This question
means that we will give you $5 in exchange for you completing some amount of additional work.
The next few screens describe a pretty complicated system that will determine how many additional
tasks you actually do. But the point of this system is simple: there is no way to game the system.
It is in your best interest to answer honestly.

On the decision screen, you will be presented a set of sliders that go between 0 and 100 tasks.
You will also see an amount of money next to each slider. You will move each slider to indicate the
maximal number of tasks you’d be willing to do for each amount of money. That is, if you would
be willing to do 15 additional tasks but not 16, then you should move the slider to 15. For example
(you need not enter anything) What is the maximal number of additional tasks you’re willing to
complete for:

$1? [SLIDER]
$2? [SLIDER]
$3? [SLIDER]
$4? [SLIDER]
$5? [SLIDER]
You will make five decisions, but only one will count for real. We will choose which decision

counts for real using a random number generator. Therefore, its in your best interest to take each
question seriously and choose as if it was the only question.

Once we determine which question counts for real, we will draw a random number between 0
and 100. If your answer is less than that random number, you will do no additional tasks. However,
if your answer is greater than or equal to that random number, you will do a number of additional
tasks equal to the random number.

Example: Suppose you indicated you were willing to do 15 additional tasks for $5 and this
question was chosen as the one that counts. If the random number was 16 or higher, you would
do no additional tasks. However, if the random number was 12, you would do 12 additional tasks.
The next page has a short quiz to help clarify this system.

Suppose you were asked ”What is the maximum number of additional tasks you are willing to do
for $10?” and you responded 30. If the random number is 8, how many tasks will you complete?
� 0 and I will be paid $0 in supplementary payments
� 30 and I will be paid $10 in supplementary payments
� 8 and I will be paid $10 in supplementary payments
� 8 and I will be paid $2.67 in supplementary payments
Correct. You will be paid the full amount regardless of the random number, and if the ran-
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dom number is less than the number you indicated, you will only need to complete a number of
additional tasks equal to the random number.

Suppose you were asked ”What is the maximum number of additional tasks you are willing to
do for $10?” and you responded 30. If the random number is 46, how many additional tasks will
you complete?
� 0 and I will be paid $0 in supplementary payments
� 46 and I will be paid $10 in supplementary payments
� 0 and I will be paid $10 in supplementary payments
� 30 and I will be paid $0 in supplementary payments
Correct. If the random number is greater than your choice, you will complete zero tasks and

you will not get paid. This method of selecting how many additional tasks you will do might seem
very complicated, but as we previously highlighted, there’s a great feature to it: your best strategy
is to simple answer honestly. If you’d be willing to do 20 tasks for $5 but not 21, then you should
answer 20. You may very well do less than 20 tasks (depending on the random number) but you
certainly will not do more than 20. Put simply: just answer honestly.

Depending on chance, a background noise may be played throughout the transcription process.
We’ll describe what determines whether you hear the noise in a moment. However, we’d like
to make sure you know what the sound will be. Please click the play button below twice for a
sample of the noise. When you are finished listening to the sample noise, click the arrow below to
continue.

In a moment, you will begin the five initial tasks. Before that, however, we must determine if
you will have to hear that annoying noise during the whole transcription process. In order to do
this, you will flip a coin. If the coin lands Heads, you will not have to hear the noise. If it lands
Tails, you will have to hear the noise.

Importantly, your flip today determines what you’ll do on the second day of the experiment. If
the coin flip lands Tails and you hear the annoying noise today, you will also hear it next week. If
the coin flip lands Heads and you do not hear the annoying noise today, you will not hear it next
week. So the result of this coin flip really matters!

When you reach this screen, please put your hand up. You may remove your headphones for
this stage of the instructions. One of the experimenters will come by and help you. We are using
a standard U.S. Quarter. This is not a trick coin and we’re going to ask you to flip it. Please flip it
and let it land on the table in front of you. If the coin does not flip more than twice, we will ask
you to flip again. You’ll be asked to flip a practice flip, and then you’ll flip the one that counts.
Reminder: Heads→ No Noise. Tails→ Annoying Noise

The experimenter will the answer this question.
� Tails
� Heads
Enter Code to Advance
[Noise: You will have to hear the noise. Please put your headphones back on. We will now

begin the five initial tasks.] You will not have to hear the noise. However, we ask that you please
put your headphones on so that you do not hear others. At the end of the task, you will see a code.
You will need that code to continue. Click the words below to begin. [BEGIN TASK] Please enter
the code below to continue

We will now ask you some questions about your willingness to do additional tasks for additional
payment. Remember, we are using the system described earlier, so answer honestly.One of the
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sliders will count for real payment, so pay close attention.
What is the maximal number of additional tasks you’re willing to complete for:
$20? [SLIDER]
$16? [SLIDER]
$12? [SLIDER]
$8? [SLIDER]
$4? [SLIDER]
We’ll now draw a random number to determine which question counts for payment.
The random number selected the question where you were asked the maximum number of tasks

you would do for [AMOUNT]. You answered [RESPONSE]. We’ll now draw a second random
number that determines whether you do additional tasks and, if so, how many.

The random number is: [RANDOM NUMBER]. You answered: [RESPONSE].
[Random number too high: Since the random number was higher than the number you were

willing to do, you will not complete any extra reviews and you will not receive any extra payments.]
Since the random number was lower than the number you were willing to do, you will complete
extra reviews. You will do [RANDOM NUMBER] extra reviews and receive [AMOUNT]. In order
to verify that you completed all the additional reviews, we will give you a code when you finish.
[BEGIN SUPPLEMENTAL TASKS]

Thank you for participating. [Noise: REMINDER: Since you heard the annoying noise today,
you will also hear it in a week.]

REMINDER: Since you did not hear the annoying noise today, you will not hear it in a week.
Day 1 of the experiment is complete. Please return at the same time one week from now.Please

click the arrow to submit your work. When you have finished, you may exit the lab.

D.4.2 Session 2

Welcome to the second day of the experiment.
Please turn your cell phones off. If you have a question at any point in the experiment, please

raise your hand and a lab assistant will be with you to help. There will be a short quiz once we
have finished the instructions. If you do not understand the instructions after both the instruction
period and the quiz, please raise your hand and ask for help.

As with the first day, if you choose not to participate in the study, you are free to leave at any
point. If you have any questions, we can address those now.

As a reminder: we will not deceive you whatsoever in this experiment. All of the instructions
provide examples and guidance for the actual tasks you will do. There will be no surprises or
tricks.

Like last week, your task is to transcribe a line of handwritten letters from a foreign language.
This week, you will do a different language. You will the task under the same conditions as last
week.

[Noise: You heard the noise last week, and you will hear it again this week. If you need a
reminder of the noise, there is a sample below. To play, click the play button twice.]

You did not hear the noise last week, and you will not hear it again this week.
As with last week, letters will appear in a Transcription Box on your screen. For each handwrit-

ten letter, you will need to enter the corresponding letter into the Completion Box. In order to enter
a letter into the Completion Box, simply click the letter from the provided alphabet. We refer to
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one row of text is one task. In order to advance to the next task, your accuracy must be above 90%.
As before you will have to complete five tasks (five lines of foreign text) and then you will

have the option to complete additional supplementary tasks for supplementary payments. The
supplementary tasks will come shortly after the five initial tasks.

In order to determine whether you will complete additional tasks, we will ask you how many
additional tasks you are willing to do for a fixed amount of money. For instance, we might ask:
”What is the maximum number of additional tasks you are willing to do for $5?” This question
means that we will give you $5 in exchange for you completing some amount of additional work.
It is in your best interest to answer these questions honestly.

Recall we used a random number system to determine how many additional tasks you did (if
any). We’ll provide a quick reminder of that system now.

On the decision screen, you will be presented a set of sliders that go between 0 and 100 tasks.
You will also see an amount of money next to each slider. You will move each slider to indicate the
maximal number of tasks you’d be willing to do for each amount of money. That is, if you would
be willing to do 15 additional tasks but not 16, then you should move the slider to 15.

You will make five decisions, but only one will count for real. We will choose which decision
counts for real using a random number generator. Therefore, its in your best interest to take each
question seriously and choose as if it was the only question.

Once we determine which question counts for real, we will draw a random number between 0
and 100. If your answer is less than that random number, you will do no additional tasks. However,
if your answer is greater than or equal to that random number, you will do a number of additional
tasks equal to the random number.

Example: Suppose you indicated you were willing to do 15 additional tasks for $5 and this
question was chosen as the one that counts. If the random number was 16 or higher, you would
do no additional tasks. However, if the random number was 12, you would do 12 additional tasks.
The next page has a short quiz to help clarify this system.

Suppose you were asked ”What is the maximum number of additional tasks you are willing to do
for $10?” and you responded 60. If the random number is 17, how many tasks will you complete?
� 0 and I will be paid $0 in supplementary payments
� 60 and I will be paid $10 in supplementary payments
� 17 and I will be paid $10 in supplementary payments
� 17 and I will be paid $2.67 in supplementary payments
Correct! You will be paid the full amount regardless of the random number, and if the random

number is less than the number you indicated, you will complete a number of additional tasks
equal to the random number.

Suppose you were asked ”What is the maximum number of additional tasks you are willing to
do for $10?” and you responded 60. If the random number is 76, how many additional tasks will
you complete?
� 0 and I will be paid $0 in supplementary payments
� 76 and I will be paid $10 in supplementary payments
� 60 and I will be paid $10 in supplementary payments
� 76 and I will be paid $0 in supplementary payments
Correct. If the random number is greater than your choice, you will complete zero tasks and

you will not get paid.This method of selecting how many additional tasks you will do might seem
very complicated, but as we previously highlighted, there’s a great feature to it: your best strategy
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is to simple answer honestly. If you’d be willing to do 20 tasks for $5 but not 21, then you should
answer 20. You may very well do less than 20 tasks (depending on the random number) but you
certainly will not do more than 20. Put simply: just answer honestly.

[Noise: Like last week, you will have to hear the noise. Please put your headphones back on.]
Like last week, you will not have to hear the noise. However, we ask that you please put your
headphones on so that you do not hear others. We will now begin the five initial tasks. At the end
of the task, you will see a code. You will need that code to continue. Click the words below to
begin. [BEGIN TASK] Please enter the code below to continue:

We will now ask you some questions about your willingness to do additional tasks for additional
payment. Remember, we are using the system described earlier, so answer honestly.One of the
sliders will count for real payment, so pay close attention.

What is the maximal number of additional tasks you’re willing to complete for:
$20? [SLIDER]
$16? [SLIDER]
$12? [SLIDER]
$8? [SLIDER]
$4? [SLIDER]
We’ll now draw a random number to determine which question counts for payment.
The random number selected the question where you were asked the maximum number of tasks

you would do for [AMOUNT]. You answered [RESPONSE]. We’ll now draw a second random
number that determines whether you do additional tasks and, if so, how many.

The random number is: [RANDOM NUMBER]. You answered: [RESPONSE].
[Random number too high: Since the random number was higher than the number you were

willing to do, you will not complete any extra reviews and you will not receive any extra payments.]
Since the random number was lower than the number you were willing to do, you will complete
extra reviews. You will do [RANDOM NUMBER] extra reviews and receive [AMOUNT]. In order
to verify that you completed all the additional reviews, we will give you a code when you finish.
[BEGIN SUPPLEMENTAL TASKS]

Thank you for participating. As you know, the experiment consisted of two days. Our main
hypothesis was whether the chance of getting a different task on the first day changed your per-
ceptions of the task difficulty that day. We did not highlight this specific hypothesis during the
experiment in order to maintain the external validity of the study. We’re excited to analyze the data
and thank you again for your participation. Click the arrow to submit your work.
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