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Abstract

I show that the relationship between the U.S. Treasury yield curve and macroeco-

nomic risk fluctuates over time. I establish this result by introducing time-varying

volatility and variance risk premia in a tractable term structure model. Based on

my model, I characterize the joint behavior of the yield curve and macroeconomic

risk captured by inflation and unemployment gap from 1971 to 2019. First, I find

that the macroeconomic contribution to short-term yield volatility is high in the

1970s, low during the Great Moderation starting in the mid-1980s, and high again

after the financial crisis. Second, investors are increasingly anchoring short-rate

expectations to macroeconomic risk. Third, deflation fears increase term premia

during the financial crisis. Finally, I show that macroeconomic shocks do not ex-

plain the yield curve inversion in 2019. My results suggest that the recent inversion

is not a warning of an imminent recession and thus should not trigger monetary

policy easing.
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at Örebro University.

1

https://drive.google.com/open?id=1h6k9yh-FDh6EZvii44FweFFO3Bd-KFVV
mailto:alh@econ.ku.dk
http://sites.google.com/view/annelundgaardhansen
http://sites.google.com/view/annelundgaardhansen


1 Introduction

Policy makers and investors pay close attention to the joint dynamics of the yield curve

and macroeconomic variables. These dynamics can, for example, shed light upon how

the yield curve is affected by the Federal Reserve’s dual mandate of maximum sustain-

able employment and stable prices. The relationship between macroeconomic risk and

the decomposition of yields into short-rate expectations and term premia is also useful

for understanding the sources of movements in the yield curve. In light of the recent

sharp decline in long-term yields, it is of particular interest to recognize if this develop-

ment reflects low expectations on future economic activity and, consequently, is likely to

anticipate a recession.

I focus on the question, how much variance in the yield curve, short-rate expectations,

and term premia can be attributed to macroeconomic risk? I contribute to a large body

of literature that uses dynamic term structure models with observed macroeconomic vari-

ables to decompose variances into macroeconomic and latent yield-specific shares. Start-

ing with Ang and Piazzesi (2003), the existing literature is centered around Gaussian

term structure models (Bikbov and Chernov, 2010, Doshi, Jacobs, and Liu, 2018, Duffee,

2018). These models are celebrated for their tractability and ability to match the yield

curve. However, they assume that yield curve volatility is constant, which contradicts

the empirical evidence. My paper studies whether time-varying yield curve volatility has

implications for the joint behavior of the yield curve and macroeconomic variables.

I build a novel term structure model that has time-varying volatility and variance

risk premia, unlike the Gaussian term structure model. Specifically, I bridge the Baba-

Engle-Kraft-Kroner (BEKK) multivariate GARCH model proposed by Engle and Kroner

(1995) with the exponential-quadratic pricing kernel of Monfort and Pegoraro (2012). My

model admits closed-form solutions for no-arbitrage bond yields and their decomposition

into short-rate expectations and term premia. I match the U.S. Treasury yield curve

at the monthly frequency from 1971 to 2019 using inflation and unemployment gap as

macroeconomic variables and three latent yield-specific factors. Model-implied conditional

variances and covariances capture realized and rolling measures. In contrast, continuous-

time term structure models with stochastic volatility struggle to match empirical volatility

proxies with low and often negative correlation between predicted and realized volatilities
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(Christensen, Lopez, and Rudebusch, 2014, Collin-Dufresne, Goldstein, and Jones, 2009,

Jacobs and Karoui, 2009). Finally, my model implies excess returns that explain the

empirical failure of the expectations hypothesis. Thus, my model overcomes a trade-off

in the existing literature between modeling time-varying volatility and excess returns as

documented by Dai and Singleton (2002).

By embracing the stylized fact that yield curve volatility is time-varying, I show

that the relationship between the yield curve and macroeconomic variables fluctuates

over time. Gaussian term structure models imply a constant relationship. I find that

macroeconomic shocks explain more than half of the variation in yields in some periods,

but that yield curve volatility is unrelated to macroeconomic risk in other periods. I argue

that large month-to-month fluctuations are related to economic events, for example, the

announcement of quantitative easing programs. Thus, macroeconomic news partly drives

movements in the yield curve, which is consistent with Andersen, Bollerslev, Diebold, and

Vega (2007), Feunou, Fontaine, and Roussellet (2019), and Piazzesi (2005).

I present a novel dynamic characterization of the historical joint behavior of the yield

curve and macroeconomic variables. First, I show that the macroeconomic contribution

to short-term yield variance has followed a U-shaped pattern since the 1970s. These

macroeconomic shares were high in the 1970s, low during the Great Moderation starting

from the mid-1980s, and high following the financial crisis. Second, I find an upward

trend in the macroeconomic contribution to variance in 10-year short-rate expectations

since the Great Moderation. Thus, investors increasingly form expectations on future

short rates based on macroeconomic risk. This result possibly reflects a growing belief

among investors that the Federal Reserve’s commitment to the dual mandate is credible.

Third, the macroeconomic share of variance in the 10-year term premium increases during

the financial crisis due to inflation shocks. Thus, inflation risk premia are high despite a

low-inflation environment. This result is generated by the exponential-quadratic pricing

kernel as it allows investors to demand compensation for both positive and negative shocks

to inflation as also shown by Roussellet (2018). As an implication, a symmetric inflation

target enhances the efficiency of monetary policy during recessions.

In terms of methodology, I show that my model can be estimated by a step-wise ap-

proach without relying on filtering methods for estimating the latent yield-specific factors.

Specifically, my model is invariant to affine transformations such that latent factors can be

rotated into portfolios of synthetic yields. The synthetic yields are constructed by resid-

uals from yields explained with macroeconomic variables only. My estimation method is
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a generalization of Joslin, Singleton, and Zhu (2011), who provide similar arguments for

the Gaussian term structure model. My method is most closely related to Ghysels, Le,

Park, and Zhu (2014), who consider a model that differs from my model in two respects.

First, my model is consistent with the view that volatility is not priced in Treasury bonds

(Andersen and Benzoni, 2010, Collin-Dufresne and Goldstein, 2002, Joslin, 2017). In con-

trast, Ghysels et al. let volatility affect yields in the spirit of the ARCH-in-mean model

in Engle, Lilien, and Robins (1987). Second, I allow for both latent factors and observed

macroeconomic variables, whereas Ghysels et al. use only latent factors. Other macro-

finance term structure models with GARCH-type volatility in the literature do not allow

for a rotation of the latent factors (Campbell, Sunderam, and Viceira, 2017, Haubrich,

Pennacchi, and Ritchken, 2012, Koeda and Kato, 2015).

The introduction of time-varying volatility in the yield curve has two implications for

model-implied risk compensation in fixed-income markets. First, my model decomposes

long-term yields into persistent short-rate expectations and counter-cyclical term premia.

The cyclicality is stronger than the term premia implied by the Gaussian term structure

model. This difference arises because my model involves both a time-varying price and

quantity of risk, whereas the Gaussian model only allows for variation in the price of

risk. As an implication, the models disagree about the effectiveness of forward guidance.

Specifically, my model is consistent with effective forward guidance as seen in Carlstrom,

Fuerst, and Paustian (2015) and McKay, Nakamura, and Steinson (2016), but unlike

Hagedorn, Luo, Manovskii, and Mitman (2019).

Second, I find that investors are willing to pay large variance risk premia to hedge

macroeconomic uncertainty. As a result, macroeconomic uncertainty may increase trad-

ing activity in fixed-income derivative markets. To the extent that the policy rate is

determined by the dual mandate, my results complement Cieslak and Povala (2016) who

show that fixed-income variance risk premia are particularly related to uncertainty about

future monetary policy. My term structure of estimated variance risk premia is downward-

sloping in magnitudes, which is consistent with the literature (Choi, Mueller, and Vedolin,

2017, Trolle and Schwartz, 2009, Trolle and Schwartz, 2015). Gaussian term structure

models abstract from the presence of variance risk premia by imposing exponential-affine

pricing kernels that only allow investors to demand compensation for mean-based risk.

Finally, I show that macroeconomic variables did not drive the movements in the

yield curve in the spring 2019. Specifically, I focus on the 50-basis-point decline in the

10-year yield from April to June. This decline led to an inversion of the yield curve, with
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the 10-year yield below the 3-month yield, in May. Yield curve inversions are sensational

because history shows that inversions are strong predictors of recessions. The predictive

power reflects that when investors expect a slowing economy, short-rate expectations and

hence long-term yields decline. Thus, if the yield curve inversion is likely to predict

a recession, movements in short-rate expectations should be driven by macroeconomic

variables. My model allows me to zoom in on the relationship between the yield curve

and macroeconomic variables specifically during spring 2019. In contrast, the Gaussian

term structure model can only draw conclusions that are valid on average across the full

sample. I begin by showing that the yield curve inversion in August 2006 that preceded

the financial crisis was related to macroeconomic risk. Following this, I show that the

macroeconomic contribution to variance in the 10-year yield and specifically in 10-year

short-rate expectations decreased in spring 2019. This finding is consistent with the

current strength in the U.S. economy. For example, in May 2019 the unemployment rate

had been at or below 4 percent for over a year. My results suggest that the recent yield

curve inversion is not a warning of an imminent recession. Thus, the Federal Reserve

should not launch a monetary policy easing cycle based on the inversion.

The remainder of this paper is organized as follows. First, I present my term struc-

ture model with time-varying volatility and variance risk premia in Section 2. Section

3 provides a tractable method for estimating my model. Section 4 details the data and

discusses the empirical performance of my model. I analyze the relationship between yield

curve volatility and macroeconomic risk in Section 5. Finally, I apply my model to study

the 2019 yield curve inversion in Section 6. Conclusions follow in Section 7. Proofs and

technical details are provided in Technical Appendix A. The paper is also accompanied

by an online appendix.1

2 Term Structure Model

In this section, I present my term structure model. My model is distinct from the Gaus-

sian term structure model in two dimensions: First, the dynamics under the physical

probability measure exhibit multivariate GARCH volatility. Second, the pricing kernel

is exponential-quadratic allowing investors to demand a compensation for exposure to

conditional volatility. In the following, I describe these elements separately.

1The online appendix is available from my website here.
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2.1 Physical Dynamics

The yield curve is driven by a nX-dimensional state vector, Xt, consisting of nx latent

yield-specific factors, xt, and nm observed macroeconomic variables, mt. Thus, the state

vector is Xt = [x′t,m
′
t]
′. Assuming that xt can be filtered from observed bond yields, let

Ft be the filtration given by (Xt, Xt−1, . . .).

Conditional Mean

The physical dynamics of Xt are given by a vector autoregressive model allowing for some

lag length, L, in the equation for the macroeconomic variables, mt. Following the existing

literature, latent factors have one lag.2 The equations for xt and mt are given by

xt = µx + Φ(1)
x xt−1 + Φ(1)

xmmt−1 + εx,t, (1)

mt = µm + Φ(1)
mxxt−1 + Φ(1)

m mt−1 + Φ(2)
m mt−2 + . . .+ Φ(L)

m mt−L + εm,t, (2)

where εx,t and εm,t are conditionally Gaussian given Ft−1 with mean zero and conditional

variance matrix, Vt.
3 Equivalently, I write

Xt = µX + Φ
(1)
X Xt−1 + . . .+ Φ

(L)
X Xt−L + εt (3)

with appropriate zero restrictions in Φ
(l)
X for l = 2, . . . , L and εt|Ft−1 ∼ N (0, Vt).

Conditional Variance Matrix

I model the full variance matrix, Vt, allowing for time-varying conditional covariances

between the macroeconomic variables and latent factors. The volatility dynamics are

given by the multivariate BEKK GARCH model of Engle and Kroner (1995):

Vt = ΣXΣ′X +
K∑
k=1

A
(k)
X εt−1ε

′
t−1A

(k)′

X +
K∑
k=1

B
(k)
X Vt−1B

(k)′

X . (4)

If ΣX is lower triangular such that ΣXΣ′X is positive definite, then Vt is also positive

definite. Importantly, the model in (4) is invariant to affine transformations. This is a

non-trivial property that many multivariate GARCH models do not satisfy.4 I use this

property to propose a tractable estimation method in Section 3.

2The model can easily be extended to a full vector autoregressive model of order L. However, allowing
for a lag structure in the dynamics of xt is costly in terms of parameters. Indeed, I show in the online
appendix that information criteria prefer models with multiple lags in the equation for mt only.
3It should be noted that Vt denotes the conditional volatility of a process at time t that is adapted to
Ft−1. This choice follows the GARCH literature, but differs from the literature on stochastic volatility.
4For example, GARCH models with asymmetric components and the dynamic conditional correlations
model of Engle (2002) are not invariant to affine transformations.
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With multiple ARCH and GARCH components, K > 1, I allow for rich dynamics of

conditional variances and covariances which are typically needed empirically.5 When K is

sufficiently large, the model can obtain a representation equivalent to the vech-GARCH

model of Bollerslev, Engle, and Wooldridge (1988).

The full BEKK GARCH model, i.e., the model where A
(k)
X and B

(k)
X are fully param-

eterized matrices for some k, suffers from many econometric problems including the curse

of dimensionality (Chang and McAleer, 2019). I therefore impose diagonal restrictions on

A
(k)
X and B

(k)
X for all k = 1, . . . , K.

2.2 Pricing Kernel

I relate the state vector to no-arbitrage bond yields by specifying the pricing kernel.

Standard term structure models use exponential-affine pricing kernels, see, e.g., Le, Sin-

gleton, and Dai (2010). However, recent work suggests that higher-order pricing kernels

are needed for capturing the conditional volatility of the yield curve (Creal and Wu, 2017,

Ghysels, Le, Park, and Zhu, 2014, Joslin and Konchitchki, 2018). Based on these results,

I apply the exponential-quadratic kernel in Monfort and Pegoraro (2012) given by

Mt+1 =
exp

(
−rt + ξ′tXt+1 +X ′t+1ΞtXt+1

)
Et
[
exp

(
ξ′tXt+1 +X ′t+1ΞtXt+1

)] , (5)

where rt is the short rate.

I show in Technical Appendix A.1 that exponential-quadratic pricing kernels can be

structurally justified in preference-based models. Specifically, the long-run risk model of

Bansal and Yaron (2004) implies an exponential-quadratic pricing kernel when solved by

the second-order projection developed by Andreasen and Jørgensen (2019). In addition,

Hansen and Heaton (2008) propose a long-run risk model based on vector autoregressive

dynamics that implies an exponential-quadratic pricing kernel when allowing for a time-

varying wealth-consumption ratio.

5To illustrate this notion, consider a bivariate model with K = 1 in which A
(1)
X and B

(1)
X are diagonal

matrices with elements aii and bii, i = 1, 2. Then,

Vt = ΣXΣ′X +

 a211ε
2
1,t−1 a11a22ε1,t−1ε2,t−1

a11a22ε1,t−1ε2,t−1 a222ε
2
2,t−1

+

 b211V11,t−1 b11b22V12,t−1

b11b22V12,t−1 b222V22,t−1

 .
The parameters aii and bii are the ARCH and GARCH effects related to variable i. However, these
parameters also determine the conditional covariance between the variables. Thus, there is a tension
between modeling conditional variances and covariances simultaneously. This problem is also present

when A
(1)
X and B

(1)
X are full matrices.
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The pricing kernel in (5) contains three components. The first component is a time

discount, which is determined by the short rate. Following the literature, I impose a

short-rate model that is affine in Xt:

rt = αX + β′xxt + β′mmt = αX + β′XXt. (6)

The remaining components represent compensation for mean-based risk, ξ′tXt+1, and

variance-based risk, X ′t+1ΞtXt+1. Thus, the exponential-quadratic pricing kernel allows

investors to be averse towards both mean- and variance-based risk. The variables ξt and

Ξt can be interpreted as market prices of risk associated with, respectively, the condi-

tional mean and variance matrix of Xt+1. In this sense, the variances of Xt+1 can be

interpreted as quantities of risk. If Ξt = 0, the pricing kernel in (5) reduces to the stan-

dard exponential-affine pricing kernel. Thus, exponential-affine pricing kernels only allow

investors to price mean-based risk.

Monfort and Pegoraro (2012) show that if the market prices of risk are chosen by

ξt = (V Q
t+1)−1EQ

t (Xt+1)− V −1
t+1Et(Xt+1), (7)

Ξt =
1

2

(
V −1
t+1 − (V Q

t+1)−1
)
, (8)

where EQ
t (Xt+1) and V Q

t+1 denote the first and second conditional moments of Xt+1 given

Ft under the risk-neutral probability measure (Q), then Xt+1|Ft
Q∼ N (EQ

t (Xt+1), V Q
t+1).

Thus, my model allows the risk-neutral conditional variance matrix, V Q
t , to differ from the

physical conditional variance matrix, Vt. The discrepancy between the conditional vari-

ance under the physical and risk-neutral probability measures is feasible in discrete-time

models as they are not restricted by Girsanov’s theorem. In contrast, Girsanov’s theorem

rules out distinct volatility specifications across probability measures in continuous-time

models. Specifically, it follows from the market price of variance risk, Ξt, that it is the

introduction of variance-based risk compensation that facilitates different variance speci-

fications under the physical and risk-neutral probability measures.

The market price of mean-based risk in (7) is akin to that of the standard term

structure model with exponential-linear pricing kernel. Specifically, it is given by the

differences in the conditional means under physical and risk-neutral probability measures

weighted by a conditional variance matrix. In contrast to the standard model, however, I

weigh the physical and risk-neutral expectations by different variance matrices, accounting

for the different variances across probability measures. The market price of variance-based

risk in (8) is diminishing in the quantity of risk under the physical measure, Vt+1. This
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property is consistent with the empirical fact that fixed-income variance risk premia are

diminishing in magnitudes with the maturity of bonds (Choi, Mueller, and Vedolin, 2017,

Trolle, 2009, Trolle and Schwartz, 2015).

In the following, I specify the risk-neutral moments which pin down the market prices

of risk through (7)-(8). This approach contrasts with the standard literature in which the

market prices of risk are specified to pin down the risk-neutral moments.

2.3 Risk-Neutral Moments

I specify moments under the risk-neutral probability measure such that my model is

tractable and sufficiently flexible to match the yield curve in sample. An autoregressive

model of order one with constant volatility satisfies both of these criteria (Joslin, Le, and

Singleton, 2013). I also impose independence of the macroeconomic variables and the

latent yield-specific factors under the risk-neutral measure. Intuitively, I allow for inter-

dependent dynamics of macroeconomic variables and latent factors through the physical

dynamics, but bond market investors do not price these interactions. Failure of this as-

sumption affects the efficiency, but not the consistency, of my proposed estimator. Thus,

the risk-neutral conditional mean and variance matrix are given by

EQ
t (Xt+1) =

µQ
x

µQ
m

+

ΦQ
x 0

0 ΦQ
m


xt
mt

 = µQ
X + ΦQ

XXt, (9)

V Q
t+1 =

V Q
x 0

0 V Q
m

 = V Q
X , (10)

where V Q
X is positive definite. The assumption of constant conditional variances and

covariances under the risk-neutral measure is likely to be violated. However, recent liter-

ature indicates that a violation is unlikely to affect the pricing of bonds. First, Cieslak

and Povala (2016) build a flexible term structure model with stochastic volatility under

both the physical and risk-neutral probability measures. As a result, no-arbitrage bond

yields depend directly on volatility. However, they empirically show that the loading on

volatility is close to zero. This result is also supported by a large body of literature that

argues that bond market volatility is not spanned by bond yields (Andersen and Benzoni,

2010, Collin-Dufresne and Goldstein, 2002, Joslin, 2017). This phenomenon is known as

unspanned stochastic volatility. Second, Joslin and Konchitchki (2018) show that convex-
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ity effects under the risk-neutral measure are small. Therefore, the conditional variance

under the risk-neutral measure has only small effects on bond pricing.

2.4 No-Arbitrage Bond Pricing

The no-arbitrage bond yields implied by my model are equal to those of the Gaussian

term structure model. These are given in the following theorem.

Theorem 1 Let Pt,n denote the no-arbitrage price of a n-period zero-coupon bond. Let

Yt,n = −n−1 log(Pt,n) be the associated yield. Given (6)-(10), Yt,n is given in closed form

by

Yt,n = an + b′x,nxt + b′m,nmt = an + b′nXt, (11)

where an = −n−1ãn and bi,n = −n−1b̃i,n for i = {x,m} are given recursively by

ãn+1 = −αX + ãn + b̃′x,nµ
Q
x + b̃′m,nµ

Q
m +

1

2
b̃′x,nV

Q
x bx,n +

1

2
b̃′m,nV

Q
m bm,n, (12)

b̃′x,n+1 = −β′x + b̃′x,nΦQ
x , , (13)

b̃′m,n+1 = −β′m + b̃′m,nΦQ
m, (14)

The recursions are initiated at n = 0 with a0 = 0, bx,0 = 0nx×1, and bm,0 = 0nm×1.

Proof. The solution follows from the no-arbitrage recursion, Pt,n = Et (Mt+1Pt+1,n−1), see

Ang and Piazzesi (2003).

Remark 1 I note that the conditional variance matrix, Vt, does not appear in the bond

pricing equation, (11). Thus, my model exhibits a form of unspanned volatility, but without

introducing restrictions as in the traditional literature on unspanned stochastic volatility.6

Remark 2 It follows from (11) that conditional yield variance is given by

Vart(Yt+1,n) = b′nVt+1bn. (15)

2.5 Risk Compensations

My model distinguishes between two concepts of risk compensation. First, term premia,

Ψt,n, are defined by the difference between bond yields and expected future short rates,

6Joslin (2017) argues that traditional USV models restrict the cross-section of yield curve volatility in a
way that is inconsistent with the data.
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Υt,n:

Ψt,n = Yt,n −Υt,n, Υt,n =
1

n

n−1∑
i=0

Et (rt+i) . (16)

The following theorem provides closed-form expressions of short-rate expectations and

term premia.

Theorem 2 Given the physical conditional mean of Xt in (3) and the assumptions of

Theorem 1, short-rate expectations, Υt,n, and term premia, Ψt,n, are given by

Υt,n = aEHn + (bEHn )′Xt,

Ψt,n =
(
an − aEHn

)
+ b′nXt − (bEHn )′Xt.

where Xt = [Xt, Xt−1, . . . , Xt−L+1] and

aEHn = αX +
1

n

n−1∑
i=0

i−1∑
j=0

β′XΦj
XµX ,

bEHn =
1

n

n−1∑
i=0

β′XΦi
X .

Here, βX = [β′x, β
′
m, 01×(p+m)(L−1)]

′ and µX and ΦX denote the parameters of the condi-

tional mean associated with the companion form of (3).

Proof. Straightforward.

Remark 3 It follows that the conditional variances of short-rate expectations and term

premia are given in closed form by

Vart−1(Υt,n) = (bEHn )′Vart−1 (Xt) bEHn
Vart−1(Ψt,n) =

(
b̌n − bEHn

)′
Vart−1 (Xt)

(
b̌n − bEHn

)
,

where b̌n = (b′n, 0, 0, . . . , 0)′.

The second concept of risk compensation relates to variance risk. While Vt is not

priced in bonds, see Theorem 1, investors may demand compensation for variance risk.

This compensation is realized in the broader fixed-income market through the pricing of

interest-rate derivatives. To analyze these premia and their relation to macroeconomic

variables, I follow Bollerslev, Tauchen, and Zhou (2009) and consider the model-implied

variance risk premium given by the difference between the expected variance under phys-

ical and risk-neutral probabilities. The next theorem provides a closed-form solution for

the variance risk premium.
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Theorem 3 Variance risk premia defined by Γt,n = Et [Vart+1(Yt+2,n)]−EQ
t [Vart+1(Yt+2,n)]

are given by

Γt,n = b′n

(
K∑
k=1

[
A

(k)
X Vt+1A

(k)′

X − A(k)
X V Q

XA
(k)′

X

])
bn

Proof. Straightforward.

Remark 4 It follows that EQ
t [Vart+1(Yt+2,n)] is constant and the dynamics of my variance

risk premium are determined solely from the physical dynamics.

Due to the above remark, I abstract from analyzing time-variation in variance risk

premia in my empirical application. Instead, I consider averages, which I believe are

accurately estimated by my model.

3 Econometric Method

In this section, I present a simple approach to estimating my model. Specifically, I extend

the ideas proposed by Joslin, Singleton, and Zhu (2011) for the Gaussian term structure

model with latent yield-specific factors only.

3.1 Estimation Problem

Consider bond yields of N different maturities given by n1, . . . , nN periods. Let Yt =

(Yt,n1 , . . . , Yt,nN )′ denote a vector of these observations. I impose the following assumption

on the accuracy of yield measurements:

Assumption 1 Yields, Yt, are measured with errors given by ηt ∼ i.i.d. N (0, σ2IN).

I identify latent yield-specific factors, xt, such that they capture yield curve variation

that is not related to the macroeconomic variables. For this purpose, I decompose model-

implied yields given in Theorem 1 by

Yt,n = am,n + b′m,nmt + Y ⊥mt,n , (17)

where Y ⊥mt,n = Yt,n − am,n − b′m,nmt and am,n = n−1ãm,n with

ãm,n = ãm,n−1 + b̃′m,nµ
Q
m +

1

2
b̃′m,nV

Q
m b̃m,n.

The synthetic yields, Y ⊥mt,n , capture the variation in the yield curve that cannot be ex-

plained by the macroeconomic variables. I therefore extract latent yield-specific factors

from synthetic yields.
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I propose a step-wise estimation method to implement this strategy. A first step

estimates parameters related to pricing bonds with macroeconomic variables, ΘQ
m =

{βm, µQ
m,Φ

Q
m, V

Q
m }. The marginal likelihood function to be maximized is given by

log `Y
(
Yt|mt; ΘQ

m

)
= −

N∑
i=1

(Yt,ni − am,ni − bm,nimt)
2 .

I use these estimated parameters to construct estimates of the synthetic yields, Y ⊥mt,n .

The remaining parameters can be estimated in a second step by the standard ap-

proach, combining maximum-likelihood estimation with a Kalman filter and parameter

restrictions for statistical identification. This approach is, however, cumbersome because

my model encounters non-linearities in both the conditional variance matrix, Vt, and in

the loading recursions, an and bx,n. In the remainder of this section, I provide a simpler

approach that separates the estimation problem such that non-linearities in the physical

dynamics are treated separately from the non-linear bond yield equation. Furthermore,

my approach avoids Kalman filtering and hence the numerical stability issues that are

likely to be associated with filtering methods.

3.2 Rotation and Identifying Restrictions

My model is invariant to affine transformations of the latent factors given by ρt = cx+Cxxt,

see Lemma 1 in Technical Appendix A.2. Therefore, the latent factors can be rotated into

linear combinations, or portfolios, of the synthetic yields, Y ⊥mt,n . Let ρt = WY ⊥mt denote a

vector of these rotated factors. The matrix of portfolio weights, W , can be chosen freely,

e.g., such that the portfolios are the first nx principal components of the synthetic yield

curve. The rotated model is unique given that W has full rank. Theorem 4 formalizes

these ideas.

Theorem 4 The model defined by (3)-(10) with synthetic yields defined in (17) is ob-

servationally equivalent to a unique model in which the latent factors are portfolios of

synthetic yields given by ρt = WY ⊥mt , where the weighting matrix W has full rank. Let

Pt = (ρ′t,m
′
t)
′ denote the resulting observable state vector. Then, this unique model is

13



given by

Pt = µP +
L∑
l=1

Φ
(l)
P Pt−l + εP,t, εP,t = V

1/2
t zP,t, (18)

Vt = ΣPΣ′P +
K∑
k=1

A
(k)
P εt−1ε

′
t−1A

(k)′

P +
K∑
k=1

B
(k)
P Vt−1B

(k)′

P , (19)

Pt = µQ
P + ΦQ

PPt−1 + εQP,t, εQP,t = (V Q
P )1/2zQP,t, (20)

rt = αP + β′mmt + β′ρρt (21)

with zP,t ∼ i.i.d. N (0, InX ) and zQP,t ∼ i.i.d. N (0, InX ). V Q
P is a positive definite matrix.

Proof. See Technical Appendix A.2.

Remark 5 Given the rotation in Theorem 4, model-implied synthetic yields are given by

Y ⊥mt,n = aρ,n + b′ρ,nρt, (22)

where aρ,n = −n−1ãρ,n and bρ,n = −n−1b̃ρ,n with

ãρ,n+1 = −αP + ãρ,n + b̃′ρ,nµ
Q
ρ +

1

2
b̃′ρ,nV

Q
ρ bρ,n, (23)

b̃′ρ,n+1 = −β′ρ + b̃′ρ,nΦQ
ρ . (24)

The next step is to impose parameter restrictions such that my model is identified.

In a model with a constant conditional variance matrix under the physical measure, these

restrictions can be imposed on the risk-neutral dynamics only, see Joslin, Singleton, and

Zhu (2011). I adopt these restrictions as formalized in part (i) of Theorem 5, which

follows next. In my model, however, I need additional restrictions for identifying the

physical dynamics. These are given by part (ii) of Theorem 5. To state the theorem,

I define functions that map a set of parameters into a vector of bond yield loadings by

a(αP , βρ, µ
Q
ρ ,Φ

Q
ρ , V

Q
ρ ) = (aρ,n1 , . . . , aρ,nN )′ and b(βρ,Φ

Q
ρ ) = (bρ,n1 , . . . , bρ,nN )′.

Theorem 5 The model defined by (18)-(21) in Theorem 4 with synthetic yields given by

(22) is identified with the following parametrizations:

(i) The risk-neutral dynamics and the short-rate equation are uniquely parametrized by

ΘQ
ρ = {kQ∞, λQ, V Q

ρ }, where λQ contains ordered eigenvalues of the transformed risk-

neutral autoregressive coefficient matrix given by [Wb(βx,Φ
Q
x )]−1ΦQ

ρ [Wb(βx,Φ
Q
x )],
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c.f., Lemma 1 in the Technical Appendix A.2. In particular,

αP = −β′ρaW ,

βρ = (b−1
W )′ι,

µQ
ρ = kQ∞bW e1 + (Inx − ΦQ

ρ )aW ,

ΦQ
ρ = bWJ(λQ)b−1

W ,

where e1 = (1, 0, . . . , 0)′ and J(λQ) = diag(JQ
1 , J

Q
2 , . . . , J

Q
D), where JQ

d for d =

1, 2, . . . , D are Jordan blocks. Also, aW = Wa(0, ι, kQ∞e1, J(λQ), b−1
W V Q

ρ (b−1
W )′) and

bW = Wb(ι, J(λQ)).

(ii) For identification of the conditional variance matrix under the physical measure,

restrict the diagonal elements of ΣP to be strictly positive and the first entry of A
(k)
P

and B
(k)
P for k = 1, . . . , K to be non-negative. Finally, a necessary condition for

identification is that K ≤ floor
(

1
2
nX + 1

2

)
.

Proof. See Technical Appendix A.3.

3.3 Marginal Likelihood for Synthetic Yields

As in Joslin, Singleton, and Zhu (2011), I impose the following assumption to set up the

likelihood function for synthetic yields.7

Assumption 2 The portfolios of synthetic yields, ρt, balance out the measurement errors

such that ρt is observed without errors.

With ρt and hence Pt observed, the marginal log-likelihood of the synthetic yields can be

separated by

log `
(
Y ⊥mt |Y ⊥mt−1 ; ΘP

P ,Θ
Q
ρ

)
= log `Y

(
Y ⊥mt |Pt; ΘQ

ρ

)
+ log `P

(
Pt|Pt−1; ΘP

P
)
.

I note that the two terms of the log-likelihood contribution do not depend on the same

parameters. In particular, the likelihood separation clarifies that ΘQ
ρ relates to the cross-

section of the synthetic yield curve, while ΘP
P governs the dynamics of the state vector. It

follows that ΘQ
ρ and ΘP

P can be estimated by solving two unrelated maximum likelihood

7Relaxing this assumption requires a filtering technique such as Kalman filtering for estimating the
model. Joslin, Singleton, and Zhu (2011) show in the Gaussian term structure model that the parameter
estimates do not change significantly when this assumption is relaxed.
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problems. The marginal log-likelihood function related to the parameters of the physical

dynamics is given up to constants by

log `P
(
Pt|Pt−1; ΘP

P
)

= −1

2
log|Vt| −

1

2

(
Pt − µP −

L∑
l=1

Φ
(l)
P Pt−l

)′
V −1
t

(
Pt − µP −

L∑
l=1

Φ
(l)
P Pt−l

)
, (25)

where I recall that Vt depends on the parameters and data through (19). For the remaining

parameters, the marginal log-likelihood function to be maximized is given by

log `Y
(
Y ⊥mt |Pt; ΘQ

ρ

)
=
(
Y ⊥mt − a− bρt

)′ (
Y ⊥mt − a− bρt

)
, (26)

where a = a(αP , βρ, µ
Q
ρ ,Φ

Q
ρ , V

Q
ρ ) and b = b(βρ,Φ

Q
ρ ) with αP , βρ, µ

Q
ρ , and ΦQ

ρ given as

explicit functions of ΘQ
ρ = {kQ∞, λQ, V Q

ρ } in Theorem 5. It is noteworthy that the log-

likelihood function in (26) is identical to that of the Gaussian term structure model.

Thus, this part of the estimation is no more difficult to implement than Gaussian term

structure models that are celebrated for their tractability.

4 Data and Empirical Performance

4.1 Data

I apply zero-coupon yields of U.S. Treasury bonds provided by Gürkaynak, Sack, and

Wright (2007) at the monthly frequency with end-of-month observations. I consider the

sample from September 1971 to June 2019, which contains both periods with highly

volatile yields, e.g., in the beginning of the 1980s, and periods with low yield volatility,

e.g., before the outbreak of the financial crisis and during the zero-lower bound regime.

I include maturities of 1, 2, 3, 5, 7, and 10 years. To capture the short end of the yield

curve, I also use the 3- and 6-month Treasury bill rates from Federal Reserve Economic

Data.

Following the literature, I include two macroeconomic variables: inflation and eco-

nomic activity. There is no consensus in the literature about which specific data to use for

these variables.8 Economic activity has been defined by both growth and slack measures.

8For example, Ang and Piazzesi (2003) construct factors from principal components of a wide range of
macroeconomic variables; Joslin, Priebsch, and Singleton (2014) use expected inflation measured from
surveys along with the Chicago Fed National Activity Index, which is an estimate of overall economic
growth; Bikbov and Chernov (2010) use CPI inflation and the Help Wanted Advertising in Newspapers
index.
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Bauer and Rudebusch (2016) show that these series are widely different and uncorrelated

over the business cycle. They argue that slack variables are appropriate as they are consis-

tent with empirical monetary policy rules. Moreover, they show that the unemployment

gap is related to the slope of the yield curve. In light of these results, I adopt the unem-

ployment gap as a measure of economic activity. I construct the unemployment gap by the

difference between the unemployment rate from the U.S. Bureau of Labor Statistics and

the estimate of natural unemployment from the Congressional Budget Office.9 I measure

inflation by the 12-month change in headline consumer prices from the Bureau of Labor

Statistics.

The data are exhibited in Figure 1 and the descriptive statistics are detailed in Table

1. The yield data are highly persistent for all maturities. They are upward-sloping

on average with a decreasing term structure of standard deviations. Yield levels peak

in the beginning of 1980 and approach the zero-lower bound in the aftermath of the

financial crisis. The unemployment gap is weakly and negatively correlated with the yield

curve, while the correlations between inflation and yields are higher and positive. The

data are cyclical: yields, particularly for short-term maturities, and inflation decrease in

recessions, while the unemployment gap increases in recessions. The unemployment gap

has decreased steadily during the current expansion.

The dual mandate of the Federal Reserve is related to inflation based on personal

consumption expenditures (PCE) rather than CPI inflation. Moreover, it has been argued

that core inflation, i.e., change in price indices that exclude food and energy prices,

provides a better indicator of the path of future inflation compared to headline inflation

(Blinder and Reis, 2005, Mishkin, 2007). I therefore provide results using PCE and core

CPI inflation in the online appendix. I also apply my model using a growth measure of

economic activity given by the Chicago Fed National Activity Index. The conclusions do

not qualitatively change with these choices of macroeconomic variables.

4.2 Model Specification

Number of Latent Factors

Since Litterman and Scheinkman (1991), the literature widely agrees that three latent

factors are sufficient for modeling the yield curve. The macroeconomic variables can po-

9The natural unemployment estimate is available at the quarterly frequency only. I assume that the
natural unemployment rate is constant over the quarters.

17



tentially reduce the number of latent factors necessary for capturing the residual variation

in the synthetic yields. However, I find that three latent factors remain necessary.

As shown in Theorem 4, the latent factors can be rotated into observed portfolios

of synthetic yields, ρt = WY ⊥mt , where W has full rank. I choose W such that the

yield portfolios correspond to the first three principal components of the synthetic yield

curve. This choice ensures that the portfolios are orthogonal and thus span the entire

three-dimensional subspace. As a result, the portfolios capture as much variation in the

synthetic yields as possible with three factors.

Lag Length Under the Physical Measure

The order of the vector autoregression under the physical measure determines the lag

length of the macroeconomic variables. I implement the model with an order of L = 12

corresponding to an annual lag structure, which is a common choice in the macro-finance

term structure literature (Ang and Piazzesi, 2003, Jardet, Monfort, and Pegoraro, 2013,

Joslin, Le, and Singleton, 2013). The lag length is chosen based on general-to-specific

tests and information criteria as documented in the online appendix.

Generality of the Conditional Variance Matrix Under the Physical Measure

With three latent factors and two macroeconomic variables, the state vector has dimension

NX = 5, which identifies up to K = 3 components in the conditional variance matrix. In

fact, for K = 3, the BEKK GARCH model is equivalent to the diagonal vech-GARCH

model with restrictions for positive definiteness. As already discussed, K = 1 does not

give the model sufficient freedom to capture both conditional variances and covariances.

In contrast, I find that the model can match realized and rolling variances of bond yields

closely with K = 2, see Section 4.4. In the online appendix, I formally compare models

specified with K = {1, 2, 3} and show that the data is best modeled with K = 2.

4.3 Estimation Results

Parameter estimates are reported in the online appendix. The model is highly persistent

under both the physical and risk-neutral measures with maximum eigenvalues of the

autoregressive coefficients of respectively 0.995 and 0.997. The conditional variance matrix

of the physical dynamics is persistent but remains stationary because

max

[
K∑
k=1

(A
(k)
P � A

(k)
P +B

(k)
P �B

(k)
P )

]
= 0.981 < 1,
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where � denotes element-wise Hadamard product.10

The estimated latent factors are exhibited in Figure 2 along with the factor loadings

bx,n across maturities n. The loadings show that the latent factors capture level, slope,

and curvature risk of the synthetic yields, Y ⊥mt . The figure shows that these factors are

different from the level, slope, and curvature of observed yields, Yt. In particular, I observe

that the macroeconomic variables relate to variations in the level and slope of the yield

curve. This is consistent with Rudebusch and Wu (2008), who show that the level and

slope of the yield curve have macroeconomic underpinnings, and Bauer and Rudebusch

(2016), who show that the unemployment gap is related to the slope.

4.4 Empirical Performance

Goodness of In-Sample Yield Curve Fit

The ability of my model to match the yield curve is summarized by root mean squared

errors in Panel A of Table 2. My model fits the data well with an average error across

maturities of 8 basis points. This result is not surprising since the risk-neutral dynamics

of my model are similar to those of the Gaussian term structure model, which is known

to have good in-sample properties in terms of matching the yield curve.

Matching Conditional Yield Curve Volatility

I compare model-implied conditional variances and covariances of the yield curve to two

empirical proxies. First, I construct a realized variance matrix using daily yield data.11

This measure is likely to be a good proxy of conditional variance, because realized variance

is a consistent estimator of integrated variance (Barndorff-Nielsen and Shephard, 2004)

and conditional variance can be viewed as a noisy measure of integrated variance.12 As

10The stationarity condition for the BEKK GARCH model is given in Engle and Kroner (1995).
11I construct the realized variance matrix as follows. Let yt,s,n denote the n-maturity yield on day s in
month t and let S denote the total number of daily observations in month t. Following this, I define the
realized covariance between yields with maturities n1 and n2 by

RVt,n1,n2
=

S∑
s=1

(yt,s,n1
− yt,s−1,n1

) (yt,s,n2
− yt,s−1,n2

) .

12See Andersen, Bollerslev, Diebold, and Labys, (2001, 2003), Koopman and Scharth (2013), and Hansen,
Huang, and Shek (2011).
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a second proxy, I use a rolling conditional variance matrix constructed with daily data

using a 3-month look-back.

Figure 3 shows model-implied conditional variances and covariances along with the

corresponding realized and rolling measures for the 3-month and 10-year maturities. My

model captures low-frequency variation of empirical measures closely in both the highly

volatile period in the beginning of the 1980s and in the periods with low volatility. Short-

lived bursts observed in the empirical proxies that are not reproduced by my model may

be due to measurement errors (Andersen, Bollerslev, and Meddahi, 2005) and outliers

that should not be predictable ex ante (Cieslak and Povala, 2016).

To provide a formal assessment, I show root mean squared errors in Panels B.1 and

B.2 of Table 2. Errors are generally lower for long-term yields, which may reflect that

volatility of short-term bond yields is distorted by noise, institutional effects, and factors

specific to Treasury bills, see Cieslak and Povala (2016) and references therein. I also

run Mincer and Zarnowitz (1969) regressions of the empirical measures on a constant and

the model-implied conditional variances and covariances. Table 2 shows the constants,

slope coefficients, and adjusted R-squared values from these regressions. I find that a

majority of the constants are estimated insignificantly. The estimated slope coefficients

are between 0.5 and 0.8 with adjusted R-squared values between 0.4 and 0.6.

Thus, I conclude that my model can match empirical measures of yield curve vari-

ances and covariances. This finding contrasts with continuous-time term structure models

with stochastic volatility, which result in low and often negative correlation between pre-

dicted and realized variances (Christensen, Lopez, and Rudebusch, 2014, Collin-Dufresne,

Goldstein, and Jones, 2009, Jacobs and Karoui, 2009). The success of my model can be at-

tributed to the exponential-quadratic pricing kernel. Specifically, the distinction between

conditional variance matrices under the physical and risk-neutral probability measures

gives my model freedom to capture empirical volatility as seen in Creal and Wu (2017),

Ghysels, Le, Park, and Zhu (2014), and Joslin and Konchitchki (2018).

Term Structure Decomposition

Next, I show how my model decomposes yields into short-rate expectations and term

premia, see (16). The estimated decomposition is shown for the 10-year yield in the left

chart of Figure 4. The expected short rates reflect the dynamics of long-term yields due

to the high degree of persistence in yield data. As a result, model-implied term premia
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are relatively stable. However, the term premia are counter-cyclical as investors demand

a higher compensation for risk in times of crisis.

Time-varying volatility can be interpreted as a time-varying quantity of risk. Thus,

my model involves time-variation in both the quantity and price of risk, see (7)-(8). In

contrast, Gaussian term structure models only allow for a time-varying price of risk.

Thus, comparing term premia estimates of my model with those of the Gaussian term

structure model provides an insight into the impact of a time-varying quantity of risk on

term premia. The right chart in Figure 4 shows the term structure decomposition of the

Gaussian term structure model. The time-varying quantity of risk in my model causes

stronger counter-cyclicality in term premia compared to the constant quantity of risk in

the Gaussian model. Specifically, I observe large differences between the models after

the financial crisis. My model implies that term premia decreased slowly and became

negative in May 2019. This result signals an increasing optimism among investors, which

is consistent with the economic expansion. In contrast, the Gaussian term structure model

implies term premia that became negative immediately after the recession. This estimate

points to investors regaining optimism shortly after the recession. It is likely that this

result arises because the Gaussian model fails to capture the decrease in the quantity of

risk following the recession.

Furthermore, my model disagrees with the Gaussian term structure model in regard

to the effectiveness of forward guidance. If forward guidance works as intended, short-rate

expectations should follow central bank communications. In my model, this is indeed the

case for many examples of statements from the Federal Open Market Committee. For

example, my model implies increased short-rate expectations as the committee signaled

an upward path of the federal funds rate during the lift-off from the zero-lower bound

in December 2015. In contrast, the Gaussian term structure model estimates decreasing

short-rate expectations during this period, which implies that the forward guidance was

not effective. Another example is in December 2008, where the Federal Open Market

Committee indicated that the federal funds rate was likely to remain low in the future. My

model is consistent with markets reacting to this statement as the short-rate expectations

remain low. However, short-rate expectations in the Gaussian term structure model

increase over this period, as observed in the right chart in Figure 4. My conclusion that

forward guidance is effective is supported by Carlstrom, Fuerst, and Paustian (2015) and

McKay, Nakamura, and Steinson (2016), while Hagedorn, Luo, Manovskii, and Mitman

(2019) present counter-arguments.

21



My model also generates time-varying conditional variances of the expected short

rates and term premia. These variances are shown at the 10-year maturity in Figure

5. The variance of short-rate expectations is counter-cyclical and mimics the behavior

of the conditional yield variances. Specifically, the large burst of volatility in short-

term yields in the beginning of the 1980s is transmitted to the volatility of short-rate

expectations. The term premium is more stable. Figure 5 also shows the model-implied

conditional correlation between the 10-year short-rate expectations and term premium.

The correlation is negative throughout the majority of the sample. This is intuitively

appealing: whereas a high term premium signals that bond market investors fear risk,

i.e., pessimism, high expected short rates reflect an optimism about future economic

conditions. The sign, however, tends to reverse during expansions, which may reflect the

fact that mid-expansions are typically characterized by a flattening yield curve and low

volatility.13

Specification Test

The ability of the model to decompose the term structure can be tested by projecting

holding period returns, Yt+1,n−1−Yt,n, on a constant and the slope of the yield curve, (Yt,n−
rt)/(n− 1). Under the expectations hypothesis, such regressions give coefficients equal to

one. However, Campbell and Shiller (1991) show that empirically estimated coefficients

are negative and exhibit a downward pattern across maturities. I test the ability of

the model to generate coefficients that match the empirical failure of the expectations

hypothesis, which has been named the LPY-I test by Dai and Singleton (2002).14 The

test results are depicted in the upper-left chart of Figure 6. With the exception of the short

maturities, my model produces coefficients that are well within the 95 percent confidence

intervals for the empirically estimated coefficients. Thus, the model passes the LPY-I

test.

13This relationship has been established by Norland (2018) using the VIX index as a measure of volatility.
While the VIX index relates to equity markets, it is positively correlated with volatility measures related
to bond markets, e.g., the Merill-Lynch Option Implied Volatility Estimate (MOVE).
14In particular, I construct yield curve data with maturities 1, 2, . . . , 120 months using the method of
Gürkaynak, Sack, and Wright (2007). Then, I regress Yt+1,n−1−Yt,n = c+φT,n(Yt,n−rt)/(n−1)+et, which

results in the empirically estimated coefficients φ̂T,n. I compare these with model-implied population
coefficients obtained by simulating 100,000 observations from my model.
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Dai and Singleton (2002) also propose a LPY-II test which projects the risk-adjusted

holding period returns onto a constant and the slope of the yield curve.15 If the model

is well-specified, the resulting coefficients should be equal to one. The lower-left chart on

Figure 6 shows that the model-implied 95 percent confidence interval contains one for all

maturities. Hence, my model also passes the LPY-II test.

Traditional affine term structure models with stochastic volatility (Dai and Singleton,

2000) fail both the LPY-I and LPY-II tests. In contrast, the Gaussian term structure

model passes both tests (Dai and Singleton, 2002), which I confirm in the right panel of

Figure 6, but fails to capture time-varying volatility. Thus, the existing literature poses a

trade-off between modeling time-varying volatility and passing the LPY tests. My model

overcomes this trade-off as I simultaneously match empirical proxies of the conditional

yield curve variance matrix and pass both LPY tests.

5 Yield Curve Volatility and the Macroeconomic Risk

In this section, I show that the relationship between the yield curve and macroeconomic

risk fluctuates over time. My model provides insights into the patterns and sources of these

fluctuations. Specifically, I examine the macroeconomic contribution to the variances of

yields, short-rate expectations, and term premia. Finally, I relate the model-implied price

of variance risk to macroeconomic variables.

5.1 Macroeconomic Contribution to Yield Curve Variances

I analyze the relationship between the yield curve and macroeconomic risk by decomposing

model-implied variances into contributions from macroeconomic variables and latent yield-

specific factors. For this purpose, I apply a recursive identification scheme assuming

that macroeconomic variables are slow-moving and do not react to contemporary yield-

specific shocks. Furthermore, I assume that the unemployment gap responds to inflation

shocks with a one-month lag. These assumptions are standard in the structural vector

autoregressive literature with Cholesky identification schemes (Bernanke, Boivin, and

Eliasz, 2005, Christiano, Eichenbaum, and Evans, 1999, Stock and Watson, 2001). My

approach is also standard in the macro-finance term structure literature in which more

15The risk-adjusted returns are given by Yt+1,n−1−Yt,n−(Ψt+1,n−1−Ψt,n−1)+ΨF
t,n−1/(n−1), where Yt,n

are observed yields, Ψt,n is the model-implied term premium defined in (16), and ΨF is the model-implied
forward term premium defined by ΨF

t,n = Ft,n − Et(rt+n), where Ft,n is the forward rate.
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sophisticated identification methods are not yet widespread. My results are robust to

different orderings of the variables, see the online appendix.

Given these assumptions, conditional yield variances can be decomposed into varia-

tion generated by, respectively, macroeconomic variables and latent yield-specific factors.

Moreover, the macroeconomic contribution can be decomposed into an inflation and an

unemployment-gap component:

Vart−1 (Yt,n) = Vart−1

(
εinflation
t

)
+ Vart−1

(
εunemployment gap
t

)
+ Vart−1

(
εyield-specific
t

)
,

where εinflation
t , εunemployment gap

t , and εyield-specific
t are structural inflation, unemployment-gap,

and yield-specific shocks. I define the macroeconomic share of variance in Yt,n by

Vart−1

(
εinflation
t + εunemployment gap

t

)
/Vart−1 (Yt,n) .

Analogously, I construct macroeconomic shares of variance in short-rate expectations and

term premia. The novelty of my analysis compared to the previous literature is that the

macroeconomic shares are time-varying. I characterize the time-series properties of the

term structure of macroeconomic shares in Table 3. I emphasize two results from these

descriptive statistics.

First, I observe that the macroeconomic shares vary over wide ranges. For example,

the macroeconomic contribution to variance in the 3-month yield varies between 0.02 and

55.56 percent. The ranges are similar for yields of bonds with longer maturities. Thus,

in some periods, latent yield-specific factors fully account for movements in the yield

curve, whereas macroeconomic shocks explain more than half of the variation in other

periods. On average, macroeconomic shocks explain 7.92 percent of the 3-month yield

variance. This average is consistent with the constant macroeconomic share obtained with

a Gaussian term structure model, which equals 7.72 percent for the 3-month maturity. The

models agree on average for all considered maturities. Since the Gaussian term structure

model captures the average level of yield curve variance, this result can be interpreted as

a validation of my model specification.

Second, the sample kurtosis along with the quantiles suggest that there are occasional

large month-to-month fluctuations. Some of these occasions can be tied to meaningful

economic events. For example, when the first round of quantitative easing was announced

in November 2008, the macroeconomic share of variance in the 10-year yield increased

from 5 to 28 percent. The intention of quantitative easing is that central banks impact

long-term yields directly by large-scale asset purchases. Thus, successful quantitative
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easing programs result in a tighter link between long-term yields and the dual mandate.

This intuition is indeed consistent with an increased macroeconomic share of variance in

the 10-year yield. Another example is when Donald Trump was elected president in the

end of 2016, where it was generally believed that Trump’s stimulus plans would lead to

higher interest rates.16 During the month following the election, the macroeconomic share

of variance in the 10-year yield indeed increased from 5 to 25 percent. More recently, the

Federal Reserve announced in January 2019 that the monetary policy tightening cycle

would be put on hold due to factors unrelated to the domestic economy.17 During this

month, the macroeconomic share of the 3-month yield variance fell from 16 to 3 percent.

This anecdotal evidence is consistent with the widespread idea that macroeconomic an-

nouncement effects impact financial markets (Andersen, Bollerslev, Diebold, and Vega,

2007, Balduzzi, Elton, and Green, 2001, Bollerslev, Cai, and Song, 2000, Feunou, Fontaine,

and Roussellet, 2019, Fleming and Remolona, 1999, Johannes, 2004, Piazzesi, 2005).

The link between variance in long-term yields and macroeconomic risk can be gen-

erated through two channels, namely short-rate expectations and term premia, as shown

by the term structure decomposition in (16). Table 4 shows descriptive statistics of the

macroeconomic shares of variances in 5- and 10-year short-rate expectations and term

premia. Macroeconomic variables account for 0.32 to 75.66 percent of the variance in

10-year short-rate expectations and 41.88 percent on average. The macroeconomic share

of variance in the 10-year term premium ranges between 0.36 and 68.58 percent, with an

average of 21.30 percent. These averages do not align with the Gaussian term structure

model that implies macroeconomic shares of 26.36 and 26.16 percent for the 10-year short-

rate expectations and term premium. These differences arise because the Gaussian term

structure model obtains a different decomposition of yields by ignoring the time-varying

quantity of risk, as discussed in Section 4.4. Thus, even if our interest lies in explain-

ing variation across the full sampling period, it is important to account for time-varying

volatility. The results also show that macroeconomic shocks explain more variation in, re-

spectively, short-rate expectations and term premia compared to the yield curve. Hence,

investors pay closer attention to macroeconomic risk when forming expectations about fu-

ture monetary policy compared to when they price bonds. This is consistent with the idea

of unspanned macroeconomic risk proposed by Joslin, Priebsch, and Singleton (2014).

16See, for example, “How high can US rates go in the Trump era?” Financial Times, December 13, 2016,
https://www.ft.com/content/b5551882-c057-11e6-81c2-f57d90f6741a.
17“Federal Reserve puts rate rises on hold as global economy slows”, Financial Times, January 30, 2019,
https://www.ft.com/content/2565e154-24b7-11e9-b329-c7e6ceb5ffdf.
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5.2 Historical Joint Behavior of the Yield Curve and Macroeconomic Risk

Next, I characterize the historical relationship between movements in the yield curve

and macroeconomic variables throughout my sample. Since investors and policy makers

typically care about horizons longer than one month, I consider fluctuations in macroe-

conomic shares of variances over 5-year periods. Figure 7 shows 5-year moving-average

macroeconomic shares of the 3-month and 10-year yield variances along with variances of

the 10-year short-rate expectations and term premium.

In the upper-left chart on Figure 7, I observe a U-shaped pattern in the macroe-

conomic share of the 3-month yield variance. Specifically, macroeconomic variables are

important short-term yield factors in the 1970s and 1980s, but cease to be relevant during

the Great Moderation starting from the mid-1980s. This result is intuitively appealing as

the stabilization of macroeconomic variables reduces the extent to which these shocks can

explain volatility in financial markets. In the aftermath of the financial crisis, however, the

link between the macroeconomic variables and short-term yields has strengthened. Figure

7 also decomposes the macroeconomic contribution into inflation and the unemployment

gap. The role of inflation attenuates over time and only accounts for a small fraction of

the short-term yield variance after the Great Moderation. The unemployment gap, on

the other hand, accounts for the increasing macroeconomic share after the financial crisis,

which coincides with the recovery of the unemployment rate.

The upper-right chart on Figure 7 shows the trend in the macroeconomic share of

the 10-year yield variance. This trend can be described by a W-shape with low values

during the Volcker period and in the aftermath of the early 1990s recession. The W-shape

is driven by inflation, while the contribution from the unemployment gap is stable. The

macroeconomic shares of variances in the decomposition of the 10-year yield provides

additional insights, see the lower charts of Figure 7.

First, the macroeconomic share of variance in the 10-year short-rate expectations

exhibits an upward trend since the Great Moderation. Thus, the expectations hypothesis

is an increasingly important channel for how macroeconomic variables shape the yield

curve. One interpretation is that there is a growing belief among investors that the

Federal Reserve’s commitment to the dual mandate is credible. The upward trend is

primarily attributed to the unemployment gap with the exception of the financial crisis

and its aftermath, where inflation accounts for more variation. This result is consistent

with survey data on CPI inflation from the Survey of Professional Forecasters. To show
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this, I plot the median one-quarter and one-year ahead forecasts of CPI inflation along

with the dispersion of these forecasts defined by the difference between the 75th and 25th

quantiles in Figure 8. I observe that the median forecasts vary more during recessions

and in particular during the financial crisis. Moreover, the dispersions are larger during

recessions. I capture this pattern in the model-implied conditional variance of inflation,

which is plotted in the lower panel of Figure 8 for forecasting horizons of one quarter and

one year.

Second, the macroeconomic share of variance in the 10-year term premium decreases

rapidly in the 1980s, but evolves around a constant mean in the remainder of the sam-

ple with counter-cyclical fluctuations caused primarily by inflation. Thus, my model is

consistent with a counter-cyclical inflation risk premium, as estimated by Buraschi and

Jiltsov (2005), Chernov and Mueller (2012), and D’Amigo, Kim, and Wei (2018). The

contribution of the inflation risk premium is particularly high during the financial crisis.

In my model, a counter-cyclical inflation risk premium is generated by the exponential-

quadratic pricing kernel, which allows investors to price the risk associated with both

negative and positive inflation shocks. I illustrate this mechanism by simulating 100,000

paths of my model under the risk-neutral (Q) and physical (P) probability measures and

estimating kernel density functions of these simulated series. I plot the conditional den-

sities along with their ratio (Q/P) for the one-month and ten-year horizons in Figure 9.

The risk-neutral densities are wider than the physical ones, which reflects the presence of

variance risk premia, or, equivalently, different conditional variances under the probability

measures. This difference is more pronounced for the long horizon, which involves more

uncertainty and thus a larger risk compensation. Differences in the conditional variances

result in U-shaped density ratios such that investors are averse to both high and low states

of the distribution of inflation. Thus, my model allows investors to demand a premium

for deflation fears, which can generate a counter-cyclical inflation risk premium. In this

respect my model is similar to Roussellet (2018). An implication of this result is that a

symmetric inflation target enhances the efficiency of monetary policy during recessions.

Subsample Analysis: January 1990 to June 2019

Applications in term structure modeling often start the sample in 1990 to avoid issues

related to the Volcker period. As a robustness check, I show in Figure 10 that the

time-varying patterns of macroeconomic shares of yield curve volatility identified after

the Great Moderation for the full sample continue to hold when the model is estimated
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using the shorter sample. For the 3-month yield, I reproduce half of the U-shaped trend

in the 5-year moving-average macroeconomic share of variance with the increase driven

by the unemployment gap only. The levels of the ratios are higher than observed from

Figure 7, reflecting that the short-maturity loading on unemployment gap is overestimated

compared to the full sample. For the 10-year yield, I find that the macroeconomic share

of variance is increasing after 1995 due to inflation, which is consistent with the results

obtained using the full sample. I also generate macroeconomic shares of the variances in

the 10-year short-rate expectations and term premium that are similar to the full-sample

results.

5.3 Variance Risk Premia and Macroeconomic Risk

A central distinction of my model from the Gaussian term structure model is the fact

that I allow investors to be compensated for variance risk, as defined by Theorem 3. This

compensation is not earned by investments in Treasury bonds, as shown in the bond yield

equation (11). Rather, the variance risk premium is demanded by investors in the broader

fixed-income market through interest-rate derivatives.

Although my model results in time-varying variance risk premia, I abstract from ana-

lyzing these dynamics because they – by the assumption of constant risk-neutral volatility

– are solely given by the specification of volatility under the physical measure. Instead, I

focus on the average variance risk premia.

Following Carr and Wu (2009), I report variance risk premia as ratios of expected

variance under the physical measure. Thus, I show the sample average of Γt,n as a fraction

of the sample average of Et(Vart+1(Yt+2,n)) in the left chart of Figure 11. As expected,

the variance risk premia are negative across all maturities, which is consistent with the

stylized fact that implied volatilities exceed realized volatilities. The sizes of the variance

risk premia are between 30 to 70 percent of the expected variance. This ratio decreases in

magnitude across maturities with a small hump at the short end of the yield curve. Thus,

fixed-income investors pay large premia for protection against variance risk, particularly

in the short end of the yield curve. These results are aligned with existing estimates of

variance risk premia in Treasury bond markets (Choi, Mueller, and Vedolin, 2017, Trolle,

2009, Trolle and Schwartz, 2015).

As a novel contribution to the literature, I analyze the link between variance risk

premia and the macroeconomic variables. The right chart in Figure 11 decomposes the

variance risk premia into contributions from the macroeconomic variables and the latent
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yield-specific factors. A majority of the variance risk premia, between 80 and near 100

percent, are related to macroeconomic uncertainty. This share is increasing with maturity.

Thus, fixed-income investors demand large compensations for exposure to macroeconomic

uncertainty, whereas uncertainty related to latent yield-specific factors is less important

for variance risk premia. It follows that macroeconomic uncertainty can increase trad-

ing activity in fixed-income derivative markets. To the extent that monetary policy is

determined by inflation and unemployment gap through the dual mandate, my model is

consistent with Cieslak and Povala (2016).

6 The 2019 Yield Curve Inversion and Macroeconomic Risk

The 10-year U.S. Treasury bond yield declined by 50 basis points between April and June

2019. The yield curve inverted with the 10-year yield below the 3-month yield during

May. These movements are illustrated in the left chart of Figure 12a. The right chart

also shows that my model captures the increased variation in the 10-year yield during the

spring 2019.

Yield curve inversions draw attention from policy makers and investors because his-

tory shows that inversions are strong predictors of recessions. Indeed, the yield curve

has inverted before every recession since 1971. However, the time between inversion and

recession varies and history shows examples of yield curve inversions that are not pre-

ceded by recessions. A yield curve inversion is therefore subject to debate on whether a

recession will occur and when this is likely to happen. Long-term yields may fall below

short-term yields because investors expect a slow-down in future economic growth. Such

expectations are reflected in the yield curve by low short-rate expectations, and thus low

long-term yields for a given term premium. Inversions that are credible warnings of eco-

nomic slowdowns and potential recessions should therefore be driven by macroeconomic

variables through short-rate expectations.

I use my model to show whether the recent yield curve inversion is driven by macroe-

conomic variables, and thus is likely to pose a warning of an economic slowdown. My

model is promising for this purpose because it can analyze time-varying variances condi-

tional on current economic conditions. In contrast, the Gaussian term structure model

can only draw conclusions that are valid on average across the full sample.

To support my arguments, I begin by analyzing the yield curve inversion in August

2006 that preceded the financial crisis. Figure 13a shows the yield curve movements
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leading to this inversion. As in the recent inversion, the yield curve inversion in 2006 was

primarily driven by declines in the 10-year yield. Figure 13b attributes these movements

to macroeconomic variables. The left chart shows that the macroeconomic variables drive

some of the declines in the 10-year yield. The right chart shows a corresponding increase

in the macroeconomic share of variance in 10-year short-rate expectations. Thus, the

inversion in 2006 is related to macroeconomic risk. I note, however, from the magnitudes

of the macroeconomic shares of variances that the relationship between the long-term

yield and the macroeconomic variables remains weak despite the increases. This weak

link may explain why the financial crisis as defined by the National Bureau of Economic

Research began 18 months after the inversion.

Given these insights, I return to the yield curve inversion in 2019. Figure 12b shows

in the left chart that the macroeconomic share of the 10-year yield variance declined

from 15 percent in February to practically zero percent in June. Specifically, this decline

is related to a weakening relationship between 10-year short-rate expectations and the

macroeconomic variables. The right chart of Figure 12b shows that the macroeconomic

share of variance in 10-year short-rate expectations declined from 71 percent in February

to 53 percent in June. The macroeconomic share of variance in the 10-year term premia

has been stable over the period. Thus, I find evidence that macroeconomic shocks do

not explain the recent large declines in long-term yields and the associated yield curve

inversion. In fact, over the period in which the yield curve inverted, investors increasingly

base short-rate expectations on information not related to inflation and unemployment

gap.

These results indicate that the yield curve inversion in May 2019 is not related to

macroeconomic risk. The current strength of the U.S. economy supports this conclusion.

For instance, in May 2019 the unemployment rate had been at or below 4 percent for

more than a year. Moreover, it has been argued that the relationship between yields

and macroeconomic risk is currently weak due to distress in bond markets caused by low

rates and quantitative easing programs that are yet to be reversed.18 What does the yield

curve inversion then reflect? Global factors and in particular the trade war between the

U.S. and China are likely to play a role. Obviously, these circumstances can impact the

domestic economy and contribute to a recession in the future. My results therefore do

18Research from Pictet Wealth Management concludes that “the distortions created by extraordinary post-
crisis monetary policies have led to the breakdown in the relationship between interest rate expectations
and economic growth” (“Why the yield curve is not the economic guide it once was,” April 2, 2019,
https://www.ft.com/content/15d4048e-552f-11e9-91f9-b6515a54c5b1).
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not reject all signs of a recession. However, I emphasize that the yield curve inversion is

not currently related to macroeconomic risk and therefore does not signal that the risk of

a recession is imminent. Thus, the Federal Reserve should not begin a cycle of monetary

policy easing based on the yield curve inversion.

7 Concluding Remarks

Using a novel macro-finance term structure model with time-varying volatility and vari-

ance risk premia, I document a time-varying relationship between the yield curve and

macroeconomic risk. In particular, I estimate macroeconomic shares of yield curve volatil-

ity that fluctuate over time both at the monthly frequency and over longer periods. I relate

large month-to-month fluctuations to meaningful economic events. I characterize the his-

torical joint dynamics of yields and macroeconomic risk. First, I show a U-shaped pattern

in the link between the short end of the yield curve and macroeconomic risk. Macroe-

conomic variables are important short-term yield factors in the 1970s-1980s, become less

relevant during the Great Moderation, and regain importance after the financial crisis.

Second, investors increasingly form expectations on future short rates based on macroe-

conomic risk. Third, macroeconomic shares of variation in 10-year term premia increase

during the financial crisis due to deflation fears.

In conclusion, my results show that the assumption of constant volatility in standard

Gaussian term structure models shield information about: (i) fluctuations in the rela-

tionship between the yield curve and macroeconomic risk; (ii) counter-cyclicality of term

premia; and (iii) the demand of compensation for macroeconomic uncertainty.

My model provides new insights about the predictive power of the 2019 yield curve

inversion for a future recession. I find a weak link between the recent inversion and current

conditions of the economy. Specifically, the large decline in long-term yield is not driven

by inflation and the unemployment gap. I conclude that the yield curve inversion does

not reflect low expectations on future economic growth and, consequently, is not likely to

predict a recession in the near future.
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A Technical Appendix

A.1 Structural Justification of Exponential-Quadratic Pricing Kernels

I provide two examples from the equilibrium asset pricing literature that result in exponential-

quadratic pricing kernels. In both examples, the pricing kernel is determined by the

marginal rate of intertemporal substitution of a representative household with Epstein

and Zin (1989), Kreps and Porteus (1978), and Weil (1990) recursive preferences.

Long-Run Risk Model with Second-Order Projection Solution

Consider an indirect utility function given by

Ut =
1

1− 1
ψ

C
1− 1

ψ

t + β
(
Et
[
U1−α
t+1

]) 1
1−α

and a pricing kernel given by

Mt+1 = β exp(−rt)
(
Ct+1

Ct

)− 1
ψ

(
Ut+1

Et
(
U1−α
t+1

))−α ,
where Ct is consumption. Bansal and Yaron (2004) specify a model with a long-run growth

factor, gt, and a volatility factor, σt. The state vector also includes log consumption,

ct = logCt. The state dynamics are given by

∆ct+1 = µc + xt + σcσtzc,t+1,

gt+1 = ρggt + σgσtzg,t+1,

σ2
t+1 = 1− ρσ + ρσσ

2
t + σσεσ,t+1,

where zc,t+1 ∼ i.i.d. N (0, 1), zg,t+1 ∼ i.i.d. N (0, 1), and zσ,t+1 ∼ i.i.d. N (0, 1).

Bansal and Yaron (2004) propose an analytical solution using a log-linearization. This

approximation results in an exponential-affine pricing kernel. However, Pohl, Schmedders,

and Wilms (2018) argue that a first-order approximation is likely to generate large nu-

merical errors. In response, Andreasen and Jørgensen (2019) solve the model using a

second-order projection in which

ut = γu0 + γuXXt +X ′tγ
u
XXXt,

ũt = γũ0 + γũXXt +X ′tγ
ũ
XXXt,
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where ut = logUt, ũt = logEt
(
U1−α
t+1

)
, and Xt = [c′t, g

′
t, σ

2′
t ]′. The implied log pricing

kernel is then given by

logMt+1 = log β − rt −
1

ψ
∆ct+1 − αut+1 + αũt+1

∝ ξ′Xt+1 +X ′t+1ΞXt+1

with ξ = − 1
ψ
− αγuX + αγũX and Ξ = γuXX + γũXX . This pricing kernel is a special case of

(5) with constant prices of risk.

Long-Run Risk Model with Time-Varying Wealth-Consumption Ratio

Monfort and Pegoraro (2012) note that the exponential-quadratic kernel can be justified

by a long-run risk model with a time-varying wealth-consumption ratio as considered in

Hansen and Heaton (2008) and Hansen, Heaton, Lee, and Roussanov (2007). Here, I

derive the details to clarify this justification. Indirect utility is specified by

Ut =

{
(1− β)C1−ρ

t + β
[
Et
(
U1−γ
t+1

)] 1−ρ
1−γ

} 1
1−ρ

.

The log-consumption dynamics are defined by

∆ct+1 = µc + ρcxxt + σczt+1,

where xt is the state vector that follows first-order vector autoregressive dynamics given

by

xt+1 = Φxt + Σzt+1

with zt ∼ i.i.d. N (0, I). Indirect utility is related to the ratio of wealth to consumption

by

Wt

Ct
=

1

1− β

(
Ut
Ct

)1−ρ

.

When the wealth-consumption ratio is constant, i.e., when ρ = 1, the model implies a

linear-exponential pricing kernel given by

logMt+1,1 = µM + ρMxxt + σMzt+1.

In the more realistic case of ρ 6= 1, Hansen and Heaton (2008) derives an approximate

solution by expanding around the case of ρ = 1:

logMt+1,1 ≈ logMt+1,1|ρ=1 + (ρ− 1)

[
1

2
z′t+1Γ1zt+1 + z′t+1Γ1xt + %0 + %Mxxt + %Mzzt+1

]
.

Thus, by allowing for a time-varying wealth-consumption ratio, the pricing kernel becomes

quadratic as in (5) with prices of risk given by ξt = %Mz + Γ1xt and Ξ = 1
2
Γ1.
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A.2 Proof of Theorem 4

The proof follows the steps in Joslin, Singleton, and Zhu (2011) closely. I rely on invariant

affine transformations of the state vector, Xt, given by Pt = c+CXt, where transformation

of the observed macroeconomic variables can be prevented by restricting

c =

cx
0

 , C =

Cx 0

0 Inm

 . (27)

The following lemma gives the model parameters resulting from this rotation.

Lemma 1 Consider the affine transformation Pt = c+CXt restricted by (27). Applying

this transformation to the model in (3)-(10) gives an observationally equivalent model with

state vector Pt = (ρ′t,mt)
′ and parameters given by

µP = c+ CµX −
L∑
l=1

CΦ
(l)
X C

−1c,

Φ
(l)
P = CΦ

(l)
X C

−1, l = 1, . . . , L

ΣP = CΣX ,

A
(k)
P = CA

(k)
X C−1, k = 1, . . . , K

B
(k)
P = CB

(k)
X C−1, k = 1, . . . , K

αP = αX − β′xC−1
x cx,

β′P = β′XC
−1,

µQ
P = c+ CµQ

X − CΦQ
XC

−1c,

ΦQ
P = CΦQ

XC
−1,

V Q
P = CV Q

XC
′.

Proof. Straightforward.

To prove uniqueness, I apply the following lemma, which is identical to Proposition

1 in JSZ. Although my model differs from the Gaussian term structure model considered

in JSZ, the lemma remains valid because the model involves Gaussian-affine risk neutral

dynamics, which is the only part of the model invoked in the proof of the result.

Lemma 2 The model defined by (3)-(10) with synthetic yields defined in (17) is ob-

servationally equivalent to a model in real ordered Jordan form with r⊥mt ≡ rt − αm −
β′mmt = ι′xt, where ι is a vector of ones. The parameters determining the Q-dynamics
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of this model are given by µQ
x = (kQ∞, 0, . . . , 0)′, a positive definite matrix V Q

x , and ΦQ
x =

diag(JQ
1 , J

Q
2 , . . . , J

Q
D), where for d = 1, . . . , D,

JQ
d =



λQd 1 . . . 0

0 λQd . . . 0

...
...

. . . 1

0 . . . 0 λQd


.

Proof. See JSZ.

Given these lemmas, I prove Theorem 4. The portfolios of synthetic yields given by

ρt = WY ⊥mt are affine transformation of the latent factors because

ρt = WY ⊥mt = Wax +Wbxxt = aW + bWxt.

Thus, Pt = c+ CXt with

c =

aW
0

 , C =

bW 0

0 Inm

 . (28)

By an application of Lemma 1, the model can be rotated into an equivalent model with

state vector given by Pt. I prove by contradiction that this model is unique. Suppose

that two models with state vector Pt exist. Assume that these models are parametrized

by, respectively, Θ1 and Θ2. By Lemma 2, each model is observationally equivalent to

the model in real ordered Jordan form with r⊥mt = ι′xt, whose parametrization I denote

by ΘJ . It follows that Θ1 = ΘJ = Θ2.

A.3 Proof of Theorem 5

By Lemma 2, the model defined by (3)-(10) with synthetic yields defined in (17) can

be rewritten in real ordered Jordan form and the rotation only affects parameters of the

Q-dynamics and the short-rate equation. These rotated parameters are given by{
αX , βx, µQ

x , ΦQ
x , V Q

x

}
=

{
0, ι, kQ∞e1, J(λQ), V Q

x

}
,

where e1 is a vector of zeros except with the first entry equal to one and V Q
x is positive

definite. Given the model in Jordan form from Lemma 2, I apply the invariant transfor-

mation Pt = c + CXt with c and C given by (28). By an application of Lemma 1, the
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parameters of the rotated model are given by ΘQ
ρ = {kQ∞, λQ, V Q

ρ } and

ΘP
P ≡

{
µP , {Φ(l)

P }Ll=1, ΣP , {A(k)
P , B

(k)
P }Kk=1

}
=

{
c+ CµX −

∑L
l=1CΦ

(l)
P C

−1c, {CΦ
(l)
X C

−1}Ll=1, CΣX , {CA(k)
P C−1, CB

(k)
P C−1}Kk=1

}
.

Since ΘP
X =

{
µX , {Φ(l)

X }Ll=1,ΣX , {A(k)
X , B

(k)
X }Kk=1

}
is not involved in the rotation into the

Jordan form, restricting ΘP
P is not necessary to preclude rotations of the state vector given

ΘQ
ρ = {kQ∞, λQ, V Q

ρ }.
Restrictions are, however, necessary to identify parameters of the conditional mean

under the P-measure. To ensure a unique Cholesky decomposition, ΣPΣ′P , I restrict the

diagonal of the lower triangular matrix ΣP to be strictly positive. Moreover, since A
(k)
P

and B
(k)
P enter the model in quadratic form, I require the first elements in these matrices

to be non-negative. The following lemma derives an upper bound for K that is necessary

for identification.

Lemma 3 Consider the variance specification given by

Vt = ΣPΣ′P +
K∑
k=1

A
(k)
P εt−1ε

′
t−1A

(k)′

P +
K∑
k=1

B
(k)
P Vt−1B

(k)′

P , (29)

where ΣP is lower triangular with strictly positive elements on the diagonal. Let A
(k)
P

and B
(k)
P be diagonal matrices for k = 1, . . . , K. Then, a necessary condition for the

parameters to be identified is K ≤ floor
(

1
2
nX + 1

2

)
, where nX is the dimension of Vt.

Proof. I give the proof for a trivariate model, but the arguments can be extended to

higher dimensions. I assume that K = floor
(

1
2
nX + 1

2

)
= 2 and show that this degree

of generalization gives the maximum number of identified parameters. The ARCH and

GARCH terms of the BEKK GARCH model can be treated separately. Furthermore, the

arguments for the two terms are identical. I focus on the ARCH term below. Let

A
(1)
P =


a1,1 0 0

0 a1,2 0

0 0 a1,3

 and A
(2)
P =


a2,1 0 0

0 a2,2 0

0 0 a2,3

 .
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Then,

A
(1)
P εtε

′
tA

(1)′

P + A
(2)
P εtε

′
tA

(2)′

P =
(
a2

1,1 + a2
2,1

)
ε2

1,t (a1,1a1,2 + a2,1a2,2) ε1,tε2,t (a1,1a1,3 + a2,1a2,3) ε1,tε3,t

(a1,1a1,2 + a2,1a2,2) ε1,tε2,t

(
a2

1,2 + a2
2,2

)
ε2

2,t (a1,2a1,3 + a2,2a2,3) ε2,tε3,t

(a1,1a1,3 + a2,1a2,3) ε1,tε3,t (a1,2a1,3 + a2,2a2,3) ε2,tε3,t

(
a2

1,3 + a2
2,3

)
ε2

3,t


Suppose that a2,1, a2,2, and a2,3 are identified. Then, a1,1, a1,2, and a1,3 follows from the

coefficients on respectively ε2
1,t, ε

2
2,t, and ε2

3,t. This leaves the following three equations to

show that a2,1, a2,2, and a2,3 are indeed identified:

a2,1a2,2 = c1

a2,1a2,3 = c2

a2,2a2,3 = c3.

This system is obviously identified. Thus, the model is identified withK = floor
(

1
2
nX + 1

2

)
.

Naturally, it follows that the model is also identified with K < floor
(

1
2
nX + 1

2

)
. Now, sup-

pose that K exceeds floor
(

1
2
nX + 1

2

)
= 2, say K = 3. For the ARCH equation, this leaves

nX(nX + 1)/2 = 6 equations to identify KnX = 9 parameters, which is not feasible.
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Figure 1: Yield and Macroeconomic Data
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Notes: The figure shows 3-month and 10-year bond yields (upper panel) and the macroe-
conomic data (lower panel). The yields are from U.S. Treasury bills and bonds provided
by Federal Reserve Economic Data and Gürkaynak, Sack, and Wright (2007). Inflation
is the 12-month change in consumer prices provided the Bureau of Labor Statistics. Un-
employment gap is the unemployment rate from the Bureau of Labor Statistics minus
the natural unemployment rate from the Congressional Budget Office. The data are
from September 1971 to June 2019. Shaded areas represent recessions, as defined by the
National Bureau of Economic Research.
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Figure 2: Estimated Latent Factors and Factor Loadings
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Notes: The figure shows the estimated latent factors in the upper panel and in the lower
left chart (solid lines). These are estimated by the first three principal components of
the synthetic yields given by the residuals from projecting yields on the macroeconomic
variables. The figure compares these with the principal components of the observed yield
curve (dotted lines). The lower-right chart shows the estimated factor loadings across
maturities as given in Theorem 1.
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Figure 3: Model-Implied, Realized, and Rolling Variances and Covariances
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Notes: The figure shows model-implied conditional variances and covariances along with
empirical measures given by: (i) realized variances constructed from daily data (left
panel), and (ii) rolling variances of daily data with a 3-month look-back (right panel).
Results are shown results for the 3-month and 10-year bond yields.
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Figure 4: Decomposition of 10-Year Yield into Short-Rate Expectations and
Term Premia
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Notes: The figure shows the model-implied decomposition of the 10-year yield into short-
rate expectations and a term premium. The left chart shows the decomposition implied
by my model, whereas the right chart shows the decomposition implied by the Gaussian
term structure model. Shaded areas represent recessions, as defined by the National
Bureau of Economic Research.
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Figure 5: Conditional Variances of and Correlation Between 10-Year Short-
Rate Expectations and Term Premium
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Notes: The figure shows model-implied conditional variances of the 10-year short-rate
expectations and term premium (upper panel). The lower panel shows their conditional
correlation implied by the model. Shaded areas represent recessions, as defined by the
National Bureau of Economic Research.
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Figure 6: Ordinary and Risk-Adjusted Campbell-Shiller Regression Slope Co-
efficients
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Notes: The figure shows slope coefficients from ordinary and risk-adjusted Campbell
and Shiller (1991) regressions. For the ordinary regressions, model-implied slope coeffi-
cients are obtained by simulating 100,000 observations in my model (left panel) and the
Gaussian term structure model (right panel). Confidence intervals are estimated with
Newey-West robust standard errors with automatically selected lag length.
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Figure 7: 5-Year Moving-Average Macroeconomic Shares of Variances
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to
variances in the 3-month and 10-year yields, 10-year short-rate expectations, and the
10-year term premium. Shaded areas represent recessions, as defined by the National
Bureau of Economic Research.
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Figure 8: Inflation Survey Expectations and Model-Implied Conditional In-
flation Variance
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Notes: The figure shows the median of inflation survey forecasts from the Survey of
Professional Forecasters in the upper panel. The middle panel shows forecast dispersions
defined by the difference between the 75th and 25th quantiles. These data are available
at quarterly frequency from the third quarter of 1981. The lower panel shows the model-
implied conditional inflation variance from July 1981. Shaded areas represent recessions,
as defined by the National Bureau of Economic Research.
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Figure 9: Conditional Physical and Risk-Neutral Inflation Densities
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Notes: The figure shows model-implied conditional densities under the physical and risk-
neutral probability measures (upper panel). The lower panel shows ratios of the risk-
neutral to physical densities. The densities are estimated by the Epanechnikov kernel
function applied to 100,000 simulated paths with horizon of one month and 10 years.
The simulations are initiated at the sample average from January 1990. The bandwidth
is selected by the optimal choice for estimating normal densities.
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Figure 10: 5-Year Moving-Average Macroeconomic Shares of Variances from
1990-2019
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to
variances in the 3-month and 10-year yields, 10-year short-rate expectations, and the
10-year term premium. The model is estimated using data from January 1990 to June
2019. Shaded areas represent recessions, as defined by the National Bureau of Economic
Research.
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Figure 11: Variance Risk Premia
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Notes: The figure shows model-implied variance risk premia. The left panel presents
the ratios of average variance risk premia to the average expected variance under the
physical measure. The right panel decomposes the average variance risk premia into
macroeconomic variables and latent factors. Results are shown for different maturities.
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Figure 12: Analysis of the 2019 Yield Curve Inversion

(a) Yield Curve Inversion and Model-Implied Yield Variances
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Notes: The figure shows in panel (a) the 3-month and 10-year bond yields (left chart)
and the model-implied conditional variances these yields (right chart). Panel (b) shows
macroeconomic shares of the variances in 10-year yield and short-rate expectations.
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Figure 13: Analysis of the 2006 Yield Curve Inversion

(a) Yield Curve Inversion and Model-Implied Yield Variances
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Notes: The figure shows in panel (a) the 3-month and 10-year bond yields (left chart)
and the model-implied conditional variances these yields (right chart). Panel (b) shows
macroeconomic shares of the variances in 10-year yield and short-rate expectations.
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Table 1: Descriptive Statistics of the Yield and Macroeconomic Data

Yields with maturities in years Inflation
Unemploy-
ment gap

0.25 0.5 1 2 3 5 7 10

Average 4.63 4.76 5.13 5.37 5.56 5.88 6.12 6.39 3.98 0.82

Std.dev. 3.42 3.42 3.56 3.49 3.41 3.23 3.09 2.94 3.00 1.49

Skewness 0.58 0.52 0.46 0.38 0.37 0.39 0.41 0.44 1.49 0.93

Kurtosis 3.17 3.00 2.83 2.69 2.64 2.63 2.67 2.74 4.97 3.24

Autocor-
relations

Lag 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Lag 2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98

Lag 3 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.96 0.97

Lag 6 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.96 0.90 0.90

Lag 12 0.87 0.88 0.89 0.9 0.91 0.92 0.92 0.91 0.75 0.73

Note: The table shows descriptive statistics of bond yield data and macroeconomic data in
percent per annum. The yield data are U.S. Treasury bond yields from Gürkaynak, Sack, and
Wright (2007) and Treasury bill rates from Federal Reserve Economic Data. The macroeco-
nomic data are given by the 12-month change in consumer prices and the unemployment gap
defined by the unemployment rate subtracted the natural unemployment rate estimated by the
Congressional Budget Office. CPI inflation and unemployment rates are provided by the Bureau
of Labor Statistics. The data are sampled monthly from September 1971 to June 2019.
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Table 2: In-Sample Performance

Panel A. Yield Curve Fit

Maturities in years

0.25 0.5 1 2 3 5 7 10 Average

RMSE 8.74 10.90 12.42 2.97 5.64 7.86 3.64 8.35 8.18

(basis
points)

Panel B.1. Fit to Realized Variances and Covariances

Maturities in years

0.25 1 2 5 10 (0.25,5) (0.25,10) (5,10) Average

RMSE 4.83 4.53 3.77 2.04 1.23 3.37 1.60 1.47 2.85

Constant
0.03

(0.02)
0.05

(0.02)
0.06

(0.02)
0.04

(0.02)
-0.01
(0.02)

0.03
(0.01)

0.02
(0.01)

0.02
(0.02)

0.03

Slope
0.77

(0.06)
0.50

(0.05)
0.53

(0.06)
0.63

(0.05)
0.80

(0.06)
0.59

(0.05)
0.69

(0.06)
0.69

(0.06)
0.65

R̄2 0.63 0.56 0.52 0.49 0.50 0.63 0.63 0.48 0.56

Panel B.2. Fit to Rolling Variances and Covariances

Maturities in years

0.25 1 2 5 10 (0.25,5) (0.25,10) (5,10) Average

RMSE 3.91 3.13 2.16 1.68 1.38 2.78 1.82 1.58 2.31

Constant
-0.01
(0.02)

-0.01
(0.03)

-0.01
(0.03)

-0.00
(0.02)

-0.04
(0.02)

0.02
(0.02)

0.02
(0.01)

-0.03
(0.02)

-0.01

Slope
0.67

(0.09)
0.63

(0.09)
0.62

(0.09)
0.65

(0.08)
0.70

(0.08)
0.64

(0.08)
0.71

(0.09)
0.67

(0.08)
0.66

R̄2 0.53 0.49 0.44 0.42 0.41 0.50 0.48 0.43 0.46

Notes: The table shows the in-sample performance of my model. Panel A shows root mean
squared errors (RMSEs) of model-implied against observed yields in basis points per annum.
Panels B.1 and B.2 show RMSEs of model-implied against realized and rolling variances and
covariances. The table also shows constants and slope coefficients with standard errors in paren-
thesis and adjusted R-squared values from Mincer and Zarnowitz (1969) regressions of realized
and rolling variances and covariances onto a constant and model-implied variances and covari-
ances.
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Table 3: Descriptive Statistics of Macroeconomic Shares of Variances in Yields

Maturities in years

0.25 0.5 1 2 3 5 7 10

Average 7.92 8.51 7.61 7.14 7.33 7.91 8.14 7.91

Std. dev. 7.94 7.95 7.27 6.87 7.00 7.51 7.67 7.59

Skewness 2.07 2.01 2.58 2.33 2.06 1.88 1.80 1.84

Kurtosis 9.07 8.84 12.79 10.41 8.44 7.48 7.11 7.43

Min 0.02 0.05 0.03 0.03 0.02 0.00 0.01 0.00

Max 55.56 56.24 54.03 45.05 45.91 46.39 50.84 53.86

Median 5.23 6.40 5.78 5.16 5.27 5.48 5.66 5.49

Autocorrelation 0.71 0.71 0.68 0.64 0.65 0.67 0.69 0.69

Quantiles

10 percent 1.06 1.20 1.18 0.99 0.97 1.03 1.05 0.95

25 percent 2.53 2.97 3.05 2.82 2.73 2.9 2.84 2.74

75 percent 10.85 11.74 9.76 9.11 9.25 10.57 11.17 10.87

90 percent 17.68 19.34 16.02 15.96 16.39 17.89 18.26 17.73

Gaussian term
structure model

7.72 8.29 8.39 8.03 8.01 8.17 7.93 6.92

Note: The table shows descriptive statistics of the estimated shares of yield variances
determined by the macroeconomic variables. The statistics are reported in percent.
The table also shows the constant macroeconomic share of variances estimated using
the Gaussian term structure model.
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Table 4: Descriptive Statistics of Macroeconomic Shares of Variances in the
Decomposition of 5- and 10-Year Yields

Short-rate expectations Term premia

Maturity 5-year 10-year 5-year 10-year

Average 40.24 41.88 34.08 21.30

Std. dev. 18.12 18.28 14.91 12.44

Skewness -0.12 -0.15 0.38 0.88

Kurtosis 1.94 1.96 2.85 3.78

Min 0.23 0.32 0.73 0.36

Max 75.8 75.66 75.84 68.59

Median 40.29 42.04 32.33 19.06

Autocorrelation 0.89 0.90 0.67 0.69

Quantiles

10 percent 15.49 16.67 15.23 6.55

25 percent 26.25 27.64 23.60 12.11

75 percent 56.56 58.60 43.63 28.80

90 percent 64.51 65.57 54.52 38.32

Gaussian term
structure model

33.36 26.36 48.36 26.16

Note: The table shows descriptive statistics of the estimated shares of variances
in short-rate expectations and term premia determined by the macroeconomic
variables. The statistics are reported in percent. The table also shows the constant
macroeconomic share of variances estimated using the Gaussian term structure
model.
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