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Abstract

We propose a nonparametric inference method for causal effects of continuous treatment vari-

ables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance

parameters. Our simple kernel-based double debiased machine learning (DML) estimators for the

average dose-response function (or the average structural function) and the partial effects are

asymptotically normal with nonparametric convergence rates. The nuisance estimators for the

conditional expectation function and the conditional density can be nonparametric kernel or se-

ries estimators or ML methods. Using doubly robust influence function and cross-fitting, we give

tractable primitive conditions under which the nuisance estimators do not affect the first-order

large sample distribution of the DML estimators. We implement various ML methods in Monte

Carlo simulations and an empirical application on a job training program evaluation to support

the theoretical results and demonstrate the usefulness of our DML estimator in practice.
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1 Introduction

We propose a nonparametric inference method for continuous treatment effects on the outcome Y ,

under the unconfoundedness assumption1 and in the presence of high-dimensional or nonpara-

metric nuisance parameters. We focus on the heterogenous effect with respect to the continuous

treatment or policy variables T . To identify the causal effects, it is plausible to allow the number

of the control variables X to be large relative to the sample size n. To achieve valid inference and

to employ machine learning (ML) methods, we use a double debiased ML approach that combines

a doubly robust moment function and cross-fitting.

We consider the fully nonparametric outcome equation Y = g(T,X, ε). No functional form

assumption is imposed on the general disturbances ε, such as restrictions on dimensionality, mono-

tonicity, or separability. The potential outcome is Y (t) = g(t,X, ε) indexed by the hypothetical

treatment value t. The object of interest is the average dose-response function as a function of t,

defined by the mean of the potential outcome across observations with the observed and unob-

served heterogeneity (X, ε), i.e., βt = E[Y (t)] =
∫ ∫

g(t,X, ε)dFXε. It is also known as the average

structural function in nonseparable models in Blundell and Powell (2003). The well-studied aver-

age treatment effect of switch from treatment t1 to t2 is βt2 − βt1 . We further define the partial

or marginal effect of the first component of the continuous treatment T at t = (t1, ...tdt)
′ to be

θt = ∂βt/∂t1. In program evaluation, the average dose response function βt shows how partic-

ipants’ labor market outcomes vary with the length of exposure to a job training program. In

demand analysis when T contains price and income, the average structural function βt can be the

Engel curve. The partial effect θt reveals the average price elasticity at given values of price and

income and hence captures the unrestricted heterogenous effects.

We define the doubly robust estimator for continuous treatments by

β̂DRt =
1

n

n∑
i=1

{
γ̂(t,Xi) +

Kh(Ti − t)
f̂T |X(t|Xi)

(
Yi − γ̂(t,Xi)

)}
, (1)

where γ̂(t, x) is an estimator of the conditional expectation function γ(t, x) = E[Y |T = t,X = x],

f̂T |X(t|x) is an estimator of the conditional density (or generalized propensity score) fT |X(t|x), and

a kernel Kh(Ti − t) weights observation i with treatment value around t in a certain distance of

h. The number of such observations shrinks as the bandwidth h vanishes with the sample size n.

Based on β̂DRt , we propose a double debiased machine learning (DML) estimator with cross-fitting

1This commonly used identifying assumption based on observational data, also known as conditional indepen-
dence and selection on observables, assumes that conditional on observables X, T is as good as randomly assigned,
or conditionally exogenous.
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via sample-splitting. Specifically a L-fold cross-fitting splits the sample into L subsamples. The

nuisance estimators γ̂(t,Xi) and f̂T |X(t|Xi) use observations in the other L−1 subsamples that do

not contain the observation i. Then we estimate the partial effect θt by a numerical differentiation.

We show that the kernel-based DML estimators are asymptotically normal and converge at

nonparametric rates. The asymptotic theory is fundamental for inference, such as construct-

ing confidence intervals and testing hypotheses. We provide tractable conditions under which

the nuisance estimators do not affect the first-order asymptotic distribution of the DML estima-

tors. Thus the estimators of E[Y |T,X] and fT |X can be conventional nonparametric estimators,

such as kernels or series, as well as modern ML methods, such as Lasso or neural networks; see

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018) (CCDDHNR,

hereafter) and Athey and Imbens (2019) for potential methods, such as ridge, boosted trees, ran-

dom forest, and various ensembles of these methods. We also propose a ML estimator for the

conditional density fT |X(t|x) for the low-dimensional T and high-dimensional X, which may be of

independent interest.

We aim for a tractable inference procedure that is flexible to employ nonparametric or ML

nuisance estimators and delivers a reliable distributional approximation in practice. Toward that

end, the DML method contains two key ingredients: a doubly robust influence function and cross-

fitting. The doubly robust influence function reduces sensitivity in estimating βt with respect to

nuisance parameters.2 Using cross-fitting further removes bias induced by overfitting and achieves

stochastic equicontinuity without strong entropy condition.3 The usefulness of our DML estimator

is demonstrated in simulations and an empirical example on the Job Corps program evaluation.

Our work builds on the results for semiparametric models in Ichimura and Newey (2017),

Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2018), and CCDDHNR and extends

the literature to nonparametric continuous treatment/structural effects. It is useful to note that

the doubly robust estimator for a binary/multivalued treatment replaces the kernel Kh(Ti − t)

with the indicator function 1{Ti = t} in equation (1) and has been widely studied, especially in

2Our estimator is doubly robust in the sense that β̂DR
t consistently estimates βt if either one of the nuisance

functions E[Y |T,X] or fT |X is misspecified. The rapidly growing ML literature has utilized this doubly robust
property to reduce regularization and modeling biases in estimating the nuisance parameters by ML or nonpara-
metric methods; for example, Belloni, Chernozhukov, and Hansen (2014), Farrell (2015), Belloni, Chernozhukov,
Fernández-Val, and Hansen (2017), Farrell, Liang, and Misra (2019), Chernozhukov, Escanciano, Ichimura, Newey,
and Robins (2018), CCDDHNR, Rothe and Firpo (2018), and references therein.

3CCDDHNR point out that the commonly used results in empirical process theory, such as Donsker prop-
erties, could break down in high-dimensional settings. For example, Belloni, Chernozhukov, Fernández-Val, and
Hansen (2017) show how cross-fitting weakens the entropy condition and hence the sparsity assumption on nuisance
Lasso estimator. The benefit of cross-fitting is further investigated by Wager and Athey (2018) for heterogeneous
causal effects, Newey and Robins (2018) for double cross-fitting, and Cattaneo and Jansson (2019) for cross-fitting
bootstrap.
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the recent ML literature. We show that the advantageous properties of the DML estimator for the

binary treatment carry over to the continuous treatments case. Moreover our primitive condition

on the mean square convergence rates of the nuisance estimators can be weaker than that for the

binary treatment due to the bandwidth h in our nonparametric DML estimator. Thus the ML

and nonparametric nuisance estimators used in the semiparametric models in CCDDHNR can be

applied here.

Our DML estimator is a simple modification of the binary treatment case in practice, yet we

make non-trivial novel observations of distinct features of continuous treatments in theory: First

we motivate the kernel-based moment function in β̂DRt by analytically calculating the limit of the

Gateaux derivative, as in Ichimura and Newey (2017) and Carone, Luedtke, and van der Laan

(2018). This calculation approximates the influence of a single observation on an estimator of βt

localized at t and hence is fundamental to construct estimators with desired properties, such as bias

reduction, double robustness, and efficiency. The kernel function is a natural choice to approximate

the distribution of a point mass and provides a simple moment function to characterize the partial

mean structure of βt, which fixes T at t and averages over the marginal distribution of X (Newey,

1994b). Neyman orthogonality holds for the moment function in β̂DRt as h → 0. We can then

define a “local Riesz representer” to be Kh(T − t)/fT |X(t|X).

A second motivation of the moment function is adding to the influence function of the regression

(or imputation) estimator n−1
∑n

i=1 γ̂(t,Xi) the adjustment term from a kernel-based estimator γ̂.

A series estimator γ̂ yields a different adjustment. These distinct features of continuous treatments

are in contrast to the binary treatment case, where different nonparametric nuisance estimators

of γ result in the same efficient influence function and unique Riesz representer. Therefore we

provide a foundational justification for the proposed kernel-based DML estimator.

The main contribution of this paper is a formal inference theory for the fully nonparametric

causal effects of continuous variables, allowing for high-dimensional nuisance parameters. To

uncover the causal effect of the continuous variable T on Y , our nonparametric model Y =

g(T,X, ε) is compared to the partially linear model Y = θT + g(X) + ε in Robinson (1988) that

specifies the homogenous effect by θ and hence is a semiparametric problem. The important

partially linear model has many applications and is one of the leading examples in the recent ML

literature, where the nuisance function g(X) can be high-dimensional and estimated by a ML

method.4 Another semiparametric parameter of interest is the weighted average of βt or θt over

a range of treatment values t, such as the average derivative that reveals certain aggregate effects

4See Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2018), CCDDHNR, and references therein.
Demirer, Syrgkanis, Lewis, and Chernozhukov (2019) and Oprescu, Syrgkanis, and Wu (2019) extend to more
general functional forms. Cattaneo, Jansson, and Newey (2018a,b), and Cattaneo, Jansson, and Ma (2019) propose
different approaches.
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(Powell, Stock, and Stoker, 1989) and the bound of the average welfare effect in Chernozhukov,

Hausman, and Newey (2019). In contrast, our average structural function βt and the partial

effect θt capture the fully nonparametric heterogenous effect. Our estimator utilizes the kernel

function Kh(Ti − t) for the continuous treatments T of fixed dimension and averages out the

high-dimensional covariates X, so we can maintain the nonparametric nature and circumvent the

complexity of the nuisance parameter space.

To the best of our knowledge, we are among the first to apply the DML approach to inference

on the average structural function and the partial effect of continuous treatments. They are

nonparametric objects that cannot be estimated at the regular root-n rate. There is a small yet

growing literature on employing the DML approach for nonparametric objects. For example, the

conditional average binary treatment effect E[Y (1)− Y (0)|X1] for a low-dimensional subset X1 ⊂
X is studied in Chernozhukov, Newey, Robins, and Singh (2019), Chernozhukov and Semenova

(2019), Fan, Hsu, Lieli, and Zhang (2019), and Zimmert and Lechner (2019). Their setups do

not cover our average structural function and partial effect of continuous treatments. The causal

objects of interest are different.5

Our paper also adds to the literature on continuous treatment effects estimation. In high-

dimensional settings, Su, Ura, and Zhang (2019) propose a doubly robust estimator β̂DRt as in

equation (1). Assuming approximate sparsity, they use Lasso-type nuisance estimators to select

the high-dimensional covariates X via a localized method of L1-penalization at each t. In contrast,

we use cross-fitting and provide high-level conditions that facilitates a variety of nonparametric

and ML methods under mild assumptions. Kennedy, Ma, McHugh, and Small (2017) and Kallus

and Zhou (2018) propose different versions of the doubly robust estimators.6 In low-dimensional

settings, see Hirano and Imbens (2004), Flores (2007), and Lee (2018) for examples of a class

of regression estimators n−1
∑n

i=1 γ̂(t,Xi). Galvao and Wang (2015) and Hsu, Huber, Lee, and

Pipoz (2018) study a class of inverse probability weighting estimators. The empirical applications

in Flores, Flores-Lagunes, Gonzalez, and Neumann (2012) and Kluve, Schneider, Uhlendorff,

5In particular, Chernozhukov, Newey, Robins, and Singh (2019) provide L1-regularization methods for non-
regular linear functionals of the conditional expectation function, such as E[m(Z, γ(T,X))|T = t] where γ 7→ m(z, γ)
is a linear operator for each z = (y, t, x). For a simple example that m(z, γ) = γ, their perfectly localized
functional limh→0

∫ ∫
γ(T,X)Kh(T − t)/E[Kh(T − t)]dFTX(T,X) =

∫
γ(t,X)dFX|T (X|t) = E[Y (t)|T = t], while

we identify the average structural function βt = E[Y (t)] by limh→0

∫ ∫
γ(T,X)Kh(T − t)/fT |X(t|X)dFTX(T,X) =∫

γ(t,X)dFX(X). See more details in Section 3.1.1.
6Kallus and Zhou (2018) assume a known fT |X . Kennedy, Ma, McHugh, and Small (2017) construct a “pseudo-

outcome” that is motivated from the doubly robust and efficient influence function of the regular semiparametric
parameter

∫
βtfT (t)dt. Then they regress the pseudo-outcome on T at t to estimate βt. In contrast, we motivate the

moment function of our DML estimator directly from βt via the Gateaux derivative or the first-step adjustment.
Moreover cross-fitting weakens the standard uniform entropy condition on the first-step nuisance estimators for
high-dimensional X.
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and Zhao (2012) focus on semiparametric results. We extend this literature to high-dimensional

settings enabling ML methods for nonparametric inference.

The paper proceeds as follows. We introduce the framework and estimation procedure in

Section 2. Section 3 presents the asymptotic theory. Section 4 provides numerical examples of

Monte Carlo simulations and an empirical illustration using various ML methods. All the proofs

are in the Appendix.

2 Setup and estimation

We give identifying assumptions and introduce the double debiased machine learning estimator.

Assumption 1 Let Y = g(T,X, ε). Let {Yi, T ′i , X ′i}ni=1 be an i.i.d. sample from Z = {Y, T ′, X ′}′ ∈
Z = Y × T × X ⊆ R1+dt+dx with a cumulative distribution function (CDF) FY TX(Y, T,X).

(i) (Conditional independence) T and ε are independent conditional on X.7

(ii) (Common support) For any t ∈ T and x ∈ X , fT |X(t|x) is bounded away from zero.

The product kernel is defined by Kh(Ti − t) = Πdt
j=1k((Tji − tj)/h)/h, where Tji is the jth

compoment of Ti and the kernel function k() satisfies Assumption 2.

Assumption 2 (Kernel) The second-order symmetric kernel function k() is bounded differen-

tiable and has a convex bounded support.

By Assumptions 1-2 and the same reasoning for the binary treatment, it is straightforward to

show the identification for any t ∈ T ,

βt = E[Y (t)] =

∫
X
E[Y |T = t,X]dFX(X) = E

[
γ(t,X)

]
(2)

= lim
h→0

∫
X

∫
T

∫
Y

Kh(T − t)Y
fT |X(t|X)

dFY TX(Y, T,X) = lim
h→0

E
[
Kh(T − t)Y
fT |X(t|X)

]
. (3)

The expression in equation (2) motivates the class of regression (or imputation) based estimators,

while equation (3) motivates the class of inverse probability weighting estimators; see Section 3.2

for further discussion. Now we introduce the double debiased machine learning estimator.

7Equivalently T and the potential outcome Y (t) = g(t,X, ε) are independent conditional on X for any t ∈ T .
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Estimation procedure

Step 1. (Cross-fitting) For some L ∈ {2, ..., n}, partition the observation indices into L groups I`,

` = 1, ..., L. For each ` = 1, ..., L, the estimators γ̂`(t, x) for γ(t, x) = E[Y |T = t,X = x]

and f̂`(t|x) for fT |X(t|x) use observations not in I` and satisfy Assumption 3 below.

Step 2. (Doubly robust) The double debiased ML (DML) estimator is defined as

β̂t =
1

n

L∑
`=1

∑
i∈I`

{
γ̂`(t,Xi) +

Kh(Ti − t)
f̂`(t|Xi)

(Yi − γ̂`(t,Xi))

}
. (4)

Step 3. (Partial effect) Let t+ = (t1 + η/2, t2, ..., tdt)
′ and t− = (t1 − η/2, t2, ..., tdt)′, where η is a

positive sequence converging to zero as n→∞. We estimate the partial effect of the first

component of the continuous treatment θt = ∂βt/∂t1 by θ̂t = (β̂t+ − β̂t−)/η.

To simplify notation, we denote the L2(F )-norm of a random vector (T,X) with distribu-

tion FTX by ‖f̂` − fT |X‖F,2 =
( ∫
T

∫
X

(
f̂`(T |X) − fT |X(T |X)

)2
dFTX(T,X)

)1/2
and ‖γ̂` − γ‖F,2 =( ∫

T

∫
X

(
γ̂`(T,X)− γ(T,X)

)2
dFTX(T,X)

)1/2
, for each ` = 1, ..., L.

Assumption 3 (Nuisance estimators) For each ` = 1, ..., L, (i) ‖γ̂` − γ‖F,2
p−→ 0, ‖f̂` −

fT |X‖F,2
p−→ 0; (ii)

√
nhdt‖γ̂` − γ‖F,2‖f̂` − fT |X‖F,2

p−→ 0.

In Assumption 3, (i) requires mean square consistency of the first step estimator γ̂ and f̂T |X .

The only convergence rate condition is in (ii) that requires the product of estimation errors for the

two estimators to vanish faster than 1/
√
nhdt , which is slower than 1/

√
n in the semiparametric

problem. The convergence rates in Assumption 3 are available for kernel or series estimators, the

neural networks in Chen (2007) and Farrell, Liang, and Misra (2019), the Lasso and its variants

in Belloni, Chernozhukov, and Hansen (2014), Farrell (2015), and Su, Ura, and Zhang (2019), for

example.

When there is no sample splitting L = 1, γ̂1 and f̂1 use all observations in the full sample.

Then the DML estimator β̂t in (4) is the doubly robust estimator β̂DRt in equation (1). When

L = n, β̂t is known as the leave-one-out estimator. The numerical differentiation estimator

θ̂t is simple and avoids estimating the derivatives of the nuisance parameters. All our results

are readily extended to include discrete treatments D at the cost of notational complication.

Specifically the doubly robust estimator in (1) becomes β̂DRtd = n−1
∑n

i=1

{
γ̂(t, d,Xi) + 1{Di =

d}Kh(Ti− t)
(
Yi− γ̂(t, d,Xi)

)
/f̂TD|X(t, d|Xi)

}
, where γ(t, d,Xi) = E[Y |T = t,D = d,X = Xi] and

fTD|X(t, d|Xi) = fT |DX(t|d,Xi)Pr(D = d|X = Xi).

7



2.1 Conditional density estimation

We propose a simple estimator of the generalized propensity score (GPS) fT |X that allows us to

use various nonparametric and ML methods designed for the conditional mean. We provide a

uniform convergence rate to verify Assumption 3. The theory of ML methods in estimating the

conditional density is less developed comparing with estimating the conditional mean. Alternative

estimators can be the kernel density estimator, the artificial neural network in Chen and White

(1999), or the Lasso in Su, Ura, and Zhang (2019). In Section 3.1.1, we discuss an alternative

estimator using the L1-regularized methods in Chernozhukov, Newey, Robins, and Singh (2019)

to estimate the local Riesz representer without estimating the conditional density.

Let Ê [W |X] be an estimator of the conditional mean E [W |X] for a bounded random vari-

able W . Suppose the convergence rate is available, supx∈X
∣∣Ê [W |X = x] − E [W |X = x]

∣∣ =

Op(R1). Let G(u) =
∫ u
−∞ g(v)dv with a standard second-order kernel function g(). Let h1 and ε

be positive sequences vanishing as n grows. When dT = 1, we define the CDF estimator to be

F̂T |X(t|x) = Ê [G ((t− T )/h1) |X = x]. Then we estimate the GPS by the numerical derivative

estimator f̂T |X(t|x) = (2ε)−1
(
F̂T |X(t + ε|x) − F̂T |X(t − ε|x)

)
.8 Lemma 1 below shows that the

convergence rate supx∈X
∣∣f̂T |X(t|x) − fT |X(t|x)

∣∣ = Op(R1ε
−1 + h21ε

−1 + ε2) that is used to verify

Assumption 3.

When T is multi-dimensional, let G ((t− T )/h1) = Πdt
j=1G ((tj − Tj)/h1). We illustrate the

GPS estimator for dT = 2. The general GPS estimator for dT > 2 can be implemented by the

same procedure. The estimator of the partial derivative of FT |X(t1, t2|x) with respect to t1 is
̂∂FT |X/∂t1(t1, t2|x) =

(
F̂T |X(t1 + ε, t2|x) − F̂T |X(t1 − ε, t2|x)

)/
(2ε). Then the GPS estimator for

dT = 2 is

f̂T |X(t|x) =
∂̂2FT |X
∂t2∂t1

(t|x) =

(
∂̂FT |X
∂t1

(t1, t2 + ε|x)−
∂̂FT |X
∂t1

(t1, t2 − ε|x)

)
1

2ε

=
(
F̂T |X(t1 + ε, t2 + ε|x)− F̂T |X(t1 − ε, t2 + ε|x)

− F̂T |X(t1 + ε, t2 − ε|x) + F̂T |X(t1 − ε, t2 − ε|x)
) 1

4ε2
.

Lemma 1 (GPS) Let fT |X(t|x) be (dT + 1)-times differentiable with respect to t for any x ∈ X .

Then supx∈X
∣∣f̂T |X(t|x)− fT |X(t|x)

∣∣ = Op(R1ε
−dT + h21ε

−dT + ε2) for any t ∈ T .

8Similar numerical derivative approaches for Lasso have been used in Belloni, Chernozhukov, Fernández-Val,
and Hansen (2017) and Su, Ura, and Zhang (2019). In particular, Su, Ura, and Zhang (2019) estimate FT |X by a
logistic distributional Lasso regression. In contrast, we use a kernel g to smooth CDF estimates (such as a Gaussian
kernel) and accommodate other ML methods.
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3 Asymptotic theory

We first derive the asymptotically linear representation and asymptotic normality for β̂t, showing

that the nuisance estimators have no first-order influence. Then we discuss the construction of the

doubly robust moment function by Gateaux derivative and a local Riesz representer in Section

3.1. In Section 3.2, we discuss the adjustment for the first-step kernel estimators in the influence

functions of the regression estimator and inverse probability weighting estimator that do not

use the doubly robust moment function and cross-fitting. We illustrate how the DML estimator

assumes weaker conditions. Section 3.3 gives a heuristic overview of deriving the asymptotically

linear representation.

Theorem 1 (Asymptotic normality) Let Assumptions 1-3 hold. Let h → 0, nhdt → ∞, and

nhdt+4 → C ∈ [0,∞). Assume that for (y, t′, x′)′ ∈ Z, fY TX(y, t, x) is three-times differentiable

with respect to t, and var(Y |T = t,X = x)fT |X(t|x) is bounded above uniformly over x ∈ X . Then

for any t in the interior of T ,

√
nhdt

(
β̂t − βt

)
=

√
hdt

n

n∑
i=1

{
Kh(Ti − t)
fT |X(t|Xi)

(Yi − E[Y |T = t,X = Xi])

+ E[Y |T = t,X = Xi]− βt
}

+ op(1) (5)

and
√
nhdt

(
β̂t − βt − h2Bt

)
d−→ N (0,Vt), where Vt = E

[
var[Y |T = t,X]/fT |X(t|X)

] ∫∞
−∞ k(u)2du

and Bt =
∑dt

j=1 E
[
1
2
∂2

∂t2j
E [Y |T = t,X] + ∂

∂tj
E [Y |T = t,X] ∂

∂tj
fT |X(t|X)/fT |X(t|X)

] ∫∞
−∞ u

2k(u)du.

Note interestingly that the second part in the influence function in (5) n−1
∑n

i=1 E[Y |T =

t,X = Xi] − βt = Op(1/
√
n) = op(1/

√
nhdt) and hence does not contribute to the first-order

asymptotic variance Vt. We keep these terms to show that the nuisance estimators do not affect

the first-order asymptotically linear representation. This is in contrast to the binary treatment

case where Kh(Ti − t) is replaced by 1{Ti − t} in β̂t, so β̂t converges at a root-n rate. Then the

second part in (5) is of first-order for a binary treatment, resulting in the well-studied efficient

influence function in estimating the binary treatment effect in Hahn (1998). For the continuous

treatment case here, it is crucial to include this adjustment term in the moment function in β̂t to

achieve double robustness.

Theorem 1 is fundamental for inference, such as constructing confidence intervals and the

optimal bandwidth h that minimizes the asymptotic mean squared error. The leading bias arises
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from the term associated with the kernel Kh(T − t) in the influence function. We may estimate

the leading bias h2Bt by the sample analogue. We can estimate the asymptotic variance Vt by the

sample variance of the influence function (5). Specifically V̂t = hdtn−1
∑L

`=1

∑
i∈I` ψ̂

2
li, where the

estimated influence function ψ̂li = Kh(Ti − t)(Yi − γ̂`(t,Xi))/f̂`(t|Xi) + γ̂`(t,Xi) − β̂t. Then we

can estimate the optimal bandwidth that minimizes the asymptotic mean squared error (AMSE)

or the asymptotic integrated MSE given in the following corollary.

Corollary 1 (AMSE optimal bandwidth) Let the conditions in Theorem 1 hold.

(i) For t ∈ T , if Bt is non-zero, then the bandwidth that minimizes the asymptotic mean squared

error is h∗t =
(
dtVt

/(
4B2

t

))1/(dt+4)
n−1/(dt+4).

(ii) Consider an integrable weight function w(t) : T 7→ R. The bandwidth that minimizes the

asymptotic integrated MSE
∫
T

(
Vt/(nh)+h4B2

t

)
w(t)dt is h∗w =

(
dtVw

/(
4Bw

))1/(dt+4)
n−1/(dt+4),

where Vw =
∫
T Vtw(t)dt and Bw =

∫
T B

2
tw(t)dt.

A common approach is to choose an undersmoothing bandwidth h smaller than h∗t such that

the bias is first-order asymptotically negligible, i.e., h2
√
nhdt → 0. Then we can construct the

usual (1− α)× 100% point-wise confidence interval
[
β̂t ± Φ−1(1− α/2)

√
V̂t/(nhdt)

]
, where Φ is

the CDF of N (0, 1).

Next we present the asymptotic theory for θ̂t. We consider two conditions for the tuning

parameter η via η/h → ρ for (i) ρ = 0 and (ii) ρ ∈ (0,∞]. Let ∂νt = ∂νg(t, ·)/∂tν denote the νth

order partial derivative of a generic function g with respect to t and ∂t = ∂1t for brevity.

Theorem 2 (Asymptotic normality - Partial effect) Let the conditions in Theorem 1 hold.

Assume that for (y, t′, x′)′ ∈ Z, fY TX(y, t, x) is four-times differentiable with respect to t, and βt

is twice differentiable.

(i) Let η/h → 0, nhdt+2 → ∞, and nhdt+2η2 → 0. Assume (a) η−1h‖γ̂` − γ‖F,2
p−→ 0,

η−1h‖f̂` − fT |X‖F,2
p−→ 0; (b) η−1h

√
nhdt‖f̂` − fT |X‖F,2‖γ̂` − γ‖F,2

p−→ 0. Then for any

t ∈ T ,
√
nhdt+2(θ̂t − θt) =

√
hdt+2

n

n∑
i=1

∂

∂t1
Kh(Ti − t)

Yi − γ(t,Xi)

fT |X(t|Xi)
+ op(1)

and
√
nhdt+2(θ̂t− θt−h2Bθt )

d−→ N (0,Vθt ), where Bθt =
∑dt

j=1 E
[(
∂2tj∂t1γ(t,X)fT |X(t|X)/2 +

∂tj∂t1γ(t,X)∂tjfT |X(t|X)+∂tjγ(t,X)
(
∂tj∂t1fT |X(t|X)−∂tjfT |X(t|X)∂t1fT |X(t|X)fT |X(t|X)−1

))
fT |X(t|X)−1

] ∫
u2k(u)du and Vθt = E

[
var(Y |T = t,X)/fT |X(t|X)

] ∫
k′(u)2du.
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(ii) Let η/h→ ρ ∈ (0,∞], nhdtη2 →∞, and nhdtη4 → 0. Then for any t ∈ T ,
√
nhdtη2(θ̂t−θt−

h2Bθt )
d−→ N (0,Vθt ), where Vθt = 2E

[
var[Y |T = t,X]/fT |X(t|X)

]( ∫∞
−∞ k(u)2du− k̄(ρ)

)
with

the convolution kernel k̄(ρ) =
∫∞
−∞ k(u)k(u− ρ)du and Bθt = ∂Bt/∂t1 given in Theorem 1.

Theorem 2(i) is for the case when η is chosen to be of smaller order than h. The conditions (a)

and (b) imply that η cannot be too small and depends on the precision of the nuisance estimators.

In Theorem 2(ii) when η/h→∞, k̄ (η/h) = 0 and hence Vθt = 2Vt. This is in line with the special

case of a fixed η implied by the result in Theorem 1.

3.1 Gateaux derivative limit

One way to obtain the influence function is to calculate the limit of the Gateaux derivative with

respect to a smooth deviation, as the deviation approaches a point mass, following Ichimura and

Newey (2017) and Carone, Luedtke, and van der Laan (2018). The partial mean βt is a marginal

integration over the conditional distribution of Y given (T,X) and the marginal distribution of

X, fixing the value of T at t. As a result, the Gateaux derivative depends on the choice of the

distribution fhT that belongs to a family of distributions approaching a point mass at T as h→ 0.

We construct the locally robust estimator based on the influence function derived by the Gateaux

derivative, so the asymptotic distribution of β̂t depends on the choice of fhT that is the kernel

function Kh(T − t).
More specifically, for any t ∈ T , let βt(·) : F → R, where F is a set of CDFs of Z =

(Y, T ′, X ′)′ that is unrestricted except for regularity conditions. The estimator converges to βt(F )

for some F ∈ F , which describes how the limit of the estimator varies as the distribution of a data

observation varies. Let F 0 be the true distribution of Z. Let F h
Z approach a point mass at Z as

h→ 0. Consider F τh = (1− τ)F 0 + τF h
Z for τ ∈ [0, 1] such that for all small enough τ , F τh ∈ F

and the corresponding pdf f τh = f 0 + τ(fhZ − f 0). We calculate the Gateaux derivative of the

functional βt(F
τh) with respect to a deviation F h

Z − F 0 from the true distribution F 0.

In the Appendix, we show that the Gateaux derivative for the direction fhZ − f 0 is

lim
h→0

d

dτ
βt(F

τh)
∣∣∣
τ=0

= γ(t,X)− βt + lim
h→0

∫
X

∫
Y

y − γ(t, x)

fT |X(t|x)
fhY TX(y, t, x)dydx (6)

= γ(t,X)− βt +
Y − γ(t,X)

fT |X(t|X)
lim
h→0

fhT (t).

Note that the last term in (6) is a partial mean that is a marginal integration over Y × X , fixing

the value of T at t. Thus the Gateaux derivative depends on the choice of fhT . We then choose
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fhZ(z) = Kh(Z − z)1{f 0(z) > h}, following Ichimura and Newey (2017), so

Y − γ(t,X)

fT |X(t|X)
lim
h→0

fhT (t) =
Y − γ(t,X)

fT |X(t|X)
lim
h→0

Kh(T − t).

Theorem 1 in Ichimura and Newey (2017) shows that if a semiparametric estimator is asymp-

totically linear and locally regular, then the influence function is limh→0 dβt(F
τh)/dτ |τ=0. Here,

we use the Gateaux derivative limit calculation to motivate our estimator that depends on F h
T .

Then we show that the estimator is asymptotically linear with the influence function.

Importantly the expression in (6) is the building block to construct estimators for βt. To

illustrate this point, next we discuss an alternative estimator.

3.1.1 Local Riesz representer

The above discussion on the Gateaux derivative suggests that the Riesz representer for the non-

regular βt is not unique and depends on the kernel or other methods for localization at t. We

define the “local Riesz representer” to be αth(T,X) = Kh(T − t)/fT |X(T |X) indexed by the

evaluation value t and the bandwidth of the kernel h. Our local Riesz representer αth(T,X) satisfies

βt =
∫
X γ(t,X)dFX(X) = limh→0

∫
X

∫
T αth(T,X)γ(T,X)dFTX(T,X) for all γ with finite second

moment, following the insight of the Riesz representation theorem for a regular parameter (Newey,

1994a). Then we can obtain the influence function by adding an adjustment term αth(T,X)(Y −
γ(T,X)), which is the product of the local Riesz representer and the regression residual.

Instead of estimating the closed form of the Riesz representer, e.g., the conditional density

in our case, Chernozhukov, Newey, Robins, and Singh (2019), Chernozhukov, Newey, and Singh

(2019), and Chernozhukov, Hausman, and Newey (2019) directly approximate the Riesz repre-

senter by Lasso or Dantzig regularized learners. Then an alternative DML estimator of βt is

n−1
∑L

`=1

∑
i∈I` {γ̂`(t,Xi) + α̂`(Ti, Xi) (Yi − γ̂`(t,Xi))}. Below we briefly discuss a new estimator

that builds on and extends their approach to the average structural function of continuous treat-

ments.9

Let b(T,X) be a p-dimensional dictionary of basis functions, such as polynomials or splines.

The estimator α̂`(Ti, Xi) = b(Ti, Xi)
′ρ̂` uses the L1-regularized methods developed for non-regular

functionals of γ(T,X) in Chernozhukov, Newey, Robins, and Singh (2019) but with a modified

weight function `h and a modified M̂`, in their notations. Specifically we define `h(T,X) =

ζth(T )fT (T )/fT |X(T |X), where ζth(T ) = Kh(T − t)/E[Kh(T − t)]. We use the novel form of

M̂` proposed by Chernozhukov, Hausman, and Newey (2019) with kth component M̂`k = (n −
9We thank Whitney Newey for an insightful discussion that was the seed for this idea.
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n`)
−2∑

i/∈I`

∑
j /∈I` ζ̂th(Ti)bk(Ti, Xj), where n` is the sample size of group I`, for ` = 1, ..., L and k =

1, ..., p. These new modifications are motivated by re-expressing our average structural function

as βt = limh→0

∫
T

∫
X ζth(T )γ(T,X)dFX(X)dFT (T ). The key is that this expression contains two

integrations over the marginal distributions of X and T respectively. Thus the sample analogue

M̂` and ζth(T ) for localization at t account for the partial mean structure of βt that is defined

by a marginal integration over the marginal distribution of X, rather than the joint distribution

of (T,X). It follows that the minimum distance Lasso or Dantzig method with an estimated

E[Kh(T − t)] in ζth for the low-dimensional T avoids estimating fT |X(T |X) in `h(T,X).10 A

formal theory for this alternative estimator by extending Chernozhukov, Hausman, and Newey

(2019) or Chernozhukov, Newey, Robins, and Singh (2019) is left for future research.

3.2 Adjustment for first-step kernel estimation

We discuss another motivation of our moment function. We consider two alternative estimators

for the dose response function, or the average structural function, βt: the regression estimator

β̂REGt =
1

n

n∑
i=1

γ̂(t,Xi)

that is based on the identification in (2), and the inverse probability weighting (IPW) estimator

β̂IPWt =
1

n

n∑
i=1

Kh(Ti − t)Yi
f̂T |X(t|Xi)

that is based on the identification in (3). Adding the influence function that accounts for the first-

step estimation partials out the first-order effect of the first-step estimation on the final estimator,

as discussed in Section 2.2.5 in CCDDHNR.

For β̂REGt , when γ̂(t, x) is a local constant or local polynomial estimator with bandwidth h,

Newey (1994b) and Lee (2018) have derived the asymptotically linear representation of β̂REGt

that is first-order equivalent to that of our DML estimator given in Theorem 1. Specifically we

can obtain the adjustment term by the influence function of the partial mean
∫
X γ̂(t, x)f(x)dx =

n−1
∑n

i=1Kh(Ti − t)(Yi − γ(t,Xi))/fT |X(t|Xi) + op((nh
dt)−1/2) with a suitably chosen h and regu-

larity conditions. Thus the moment function can be constructed by adding the influence function

10Chernozhukov, Hausman, and Newey (2019) estimate bounds on consumer surplus that is a weighted average
of the average structural function βt weighted by a specific ζ(T ) and can be estimated at the regular root-n rate.
Our expression of βt shares the same form of the weighted average yet with a distinct weight function ζth(T ) for
localization and hence is estimated at a nonparametric rate.
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adjustment for estimating the nuisance function γ(t,X) to the original moment function γ(t,X).

Similarly for β̂IPWt , when f̂T |X is a standard kernel density estimator with bandwidth h, Hsu,

Huber, Lee, and Pipoz (2018) derive the asymptotically linear representation of β̂IPWt that is

first-order equivalent to our DML estimator. We can show that the partial mean
∫
Z Kh(T −

t)Y/f̂T |X(t|X)dFY TX = n−1
∑n

i=1 γ(t,Xi)
(
1−Kh(Ti − t)/fT |X(t|Xi)

)
+op((nh

dt)−1/2) with a suit-

ably chosen h and regularity conditions. Thus the moment function can be constructed by adding

the influence function adjustment for estimating the nuisance function fT |X to the original moment

function Kh(T − t)Y/fT |X(t|X).

Remark 1 (First-step bias reduction) In general, nonparametric estimation of an infinite-

dimensional nuisance parameter contributes a finite-sample bias to the final estimator. It is note-

worthy that although the kernel function in the DML estimator β̂t introduces the first-order bias

h2Bt, β̂t requires a weaker bandwidth condition for controlling the bias of the first-step estima-

tor than the regression estimator β̂REGt and the IPW estimator β̂IPWt . Our DML estimator for

continuous treatments inherits this advantageous property from the DML estimator for a binary

treatment. Therefore the DML estimator can be less sensitive to variation in tuning parameters

of the first-step estimators. To illustrate with an example of β̂REGt , consider the first-step γ̂ to be

a local constant estimator with bandwidth h1 and a kernel of order r. To control the bias of γ̂ to

be asymptotically negligible for β̂REGt , we assume hr1

√
nhdt1 → 0. In contrast, when γ̂ and f̂T |X in

the DML estimator β̂t are local constant estimators with bandwidth h1 and a kernel of order r,

Assumption 3(ii) requires h2r1
√
nhdt → 0. Moreover we observe that the condition is weaker than

hr1
√
n→ 0 for the binary treatment that has a regular root-n convergence rate.

Remark 2 (First-step series estimation) When γ̂(t, x) is a series estimator in β̂REGt , com-

puting the partial mean
∫
X γ̂(t, x)f(x)dx for the influence function results in a different adjust-

ment term than the kernel estimation discussed above.11 Heuristically, let us consider a basis

function b(T,X), including raw variables (T,X) as well as interactions and other transforma-

tions of these variables. Computing
∫
γ̂(t, x)f(x)dx implies the adjustment term of the form

E[b(t,X)] (n−1
∑n

i=1 b(Ti, Xi)b(Ti, Xi)
′)
−1
n−1

∑n
i=1 b(Ti, Xi)

′(yi − γ(Ti, Xi)
)

= n−1
∑n

i=1 λti
(
yi −

γ(Ti, Xi)
)
, resulting in a form of an average weighted residuals in estimation or projection of

the residual on the space generated by the basis functions. Notice that the conditional density

fT |X(t|X) is not explicit in the weight λti. Such adjustment term may motivate different estima-

tors of βt; see the approximate residual balancing estimator in Athey, Imbens, and Wager (2018),

CEINR, and Demirer, Syrgkanis, Lewis, and Chernozhukov (2019), for example.

11For example, Lee and Li (2018) derive the asymptotic theory of a partial mean of a series estimator, in
estimating the average structural function with a special regressor.
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3.3 Asymptotically linear representation

We give an outline of deriving the asymptoticaly linear representation in Theorem 1, following

CEINR. The moment function for identification is m(Zi, βt, γ) = γ(t,Xi)−βt by equation (2), i.e.,

E[m(Zi, βt, γ(t,Xi))] = 0 uniquely defines βt. The adjustment term is φ(Zi, βt, γ, λ) = Kh(Ti −
t)λ(t,Xi) (Yi − γ(t,Xi)), where λ(t, x) = 1/fT |X(t|x). The doubly robust moment function is

ψ(Zi, βt, γ, λ) = m(Zi, βt, γ(t,Xi)) + φ(Zi, βt, γ(t,Xi), λ(t,Xi)), as in equation (1).

Let γi = γ(t,Xi) and λi = λ(t,Xi) for notational ease. We decompose the remainder term

√
nhdt

1

n

n∑
i=1

{
ψ̂(Zi, βt, γ̂i, λ̂i)− ψ(Zi, βt, γi, λi)

}
=

√
hdt

n

n∑
i=1

{
γ̂i − γi − E[γ̂i − γi] +Kh(Ti − t)λi(γi − γ̂i)− E

[
Kh(Ti − t)λi(γi − γ̂i)

]}
(R1-1)

+

√
hdt

n

n∑
i=1

{
Kh(Ti − t)(λ̂i − λi)(Yi − γi)− E

[
Kh(Ti − t)(λ̂i − λi)(Yi − γi)

]}
(R1-2)

+

√
hdt

n

n∑
i=1

{
E[(γ̂i − γi)(1−Kh(Ti − t)λi)] + E[(λ̂i − λi)Kh(Ti − t)(Yi − γi)]

}
(R1-DR)

−
√
hdt

n

n∑
i=1

Kh(Ti − t)
(
λ̂i − λi

)(
γ̂i − γi

)
. (R2)

The remainder terms (R1-1) and (R1-2) are stochastic equicontinuous terms that are controlled

to be op(1) by the mean square consistency conditions in Assumption 3(i) and cross-fitting. The

second-order remainder term (R2) is controlled by Assumption 3(ii).

The remainder term (R1-DR) is controlled by the doubly robust property. Note that in the

binary treatment case when Kh(Ti− t) is replaced by 1{Ti = t}, the term (R1-DR) is zero because

ψ is the Neyman-orthogonal influence function. In our continuous treatment case, the Neyman

orthogonality holds as h → 0. Under the conditions in Theorem 1, (R1-DR) is Op

(
(‖γ̂ − γ‖F,2 +

‖λ̂− λ‖F,2)
√
nh4+dt

)
= op(1).

4 Numerical examples

This section provides numerical examples of Monte Carlo simulations and an empirical illustration.

The estimation procedure of the proposed double debiased machine learning (DML) estimator is

described in Section 2. For both the regression γ(t, x) = E[Y |T = t,X = x] and the generalized

propensity score (GPS) fT |X , we employ three machine learning methods: Lasso, random forest

15



(RF), and neural network (NN). We implement our DML estimator in Python, using the packages

skelearn, pytorch, numpy, and scipy. Software is available from the authors.

4.1 Simulation study

We begin by describing the nuisance estimators for the simulation in more detail. Lasso: The

penalization parameter is chosen via grid search utilizing tenfold cross validation in both estimators

of γ and fT |X separately. The basis functions contain third-order polynomials of X and T , and

interactions among X and T . Random forest: We use forests with 1,000 trees and 40 minimum

observations per leaf, selected based on tenfold cross validation. Neural network: To estimate

γ(t,X), we use a neural network with 4 hidden layers. Each hidden layer has 10 neurons and

uses scaled exponential linear unit (SELU) activation functions. For the GPS estimation we

use a network with 2 hidden layers, each with 10 neurons and with sigmoid (logistic) activation

functions. The weights are fit using stochastic gradient descent with a weight decay of 0.2.12 For

the selection of the neural network models, we perform a train-test split of the data and choose

the models based on out-of-sample performance.

We consider the data-generating process: ν ∼ N (0, 1), ε ∼ N (0, 1),

X = (X1, ..., X100)
′ ∼ N (0,Σ), T = Φ(3X ′θ) + 0.75ν, Y = 1.2T + 1.2X ′θ + T 2 + TX1 + ε,

where θj = 1/j2, diag(Σ) = 1, the (i, j)-entry Σij = 0.5 for |i−j| = 1 and Σij = 0 for |i−j| > 1 for

i, j = 1, ..., 100, and Φ is the CDF of N (0, 1). Thus the potential outcome Y (t) = 1.2t+ 1.2X ′θ+

t2 + tX1 + ε. Let the parameter of interest be the average dose response function at t = 0, i.e.,

β0 = E[Y (0)] = 0.

We compare estimations with fivefold cross-fitting and without cross-fitting, and with a range

of bandwidths to demonstrate robustness to bandwidth choice. We consider sample size n ∈
{500, 1000} and the number of subsamples used for cross-fitting L ∈ {1, 5}. We use the second-

order Epanechnikov kernel with bandwidth h. For the GPS estimator described in Section 2.1,

we choose h1 and ε to be h. Let the bandwidth of the form h = cσTn
−0.2 for a constant

c ∈ {0.5, 0.75, 1.0, 1.25, 1.5} and the standard deviation σT of T . We compute the AMSE-optimal

bandwidth h∗0 given in Corollary 1(i) that has the corresponding c∗ = 1.43. Thus using some un-

dersmoothing bandwidth with c < c∗, the 95% confidence interval
[
β̂t±1.96s.e.

]
is asymptotically

valid, where the standard error (s.e.) is computed using the sample analogue of the estimated in-

12Weight decay is a form of regularization to prevent overfitting. Weight decay is a penalty where after each
iteration the weights in the network are multiplied by (1 − αλ) before adding the adjustment in the direction of
the gradient, where α is the learning rate (step size) and λ is the weight decay.
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fluence function, as described in Section 3. We impose common support assumption by trimming

the lowest 2.5% of the GPS estimates. All the results are based on 1,000 Monte Carlo simulations.

Table 1 reports the results. The DML estimators using these ML methods perform well in the

case of cross-fitting (L = 5). Under no cross-fitting (L = 1), the confidence intervals based on Lasso

and random forest have coverage rates lower than the nominal 95%. Cross-fitting substantially

improves biases and coverage rates, as predicted by the theoretical results. Neural network per-

forms relatively well without cross-fitting. Cross-fitting slightly increases the root-MSE (RMSE).

Overall cross-fitting improves the coverage rates, and the results are more robust to bandwidth

choice under cross-fitting.

Table 1: Simulation Results

Lasso RF NN

n L c Bias RMSE Coverage Bias RMSE Coverage Bias RMSE Coverage

500 1 0.50 0.004 0.127 0.924 0.154 0.220 0.814 0.093 0.194 0.910
0.75 0.015 0.119 0.922 0.098 0.177 0.875 0.091 0.175 0.904
1.00 0.022 0.119 0.889 0.067 0.158 0.894 0.089 0.162 0.894
1.25 0.037 0.118 0.897 0.055 0.136 0.934 0.087 0.158 0.879
1.50 0.051 0.120 0.865 0.039 0.134 0.933 0.087 0.152 0.880

5 0.50 -0.107 2.741 0.951 -0.011 0.205 0.960 -0.072 0.242 0.964
0.75 -0.001 0.230 0.938 -0.009 0.173 0.955 -0.075 0.208 0.951
1.00 0.014 0.193 0.941 -0.016 0.165 0.938 -0.081 0.192 0.944
1.25 0.033 0.173 0.941 -0.011 0.141 0.959 -0.086 0.181 0.941
1.50 0.045 0.161 0.948 -0.018 0.141 0.952 -0.093 0.179 0.930

1000 1 0.50 0.003 0.125 0.885 0.126 0.164 0.762 -0.018 0.139 0.957
0.75 0.003 0.114 0.883 0.092 0.137 0.823 -0.014 0.117 0.958
1.00 0.018 0.105 0.867 0.063 0.114 0.877 -0.013 0.106 0.958
1.25 0.024 0.105 0.838 0.057 0.109 0.883 -0.013 0.098 0.959
1.50 0.036 0.109 0.829 0.048 0.098 0.910 -0.008 0.090 0.957

5 0.50 0.004 0.152 0.933 -0.009 0.140 0.968 -0.062 0.165 0.952
0.75 0.002 0.132 0.931 -0.001 0.120 0.948 -0.060 0.142 0.942
1.00 0.020 0.118 0.922 -0.008 0.108 0.947 -0.061 0.129 0.931
1.25 0.024 0.112 0.914 0.000 0.102 0.948 -0.058 0.120 0.933
1.50 0.035 0.111 0.894 0.000 0.094 0.944 -0.057 0.114 0.919

Notes: L = 1: no cross-fitting. L = 5: fivefold cross-fitting. The bandwidth is h = cσTn
−0.2, and

c = 1.43 for the AMSE-optimal bandwidth. The nominal coverage rate of the confidence interval is
0.95.
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4.2 Empirical illustration

We illustrate our method by reanalysing the Job Corps program in the United States, which was

conducted in the mid-1990s. The largest publicly founded job training program targets disad-

vantaged youth. The participants are exposed to different numbers of actual hours of academic

and vocational training. The participants’ labor market outcomes may differ if they accumulate

different amounts of human capital acquired through different lengths of exposure. We estimate

the average dose response functions to investigate the relationship between employment and the

length of exposure to academic and vocational training. As our analysis builds on Flores, Flores-

Lagunes, Gonzalez, and Neumann (2012), Hsu, Huber, Lee, and Pipoz (2018), and Lee (2018), we

refer the readers to the reference therein for further details of Job Corps.

We use the same dataset in Hsu, Huber, Lee, and Pipoz (2018). We consider the outcome

variable (Y ) to be the proportion of weeks employed in the second year following the program

assignment. The continuous treatment variable (T ) is the total hours spent in academic and

vocational training in the first year. We follow the literature to assume the conditional indepen-

dence Assumption 1(i), meaning that selection into different levels of the treatment is random,

conditional on a rich set of observed covariates, denoted by X. The identifying Assumption 1 is

indirectly assessed in Flores, Flores-Lagunes, Gonzalez, and Neumann (2012). Our sample con-

sists of 4,024 individuals who completed at least 40 hours (one week) of academic and vocational

training and 40 covariates measured at the baseline survey. Figure 1 shows the distribution of T

by a histogram, and Table 2 provides brief descriptive statistics.

Implementation details We estimate the average dose response function βt = E[Y (t)] and

partial effect θt = ∂E[Y (t)]/∂t by the proposed DML estimator with fivefold cross-fitting. We

implement the DML estimator with Lasso, random forest, and neural network for the nuisance

parameters, respectively. The parameters for Lasso and random forest are selected as described

in the simulation Section 4.1. For random forest, in the regression estimation of γ, we use 1000

trees and a minimum of 40 observations per leaf. For the GPS estimation we use 1000 trees with

a minimum 220 observations per leaf. For neural network, the regression estimation of γ uses a

neural network with two hidden layers and a weight decay of 0.1. The first hidden layer has one-

hundred neurons and the second hidden layer has twenty neurons. The hidden layers use scaled

exponential linear unit (SELU) activation functions. The output layer uses a linear activation

function. The GPS estimation uses a network with 2 hidden layers and a weight decay of 0.2.

Each with 10 neurons and with sigmoid (logistic) activation functions. The output layer uses a

linear activation function.
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We use the second-order Epanechnikov kernel with bandwidth h. For the GPS estimator, we

choose h1 and ε to be h. We compute the optimal bandwidth h∗w that minimizes an asymptotic

integrated MSE derived in Corollary 1(ii). A practical implementation is to choose the weight

function w(t) = 1{t ∈ [t, t̄]}/(t̄−t) to be the density of Uniform[t, t̄] on the interior support [t, t̄] ⊂
T of the support of the continuous treatment. Set m equally spaced grid points over [t, t̄]:

{
t =

t1, t2, ..., tm = t̄
}

. A plug-in estimator ĥ∗w =
(
V̂w
/(

4B̂w
))1/5

n−1/5, where V̂w = m−1
∑m

j=1 V̂tj1{tj ∈
[t, t̄]]}/(t̄ − t) and B̂w = m−1

∑m
j=1 B̂

2
tj
1{tj ∈ [t, t̄]]}/(t̄ − t). We use [t, t̄] = [160, 1840] and

t2 − t1 = 40 in this empirical application. We then obtain bandwidths 0.8h∗w for undersmoothing

that are 349.27 for Lasso, 336.93 for RF, and 308.23 for NN.

Results Figure 2 presents the estimated average dose response function βt along with 95%

point-wise confidence intervals. The results for the three ML nuisance estimators have similar

patterns. The estimates suggest an inverted-U relationship between the employment and the

length of participation.

Figure 3 reports the partial effect estimates θ̂t with step size η = 160 (one month). Across all

procedures, we see positive partial effects when hours of training are less than 500 and around

1000. Taking the estimates by neural network for example, β̂1000 = 45.49 with standard error

s.e. = 0.466 and θ̂1000 = 0.0043 with s.e. = 0.0013. This estimate implies that increasing the

training from six months to seven months increases the average proportion of weeks employed in

the second year by 0.7% with s.e. = 0.215%.

We note that the empirical practice has focused on semiparametric estimation; see Flores,

Flores-Lagunes, Gonzalez, and Neumann (2012), Hsu, Huber, Lee, and Pipoz (2018), Lee (2018),

for example. Although our nonparametric DML estimates for βt do not give significantly different

results than the semiparametric estimates in Lee (2018), the semiparametric methods are sub-

ject to the risk of misspecification. Our DML estimator provides a solution to the challenge of

implementing a fully nonparametric inference in practice.

5 Conclusion and outlook

This paper provides a nonparametric inference method for continuous treatment effects under un-

confoundedness and in the presence of high-dimensional or nonparametric nuisance parameters.

The proposed double debiased machine learning (DML) estimator uses a doubly robust moment

function and cross-fitting. We provide tractable primitive conditions for the nuisance estimators

and asymptotic theory for inference on the average dose-response function (or the average struc-

tural function) and the partial effect. For a future extension, our DML estimator serves as the
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preliminary element for policy learning and optimization with a continuous decision, following

Manski (2004), Hirano and Porter (2009), Kitagawa and Tetenov (2018), Kallus and Zhou (2018),

Demirer, Syrgkanis, Lewis, and Chernozhukov (2019), Athey and Wager (2019), Farrell, Liang,

and Misra (2019), among others.

When unconfoundedness is violated, we can use the control function approach in triangular

simultaneous equations models by including in the covariates some estimated control variables

using instrumental variables. For example, Imbens and Newey (2009) show that the conditional

independence assumption holds when the covariates X include the additional control variable V =

FT |Z(T |Z), the conditional distribution function of the endogenous variable given the instrumental

variables Z. The influence function that accounts for estimating the control variables as generated

regressors has derived in Corollary 2 in Lee (2015). Lee (2015) shows that the adjustment terms for

the estimated control variables are of smaller order in the influence function of the final estimator,

but it may be important to include them to achieve local robustness. This is a distinct feature of

the average structural function of continuous treatments, as discussed in Section 3. Using such an

influence function to construct the corresponding DML estimator is left for future research.

Figure 1: Histogram of Hours of Training
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Table 2: Descriptive statistics

Variable Mean Median StdDev Min Max

share of weeks employed in 2nd year (Y ) 44 40.38 37.89 0 100
total hours spent in 1st-year training (T ) 1219.8 992.86 961.74 40 6188.57

Notes: Summary statistics for 4,024 individuals who completed at least 40 hours of academic and vocational
training.

Figure 2: Estimated average dose response functions and 95% confidence intervals

Figure 3: Estimated partial effects and 95% confidence interval
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Appendix

Proof of Lemma 1 Denote f̃T |X(t|X) to be the infeasible estimator using the true FT |X ; for

example of dT = 1, f̃T |X(t|x) = (2ε)−1
(
FT |X(t+ ε|x)− FT |X(t− ε|x)

)
. Denote the supremum

norm supx∈X
∣∣f̂T |X(t|x)− fT |X(t|x)

∣∣ =
∥∥f̂T |X(t|X)− fT |X(t|X)

∥∥
∞. By the triangular inequality, it

suffices to show that∥∥∥f̂T |X(t|X)− fT |X(t|X)
∥∥∥
∞
≤
∥∥∥Ê [G((T − t)/h1)|X]− E[G((T − t)/h1)|X]

∥∥∥
∞
ε−dT (7)

+
∥∥E[G((T − t)/h1)|X]− FT |X(t|X)

∥∥
∞ ε
−dT (8)

+
∥∥∥(f̃T |X(t|X)− fT |X(t|X)

∥∥∥
∞

(9)

= Op(R1ε
−dT + h21ε

−dT + ε2).

For (7), we give a crude bound by exploiting the convergence rate of the ML or nonparametric
estimators. For (8), we follow the standard algebra for kernel, using integration by parts and
change of variables. We analyze (9) below.

We first prove the results for dT = 1. By a Taylor expansion, FT |X(t ± ε|x) = FT |X(t|x) ±
εfT |X(t|x) + ε2/2 ∂fT |X(t|x)/∂t± ε3/3! ∂2fT |X(t±|x)/∂t2 for some mean values t+ ∈ (t, t+ ε) and
t− ∈ (t− ε, t). Thus, ‖(2ε)−1(FT |X(t+ ε|X)− FT |X(t− ε|X))− fT |X(t|X)‖∞ = O(ε2).

Next we prove the results for dT = 2. The general dT > 2 can be derived by induction. Consider
any x ∈ X and t = (t1, t2)

′ ∈ T . Let F = FT |X(t1, t2|x). For any positive sequences ε = (ε1, ε2)
′ →

0, let F++ = FT |X(t1 + ε1, t2 + ε2|x), F+− = FT |X(t1 + ε1, t2 − ε2|x), F−+ = FT |X(t1 − ε1, t2 + ε2|x),
F−− = FT |X(t1 − ε1, t2 − ε2|x), and ∂νj F = ∂νFT |X(t|x)/∂tνj that is the νth partial derivative of F
with respect to tj.

By a Taylor expansion,

F++ = F + ε1∂1F + ε2∂2F +
ε21
2
∂21F +

ε21
2
∂22F + ε1ε2∂1∂2F

+
ε31
3!
∂31F +

ε21ε2
2
∂21∂2F +

ε1ε
2
2

2
∂1∂

2
2F +

ε32
3!
∂32F

+
ε41
4!
∂41 F̄++ +

4ε31ε2
4!

∂31∂2F̄++ +
6ε21ε

2
2

4!
∂21∂

2
2 F̄++ +

4ε1ε
3
2

4!
∂1∂

3
2 F̄++ +

ε42
4!
∂42 F̄++,

where F̄++ = FT |X(t̄|x) with some mean value t̄ ∈ (t, t+ ε). Similarly,

F+− = F + ε1∂1F − ε2∂2F +
ε21
2
∂21F +

ε21
2
∂22F − ε1ε2∂1∂2F

+
ε31
3!
∂31F −

ε21ε2
2
∂21∂2F +

ε1ε
2
2

2
∂1∂

2
2F −

ε32
3!
∂32F

+
ε41
4!
∂41 F̄+− −

4ε31ε2
4!

∂31∂2F̄+− +
6ε21ε

2
2

4!
∂21∂

2
2 F̄+− −

4ε1ε
3
2

4!
∂1∂

3
2 F̄+− +

ε42
4!
∂42 F̄+−,
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where F̄+− = FT |X(t̄|x) with the mean values t̄1 ∈ (t1, t1 + ε1) and t̄2 ∈ (t2− ε2, t2). We implement
the same Taylor expansions on F−+ and F−−. Then

f̃T |X = (F++ − F+− − F−+ + F−−)/(4ε1ε2) = ∂1∂2F +
ε22
3!
∂32∂1F +

ε21
3!
∂2∂

3
1F + o((ε1 + ε2)

4/(ε1ε2)),

assuming (ε1 + ε2)
4/(ε1ε2) = O(1) that holds for ε1 = ε2 = ε.

For a general dT , by induction, we can obtain f̃T |X = fT |X + O(ε2), where the error O(ε2) is
from the (dT + 2)th derivatives of F . We can allow εj to be different for j = 1, ..., dT by assuming

(
∑dT

j=1 εj)
dT+2/ΠdT

j=1εj = O(1). �

We present more primitive conditions on estimating the nuisance parameters in Assumption 4
that is implied by Assumption 3.

Assumption 4 For each ` = 1, ..., L and for any t ∈ T ,

(i)
∫
X

(
γ̂`(t, x)− γ(t, x)

)2
fX(x)dx

p−→ 0 and
∫
X

(
f̂`(t|x)− fT |X(t|x)

)2
fX(x)dx

p−→ 0.

(ii) Either (a)
√
nhdtn−1

∑n
i=1Kh(Ti − t)

(
1/f̂`(t|Xi)− 1/fT |X(t|Xi)

)(
γ̂`(t,Xi)− γ(t,Xi)

) p→ 0,

or (b)
√
nhdt

∫
X

∣∣(f̂`(t|x)− fT |X(t|x))(γ̂`(t, x)− γ(t, x))
∣∣fTX(t, x)dx

p→ 0, or

(c)
√
nhdt

( ∫
X

(
f̂`(t|x)−fT |X(t|x)

)2
fTX(t, x)dx

)1/2( ∫
X

(
γ̂`(t|x)−γ(t, x)

)2
fTX(t, x)dx

)1/2 p→ 0.

Under Assumption 1(ii), Assumption 4 is implied by Assumption 3.13 Moreover, a weaker condition
on the first step estimators is possible by the choice of h. In the proof of Theorem 1, we note that
in Assumption 4(ii), the condition (c) implies (b), which then implies (a).

Proof of Theorem 1 The proof modifies Assumptions 4 and 5 and extends Lemma A1, Lemma
12, and Theorem 13 in CEINR. Let Zc

` denote the observations zi for i 6= I`. Let γ̂il = r̂`(t,Xi)
using Zc

` for i ∈ I`. Following the proof of Lemma A1 in CEINR, define ∆̂il = γ̂il−γi−E [γ̂il − γi] for
i ∈ I`. By construction and independence of Zc

` and zi, i ∈ I`, E[∆̂il|Zc
` ] = 0 and E[∆̂il∆̂jl|Zc

` ] = 0

for i, j ∈ I`. For i ∈ I` and for all t, hE[∆̂2
il|Zc

` ] = h
∫

(γ̂il−γi)2fX(Xi)dXi
p→ 0 by Assumption 4(i).

Then E
[(√

hdt/n
∑

i∈I` ∆̂il

)2 ∣∣∣Zc
`

]
= (h/n)

∑
i∈I` E

[
∆̂2
il

∣∣∣Zc
`

]
≤ h

∫
(γ̂il−γi)2fX(Xi)dXi

p→ 0. The

conditional Markov inequality implies that
√
hdt/n

∑
i∈I` ∆̂il

p→ 0.

The analogous results also hold for ∆̂il = Kh(Ti − t)λi(γi − γ̂il) − E [Kh(Ti − t)λi(γi − γ̂il)]
in (R1-1) and ∆̂il = Kh(Ti − t)(λ̂il − λi)(Yi − γi) − E

[
Kh(Ti − t)(λ̂il − λi)(Yi − γi)

]
in (R1-2).

13We claim that Assumption 3(i) is implied by Assumption 4(i). Other conditions can be shown by analogous

arguments. Denote Â(t) =
∫ (
γ̂`(t, x) − γ(t, x)

)2
fTX(t, x)dx ≥ 0. The following shows

∫
T Â(t)dt = op(1) implies

Â(t) = op(1) for ant t ∈ T . For any positive C and ε, there exists a positive integer N such that Pr(
∫
T Â(t)dt ≥

C) ≤ ε for n ≥ N . Under Assumption 1(ii), Â(t) ≥ C for all t ∈ T implies
∫
T Â(t)dt ≥ C. So Pr(Â(t) ≥ C,∀t ∈

T ) ≤ Pr(
∫
T Â(t)dt ≥ C) ≤ ε for n ≥ N .
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In particular, for (R1-2), hE[∆̂2
il|Zc

` ] = Op

(∫
k(u)2du

∫
X

(
λ̂il − λi

)2
fX(Xi)dXi

)
p→ 0 by the

smoothness condition and Assumption 4(i). So (R1-1)
p−→ 0 and (R1-2)

p−→ 0.

For (R2),

E
[√

hdt/n
∑
i∈I`

Kh(Ti − t)(λ̂il − λi)(γi − γ̂il)
∣∣∣∣Zc

`

]
≤
√
nhdt

∫
X

∫
T

∣∣∣Kh(Ti − t)(λ̂il − λi)(γi − γ̂il)
∣∣∣fTX(Ti, Xi)dTidXi

≤
√
nhdt

∫
X
fT |X(t|Xi)

∣∣∣(λ̂il − λi)(γi − γ̂il)∣∣∣fX(Xi)dXi + op(
√
nhdth2)

≤
√
nhdt

(∫
X
fT |X(t|Xi)(λ̂li − λi)2fX(Xi)dXi

)1/2(∫
X
fT |X(t|Xi)(γ̂li − γi)2fX(Xi)dXi

)1/2
+ op(1)

p−→ 0

by Cauchy-Schwartz inequality, Assumption 4(ii)(c), and nhdt+4 → C. So (R2)
p−→ 0 follows by

the conditional Markov and triangle inequalities.

For (R1-DR), in the first part E
[
1 − Kh(Ti − t)λi

∣∣Xi

]
= E

[
fT |X(t|Xi) − Kh(Ti − t)

∣∣Xi

]
λi =

h2f
′′

T |X(t|Xi)λi
∫
u2K(u)du/2 + Op(h

3). A similar argument yields (R1-DR)= Op((‖γ̂ − γ‖F,2 +

‖λ̂− λ‖F,2)
√
nhdth2) = op(1).

By the triangle inequality, we obtain the asymptoticaly linear representation√
nhdtn−1

∑n
i=1

(
ψ̂(Zi, βt, γ̂t, λ̂t)− ψ(Zi, βt, γt, λt)

)
= op(1).

For Bt, E
[
Kh(T−t)
fT |X(t|X)

(Y − γ(t,X))
]

= E
[

1
fT |X(t|X)

E [Kh(T − t) (γ(T,X)− γ(t,X)) |X]
]
. A stan-

dard algebra for kernel yields

E [Kh(T − t) (γ(T,X)− γ(t,X)) |X]

=

∫
T
Kh(T − t) (γ(T,X)− γ(t,X)) fT |X(T |X)dT

=

∫
k(u) (γ(t+ uh,X)− γ(t,X)) fT |X(t+ uh|X)du

=

∫
k(u1) · · · k(udt)

(
dt∑
j=1

ujh∂tjγ(t,X) +
u2jh

2

2
∂2tjγ(t,X)

)

×

(
fT |X(t|X) +

dt∑
j=1

ujh∂tjfT |X(t|X) +
u2jh

2

2
∂2tjfT |X(t|X)

)
du1 · · · dudt +O(h3)

= h2
∫
u2k(u)du

dt∑
j=1

(
∂tjγ(t,X)∂tjfT |X(t|X) +

1

2
∂2tjγ(t,X)fT |X(t|X)

)
+O(h3)
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for all X ∈ X . Thus

E
[

1

fT |X(t|X)
E [Kh(T − t) (γ(T,X)− γ(t,X)) |X]

]
= h2

∫
u2k(u)du

dt∑
j=1

E
[
∂tjγ(t,X)

∂tjfT |X(t|X)

fT |X(t|X)
+

1

2
∂2tjγ(t,X)

]
+O(h3).

The asymptotic variance is determined by hE
[(

(Y − γ(t,X))Kh(Ti − t)/fT |X(t|X)
)2]

. A stan-

dard algebra for kernel as above yields Vt. Asymptotic normality follows directly from the central
limit theorem. �

Proof of Corollary 1 (i) By Theorem 1, the asymptotic MSE is h4B2
t + Vt/(nh

dt). (ii) The
asymptotic integrated MSE is

∫
T

(
h4B2

t + Vt/(nh
dt)
)
w(t)dt. The results follow by solving the

first-order conditions. �

Proof of Theorem 2 We decompose θ̂t− θt = (θ̂t− θtη) + (θtη − θt), where θtη = (βt+ − βt−)/η.
By a Taylor expansion, the second part θtη − θt = O(η) if ∂2βt/∂t

2
1 exists.

Let β̂t = n−1
∑n

i=1 ψ̂ti = n−1
∑n

i=1

(
ψti+Rti

)
, where ψti = ψ(Zi, βt, γi, λi), ψ̂ti = ψ(Zi, βt, γ̂i, λ̂i),

and the remainder terms Rti are defined in Section 3.3. Thus θ̂t−θtη = η−1n−1
∑n

i=1

(
ψt+i−ψt−i+

Rt+i −Rt−i

)
. Denote ft|Xi

= fT |X(t|Xi).

(i) By η/h → 0 and a Taylor expansion, the variance of η−1n−1
∑n

i=1

(
ψt+i − ψt−i

)
is dominated

by the variance of n−1
∑n

i=1 ∂t1ψti, where

∂t1ψti = ∂t1Kh(Ti − t)
Yi − γ(t,Xi)

ft|Xi

+Kh(Ti − t)∂t1
(
Yi − γ(t,Xi)

ft|Xi

)
+ ∂t1γ(t,Xi)− θt.

Thus the leading term of the variance of η−1n−1
∑n

i=1

(
ψt+i − ψt−i

)
is
∫ (

∂t1Kh(T − t)
)2E[(Y −

γ(t,X))2|T,X
]
fT |X/f

2
t|XdT = h−(dt+2)E

[
var(Y |T = t,X)/fT |X(t|X)

] ∫
k′(u)2du + o(h−(dt+2)) =

O
(
h−(dt+2)

)
.

To control
√
nhdt+2η−1n−1

∑n
i=1

(
Rt+i−Rt−i

)
= op(1), the conditions (a) and (b) give a coarse

bound
√
hdt/n

∑n
i=1Rtihη

−1 = op(1) following the proof of Theorem 1.
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For the bias Bθt ,∫ {
∂t1Kh(Ti − t)

γ(Ti, Xi)− γ(t,Xi)

ft|Xi

+Kh(Ti − t)∂t1
(
γ(Ti, Xi)− γ(t,Xi)

ft|Xi

)}
fTi|Xi

dTi

=

∫
Kh(Ti − t)

{
∂t1γ(Ti, Xi)fTi|Xi

ft|Xi

+ (γ(Ti, Xi)− γ(t,Xi))
∂t1fTi|Xi

ft|Xi

−
∂t1γ(t,Xi)fTi|Xi

ft|Xi

− (γ(Ti, Xi)− γ(t,Xi))
∂t1ft|Xi

f 2
t|Xi

fTi|Xi

}
dTi

=

∫ {(
ft|Xi

+
dt∑
j=1

∂tjft|Xi
ujh+ ∂2tjft|Xi

u2jh
2

2

)( dt∑
j=1

∂tj∂t1γ(t,Xi)ujh+ ∂2tj∂t1γ(t,Xi)
u2jh

2

2

)

+

( dt∑
j=1

∂tjγ(t,Xi)ujh+ ∂2tjγ(t,Xi)
u2jh

2

2

)(
∂t1ft|Xi

+
dt∑
j=1

∂tj∂t1ft|Xi
ujh+ ∂2tj∂t1ft|Xi

u2jh
2

2

−
(
ft|Xi

+
dt∑
j=1

∂tjft|Xi
ujh+ ∂2tjft|Xi

u2jh
2

2

)∂t1ft|Xi

ft|Xi

)}
1

ft|Xi

k(u1) · · · k(udt)du1 · · · dudt +O(h3)

= h2
dt∑
j=1

(
1

2
∂2tj∂t1γ(t,Xi) + ∂tj∂t1γ(t,Xi)

∂tjft|Xi

ft|Xi

+
∂tjγ(t,Xi)

ft|Xi

(
∂tj∂t1ft|Xi

− ∂tjft|Xi

∂t1ft|Xi

ft|Xi

))
×
∫
u2k(u)du+O(h3),

where the first equality is by integration by parts.

(ii)
√
nhdtη2(θ̂t−θtη) =

√
nhdt

(
β̂t+−β̂t−−(βt+−βt−)

)
=
√
nhdtn−1

∑n
i=1

(
ψt+i−ψt−i+Rt+i−Rt−i

)
=√

nhdtn−1
∑n

i=1

(
ψt+i − ψt−i

)
+ op(1) by Theorem 1.

For Vθt , the term involved the convolution kernel comes from the covariance of ψt+i and ψt−i in
the following. E

[
ψt+iψt−i

]
is bounded by the order of

E
[∫ ∫

Kh(T − t+)Kh(T − t−)(Y − γ(t+, X))(Y − γ(t−, X))
fY |TX(Y |T,X)fT |X(T |X)

ft+|Xft−|X
dY dT

]
=

1

h
E
[ ∫ (

E[Y 2|T = t+ + uh,X]− γ(t+ + uh,X)(γ(t+, X) + γ(t−, X)) + γ(t+, X)γ(t−, X)
)

k(u)k
(
u− η

h

) fT |X(t+ + uh|X)

ft+|Xft−|X
du

]
=

1

h
k̄
(η
h

)
E
[
var(Y |T = t,X)

fT |X(t|X)

]
+O(h).

�
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Gateaux derivative Let the Dirac delta function δt(T ) = ∞ for T = t, δt(T ) = 0 for T 6= t,
and

∫
g(s)δt(s)ds = 1, for any continuous compactly supported function g.14 For any F ∈ F ,

βt(F ) =

∫
X
E[Y |T = t,X = x]fX(x)dx

=

∫
X

∫
T
E[Y |T = s,X = x]δt(s)dsfX(x)dx

=

∫
X

∫
T

∫
Y
yδt(s)

fY TX(y, s, x)fX(x)

fTX(s, x)
dydsdx.

d

dτ
βt(F

τh) =

∫
X

∫
T

∫
Y
yδt(s)

d

dτ

(
fY TX(y, s, x)fX(x)

fTX(s, x)

)
dydsdx

=

∫
X

∫
T

∫
Y

yδt(s)

fTX(s, x)

( (
−f 0

Y TX(y, s, x) + fhY TX(y, s, x)
)
fX(x)

+ fY TX(y, s, x)
(
−f 0

X(x) + fhX(x)
) )
dydsdx

−
∫
X

∫
T

∫
Y
yδt(s)

fY TX(y, s, x)fX(x)

fTX(s, x)2
(
−f 0

TX(s, x) + fhTX(s, x)
)
dydsdx.

The influence function can be calculated as

lim
h→0

d

dτ
βt(F

τh)
∣∣∣
τ=0

= γ(t,X)− βt + lim
h→0

∫
X

∫
Y

y − γ(t, x)

fT |X(t|x)
fhY TX(y, t, x)dydx.

In particular, we specify F h
Z following equation (3.1) in Ichimura and Newey (2017). Let

Kh(Z) = Πdz
j=1k(Zj/h)/h, where Z = (Z1, ..., Zdz)

′ and k satisfies Assumption 2 and is continuously

differentiable of all orders with bounded derivatives. Let F τh = (1 − τ)F 0 + τF h
Z with pdf with

respect to a product measure given by f τh(z) = (1−τ)f 0(z)+τf 0(z)δhZ(z), where δhZ(z) = Kh(Z−
z)1{f 0(z) > h}/f 0(z), a ratio of a sharply peaked pdf to the true density. Thus fhY TX(y, t, x) =
Kh(Y − y)Kh(T − t)Kh(X − x)1{f 0(z) > h}. It follows that

lim
h→0

∫
X

∫
Y

y − γ(t, x)

fT |X(t|x)
fhY TX(y, t, x)dydx =

Y − γ(t,X)

fT |X(t|X)
lim
h→0

Kh(T − t).

14Note that a nascent delta function to approximate the Dirac delta function is Kh(T − t) = k((T − t)/h)/h such
that δt(T ) = limh→0Kh(T − t).
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