Litigating Innovation: Evidence from Securities Class Action Lawsuits

Elisabeth Kempf

Oliver Spalt*

December 13, 2018

Abstract

Low-quality securities class action lawsuits disproportionally target firms with valuable innovation output and impose a substantial implicit "tax" on these firms. We establish this fact using data on class action lawsuits against U.S. corporations between 1996 and 2011 and the private economic value of a firm's newly granted patents as a measure of valuable innovation output. Our results challenge the widely-held view that it is the greater failure propensity of innovative firms that drives litigation risk. Instead, our findings suggest that valuable innovation output makes a firm an attractive litigation target. More broadly, our results provide new evidence to support the view that the current class action litigation system may have adverse effects on the competitiveness of the U.S. economy.

Keywords: Innovation; Patents; Class Action Lawsuit; Shareholder Litigation; Corporate Governance; Law and Economics

^{*}Elisabeth Kempf: University of Chicago, Booth School of Business, elisabeth.kempf@chicagobooth.edu. Oliver Spalt: Tilburg University and CentER, o.g.spalt@uvt.nl. We would like to thank Brian Fitzpatrick, Jonathan Karpoff, Christian Leuz, Ann Lipton, Elena Pikulina (discussant), Emanuele Rizzo, Doug Skinner, Tom Wollmann, Luigi Zingales, and participants at Berkeley, Boston University, Chicago Booth, Federal Reserve Bank of New York, Frankfurt School of Finance, Goethe University, Northwestern Kellogg, Tilburg University, Tulane University, UNC Junior Finance Roundtable 2017, University of Mannheim, and University of St. Gallen for valuable comments. We thank Jyothsni Gondesi for excellent research assistance. Kempf gratefully acknowledges financial support from the James S. Kemper Foundation at the University of Chicago Booth School of Business.

1 Introduction

Corporate innovation matters for optimal resource allocation and economic growth, and a vast body of academic work, from Adam Smith's pin factory to Schumpeter's creative destruction, emphasizes the positive impact of corporate innovation on the economy. Consistent with this favorable view on innovation, fostering and promoting corporate innovation is a core policy objective in governments around the world.

If promoting innovative activity is a desirable societal goal, identifying potential obstacles to the creation and implementation of valuable new ideas is crucially important. This paper provides novel evidence suggesting that a central pillar of the U.S. litigation and corporate governance system, securities class action lawsuits, acts as an implicit "tax" on valuable innovation. Specifically, using data from the Stanford Securities Class Action Clearinghouse (SCAC) on class action lawsuits filed against public U.S. companies between 1996 and 2011, and using the private economic value of a firm's newly granted patents as a measure of valuable innovation, we show that valuable corporate innovation increases the likelihood of being the target of a low-quality class action lawsuit.¹ Our findings suggest that low-quality class action litigation represents an undesirable byproduct of value-creating corporate innovation, which has important implications for our understanding of the potential real effects of the current litigation system.

The idea that lawyers can abuse the class action system by bringing low-quality or meritless cases against innovative firms is wide-spread and influential. The standard narrative is as follows: because innovation is inherently risky, innovative firms have more volatile stock prices and experience more large stock drops. And since large stock drops are attractive for lawyers who want to claim that a stock has traded at inflated prices because relevant information was withheld from investors, we see more meritless litigation for innovative firms. This view – which we label the "risky innovation hypothesis" – that large stock drops associated with failed innovation make innovative firms more susceptible to meritless litigation is influential with lawyers, economists, practitioners, and policy-makers.² Most notably, the risky innovation hypothesis was a major motivation behind the Private Securities Litigation Reform Act (PSLRA) of 1995, which was enacted by U.S. Congress in an attempt to reduce the abuse of the class action litigation system via meritless litigation.³

¹In the remainder of the paper we will use the terms "meritless lawsuit" and "low-quality lawsuit" interchangeably. In both cases, we are referring to lawsuits which have an elevated probability of having little or no legal merit. See below for details on how we separate cases empirically.

²See, for example, Alexander (1991) and Seligman (1994) for evidence from the law literature; Lin, Liu, and Manso (2017) for evidence from the economics literature; and U.S. Chamber Institute for Legal Reform (2014), p. 20–21, for evidence from the practitioner and policy-oriented literature.

³See, for example, Seligman (2004), p. 96. Senator Donald W. Riegle, Jr. stated in a Senate subcommittee hearing that: "Companies, particularly growth firms, say they are sued whenever their stock drops." Moreover, Senator Pete Domenici (one of the two Senators sponsoring the initial bill) stated that "the race to innovate becomes a race to the courthouse" and cited the CEO of Silicon Graphics Computers, Edward R. McCracken,

Despite being influential and intuitively appealing, there are two empirical facts which cast doubt on the risky innovation hypothesis. First, the empirical case for a causal relation between innovation and the probability of being target of a meritless lawsuit in the existing literature is weak. It mostly comes from observing higher litigation rates in some sectors, like the technology sector (e.g., Francis, Philbrick, and Schipper (1994)) – but lawsuits being correlated with industry membership is a far cry from causal evidence that innovation drives litigation. As a case in point, Kim and Skinner (2012) conduct a large-scale investigation into the drivers of class action litigation and find that R&D expenditures do not predict class action litigation. This raises fundamental questions about whether innovation links to class action litigation in the first place. Second, as an empirical matter, 56% of all Compustat firms experience a stock drop of at least 10% in any given year in our sample period, but only less than 2% of Compustat firms are sued in a class action lawsuit.⁴ Given that there are many more stock drops than class action lawsuits, stock drops per se provide at best a partial explanation about why certain firms are targeted with a lawsuit. This raises the question whether, conditional on a stock drop, innovative firms may be more likely subject to meritless litigation. Overall, our understanding of the relation between innovation and litigation is much more limited than casual observation of the topic may suggest.

The purpose of this paper is to address the challenges above and, in doing so, provide a new perspective on the link between innovation and litigation, which we label the "valuable innovation hypothesis." The valuable innovation hypothesis holds that low-quality lawsuits specifically target successful innovators, i.e., firms that have recently received economically valuable patents and are about to embark on implementing their valuable ideas, because such successful firms are attractive targets for low-quality litigation. Several reasons could explain why successful innovators are attractive targets, including that managers who are busy growing their firms have high opportunity costs, that growing firms are particularly sensitive to bad publicity, and that successful innovators provide more forward-looking disclosure to investors, which is potentially easier for lawyers to attack.

The core conceptual contribution of the valuable innovation hypothesis is to emphasize the distinction between innovation inputs, like R&D expenditures, and innovation outputs, which we measure as the economic value of granted patents in a given firm-year as described in detail below. This distinction allows us to reconcile the fact that practitioners and policy makers perceive innovation to be an important driver of low-quality litigation with the lack of strong evidence for an innovation-litigation link in the existing literature. We show that once we focus on

who wrote that "the high-tech firms of Silicon Valley and the Bay Area's bio-tech companies are the No. 1 target of these schemes, because cutting-edge research and the risks inherent in development make their stock prices volatile" (see Congressional Record Volume 141 (1995)).

⁴The 10% threshold has been argued in Senate hearings to be a common trigger point for class action litigation. See e.g., Seligman (1994) and the references therein.

innovation output, there is a strong empirical link between innovation and subsequent low-quality class action litigation. By contrast, if we follow prior work and focus on innovation input, we find essentially no relation between innovation and meritless litigation. The valuable innovation hypothesis thus helps us make progress on the first challenge to the risky innovation hypothesis we mentioned above. It also helps us make progress on the second challenge, because the valuable innovation hypothesis makes testable predictions about which firms have an elevated likelihood of being targeted by low-quality lawsuits *conditional* on a stock drop: firms with valuable innovation output.

To measure a firm's innovation output, we rely on an approach recently proposed by Kogan, Papanikolaou, Seru, and Stoffman (2017) (KPSS), who exploit stock-market reactions to new patent grants to determine the private economic value of innovations. The KPSS measure of valuable innovation output is ideal for our purpose because it is a strong predictor of subsequent growth in employment, capital, output, profits, and revenue-based total factor productivity. As shown by KPSS, this feature sets their measure apart from various other measures of innovation output and innovation input used in the prior literature. Hence, if innovation-induced firm growth makes innovative firms more attractive litigation targets, as predicted by the valuable innovation hypothesis, then the KPSS measure should allow us to pick up this relationship. An additional advantage is that firms which score high on the KPSS measure have also been shown to drive aggregate economic growth. Such firms are an interesting set of firms to study because their activities should be incentivized rather than impeded by the litigation system.

While we pay particular attention to identification issues in our main empirical analysis, the key finding of our paper is reflected already in the raw data. Figure 1 shows the annual likelihood of being targeted with a low-quality class action lawsuit for two groups of firms: firms with and without valuable innovation output, defined within 2-digit SIC industry and year using the KPSS measure of innovation value measured over the previous calendar year. We use dismissal of a case as our baseline proxy for case merit, but we show that our main result also obtains for a variety of alternative proxies for lawsuit merit that have been proposed in the literature. The results are striking: in every year in our sample period, successful innovators are several times more likely to be target of a low-quality lawsuit than other firms in the same industry and year.

On top of making a lawsuit more likely, we find that valuable innovation is associated with greater losses to shareholders conditional on a low-quality class action lawsuit being filed. While the average successful innovator loses about 3.0% of its market capitalization in the seven days around a low-quality class action lawsuit filing, the average non-innovator loses only about 1.9%. Combined, these findings imply that more valuable innovation output is associated with both, a greater probability of being subject to a low-quality class action lawsuit, and a greater loss conditional on receiving such a lawsuit. The expected costs of meritless class action lawsuits are

thus particularly high for firms with the highest innovation output.

We address potential endogeneity concerns using a range of different approaches. First, we show that the probability of a subsequent meritless class action lawsuit increases in current innovation value also when controlling for a rich set of variables which have been shown by Kim and Skinner (2012) to predict shareholder litigation, including firm size, sales growth, stock returns, volatility, skewness, and turnover. In particular, we also control for innovation input using R&D expenditures and find that, while innovation output links strongly with subsequent lawsuits, innovation inputs do not. Second, while we find a positive link between meritless lawsuits and valuable innovation, we do not find a statistically significant link for meritorious cases, which suggests that there is no mechanical relation between valuable innovation and class action lawsuits more broadly. Third, we can include firm fixed effects in our regressions, which rule out that time-invariant characteristics of the firm, such as firm culture, are driving the documented relationship. Fourth, we show that the results are robust to using alternative proxies for lawsuit merit, as well as to alternative measures of innovation output. Fifth, we show that our results also obtain when we consider instruments for valuable innovation output. Finally, we estimate a dynamic version of our model, which shows that the timing of the effects supports a direct link between valuable innovation and subsequent low-quality litigation.

We estimate the incremental cost of valuable innovation, measured as the loss in shareholder value due to the increased risk of meritless class action litigation for a one-standard-deviation change in innovation value, to be around \$1.1 million per year for the average firm in our sample. To put this number into perspective, note that it represents 3.6% of the increase in profits due to the innovation over the next five years. Interpreted as a tax on profits, this number is economically significant. As an alternative way to gauge the economic significance of these estimates, we show below that the expected costs from meritless class action lawsuits after valuable innovation is almost twice as large as the unconditionally expected settlement amounts from class action lawsuits in our sample. Although the idea that meritless class action lawsuits act as a "litigation tax" is not new – Senator Domenici already made this claim back in 1995 – ours is, to the best of our knowledge, among the first attempts to quantify this tax for innovative firms in a comprehensive large-scale sample.

As a final step in our paper, we examine why firms with valuable innovation have an elevated risk of being targeted by low-quality litigation. One potential explanation is that firms with valuable innovation are more likely to subsequently experience stock drops. This mechanism is consistent with a modified version of the risky innovation hypothesis, which assumes that patents which are judged to be extremely valuable by the market have an elevated chance of generating large subsequent disappointment for investors. Using a range of measures such as volatility, skewness, indicators for extreme negative returns, and indicators for missing earnings targets, we

do not find any evidence to support this alternative version of the risky innovation view: firms with valuable innovation are, if anything, less likely to experience large subsequent stock drops.

If firms with valuable innovation output do not experience more lawsuit-triggering events, a natural explanation for our findings is that firms with valuable innovation output are more attractive firms to sue, conditional on experiencing a negative outcome. We confirm the original finding of KPSS for our dataset that firms with valuable innovations make additional investments into capital and labor, and grow both output and profits. As shown in theoretical work by Bebchuk (1988), this plausibly increases the attractiveness of a firm as a litigation target for two reasons. First, firms that invest into additional capital and labor, and are therefore busy growing their operations, have particularly high opportunity cost on managerial time and money. Second, firms that are in the process of marketing new products are particularly vulnerable to bad publicity. In addition to explaining higher litigation risk, both of these channels are consistent with our finding that innovative firms lose more of their market value conditional on getting sued.

We also propose, test, and find evidence for an additional channel related to how firms communicate valuable innovation. We show that successful innovators use more optimistic language in their annual reports and more forward-looking statements in the MD&A section of their annual reports, after valuable patents were granted. This is intuitive, given that valuable innovations are expected to generate substantial value during the years of the patents' protection, and given that managers will speak more, and more optimistically, about those innovations expected to add substantial value to the firm. Rogers, Buskirk, and Zechman (2011) provide direct evidence on a link between optimistic language and subsequent litigation, suggesting that optimistic statements when valuable patents are granted to a firm are easier targets for low-quality lawsuits.

In sum, we advance a novel perspective on understanding the economic link between corporate innovation and low-quality class action lawsuits. Our findings suggest that such lawsuits constitute an economically sizeable "tax on innovation success," which raises many important questions for managers, lawyers, judges, and policy makers. A key new insight we propose is that we need to think beyond innovation risk and innovation failure, which were emphasized in prior work, if we want to understand the link between innovation and low-quality class action litigation. Focusing on successful innovation in the form of economically valuable innovation output can significantly add to our knowledge about this important link.

More broadly, our findings have potentially important implications for understanding how securities class action litigation can affect the competitiveness of the U.S. economy. First, by draining resources, such as financial capital, reputational capital, and managerial time, from productive firms precisely when these companies are about to implement their new ideas, low-quality class action lawsuits contribute to economy-wide misallocation of resources. Second,

ex-post punishment of firms that generate valuable innovation, in the form of a costly meritless lawsuit, distorts innovation incentives for all firms *ex ante*, which may lead to underprovision of innovation in the economy. Finally, a tax on valuable innovation may lead firms to refrain from listing on public stock markets and thus forego otherwise valuable growth opportunities – an argument in line with both anecdotal and prior academic evidence on class action lawsuits as an impediment to tapping public equity markets (e.g., Zingales (2006)).

2 Relation to the Existing Literature

Our paper contributes to the literature on the economic consequences of the U.S. class action litigation system. One strand of this literature focuses on the incidence, discovery, and cost of true frauds, i.e., meritorious class action lawsuits.⁵ Because we focus on meritless class action lawsuits, our paper is different and complements the previous findings for meritorious lawsuits. A second strand of this literature focuses on meritless class actions and their impact on the economy. To the best of our knowledge, we contribute some of the cleanest evidence to suggest low-quality class action lawsuits are an impediment to economic growth and therefore to the competitiveness of the U.S. economy. Other evidence includes Zingales (2006), who argues that the class action litigation system in the U.S. leads to a loss of competitiveness of U.S. public equity markets. Spiess and Tkac (1997) and Johnson, Kasznik, and Nelson (2000) study selected industries to show that market valuations of firms that are more likely to be target of meritless class action lawsuits increase around the introduction of the Private Securities Litigation Reform Act (PSLRA), which is consistent with meritless suits being costly to shareholders.⁶ These papers do not investigate how innovation affects the incidence and shareholder wealth losses associated with low-quality litigation, which is what we analyze in our paper. Rizzo (2017), while not distinguishing between meritless and meritorious class actions, finds that a higher likelihood of facing investor-friendly judges in a federal district court reduces shareholder value and suggests this is partly driven by a reduction in value-creating managerial risk-taking such as R&D investments.

Our findings on the link between innovation success and class action litigation risk accord well with the observation in prior work that some industries, most notably the technology sector, have particularly high class action litigation rates (e.g., Francis, Philbrick, and Schipper (1994),

⁵Papers in this literature include Karpoff, Lee, and Martin (2008), Gande and Lewis (2009), Wang, Winton, and Yu (2010), Dyck, Morse, and Zingales (2010), and Dyck, Morse, and Zingales (2014).

⁶Ali and Kallapur (2001) challenge some of the conclusions in these two studies. Whether or not PSLRA was successful in its stated aims remains a topic of scientific debate (e.g., Klock (2016), Choi (2007)). The results in our paper, obtained using a post-PSLRA sample, suggest that PSLRA was not successful in eliminating low-quality lawsuits against innovative firms. A summary of work on meritless litigation before the introduction of PSLRA in 1995 can be found in Choi, Pritchard, and Fisch (2005).

Kasznik and Lev (1995), Field, Lowry, and Shu (2005), Crane and Koch (2018)). However, it is important to note that we are making a new point, not subsumed by this prior literature. Conceptually, the reason is that many factors could drive an observed relation between industry membership and litigation rates, and that, as a result, it is not possible to conclude from observing higher litigation rates in, for example, the technology industry, that innovation drives litigation. Correlation is not causation and therefore none of the above papers makes the claim that innovation causes higher litigation rates. Empirically, we go beyond this work above in two important ways. First, we identify our effects of innovation success using variation within industry-dates, which implies that our findings are orthogonal to industry membership. Second, we show that distinguishing between innovation input and output is crucial for understanding the relation between innovation and class action litigation, a point which, to the best of our knowledge, is new to this literature.

Our paper is related to, and builds upon, the work of Kim and Skinner (2012), who emphasize that industry indicators tell us little about why firms become targets of class action lawsuits. They propose a range of firm-specific variables to augment industry membership in standard firm-level regressions used to predict class action lawsuits. We derive our results from regressions that include their proposed variables as controls. Kim and Skinner (2012) find that that innovation inputs (i.e., R&D expenditures) do not explain subsequent class action litigation. Their finding provides a motivation for our study and the valuable innovation hypothesis we advance in this paper.

While our paper focuses on shareholder class action lawsuits, our work is related to a set of studies which establish adverse effects of the litigation system on innovative firms in other settings. Lin, Liu, and Manso (2017) use a natural experiment to show that innovative activity increases when the threat of shareholder derivative lawsuits in state-courts decreases. Our study complements theirs in two key respects. First, we study federal class action lawsuits, while they study state-level derivative lawsuits. Second, their study is informative for policy makers who want to understand the impact of a particular law change on innovation. However, by design, their study cannot provide direct evidence on the channel that links litigation to innovation, and, in particular, on whether there is a causal relation from innovation to low-quality litigation. Our study is therefore incrementally informative for managers and their innovation decisions, as well as for policy makers who want to learn more about the channel that links litigation to innovation in order to determine optimal policy design.

Other studies have focused on patent litigation. Cohen, Gurun, and Kominers (2016a) document a sharp rise in patent litigation by nonpracticing entities in the United States between 2005 and 2015. In addition, Cohen, Gurun, and Kominers (2016b) provide evidence that non-practicing entities appear to act as "patent trolls," targeting cash-rich firms irrespective of actual

patent infringement, and subsequently reduce innovative activity at targeted firms. Mezzanotti (2017) documents that stronger patent enforcement can reduce the negative effects of patent litigation on corporate innovation. Combined, these studies and ours highlight the adverse effects of the litigation system on innovative activity across a broad spectrum of important, but distinct, subspaces of the litigation universe. Jointly, they provide some empirical support for a concern raised by a number of CEOs in a survey conducted by McKinsey for the city of New York in 2007. These CEOs felt that "the legal environment is detrimental to America's spirit of entrepreneurialism and innovation" (McKinsey & Company (2007)).

3 Securities Class Action Lawsuits in the U.S.

Private securities class action lawsuits are a central pillar of the U.S. litigation and corporate governance system. According to data from the Stanford Securities Class Action Clearinghouse (SCAC), about 5,000 class actions were filed between 1996 and 2017, and close to 40% of all companies listed on major U.S. stock exchanges have been targeted by a securities class action lawsuit at least once during that period. Figure 2 shows the annual number of securities class action lawsuits from 1996. Given that securities class action lawsuits are so prevalent, understanding their economic implications is important.

Securities class action lawsuits can be socially beneficial if they deter wrongdoing, curb managerial rent extraction, and compensate injured shareholders. However, class actions have a well-known dark side which stands against these benefits: lawyers have an incentive to bring meritless ("low-quality") suits in the hope of securing a large settlement despite no actual managerial wrongdoing (e.g., Bebchuk (1988), Romano (1991), Bondi (2010)). Faced with the prospect of entering a long and resource-intensive legal dispute, and faced with the dangers of an imperfect judicial process, many firms are willing to settle cases even though the allegations are in fact untrue. Meritless cases are almost surely socially wasteful: they do not sanction any wrongdoing, they hurt corporate shareholders, they may distract managers from running their companies, and they are a burden on the judicial system.

While, all else equal, minimizing the amount of meritless class action litigation appears desirable, designing optimal policy to discourage meritless suits is difficult. A case in point is the Private Securities Litigation Reform Act of 1995, which did not prevent a large number of low-quality class actions being filed after its passage. A more recent illustration is the Lawsuit Abuse Reduction Act (LARA) of 2017, which aims at curbing meritless litigation by holding plaintiff lawyers accountable for the cases they bring.⁷

⁷At the time of writing, this reform has passed the U.S. House of Representatives, and has moved on to the Senate Judiciary Committee.

LARA is highly controversial. Critics argue, for example, that introducing fines for lawyers, as proposed in LARA, would be an obstacle to filing meritorious claims, and create a new problem of costly follow-on litigation (see, e.g., Kaufman (2017)). A remarkable, and perhaps surprising, fact about the discussion surrounding LARA, which echoes a similar state of affairs surrounding the introduction of PSLRA, is that there seems to be substantial disagreement on a central object: just how costly are meritless class action lawsuits? For example, on one end of the spectrum, the U.S. Chamber of Commerce argues that: "Every year, potentially billions of dollars are wasted on frivolous lawsuits, hurting job growth and slowing the economy" (U.S. Chamber of Commerce (2017)). On the other end of the spectrum, the American Bar Association argues that the costs associated with meritless litigation are, at best, small, and that claims of high costs are mostly based on anecdotes rather than large-scale empirical research (American Bar Association (2017)).

The divergence of opinion on such a central issue underscores the need for systematic empirical evidence on the cost of meritless litigation, and, importantly, the channels which induce these costs. Our paper provides new empirical evidence on these questions based on a comprehensive large-scale dataset on class action lawsuits in the U.S.

4 Data

The core of our data are securities class action lawsuit filings obtained from the Stanford Securities Class Action Clearinghouse (SCAC) database. The SCAC covers essentially all securities class action lawsuits filed in a federal court in the United States since the adoption of the Private Securities Litigation Reform Act (PSLRA) in 1996. The database provides filing dates for each lawsuit as well as all associated court filings. We exclude cases related to IPO underwriter allocation, analyst coverage, and mutual funds.

For most of our tests, we are interested in separating cases into those that are meritorious, i.e., based on actual wrongdoing, and those that are meritless. We use the terms meritless lawsuit and low-quality lawsuit interchangeably throughout this paper (see Footnote 1). While that split is conceptually clear, empirically identifying merit is difficult. Because actual wrongdoing is mostly unobservable to the econometrician (extreme cases of corporate fraud aside), it is necessary to find suitable proxies for lawsuit merit. The baseline proxy we use in this paper is whether the case is dismissed, which is provided by the SCAC. Effectively, this definition assumes that a case has an elevated likelihood of being meritless or of low quality if a judge decides to grant a motion to dismiss, or if the plaintiff decides to drop the case voluntarily.⁸ Our approach is similar to the

⁸The SCAC distinguishes only between dismissed cases and settled cases. Even though not provided by the SCAC, dismissals could be further grouped into cases that are dismissed with and without prejudice following a motion to dismiss. Since the vast majority of cases never reach the stage of a summary judgment, dismissals after

one adopted in the literature on corporate fraud, which also uses dismissals to proxy for lawsuit merit (see, e.g., Dyck, Morse, and Zingales (2010), Wang and Winton (2016), and our discussion in the robustness section below).

We believe that case dismissal, as defined by the SCAC, is a suitable proxy for low-quality suits, because it exploits the fact that judges are legal experts who spend considerable time and effort on each case, scrutinizing and interpreting a rich set of information that is hard to evaluate, if not outright unobservable, to researchers. Hence, if a judge decides a case is not strong enough to survive a motion to dismiss, we conclude that the case is likely of low quality. We draw the same conclusion if a case is dismissed because the plaintiff voluntarily decides to drop the complaint. We are not aware of another variable that would make similar use of expert judgment and non-public case-relevant information.

Using this definition, the summary statistics in Table 1 show that our observations are split roughly equally between dismissed and non-dismissed cases. Figure 2 shows that low-quality litigation may be an increasingly important problem. In 2011 (the last year with reasonably complete data on case outcomes in our sample), almost 60% of all cases are subsequently dismissed, which represents a substantial increase over the 35% dismissed cases filed in 1996.

Inevitably, because the judicial process is not perfect, there will be some lawsuits that we mistakenly define as meritless even though they are meritorious, and others that we classify as meritorious even though they are meritless. For example, it is possible to think of cases in which the court uses a motion to dismiss to clarify how a law should be interpreted in a good faith dispute, or where the plaintiff decides to drop the complaint voluntarily for reasons unrelated to lawsuit merit. While it is impossible to separate meritless from meritorious cases without error, we view it as indisputable that the average merit among dismissed lawsuits is lower than the average merit among non-dismissed lawsuits (pathological cases aside). It is this feature of our baseline definition that we exploit in our empirical tests. Note that measurement error in our proxy for lawsuit merit (i.e., our dependent variable) would reduce the precision of our estimates. To make sure our main results are not driven by one specific proxy for lawsuit merit, we consider a range of alternative definitions below and show our main results obtain also for these alternative measures.

Following the existing literature on the economic of innovation, we measure innovation output based on patents granted to the firm. For our baseline definition, we identify firms that produce valuable innovation output after obtaining the annual firm-level measure developed in Kogan, Papanikolaou, Seru, and Stoffman (2017) (KPSS) from Professor Noah Stoffman's website. The measure provides an estimate of the private value of the patents granted to a firm in a given calendar year, by exploiting movements in stock prices in the three days following the patent

summary judgments are rare. We have not pursued such finer breakdowns of dismissals, because any grouping will be subject to the fundamental problem that both type 1 and type 2 errors are inevitable.

grant announcement. As the measure is in dollars, we follow KPSS and scale it by lagged book assets. We call the resulting measure "innovation value."

The KPSS measure of valuable innovation output is ideal for our purpose for a number of reasons. First, the valuable innovation hypothesis posits that innovation-induced firm growth and private rents make innovative firms more attractive litigation targets, because it increases firms' opportunity costs and may induce them to make positive and forward-looking statements about the firm. A measure of the private economic value of the firm's granted patents is therefore ideal, and KPSS show that their measure of patents' economic value is a stronger predictor of subsequent growth in employment, capital, output, profits, and revenue-based total factor productivity than other measures of innovation output. Second, the KPSS measure of innovation output is based on patent grants, not filings of patent applications. Because the filing date for a patent precedes the patent grant date by, on average, 2.9 years, we can plausibly view the existence of innovation in year t as predetermined with respect to a lawsuit filing in year t+1, which helps our identification. Third, the measure is constructed assuming that the market forms an expectation about the economic value of an innovation before the patent grant date and that no new information is released by the grant decision itself. KPSS argue this is a reasonable assumption and present supporting evidence. This feature is very useful in our setting, because it mitigates the possibility that new information drives both, the measured return to an innovation, and the propensity to be subject to a lawsuit. We also consider alternatives to the KPSS measure, such as raw and citation-weighted patent counts, in our robustness tests.

The innovation value measure is available until 2010, which means that our combined litigation-innovation dataset spans the period from 1995 to 2011, with innovation measures from 1995 to 2010 and class action lawsuit filings from 1996 to 2011. A class action lawsuit in our sample is resolved (i.e., dismissed or settled) on average after 1,342 days. Since our sample ends in 2011, we expect to have an essentially complete sample of all filed class action lawsuits, including their resolution, throughout our sample period. Following KPSS, we replace innovation with zero if a firm is not granted any patent in a given year. We omit firms in industries that never patent in our sample, as well as financial firms (SIC codes 6000 to 6799) and utilities (SIC codes 4900 to 4949). We match our innovation-litigation data with financial information from Compustat, stock return information from CRSP, and institutional holdings data from Thomson Reuters 13-F filings.

Our final sample consists of 40,130 firm-year observations by 6,111 unique firms with non-missing data for our key control variables. Table 1 reports descriptive statistics. Unconditionally, there is a 1.0% chance that a meritless class action lawsuit is filed against a firm in our sample. Innovation value, i.e., the total economic value of patents granted to a firm scaled by lagged assets, has a mean of 2.4% and a standard deviation of 6.3%, which implies there is substantial

variation in the value of innovative output across the firms in our sample.

5 Valuable Innovation Output and Shareholder Class Action Lawsuits

This section presents our main results. We will focus first on the effect of valuable innovation output on the likelihood of being the target of a low-quality class action lawsuit. We then estimate the associated costs to shareholders.

5.1 Sorting

We begin with a simple sorting exercise. Figure 1 presents the annual probability of a low-quality class action lawsuit filed against two groups of firms over our sample period. Low innovation output firms are firms with a zero KPSS measure, i.e. firms without any patent, in the previous year. High innovation output firms are those in the top tercile formed according to the KPSS measure of valuable innovation output among the remaining firms in the same industry-year. Industries are defined using 2-digit SIC-industry codes. Low-quality lawsuits are defined using the SCAC dismissal classifier as discussed in Section 4.

The results shown in Figure 1 are striking. In every year during our sample period, the probability of being subject to a low-quality lawsuit filing is substantially larger for firms with valuable innovation output than for firms without valuable innovation output in the same industry and year. On average, the probability of being targeted with a low-quality lawsuit is almost four times as large for successful innovators.

These results are interesting for two reasons. First, they motivate our more elaborate tests in the next sections, which aim at establishing a causal link from valuable innovation output to subsequent low-quality litigation. Second, even in the absence of such a causal link, these results imply that low-quality lawsuits fall disproportionately on firms with valuable innovation output, which have been shown by KPSS to be important engines of economic growth.

5.2 Regressions

We next examine whether the pattern observed in Figure 1 holds up in a multivariate setting. Our baseline regression specification is:

$$y_{ii,t+1} = \lambda_{it} + \beta \mathcal{I}_{it} + \gamma X_{i,t-1} + \epsilon_{ii,t+1}, \tag{1}$$

where $y_{ij,t+1}$ is an indicator variable equal to one if a class action lawsuit is filed in year t+1 against firm i in industry j, \mathcal{I}_{it} refers to the KPSS measure of valuable innovation output, and λ_{jt} are 2-digit SIC-industry \times year fixed effects. We include industry-year fixed effects because we want to rule out that the link between valuable innovation and subsequent litigation is driven by industry-specific business cycles, where more innovation in booms is followed by more litigation in busts for reasons that are unrelated to innovation. 9 $X_{i,t-1}$ is a vector of lagged control variables. Our set of baseline controls follows Kim and Skinner (2012), who empirically investigate the main predictors of shareholder litigation. Specifically, we control for Tobin's Q, 10 the log of assets, cash holdings, sales growth, institutional ownership, stock returns, volatility, skewness, and turnover. Standard errors are clustered at the firm level.

Table 2, Panel A, presents our main results for three different dependent variables: an indicator for all lawsuits filed in t + 1; an indicator for the subset of low-quality lawsuits as defined in Section 4; and an indicator for the remaining subset of meritorious lawsuits. Columns (1) to (3) present results using only accounting-related control variables, whereas columns (4) to (6) add controls related to stock returns and trading volume. Since the main results are very similar for both sets of controls, we will mainly use columns (4) to (6) as a basis for our discussion.

Looking at columns (1) and (4), we find a strong positive link between valuable innovation output and the filing of a class action lawsuit in the following year. From a shareholder value standpoint this is bad news, because being subject to a class action lawsuit is costly (we try to quantify these costs below). From a societal standpoint, it matters whether the increase in litigation is driven by meritless or meritorious lawsuits. If most of the effect comes from meritorious lawsuits, and if more actual fraud is discovered as a result, then valuable innovation can have a positive side-effect for society which may outweigh the negative effect of shareholder losses. By contrast, more meritless litigation is bad for both, shareholders and society.

To determine the source of the overall increase in lawsuit filings, we next reestimate our regressions using indicators for meritless and meritorious lawsuits, respectively. Table 2 shows that the effect is almost exclusively driven by an increase in the filings of meritless lawsuits against successful innovators. In the full model, the coefficient on the innovation value variable is highly statistically significant for meritless litigation (t = 3.52), but not statistically different from zero for meritorious cases (t = 0.67).¹¹ The point estimate in column (5) implies that a one standard-deviation shift in innovation value increases the probability of a meritless class action lawsuit filing in year t + 1 by 0.35 percentage points (= 0.055 × 0.063), which is sizable relative

⁹Lerner and Seru (2017) document substantial variation in patenting activity, and Kim and Skinner (2012) document variation in litigation rates, both across industries and over time.

¹⁰We find very similar results if we use the measure of Tobin's Q by Peters and Taylor (2017), which includes intangible capital.

 $^{^{11}}$ The difference in the coefficients across columns (2) and (3) as well as columns (5) and (6) is statistically significant at the 5% level.

to the unconditional probability of a meritless lawsuit filing of 1.0%.

The results in Table 2 are important, because they suggest the existence of an implicit "tax" on valuable innovation output, brought about by an increased probability of being subject to low-quality shareholder class action litigation. We provide an estimate of the associated cost below.¹²

To get a better sense of the functional form that relates valuable innovation output to share-holder litigation, Figure 3 presents nonparametric binned scatter plots. We compute averages of meritless class action filing probabilities for 50 innovation value bins, obtained after first residualizing both the class action filing and innovation variables on industry-year dummies and the same set of controls as in Table 2, column (5). Figure 3 shows that the probability of being target of a meritless lawsuit increases quite steadily in innovation value. In particular, the plot suggests that the positive relation between valuable innovation and subsequent meritless litigation is not driven by outliers. The pattern is robust to altering the number of bins (results unreported for brevity). In contrast, the relationship between valuable innovation and meritorious litigation is largely flat.

Finally, we also consider the dynamics of the relationship between valuable innovation output and meritless litigation risk. Specifically, we estimate the following distributed lags model:

$$y_{ij,t+1} = \lambda_{jt} + \sum_{\tau=-3}^{\tau=+3} \beta_{\tau} D(\mathcal{I}_{i,t+\tau}) + \epsilon_{ij,t+1}.$$
 (2)

The dependent variable is an indicator for a meritless lawsuit filed against firm i in year t+1. $D(\mathcal{I}_{i,t+\tau})$ are dummy variables equal to one for firm-years with high innovation value at time $t+\tau$. High innovation value is defined, as in Figure 1, as firms in the top tercile of innovation value across all firms with non-zero innovation value within a given industry and year. The coefficients β_{τ} thus measure the difference in the probability of a meritless class action filing between firms with high value of innovation output and the remaining firms for different leads and lags. The regression does not include any additional controls, because those controls would be endogenous.¹³

Figure 4 presents results. There is a large statistically significant difference (t = 2.86) in

¹²The results in Table 2 show that valuable innovation does not increase *observed* meritorious litigation. An interesting but separate question is whether valuable innovation increases the propensity to engage in actual fraud. We follow a standard approach in the literature on corporate fraud and estimate bivariate probit models (e.g., Wang (2013)) to separate fraud detection from fraud commission. We do not find any evidence to suggest valuable technological innovation would increase the propensity to commit fraud. We provide further details on these results in the Appendix.

¹³While we believe the above specification is the most appropriate one, we have estimated the regression also with the set of controls $X_{i,t-1}$ from our main regression, effectively disregarding the issue of endogenous controls. We have also estimated a specification with firm fixed effects added to Equation (2). Both alternatives deliver qualitatively similar results to the specification in Equation (2).

the probability of being subject to a low-quality lawsuit between high innovation firms and other firms in the year after a firm was granted economically valuable patents. This reflects our baseline results which have shown that valuable innovation today leads to more meritless litigation next year. We see a slightly higher point estimate also in the year of the innovation, but that increase is not statistically significant. The concentration of the effect around the first year after the valuable innovation is very informative. In particular, the absence of a difference before the innovation year suggests that our baseline results are not due to a fixed difference in the litigation propensity between successful innovators and other firms. This dynamic pattern thus substantially increases the hurdle for potential alternative explanations. Any hypothesis that rests on a slow-moving variable being correlated with both innovation value and litigation propensity cannot explain our findings.

In sum, we conclude from the results in this section that valuable innovation output is strongly related to subsequent low-quality shareholder litigation, and that this link is neither induced by a rich set of observable variables, nor by unobserved factors at the industry-year level, nor by stable differences between innovative and non-innovative firms.

5.3 Innovation Output versus Innovation Input

Our results so far are consistent with the predictions of the valuable innovation hypothesis which links valuable innovation output, as captured by the KPSS measure, to subsequent class action lawsuits. A potential concern with our previous results could be that we observe a positive and significant relation between innovation output and low-quality lawsuits simply because innovation output is correlated with innovation input.

Innovation input, usually measured using R&D expenditures in existing work, captures the amount of research and development done by a firm. The risky innovation hypothesis posits that companies with large investments in R&D are more likely to experience large stock drops, and therefore low-quality lawsuits, because investments into innovation have an elevated failure propensity. This view is reflected, for example, in the statement of the CEO of Silicon Graphics we cite in the introduction: "the high-tech firms of Silicon Valley and the Bay Area's bio-tech companies are the No. 1 target of these schemes [meritless class action lawsuits], because cutting-edge research and the risks inherent in development make their stock prices volatile." The emphasis of the risky innovation hypothesis on innovation inputs makes it testably different from the valuable innovation hypothesis.

We run a horse race between the KPSS measure of innovation output and R&D expenditures as the standard measure of innovation input. The results are presented in Table 2, Panels B and C. Across all specifications, we find that the coefficients on innovation output are effectively unchanged relative to our baseline, while innovation inputs are always insignificant for low-

quality lawsuits.¹⁴ Panel B shows that, consistent with Kim and Skinner (2012), we do not find a significant relationship between this year's R&D investment and next year's probability to be litigated. Interestingly, Panel C yields some evidence for a positive relationship between R&D and class action lawsuits when we use a three-year moving average R&D measure. However, this appears to be almost exclusively driven by meritorious litigation, which may be consistent with Wang (2013), who argues that investment in R&D increases the probability of fraud because it makes firm fundamentals more opaque. For our purposes, the central conclusion from Panels B and C is that meritless litigation is unrelated to innovation input as measured by R&D expenditures, no matter how we define it.

These results highlight that, for understanding how meritless class action lawsuits relate to corporate innovation, distinguishing between innovation input and innovation output is crucial. To the best of our knowledge, this distinction is largely ignored in the related academic literature as well as in the public and political debate. The findings in this section argue in favor of the valuable innovation hypothesis we propose in this paper, and against the more traditional risky innovation hypothesis that is influential with lawyers, economists, lawmakers and policy-makers.

5.4 Alternative Proxies for Lawsuit Merit

We believe case dismissal, as defined in the SCAC database, is the best available proxy for relative lawsuit merit in our setting. But it is not perfect, since the legal merits of a case are effectively unobservable to researchers. We address potential concerns with respect to the measurement of lawsuit merit in two ways.

First, we exploit the fact that the combined set of results – the results for all lawsuits, meritorious lawsuits and meritless lawsuits – in Table 2 raises the bar for alternative explanations considerably. For example, one may hypothesize that firms with valuable innovation hire better lawyers, or that judges are predisposed to show leniency towards firms that are about to invest and hire new employees, which would predict that innovation success makes it more likely that a case is dismissed, even though, fundamentally, it is meritorious. These hypotheses are inconsistent, however, with the other results in Table 2, Panel A. Better lawyers and more lenient judges would predict a decrease in the likelihood of a non-dismissed lawsuit, and would not predict an increase in the overall likelihood of a lawsuit. Specifications (1), (2), (4) and (5) show that these predictions are very different from what we observe in the data. In general, we find it hard to think of plausible stories which would be jointly consistent with the patterns we see for all lawsuits, meritless lawsuits, and meritorious lawsuits, and which would dominate the valuable innovation hypothesis in terms of Occam's Razor.

Second, we present results for a range of alternative proxies for lawsuit merit, which are

¹⁴We replace missing values of R&D by zero, but we find very similar results if we do not replace missing values.

based on ex-ante information when the lawsuit is filed. While, inevitably, none of the alternative proxies we consider is perfect either, finding similar results across a broad range of different proxies strengthens the case for a robust link between valuable innovation output and meritless class action lawsuits. An attractive feature of the alternative proxies we consider is that they are all public information when the case is filed, which should help attenuate any remaining concerns that our results are affected by how firms or judges respond to a lawsuit filing.

We start by exploiting the fact that material financial misstatements are a strong indicator of lawsuit merit (e.g., Choi, Pritchard, and Fisch (2005), Karpoff, Koester, Lee, and Martin (2017)). Our first proxy for class action merit is therefore an indicator for whether the defendant firm was subject to an accounting-related SEC investigation in the filing year or in the two calendar years prior to the filing. We obtain information on SEC enforcement actions from the Accounting and Auditing Enforcement Releases (AAER) database. The second proxy separates lawsuits that allege a U.S. GAAP violation from other, less tangible, allegations (e.g., omissions), using the classification provided by the SCAC.

We next exploit the identity of the lead plaintiff. We posit that plaintiffs with a better reputation are less likely to file a frivolous lawsuit, because such suits effectively involve fabricated allegations not based on managerial wrongdoing, which has the potential to seriously harm the reputation of a plaintiff. Relative to individual investors, institutional investors are likely to worry more about their reputation. Consistent with this notion, prior work has shown that institutions are more likely to pursue meritorious cases in general (e.g., Choi, Pritchard, and Fisch (2005), Park (2013)). We identify institutional investors by manually screening lead plaintiff names. Thus, our third proxy for lawsuit merit is whether an institution is the lead plaintiff.

Our final proxy uses market shares of plaintiff lawyers as a measure of law firm reputation (see de Fontenay (2016)). We assume that highly reputable law firms are less likely to file frivolous lawsuits because their reputation capital at stake is higher. We compute lawyer market share as the fraction of all securities class action lawsuits filed by a given law firm in the previous calendar year that did not get dismissed. We then average individual lawyer market shares across all plaintiff lawyers to get a case-specific lawyer market share measure. We then split cases into high and low lawyer market share at the median within a given calendar year. An alternative interpretation of the institutional investor and law firm based proxies would be that institutional investors and law firms with higher market share are more sophisticated than retail investors and smaller law firms, and that more sophisticated parties are more likely to bring meritorious suits.

Table 3 presents results. Specification (1) uses as dependent variable an indicator equal to one for all class action filings with a concurrent SEC enforcement action. Specification (2) uses as dependent variable an indicator based on all class actions without an SEC enforcement action.

Hence, we divide all class actions into a group with suits that are more likely meritorious, and a group with suits that are more likely to be meritless. Specification (2) shows that there is no significant relation between valuable innovation and lawsuit filings for cases in which the SEC has a concurrent enforcement action, i.e., cases that are more likely meritorious given that the SEC tends to investigate only potentially serious cases of financial misconduct. By contrast, the remaining cases, which are more likely meritless, exhibit a strong, positive, link between valuable innovation and class action filings, as shown in specification (1). Using SEC enforcement actions as an alternative proxy for lawsuit merit therefore yields qualitatively identical results to our baseline definition which uses dismissed cases.

The remaining columns in Table 3 present analogous results for the other three proxies. We find that valuable innovation is strongly linked to class action filings if the allegation does not involve a U.S. GAAP violation, if the lead plaintiff is not an institutional investor, and if the plaintiff lawyers have a smaller market share. By contrast, if allegations relate to U.S. GAAP violations, which are tangible and hard to fabricate, or if the lead plaintiff is sophisticated or has likely more reputational capital at stake, valuable innovation does not link with subsequent litigation.

Overall, the results in Table 3 are remarkably consistent across the four alternative measures, and suport our interpretation of the baseline results in Table 2: valuable innovation output leads to more low-quality litigation.

5.5 Additional Robustness Tests

To establish that our main result presented in Table 2, Panel A, specification (5), is robust to alternative specifications, we perform a series of robustness tests, all presented in Table 4. In Panel A, we show that our results are robust to defining meritless lawsuits as lawsuits that are either dismissed or settled for less than \$3 million (e.g., Dyck, Morse, and Zingales (2010)).¹⁵

In Panel B, we consider alternative measures of innovation output. The first two lines show our results are similar if we define an indicator variable for firms in the top tercile of innovation value within their industry and year, or if we scale innovation value by the firm's lagged market capitalization as opposed to by lagged book assets. Next, we use the total number of patents granted to the firm as an alternative measure of innovation output and find a similar effect. We then use citation-weighted patent counts, obtained from Professor Noah Stoffman's website. We also define an indicator equal to one for patents which rank in the top decile of citations among all patents granted in the same technology class and year (we obtain the necessary data from the

¹⁵Note that the focus of papers like Dyck, Morse, and Zingales (2010), or Wang and Winton (2016), is different from ours. Their goal is to use a conservative measure of true fraud, which is why they exclude cases with low settlements in their definition of meritorious cases. Our goal, by contrast, is to use a conservative measure of meritless lawsuits, which is why we exclude low settlement amounts in our definition of meritless lawsuits.

Patent Examination Research Dataset ("PatEx")). Overall, we find that our result is robust to alternative measures of innovation output, although the economic magnitude, in particular for the citation-based measures, is somewhat lower than for the KPSS measure.¹⁶

Panel C considers additional controls. First, we include contemporaneous controls for sales growth, stock return, volatility, skewness, and turnover. These variables are not included in our baseline because they are likely endogenous controls: returns, volatility, and skewness may be higher because of valuable innovation. While excluding these variables is econometrically warranted, the results in Panel C show that our main results obtain strongly and independently from these controls. Second, we address the possibility that the link between valuable innovation and litigation is induced by managerial overconfidence. To that end, we control for a stock-option based proxy for managerial overconfidence proposed by Malmendier and Tate (2005) and find virtually unchanged results. Third, we use firm fixed effects in order to tackle the potential concern that better-run firms are both, more likely to generate valuable innovations, and less likely to be sued for securities fraud. Consistent with such unobserved heterogeneity biasing our OLS estimates downward, Panel C shows that adding firm fixed effects increases the point estimate. Finally, by including district court × year fixed effects, we can ensure that our results are not driven by innovative firms being located in districts with more business-friendly courts.

In Panel D, we examine alternative sample restrictions. First, in order to ensure our results are not driven by unobserved differences between patenting and non-patenting firms, we estimate our regressions using only firm-years with non-zero innovation. Second, in order to rule out that the technology bubble around the year 2000 drives our result, we exclude the years 2000 and 2001 from our estimation. In both cases, we find essentially unchanged results and the economic magnitude of our main effect is, if anything, higher than in the baseline.

Our main regressions and robustness tests above control for a rich set of observable and unobservable variables which, in our view, substantially raise the bar for alternative explanations. A potential remaining concern is that unobserved *time-variant* factors at the firm level, which are (i) not captured by our control variables and (ii) correlated with both the value of innovation output and subsequent meritless litigation, may explain our results. We feel it is nontrivial to think of plausible stories along these lines, since any confounding variation would need to match the dynamic pattern we observed in Figure 4, i.e., the sharp increase in litigation risk in the

¹⁶The ex-post citation measures may be subject to a mechanical downward-bias in our setting because citations accrue only after a patent was granted. If subsequent citations are lower for firms which get into legal trouble (most obviously if the litigation discourages the firm itself or its peers from investing in follow-up inventions), regressing lawsuits on ex-post citations will induce a downward bias. Moreover, Abrams, Akcigit, and Grennan (2013) document that the relationship between citations and economic value follows an inverted U-shape, with fewer citations at the high end of economic value than in the middle. Hence, as also noted by KPSS, the economic value of a patent is correlated with, but different from, the scientific value of a patent. Since the valuable innovation hypothesis emphasizes economically valuable innovation, rather than scientifically valuable innovation, using the KPSS measure is warranted in our setting and, accordingly, we expect stronger results using that measure.

year following the innovation as well as the subsequent decrease. Moreover, any alternative story needs to explain why we see a link between valuable innovation output and low-quality lawsuits but no link between valuable innovation output and meritorious lawsuits.

Nevertheless, to further alleviate such concerns, we exploit two instruments for innovation value. We provide a condensed discussion here, for brevity, and relegate all details to the Appendix. The first instrument for valuable innovation we use is tax-induced changes in the user cost of R&D capital, a strategy motivated by previous studies in the literature (e.g., Kogan, Papanikolaou, Seru, and Stoffman (2017), Matray and Hombert (2017), Bloom, Schankerman, and Van Reenen (2013)). The underlying idea is that R&D tax credits motivate investment in R&D, and that more investment in R&D will increase the total value of innovation output in the following years. The instrument exploits the fact that different firms within the same industry and year face different changes in state-level R&D tax credits depending on the geographical distribution of their R&D activity. State-level tax credits can be considerably more generous than federal tax credits and are therefore a relevant concern for firms when deciding about R&D investments.

The second instrument we use exploits the patent grant process at the USPTO and is based on the leniency of the USPTO patent examiners assigned to outstanding patent applications of the firm (see Sampat and Williams (2018)). New patent applications at the USPTO are categorized based on the type of technology, and directed to a specialized group of examiners called Art Unit. Within an Art Unit, a supervisor then allocates new patent applications to examiners in a process that is quasi-random (Lemley and Sampat (2012)). Variation in patent examiner leniency therefore induces exogenous variation in the total value of innovation output for a given firm.

As reported in the Appendix, the first-stage estimates reveal a strong, negative, relation between the firm's R&D user cost and subsequent innovation output, as well as a strong, positive, relationship between patent examiner leniency and innovation output. The coefficient estimates in the second-stage regression are larger but qualitatively similar to, and statistically indistinguishable from, our baseline results, for both instruments.

5.6 Quantifying the "Tax on Valuable Innovation"

The results in the previous sections show that valuable innovation output leads to more meritless class action lawsuits. Hence, a disproportionate share of the cost associated with securities class action lawsuits falls on precisely those firms whose innovative ideas are most conducive to economic growth. But how costly is meritless litigation against successful innovators? The purpose of this section is to get a sense of the economic magnitude of the "tax on valuable innovation" we document in this paper.

5.6.1 Shareholder Losses Around Filing Dates

We start with an event study around the filings of meritless and meritorious class action lawsuits without conditioning on innovation. We use an event window from three trading days before the filing date to up to ten trading days after the filing, and compute abnormal returns relative to a Fama-French and Carhart model estimated over days t = -300 to t = -50. To be conservative, we only study filing events where the first trading day after the end of the class action period does not fall inside the event window (-3,+10). This ensures that the large stock drops which usually mark the end of a class period, and which are often driven by negative information the market receives about a firm, are not affecting our estimates. This, in turn, should give us a cleaner estimate of the impact of the lawsuit itself. In case of multiple lawsuits filed against the same company which later get consolidated, we only retain the filing of the first lawsuit.

Figure 5 presents results separately for meritless and meritorious cases, respectively. The filing of a meritless class action lawsuit is associated with a significant drop of about 2.2% in market value for the targeted firm in the (-3,+3) window around the filing date, with no further change afterwards. Turning to meritorious lawsuits, we find, as expected, even bigger effects. Over the seven days around the filing, the market value of affected stocks drop by 3.1%, with cumulative losses approaching 5.0% by day ten. While samples and methodologies differ, the magnitudes of these drops is in the same ballpark as those reported in earlier studies on stock market reactions in response to class action filings; in particular, finding substantial shareholder value costs for meritless lawsuits is also consistent with earlier work (e.g., U.S. Chamber Institute for Legal Reform (2017), Klock (2016), Choi and Pritchard (2016), Gande and Lewis (2009), Griffin, Grundfest, and Perino (2004), Pritchard and Ferris (2001)).¹⁷

There are reasons to believe the above effects understate the true cost of meritless class actions to shareholders. In particular, Gande and Lewis (2009) argue and show that lawsuits are partially anticipated by the market and that focusing on filing dates thus understates the magnitude of shareholder losses. In addition, Karpoff, Koester, Lee, and Martin (2017) show that the filing date is only one event, albeit an important one, in a string of events that occur when a company gets into legal trouble. By design, we are not capturing any additional value lost in these additional events.

One way to try and capture some of this additional value loss is to expand the event window. If we use an event period of 61 days around the announcement, from day t = -30 to day t = 30 around the filing date, we find that the losses are substantially larger than those shown in Figure

¹⁷Our approach above may underestimate the difference between meritless and meritorious cases if anticipation effects are greater for truly fraudulent behavior. Consistent with the latter possibility, we find, in unreported results, much larger declines in market value around the class action period end date for meritorious than for meritless cases. This has no bearing on our central point: being target of a meritless class action lawsuit is very costly in terms of shareholder value.

5 (results unreported for brevity). Interestingly, we observe a large and steady decline in stock prices for meritless suits until day two after the filing day, but no further decline thereafter. This suggests the lawsuit is not simply a byproduct of period with bad news; it is more consistent with the market anticipating a costly lawsuit filing because, in that scenario, we should see little return movement after the filing event. The cumulative abnormal return over the (-30,+30) window is around -18% for meritless lawsuits, consistent with the argument in Gande and Lewis (2009) that focusing on filing dates may understate the value loss. However, a drawback of the long window approach is that it is more likely to capture also the negative fundamental information which triggers the filing of the case, as well as other confounding, but unrelated, pieces of information. To be conservative, we will therefore focus on our estimates based on the tighter (-3,+3) window around the filing date where the end of the class action period is excluded.

In Figure 6, we plot the cumulative abnormal returns around the filing of a meritless lawsuit separately for innovative and non-innovative firms. High-innovation firms are defined as firms which rank in the top tercile of firms within the same industry and year, respectively, based on their KPSS innovation measure in the calendar year prior to the filing, conditional on the KPSS measure being non-zero. No-innovation firms are those with zero patents in the previous calendar year. Consistent with the idea that litigation is costlier for firms with attractive growth opportunities, we see a larger drop for high-innovation firms. Over days (-3,+3), the drop in market value is 3.0% for innovative firms and thus about 1.1 percentage points higher than for non-innovative firms.

Table 5 confirms the result that abnormal stock returns around lawsuit filings are lower for innovative firms in an OLS regression with the same set of control variables and fixed effects as in Table 2, specification (5). If anything, the difference gets larger once we control for potentially confounding variables. The point estimates in specification (2) suggest that a one-standard-deviation increase in innovation value leads to a $1.9 = 0.302 \times 0.063$ percentage points lower abnormal stock return.

If firms with valuable innovations were smaller than their peers, higher percentage losses would not necessarily translate into higher dollar losses. But since successful innovators are much larger, the corresponding dollar losses in the 7 days around a meritless lawsuit filing are \$148 million for the average successful innovator, but only \$12 million for the average non-successful innovator. A substantial fraction of the total costs of meritless litigation therefore falls on successful innovators.

A potential concern about the above estimates could be that stock prices revert as the market learns about lawsuit merit. To investigate this, we examine abnormal returns around the dismissal date, which on average occurs more than two years after the filing date. We find average abnormal returns of 0.1% in the seven days around the lawsuit dismissal, which is economically

small and statistically indistinguishable from zero (t = 0.25). As shown in Table 5, columns (3) and (4), we do not find a significant difference in the stock price reaction around dismissals between innovative and non-innovative firms. There is thus no evidence for meaningful reversals around the dismissal date.

5.6.2 Potential Sources of Shareholder Value Losses around Lawsuit Filings

The above results establish that the losses to shareholders around the filing of a meritless lawsuit are economically substantial. For the average size firm in our sample, the 2.2% announcement return translates to \$108M. What are the exact sources behind these losses, and what is their relative contribution? While fully answering this question is beyond the scope of our study, and left for future research, we consider three potential sources in this section.

A first source of value reduction are direct legal costs associated with the lawsuit. Unfortunately, large-scale data on defense counsel costs are scarce. Survey evidence suggests a median range for direct legal costs for outside lawyers working on class action lawsuits of around \$1M for more routine cases, and up to \$30M for very complex cases (Carleton Fields (2016), p.17). We conclude that direct legal costs are non trivial and may explain a considerable fraction of the shareholder value loss associated with class action filings for smaller firms. But, for larger firms, direct legal costs are unlikely to explain the bulk of the shareholder value loss associated with class action filings.

A second potential source are expected settlement costs. Empirically, almost all firms who lose the motion to dismiss settle. As an upper bound estimate of the expected cost, if the market had no information regarding the lawsuit outcome, the average expected settlement amount (=\$31M) multiplied with the probability that the lawsuit is not dismissed (=59%) could explain a shareholder value loss of up to \$18M, which represents about 17% of the market value of the average firm (=\$108M). By contrast, the better the market is able to discern cases which get dismissed from other cases, the closer expected settlement costs are to zero for cases which ultimately end up being dismissed. The fact that we do not observe a significant positive abnormal announcement return around the lawsuit dismissal argues against expected settlement costs being a major driver of shareholder losses.

Finally, shareholder value losses may reflect reputation costs induced by shareholder lawsuits. A widely held view is that, for cases of actual wrongdoing, reputation costs are of central importance. For example, Karpoff, Lee, and Martin (2008) estimate that reputation costs alone make up on average two thirds of the decline in shareholder value associated with financial misconduct. Consistent with this idea, survey evidence based on 385 U.S. firms documents that reputation concerns and potential business implications rank high among the most important risk factors firms cite in connection with class action lawsuits (see e.g., Carleton Fields (2018), pp.23).

In our setting, reputation costs may be high even for allegations which turn out to be meritless and are not sanctioned in court, for at least two reasons. First, customers, suppliers, providers of capital, and employees may not know with great certainty whether a case is meritless or meritorious at the filing of the case. This can lead to reduced demand for a firm's products, worsened terms of trade, higher cost of capital, worsened access to trade credit, and lower employee morale, which may all inflict long-term value loss for affected firms, even if the allegation is later found to be meritless. Second, being accused of wrongdoing, even if there is no merit to the claims in court, may impart a stigma on firms, leading to similar adverse reputation effects. For example, Deng, Willis, and Xu (2014) document that even after a securities class action lawsuit is dismissed, lenders do not reset most loan terms to pre-suit levels, reflecting a permanent reputational loss for the targeted firm. Our evidence above is consistent with the view that, just like for meritorious suits, reputation costs are a key driver of the observed value loss for meritless class action lawsuits.

5.6.3 Ex-Ante Costs of Meritless Litigation: A Back-Of-The-Envelope Calculation

To get a sense of the economic magnitude of the implicit tax on valuable innovation for the average firm in our sample, consider the following back-of-the-envelope calculation. The increase in expected litigation costs for a change in innovation value has two components. First, valuable innovation increases the likelihood of a meritless lawsuit. Second, it increases the expected value loss conditional on being litigated. The combined effect of a one-standard-deviation increase in valuable innovation on the expected dollar cost of litigation is therefore given by:

$$\Delta E(cost_{litigation}) = \overline{Size}(\Delta_p(\overline{CAR} + \Delta_{CAR}) + \overline{p}\Delta_{CAR}), \tag{3}$$

where \overline{Size} refers to the average market capitalization of the firms in our sample, Δ_p refers to the change in the probability of being litigated induced by a one-standard-deviation increase in innovation value, \overline{CAR} is the average cumulative abnormal stock return around a meritless lawsuit filing, Δ_{CAR} is the expected increase in the cumulative abnormal stock return induced by a one-standard-deviation increase in innovation value, and \overline{p} refers to the average probability of being target of a meritless lawsuit. \overline{Size} , \overline{CAR} , and \overline{p} are given by \$3.2 billion, 2.2%, and 1.0%, respectively. Above we have estimated the increase in the cumulative abnormal returns due to a one-standard-deviation increase in innovation value to be 1.9 percentage points, and the increase in the likelihood of being target of a meritless lawsuit in the following year to be 0.35 percentage points. The tax on a one-standard-deviation increase in innovation value that stems from increased meritless litigation risk is therefore equal to \$1.08 million for the average firm-year. In other words, if all firms in our sample had increased their innovation output by one

standard deviation, the aggregate implicit tax over the full sample period would have amounted to \$43 billion.

To put these numbers into perspective, consider the effect of a one-standard-deviation increase in innovation value on future firm profits. Using the same regression specification as KPSS, we estimate that a one-standard-deviation increase in innovation increases profits by 3.9% (=0.614×0.063) over the the next five years (see Table 7, Panel B). Applying this growth rate to the average firm profit in our sample, we estimate that a one-standard-deviation increase in innovation raises firm profits on average by \$29.8 million over the following five years. The tax on valuable innovation due to meritless litigation therefore represents 3.6% and hence an economically sizable fraction of the increase in profits in the first years.

An alternative point of reference are expected settlement payments for class action lawsuits. For the average firm-year, the average settlement amount paid for securities class action lawsuits is equal to \$0.60 million (=\$24.3 billion aggregate settlement amounts divided by 40,130 firm-years). Hence, a one-standard-deviation increase in innovation leads to an increase in expected meritless litigation costs that is almost twice as high as what the average firm can expect to pay in the form of settlement amounts. Obviously, these numbers are coarse and need to be taken with a grain of salt. They nevertheless indicate that the "tax on valuable innovation" is economically sizable.

6 Potential Channels

In this section we examine potential channels to explain why valuable innovation output leads to more meritless lawsuits. We consider two broad possibilities. First, we test whether valuable innovation output is associated with a greater likelihood of subsequent negative events that may trigger lawsuit filings, such as a large drop in the firm's stock price, or a missed earnings forecast. If lawyers were mechanically filing a lawsuit upon observing a negative event, we would then see more lawsuits for successful innovators. This channel is consistent with a modified version of the risky innovation hypothesis, which assumes that patents which are judged to be extremely valuable by the market have an elevated chance of generating large subsequent disappointment for investors. The second possibility we consider is that valuable innovation output makes firms more attractive litigation targets, conditional on experiencing a negative event.

 $^{^{18}\}mathrm{KPSS}$ estimate profits to increase by 4.6% for their sample period, which spans the years between 1950 and 2010.

6.1 Valuable Innovation Output and Lawsuit-Triggering Events

To assess whether successful innovators are more likely to experience negative events such as large stock price drops or unexpectedly poor accounting performance, we analyze the effect of valuable innovation output on daily stock return volatility, skewness, large negative stock returns, and large negative earnings surprises.

Table 6 presents the results. In specification (1), we regress next-period stock return volatility on innovation value and volatility today, as well as the same controls as in Table 2, specification (5). Stock volatility is measured as the standard deviation of daily stock returns. Specification (2) repeats the same regression using the skewness of daily stock returns as the dependent variable. In specification (3), to capture the likelihood of experiencing an extreme negative return shock, we define an indicator equal to one if a given firm's first percentile of daily stock returns in a year is in the bottom 5% across all firms in that year. Specification (4) uses the same definition as in specification (3), but replaces the first return percentile by the firm's lowest quarterly earnings surprise in a given calendar year. Due to the strong persistence in daily stock return volatility and skewness, we estimate dynamic specifications in Table 6.

Across all four measures, we find no indication that valuable innovation output is associated with a statistically or economically significant increase in the likelihood of experiencing lawsuit-triggering events in the next period. If anything, valuable innovation is associated with *lower*, not higher, stock return volatility. This is consistent with patent grants reducing uncertainty about the firm's innovation output rather than exacerbating uncertainty. Our earlier results from Table 3 are also informative: since we do not observe an increase in lawsuits that allege GAAP violations following valuable innovation, those results are inconsistent with the explanation that successful innovators are more likely to have accounting restatements.

Note that a lawsuit filing could mechanically lead to higher volatility. Hence, the tests in Table 6 are biased towards finding an increase in volatility. The fact that we nevertheless find, if anything, the opposite reinforces our conclusion that the positive link between valuable innovation output and subsequent litigation is not driven by greater uncertainty due to valuable innovation. While previous anecdotal evidence (see for example the CEO quote in the introduction), and previous academic studies have argued that innovation may increase litigation risk because it induces greater stock return volatility (e.g., Lin, Liu, and Manso (2017)), our results in this section suggest that a different economic channel is needed to understand the link between valuable innovation output and meritless litigation.

6.2 Successful Innovators as Attractive Litigation Targets

An alternative possibility, which we explore in this section, is that successful innovators are more attractive litigation targets. We consider two possible channels through which valuable innovation output could increase the attractiveness as a target: changes in opportunity costs and changes in corporate disclosure.

6.2.1 Valuable Innovation Output, Firm Growth, and Opportunity Costs

One reason why successful innovators are attractive litigation targets could be that managers of firms with valuable innovation output have particularly high opportunity costs on their time and resources, because technological innovation allows the firm to grow substantially, which requires substantial managerial effort and investments. Another reason could be that firms which are trying to market new products may be more adversely affected by the bad publicity that a class action lawsuit entails. Thus, plaintiff lawyers may believe it is easier to extract large settlements from successful innovators who are facing higher expected litigation costs.¹⁹

Since the opportunity cost of managerial time and company resources is unobservable, opportunity cost is inherently hard to test as a potential channel. However, we can provide at least indirect evidence by showing that managers of firms with valuable innovations are busy expanding their business. We use regression specifications from KPSS, in which future growth in the dependent variable over horizons from one to five years is regressed on the value of innovation output today. Following KPSS, we include the current level of the dependent variable, the log of firm capital, the log of employment, and stock return volatility as controls; additionally, we include the control variables from Table 2, specification (5), as well as industry-year fixed effects. Table 7 presents results. Each coefficient in each panel represents a separate regression and we omit results on the control variables for brevity. Consistent with the findings by KPSS, valuable innovation leads to substantial growth in capital and employment (see Table 7, Panels A and B), which is consistent with an increase in opportunity costs. Panels C and D show an increase in firm output and profits following a valuable patent grant, which is consistent with successfully marketing new products. If firms that market new products are particularly vulnerable to bad publicity, this may explain why successful innovators are attractive targets of meritless lawsuits.

We conclude from Table 7 that the changes in corporate investment and output, induced by valuable innovation output, support the hypothesis that valuable innovation output makes a firm an attractive litigation target. With due caution we note that the coefficient sizes, and how they vary with different horizons, are informative. Across all panels, the incremental growth rate is biggest in the initial year after the patent grant. This may explain why innovative firms are most

¹⁹See Bebchuk (1988) for a model where expected litigation costs for the defendant increase the probability of frivolous lawsuits.

vulnerable to litigation in the first year after the patent grant.

6.2.2 Valuable Innovation and Changes in Corporate Disclosure

A second channel we consider is that the information disclosed by successful innovators to investors makes it easier for lawyers to craft a meritless complaint. In particular, if managers of firms that obtain valuable patents use more optimistic and forward-looking language in their communication with investors – which seems plausible given the very nature of valuable innovation – then they could automatically be more vulnerable to being wrong ex post. Consistent with this idea, Rogers, Buskirk, and Zechman (2011) document that more optimistic disclosure tone is associated with greater litigation risk.²⁰

We examine this channel by assessing whether valuable innovation output coincides with an increase in optimistic and forward-looking disclosure. In Table 8, specification (1), we regress the change in the share of positive words, which we use as a proxy for optimism, in a firm's 10-K from year t-1 to year t on innovation value in year t. To capture positive words, we use the positive financial word dictionary (Fin-Pos) provided on Professor Bill McDonald's Word Lists Page. The results show that the share of positive words increases during high innovation output years, in line with the idea that communicating about valuable innovation implies using more optimistic language.

In specification (2), we examine the use of forward-looking language. The dependent variable we use is the change in the forward-looking intensity of the firm's Management Discussion & Analysis (MD&A) section in the annual report from year t-1 to year t, defined by Muslu, Radhakrishnan, Subramanyam, and Lim (2015) as the number of forward-looking sentences divided by the total number of sentences in the MD&A.²¹ Using this measure, we find that the amount of forward-looking statements increases significantly with innovation value. We thus conclude that how firms communicate about valuable innovation output is a potential channel through which valuable innovation induces more meritless litigation.

Combined, our results on the economic channel suggest that the problem of increased meritless class action litigation may be inextricably linked to the changes valuable innovation output induces in corporate outcomes and corporate disclosures. An increased propensity to be litigated therefore appears to be a fundamental feature associated with valuable innovative activity.

²⁰The PSLRA contains a safe harbor provision that exempts some forward-looking statements from being litigated. That provision, and its interpretation, has been heavily debated in courts and among legal scholars. For example, Olazábal (2011) discusses the surrounding legal issues. She also observes that, the safe harbor provision not withstanding, "allegations of false forward-looking statements are also quite standard in today's class action securities fraud pleading." Rogers, Buskirk, and Zechman (2011) also discuss why existing legal rules, in the PSLRA or elsewhere, do not in general imply that firms cannot be sued for optimistic forward-looking statements. In fact, their analysis is a case in point since it is conducted on a post-PSLRA sample.

²¹We obtain the forward-looking intensity measure from the data appendix of Muslu, Radhakrishnan, Subramanyam, and Lim (2015) published on the *Management Science* webpage.

7 Potential Implications for the Competitiveness of the U.S. Economy

Our findings have potentially important implications for understanding how securities class action litigation can affect the competitiveness of the U.S. economy. We discuss some of these implications below.

First, Kogan, Papanikolaou, Seru, and Stoffman (2017) show that valuable innovation output is an important driver of economic growth, and that obtaining a valuable patent is followed by substantial investments in capital and labor. By draining resources, such as financial capital, reputational capital, and managerial time, from innovative firms precisely when these companies want to expand, meritless class action lawsuits may contribute to economy-wide misallocation of resources.

Second, a standard prediction from optimal contracting models, such as Holmström (1979), Lazear and Rosen (1981), and Holmström (1982), is that optimal incentive provision requires higher rewards for better performance. Our finding that those firms who produce the most valuable new ideas are punished via low-quality class action lawsuits runs counter to that general prescription. Hence, ex-post punishment of firms that generate valuable innovation, in the form a costly lawsuit, may distort innovation incentives for all firms *ex ante*, which may lead to underprovision of innovation in the economy.

We note that, from a managerial perspective, the tax on valuable innovation output we identify may be particularly relevant. In case a lawsuit is successful, the manager may lose her job, face legal consequences, and may suffer reputational penalties in the labor market. Managers thus have a particularly great incentive to avoid getting sued in the first place, which, in turn, may lead them to make decisions which are suboptimal from a shareholder value standpoint.

Third, due to the importance of knowledge spillovers (see, e.g., Bloom, Schankerman, and Van Reenen (2013)), meritless lawsuits, through the disincentives for innovation they entail, may not only affect the growth of innovating firms themselves, but also that of their peers.

Fourth, litigation against innovative firms may create disincentives for these firms to list on public stock markets and thus forego otherwise valuable growth opportunities – an argument in line with both anecdotal and prior academic evidence on class action lawsuits as an impediment to tapping public equity markets (e.g., Zingales (2006)). For example, Robert G. Gilbertson wrote in a July 13, 1995 piece in the Hartfort Currant, titled "Yes: Bill Would Protect Growing Companies":

I am chief executive officer of CMX Systems, a small high-tech company in Wallingford that manufactures precision measuring devices for the disk drive and semiconductor industry. By any objective measure, CMX has been ripe for expansion for some time. We grew more than 2,000 percent in the four years from 1990 through 1993, and our sales exceeded \$8.6 million in 1993. To continue this extraordinary growth, CMX needed to sell stock to the public in early 1994 to finance a \$4 million research-and-development plan. However, we were deterred from this option after watching other small companies get whiplashed by frivolous securities lawsuits.

Our findings may thus contribute to understanding the well-documented decreasing trend in the number of publicly listed firms in the U.S. (see, for example, Doidge, Karolyi, and Stulz (2017)).

Fifth, as the economy becomes more technology-intensive, the "tax on valuable innovation" we identify in this paper may become even more relevant in the future.²² In addition, an increased shift towards technology-driven innovation may also deepen the problem that having to deal with meritless class action lawsuits adversely affects the resources judges and courts can expend on dealing with cases of actual wrongdoing.

8 Conclusion

It has long been suspected by academics, practitioners, and lawmakers, that corporate innovation and low-quality shareholder litigation may be intrinsically linked. A common narrative is that innovation projects have high uncertainty and may, in the case of project failure, increase the likelihood of a large stock drop, which, in turn, may trigger a lawsuit filing irrespective of actual wrongdoing. This view stands in contrast with existing empirical studies that have failed to document a causal link between innovation inputs, as measured by R&D expenditures, and subsequent litigation. Moreover, the empirical fact that large "litigable" stock drops occur much more frequently than class action lawsuits (56% vs. 2% for the average year in our sample) suggests that stock drops can at best provide a partial explanation for why firms become targets of class action lawsuits.

In this paper, we propose a new perspective on the link between innovation and litigation, which we label the "valuable innovation hypothesis." The valuable innovation hypothesis holds that low-quality lawsuits specifically target successful innovators, i.e., firms that have recently received economically valuable patents and are about to embark on implementing their valuable ideas, because such successful firms are attractive targets for low-quality litigation. The core conceptual contribution of the valuable innovation hypothesis is to emphasize the distinction between innovation inputs, like R&D expenditures, and innovation outputs, which we measure as the economic value of granted patents in a given firm-year following Kogan, Papanikolaou,

 $^{^{22}}$ For example, Kogan, Papanikolaou, Seru, and Stoffman (2017) construct an innovation index which is showing a strong upward trend post World War 2.

Seru, and Stoffman (2017). This distinction allows us to reconcile the fact that practitioners and policy makers perceive innovation to be an important driver of low-quality litigation with the lack of strong evidence for an innovation-litigation link in the existing literature. We show that once we focus on innovation output, there is a strong empirical link between innovation and subsequent low-quality class action litigation. By contrast, if we follow prior work and focus on innovation input, we find essentially no relation between innovation and meritless litigation. The valuable innovation hypothesis also makes testable predictions about which firms have an elevated likelihood of being targeted by low-quality lawsuits conditional on a stock drop: firms with valuable innovation output.

Our results contribute new evidence to the important ongoing debate about the efficiency of the U.S. class action litigation system. Our core finding is that meritless class action lawsuits constitute an economically meaningful "tax" on innovation output, which has direct implications for the potential real effects of the current class action system. Most immediately, a tax on innovation output implies a misallocation of resources by draining money and time from a set of firms which need them the most in order to implement their innovative ideas. In addition, ex-post punishment in the form of meritless litigation may affect firms' decisions to innovate and/or publicly list ex ante. Overall, the evidence in this paper supports the view that the current securities class action system in the U.S. may be an impediment to economic growth and competitiveness. Estimating the magnitude of these distortions could be a fruitful area for future research.

Our study focuses on innovation output due to its documented importance for economic growth and advantages for our identification strategy. However, in light of our results on the economic mechanism, it is plausible that a more general systematic link exists between valuable growth opportunities and meritless litigation. Specifically, we argue that firms with valuable innovation output may be more attractive litigation targets because they (i) face high opportunity costs, and (ii) use more forward-looking and optimistic language in their disclosures. Since any positive shock to future cash flows, e.g., in the form of a new positive NPV project, is likely to change a firm's characteristics along these dimensions, the U.S. litigation system may systematically punish firms with the most attractive growth opportunities. If the tax on valuable innovation output we identify is merely a subset of a broader "tax on valuable growth opportunities," the economic costs of meritless class actions are potentially much larger than we estimate them to be. We leave exploring the link between meritless litigation and growth opportunities more broadly to future research.

References

- Abrams, David, Ufuk Akcigit, and Jillian Grennan, 2013, Patent value and citations: Creative destruction or strategic disruption?, Working Paper.
- Alexander, Janet Cooper, 1991, Do the merits matter: A study of settlements in securities class actions, Stan. L. Rev. 43, 497.
- Ali, Ashiq, and Sanjay Kallapur, 2001, Securities price consequences of the Private Securities Litigation Reform Act of 1995 and related events, *The Accounting Review* 76, 431–460.
- Commit-American Bar Association, 2017,Letter the to U.S. the Judiciary the of Representatives, tee on of House $https://www.americanbar.org/content/dam/aba/uncategorized/GAO/2017feb1_lara_l.authcheckdam.pdf.$
- Bebchuk, Lucian Arye, 1988, Suing solely to extract a settlement offer, *The Journal of Legal Studies* 17, 437–450.
- Bergstresser, Daniel, and Thomas Philippon, 2006, CEO incentives and earnings management, Journal of Financial Economics 80, 511–529.
- Bloom, Nicholas, Mark Schankerman, and John Van Reenen, 2013, Identifying technology spillovers and product market rivalry, *Econometrica* 81, 1347–1393.
- Bondi, Bradley J., 2010, Facilitating economic recovery and sustainable growth through reform of the securities class-action system: Exploring arbitration as an alternative to litigation, *Harvard Journal of Law & Public Policy* 33, 607.
- Burns, Natasha, and Simi Kedia, 2006, The impact of performance-based compensation on misreporting, *Journal of Financial Economics* 79, 35–67.
- Carleton Fields, 2016, The 2016 Carlton Fields Class Action Survey: Best Practices in Reducing Cost and Managing Risk in Class Action Litigation, https://ClassActionSurvey.com.
- ———, 2018, The 2018 Carlton Fields Class Action Survey: Best Practices in Reducing Cost and Managing Risk in Class Action Litigation, https://ClassActionSurvey.com.
- Choi, Stephen J., 2007, Do the merits matter less after the Private Securities Litigation Reform Act?, The Journal of Law, Economics, & Organization 23, 598–626.
- ———, and Adam C. Pritchard, 2016, Sec investigations and securities classactions: An empirical comparison, *Journal of Empirical Legal Studies* 13, 27–49.
- Choi, Stephen J., A. C. Pritchard, and Jill E. Fisch, 2005, Do institutions matter? The impact of the lead plaintiff provision of the private securities litigation reform act, Washington University Law Review 83, 869–905.
- Cohen, Lauren, Umit G. Gurun, and Scott D. Kominers, 2016a, Patent trolls: Evidence from targeted firms, *Science* 352, 521–522.

- ——, 2016b, Patent trolls: Evidence from targeted firms, Working Paper.
- Congressional Record Volume 141, 1995, pp. S12201–S12207.
- Crane, Alan D., and Andrew Koch, 2018, Shareholder litigation and ownership structure, *Management Science* 64, 5–23.
- de Fontenay, Elisabeth, 2016, Agency costs in law-firm selection: are companies under-spending on counsel?, Capital Markets Law Journal 11, 486–509.
- Deng, Saiying, Richard H. Willis, and Li Xu, 2014, Shareholder litigation, reputational loss, and bank loan contracting, *Journal of Financial and Quantitative Analysis* 49, 1101–1132.
- Doidge, Craig, G. Andrew Karolyi, and René M. Stulz, 2017, The u.s. listing gap, *Journal of Financial Economics* 123, 464–487.
- Dyck, Alexander, Adair Morse, and Luigi Zingales, 2010, Who blows the whistle on corporate fraud?, *Journal of Finance* 65, 2213–2253.
- ——, 2014, How pervasive is corporate fraud?, Working Paper.
- Field, Laura, Michelle Lowry, and Susan Shu, 2005, Does disclosure deter or trigger litigation?, Journal of Accounting and Economics 39, 487–507.
- Francis, Jennifer, Donna Philbrick, and Katherine Schipper, 1994, Shareholder litigation and corporate disclosures, *Journal of Accounting Research* pp. 137–164.
- Gande, Amar, and Craig M. Lewis, 2009, Shareholder-initiated class action lawsuits: Shareholder wealth effects and industry spillovers, *Journal of Financial and Quantitative Analysis* 44, 823–850.
- Griffin, Paul A., Joseph A. Grundfest, and Michael A. Perino, 2004, Stock price response to news of securities fraud litigation: An analysis of sequential and conditional information, *Abacus* 40, 21–48.
- Holmström, Bengt, 1979, Moral hazard and observability, *The Bell Journal of Economics* pp. 74-91.
- ———, 1982, Moral hazard in teams, The Bell Journal of Economics pp. 324–340.
- Johnson, Marilyn F., Ron Kasznik, and Karen K. Nelson, 2000, Shareholder wealth effects of the private securities litigation reform act of 1995, *Review of Accounting Studies* 5, 217–233.
- Karpoff, Jonathan M., Allison Koester, D. Scott Lee, and Gerald S. Martin, 2017, Proxies and databases in financial misconduct research, *Accounting Review* 92, 129–163.
- Karpoff, Jonathan M., D. Scott Lee, and Gerald S. Martin, 2008, The cost to firms of cooking the books, *Journal of Financial and Quantitative Analysis* 43, 581–611.
- Kasznik, Ron, and Baruch Lev, 1995, To warn or not to warn: Management disclosures in the face of an earnings surprise, *Accounting Review* pp. 113–134.

- Kaufman, Bruce, 2017, Bill targets frivolous suits, but critics say it misses mark, *Bloomberg Law*, https://www.bna.com/bill-targets-frivolous-n57982087297/.
- Kim, Irene, and Douglas J. Skinner, 2012, Measuring securities litigation risk, *Journal of Accounting and Economics* 53, 290–310.
- Klock, Mark, 2016, Do the merits matter less after the Private Securities Litigation Reform Act?, Journal of Business & Securities Law 15, 110–156.
- Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman, 2017, Technological innovation, resource allocation, and growth, *Quarterly Journal of Economics* 132, 665–712.
- Lazear, Edward P., and Sherwin Rosen, 1981, Rank-order tournaments as optimum labor contracts, *Journal of Political Economy* 89, 841–864.
- Lemley, Mark, and Bhaven Sampat, 2012, Examiner characteristics and patent office outcomes, Review of Economics and Statistics 94, 817–827.
- Lerner, Josh, and Amit Seru, 2017, The use and misuse of patent data: Issues for corporate finance and beyond, *Working Paper*.
- Lin, Chen, Sibo Liu, and Gustavo Manso, 2017, Shareholder litigation and corporate innovation, Working Paper (Version of September 15).
- Malmendier, Ulrike, and Geoffrey Tate, 2005, CEO overconfidence and corporate investment, Journal of Finance 60, 2661–2700.
- Matray, Adrien, and Johan Hombert, 2017, Can innovation help U.S. manufacturing firms escape import competition from China?, *Journal of Finance*, forthcoming.
- McKinsey & Company, 2007, Sustaining New York's and the U.S.' global financial services leadership, Report commissioned by Mayor Michael R. Bloomberg and Charles E. Schumer.
- Mezzanotti, Filippo, 2017, Roadblock to innovation: The role of patent litigation in corporate R&D, Working Paper.
- Muslu, Volkan, Suresh Radhakrishnan, K. R. Subramanyam, and Dongkuk Lim, 2015, Forward-looking MD&A disclosures and the information environment, *Management Science* 61, 931–948.
- Olazábal, Ann Morales, 2011, False forward-looking statements and the PSLRA's safe harbor, Ind. LJ 86, 595.
- Park, James J., 2013, Securities class actions and bankrupt companies, *Michigan Law Review* 111, 547–590.
- Peters, Ryan H., and Lucian A. Taylor, 2017, Intangible capital and the investment-q relation, *Journal of Financial Economics* 123, 251–272.
- Poirier, Dale J., 1980, Partial observability in bivariate probit models, *Journal of Econometrics* 12, 209–217.

- Pritchard, Adam C., and Stephen P. Ferris, 2001, Stock price reactions to securities fraud class actions under the private securities litigation reform act, *Michigan Law and Economics Research Paper No. 01-009*.
- Rizzo, A. Emanuele, 2017, Afraid to take a chance? The threat of lawsuits and its impact on shareholder wealth, *Working Paper*.
- Rogers, Jonathan L., Andrew Van Buskirk, and Sarah L. C. Zechman, 2011, Disclosure tone and shareholder litigation, *The Accounting Review* 86, 2155–2183.
- Romano, Roberta, 1991, The shareholder suit: Litigation without foundation?, Journal of Law, Economics, & Organization 7, 55–87.
- Sampat, Bhaven, and Heidi L. Williams, 2018, How do patents affect follow-on innovation? Evidence from the human genome, *American Economic Review*.
- Seligman, Joel, 1994, The merits do matter: A comment on Professor Grundfest's disimplying private rights of action under the Federal Securities Laws: The Commission's authority, *Harv. L. Rev* 108, 438.
- ——, 2004, Rethinking private securities litigation, U. Cin. L. Rev. 73, 95.
- Spiess, D. Katherine, and Paula A. Tkac, 1997, The Private Securities Litigation Reform Act of 1995: The stock market casts its vote..., *Managerial and Decision Economics* pp. 545–561.
- U.S. Chamber Institute for Legal Reform, 2014, Economic consequences: The real costs of u.s. securities class action litigation, .
- ——— , 2017, Unstable foundation: Our broken class action system and how to fix it, .
- U.S. Chamber of Commerce, 2017, Letter to the Committee on the Judiciary of the U.S. House of Representatives, https://www.uschamber.com/letter/hr-720-the-lawsuit-abuse-reduction-act-2017.
- Wang, Tracy Yue, 2013, Corporate securities fraud: Insights from a new empirical framework, Journal of Law, Economics, and Organization 29, 535–568.
- ——, and Andrew Winton, 2016, Industry informational interactions and corporate fraud, Working Paper.
- ——, and Xiaoyun Yu, 2010, Corporate fraud and business conditions: Evidence from IPOs, Journal of Finance 65, 2255–2292.
- Wilson, Daniel J., 2009, Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits, *Review of Economics and Statistics* 91, 431–436.
- Zingales, Luigi, 2006, Chapter 1: Competitiveness, Interim Report of the Committee on Capital Markets Regulation.

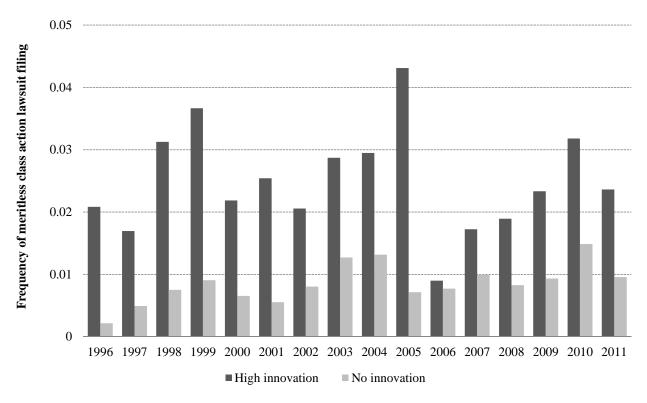


Figure 1: Meritless securities class action filings by innovation group over time. The figure presents the frequency of meritless class action lawsuit filings over time for two groups of firms: high and low innovators. We sort all firms with positive innovation value in the previous calendar year into terciles within the same SIC 2-digit industry and year. High innovation are firms which rank in the top tercile. Low innovation firms are those with zero innovation in the previous calendar year. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017). Meritless lawsuits are identified as lawsuits that are eventually dismissed.

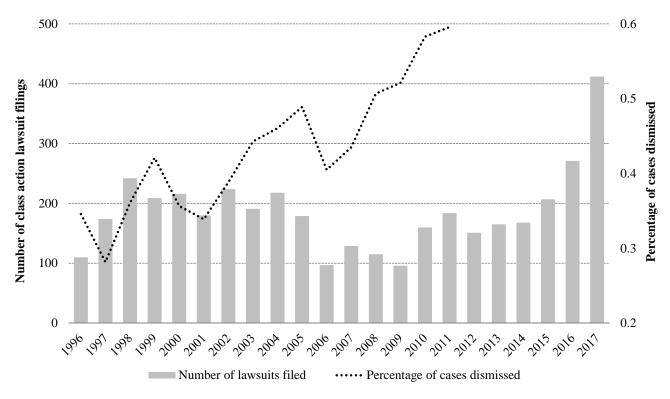


Figure 2: Class action filings and dismissed cases over time.

The figure presents the total number of securities class action lawsuit filed in a given calendar year, and the fraction of these cases which are subsequently dismissed. Securities class action lawsuits are retrieved from the Stanford Securities Class Action Clearinghouse database. We exclude cases related to IPO underwriter allocation, analyst coverage, and mutual funds.

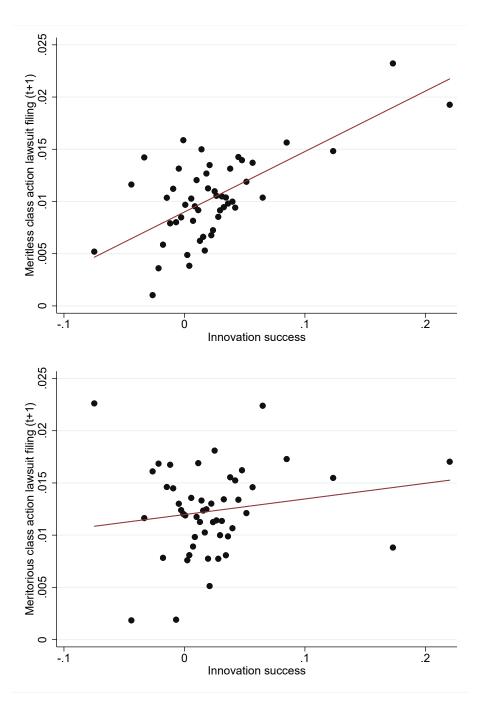


Figure 3: Valuable innovation and next-period class action lawsuit filing.

The figure presents nonparametric binned scatter plots of the relationship between the probability of a class action lawsuit filing in the following year and valuable innovation. We sort firms' innovation value into 50 equal-sized bins and plot the average frequency of observing a meritless (upper graph) and meritorious (lower graph) class action lawsuit filing in the following calendar year against the average innovation value measure within each bin. The lawsuit and innovation variables are first residualized on industry × year dummies and the set of control variables presented in Table 2, specifications (5) and (6). The best-fit line is estimated with an OLS regression using the underlying micro data. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017). Meritless lawsuits are identified as lawsuits that are eventually dismissed; all other lawsuits are classified as meritorious.

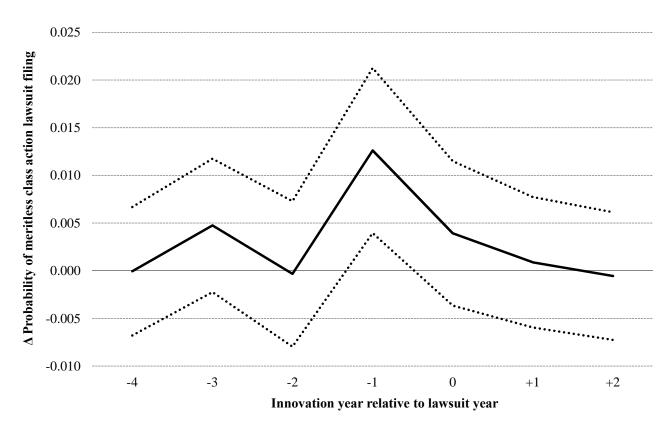


Figure 4: Dynamic effects of valuable innovation on meritless litigation risk.

The figure plots the coefficients (and 95% confidence intervals) from a dynamic analysis of the effect of valuable innovation on meritless litigation risk, based on Equation (2). High innovation firms are those which rank in the top tercile of all firms with positive innovation in the same industry and year, based on their measure of innovation value. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017). Meritless lawsuits are identified as lawsuits that are eventually dismissed.

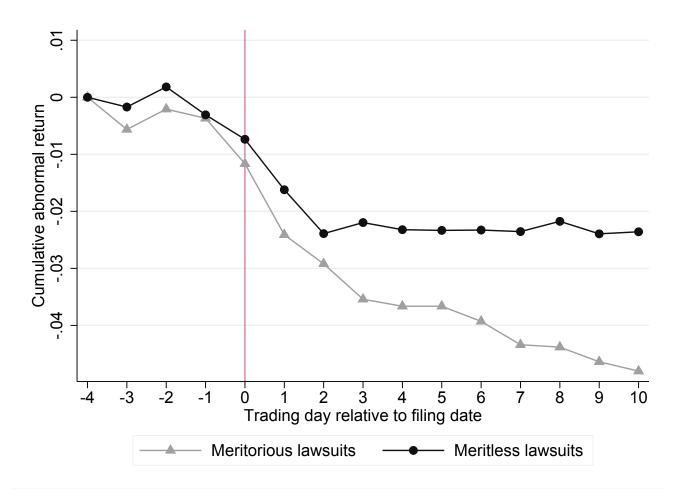


Figure 5: Cumulative abnormal returns around class action lawsuit filings.

The figure shows the cumulative abnormal returns over event days (-3,+10) around the filing of a meritless versus meritorious lawsuit. Meritless lawsuits are identified as lawsuits that are eventually dismissed; all other lawsuits are classified as meritorious. Abnormal returns are estimated based on the Fama-French-Carhart 4-factor model estimated over days t = -300 to t = -50. We exclude filing events where the first trading day after the end of the class action period falls into the event window.

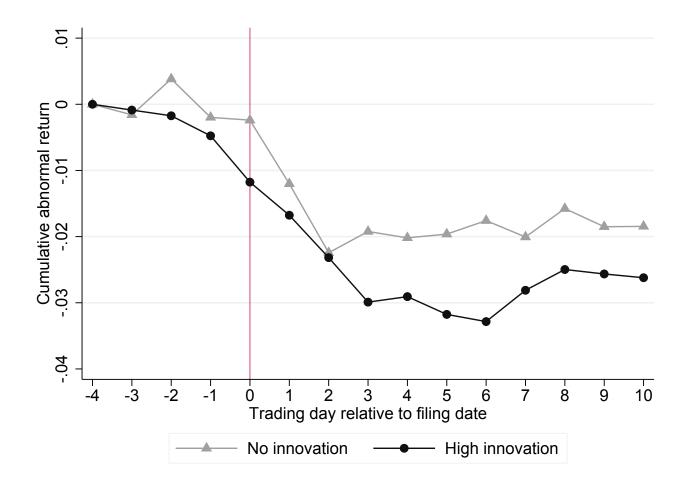


Figure 6: Cumulative abnormal returns around meritless class action lawsuit filings by innovation group.

The figure shows the cumulative abnormal returns over event days (-3,+10) around the filing of a meritless class action lawsuit, separately for high and low innovators. High innovation are firms which rank in the top tercile of all firms in the same industry and year, based on their measure of valuable innovation in the previous calendar year. No innovation firms are those with zero innovation in the previous calendar year. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017). Meritless lawsuits are identified as lawsuits that are eventually dismissed. Abnormal returns are estimated based on the Fama-French-Carhart 4-factor model estimated over days t = -300 to t = -50. We exclude filing events where the end of the class action period falls into the event window.

Table 1: Summary Statistics

This table presents summary statistics for key variables. Securities class action lawsuits are retrieved from the Stanford Securities Class Action Clearinghouse database from 1996 to 2011. Meritless lawsuits are identified as lawsuits that are eventually dismissed; all other lawsuits are classified as meritorious. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017), scaled by lagged book assets.

	N	Mean	Std.	0.25	Median	0.75
			Dev.			
Dependent Variables						
Class action lawsuit filing $_{t+1}$	40,130	0.022	0.147	0.000	0.000	0.000
Meritless class action lawsuit filing $_{t+1}$	40,130	0.010	0.100	0.000	0.000	0.000
Meritorious class action lawsuit filing $_{t+1}$	40,130	0.012	0.109	0.000	0.000	0.000
Key Independent Variables						
Innovation value $_t$	40,130	0.024	0.063	0.000	0.000	0.009
$R\&D_t$	39,987	0.057	0.105	0.000	0.003	0.072
$R\&D_{(t-2,t)}$	40,011	0.058	0.102	0.000	0.004	0.077
Control variables						
Tobin's Q_{t-1}	40,130	2.037	1.655	1.100	1.497	2.279
Log assets_{t-1}	40,130	5.487	2.041	3.981	5.355	6.817
$Cash_{t-1}$	40,130	0.355	0.222	0.181	0.310	0.499
Sales growth $_{t-1}$	40,130	0.171	0.516	-0.024	0.087	0.238
Sales growth _{$t-2$}	40,130	0.223	0.583	-0.002	0.105	0.272
IO_{t-1}	40,130	0.346	0.326	0.000	0.289	0.645
Stock return $_{t-1}$	40,130	0.192	0.645	-0.161	0.153	0.479
Stock $\operatorname{return}_{t-2}$	40,130	0.155	0.631	-0.187	0.122	0.441
Return skewness $_{t-1}$	40,130	0.488	1.110	0.015	0.400	0.864
Return skewness $_{t-2}$	40,130	0.456	1.074	0.013	0.381	0.818
Return volatility $_{t-1}$	40,130	0.638	0.355	0.382	0.556	0.798
Return volatility $_{t-2}$	40,130	0.629	0.350	0.376	0.551	0.790
$Turnover_{t-1}$	40,130	17.619	18.452	5.620	11.640	22.913
$Turnover_{t-2}$	40,130	16.890	17.938	5.421	11.010	21.753

Table 2: Innovation and Class Action Lawsuit Filings

This table regresses indicators for next-period class action lawsuit filings on the value of this period's innovation output. Meritless lawsuits are identified as lawsuits that are eventually dismissed; all other lawsuits are classified as meritorious. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017), scaled by lagged book assets. We also control for the firm's R&D expenditures this period (t) (Panel B) as well as for a moving average of R&D expenditures measured over years t-2 to t (Panel C). R&D expenditures are scaled by lagged assets and replaced by zero if R&D expenditures are missing. t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

Panel A: Baseline

			Class action lav	vsuit filing $_{t+}$	-1	
	All	Meritless	Meritorious	All	Meritless	Meritorious
	(1)	(2)	(3)	(4)	(5)	(6)
Innovation value $_t$	0.078	0.061	0.016	0.066	0.055	0.010
	(3.91)	(1.08)	(2.95)	(3.52)	(0.67)	
Tobin's Q_{t-1}	0.005	0.002	0.003	0.003	0.001	0.002
	(6.45)	(4.15)	(4.91)	(4.32)	(2.57)	(3.46)
Log assets_{t-1}	0.008	0.004	0.005	0.008	0.004	0.004
	(13.80)	(8.83)	(10.17)	(10.71)	(7.31)	(7.52)
$Cash_{t-1}$	0.015	0.007	0.007	0.009	0.005	0.004
	(3.20)	(2.29)	(2.20)	(1.91)	(1.50)	(1.20)
Sales growth $_{t-1}$	0.008	0.003	0.005	0.006	0.002	0.004
	(4.63)	(2.75)	(3.59)	(3.48)	(1.77)	(2.93)
Sales growth $_{t-2}$	0.006	0.003	0.003	0.004	0.002	0.002
	(3.70)	(2.34)	(2.86)	(2.83)	(1.82)	(2.17)
IO_{t-1}	-0.014	-0.004	-0.009	-0.017	-0.005	-0.012
	(-4.16)	(-1.79)	(-3.89)	(-5.02)	(-2.18)	(-4.63)
Stock $\operatorname{return}_{t-1}$				0.006	0.002	0.004
				(3.58)	(1.85)	(3.26)
Stock $\operatorname{return}_{t-2}$				0.004	0.002	0.002
				(2.32)	(1.68)	(1.64)
Return skewness $_{t-1}$				-0.001	-0.001	-0.001
				(-1.65)	(-1.51)	(-0.89)
Return skewness $_{t-2}$				0.000	0.001	0.000
				(-0.25)	(1.17)	(-1.05)
Return volatility $_{t-1}$				0.006	0.002	0.004
				(1.77)	(0.92)	(1.60)
Return volatility $_{t-2}$				-0.006	0.000	-0.007
				(-1.60)	(-0.12)	(-2.29)
$Turnover_{t-1}$				0.031	0.025	0.006
				(3.58)	(3.92)	(1.02)
$Turnover_{t-2}$				0.014	-0.005	0.020
				(1.70)	(-1.00)	(2.96)
Industry \times year f.e.	Yes	Yes	Yes	Yes	Yes	Yes
N	40,116	40,116	40,116	40,116	40,116	40,116
\mathbb{R}^2	0.040	0.033	0.026	0.043	0.035	0.027

Panel B: Innovation output versus innovation input

			Class action law	v suit filing $_{t+}$	1	
	All	Meritless	Meritorious	All	Meritless	Meritorious
	(1)	(2)	(3)	(4)	(5)	(6)
Innovation value $_t$	0.080	0.066	0.012	0.066	0.060	0.005
	(3.39)	(3.96)	(0.76)	(2.77)	(3.59)	(0.29)
$R\&D_t$	0.014	0.002	0.012	0.013	0.001	0.011
	(1.24)	(0.24)	(1.44)	(1.14)	(0.13)	(1.42)
Baseline Controls	Yes	Yes	Yes	Yes	Yes	Yes
Additional Controls	No	No	No	Yes	Yes	Yes
Industry \times year f.e.	Yes	Yes	Yes	Yes	Yes	Yes
N	39,972	39,972	39,972	39,972	39,972	39,972
\mathbb{R}^2	0.038	0.033	0.024	0.040	0.035	0.026

Panel C: Innovation output versus 3-year average innovation input

			Class action lav	vsuit filing $_{t+}$	-1	
	All	Meritless	Meritorious	All	Meritless	Meritorious
	(1)	(2)	(3)	(4)	(5)	(6)
Innovation value $_t$	0.076	0.066	0.009	0.064	0.060	0.003
	(3.23)	(3.90)	(0.58)	(2.67)	(3.58)	(0.16)
$R\&D_{(t-2,t)}$	0.024	0.004	0.020	0.019	0.000	0.019
	(1.93)	(0.43)	(2.15)	(1.53)	(-0.04)	(1.96)
Baseline Controls	Yes	Yes	Yes	Yes	Yes	Yes
Additional Controls	No	No	No	Yes	Yes	Yes
Industry \times year f.e.	Yes	Yes	Yes	Yes	Yes	Yes
N	40,011	40,011	40,011	40,011	40,011	40,011
\mathbb{R}^2	0.038	0.033	0.024	0.040	0.035	0.026

Table 3: Alternative Proxies for Lawsuit Merit

This table regresses indicators for next-period class action lawsuit filings on valuable innovation output. In specification (1) ((2)), the dependent variable is equal to one if a lawsuit is filed that (does not) coincide or was (not) preceded by an SEC investigation of an accounting restatement by the firm, respectively. In specification (3) ((4)), the dependent variable is equal to one if a lawsuit is filed that alleges (does not allege) a U.S. GAAP violation, respectively. In specification (5) ((6)), the dependent variable is equal to one if a lawsuit is filed that (does not) involve an institutional investor as lead plaintiff, respectively. In specification (7) ((8)), the dependent variable is equal to one if a lawsuit is filed by law firms with a small (large) market share, respectively. Market shares of plaintiff law firms are computed based on the share of the total number of non-dismissed securities class actions filed in the previous calendar year. In case of multiple law firms per filing, we compute the average market share. A class action lawsuit is classified as being filed by a small (large) law firm if the average market share is below (above) the median in a given year. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017), scaled by lagged book assets. Control variables are the same as in Table 2, specification (5). t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

		Class action lawsuit filing $_{t+1}$						
	SEC :	action	GAAP	violation	Instit	ution	ution Plaintiff law firm	
	No	Yes	No	Yes	No	Yes	Small	Large
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Innovation value $_t$	0.060	0.006	0.056	0.009	0.059	0.007	0.052	0.013
	(2.95)	(0.64)	(3.00)	(0.72)	(2.79)	(0.95)	(3.03)	(0.93)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Industry \times year f.e.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	40,116	40,116	40,116	40,116	40,116	40,116	40,116	40,116
\mathbb{R}^2	0.040	0.018	0.037	0.027	0.040	0.029	0.033	0.029

Table 4: Robustness

This table presents robustness tests. The baseline regression refers to specification (5) from Table 2. For brevity we only report coefficients of interest and suppress control variables. Economic effects are calculated as the reported coefficient multiplied by the standard deviation of the key independent variable, divided by the mean of the dependent variable. In Panel A, the dependent variable is equal to one if a lawsuit is filed that is either dismissed or settles for less than \$3 million. In Panel B, we test alternative definitions of innovation output. High innovation dummy is an indicator equal to one if the firm ranks in the top tercile of firms within a given industry and year, using the Kogan, Papanikolaou, Seru, and Stoffman (2017) measure, conditional on firms with positive innovation value. Next, we scale the continuous innovation measure by lagged market capitalization as opposed to by lagged book assets. We also replace the innovation value measure by the logarithm of one plus the total number of patents granted, citation-weighted patent counts, and the number of patents granted which rank in the top decile of patents in the same technology class and year by ex-post citations. In Panel C, we add additional controls. R&D expenditures are scaled by lagged assets and replaced by zero if R&D expenditures are missing. CEO overconfidence is measured as in Malmendier and Tate (2005). In Panel D, we impose different sample restrictions. First, we restrict the sample to firms with at least one patent in a given calendar year. Then we estimate the regression after excluding calendar years 2000 and 2001.

	Coeff	t-statistic	Econ.	N
			Effect	
Baseline	0.055	(3.52)	34.7%	40,116
Panel A: Alternative Measure of Meritless Lawsuit				
Dismissal or settlement <\$3m	0.053	(3.13)	23.9%	40,116
Panel B: Alternative Measures of Innovation Output				
High innovation dummy	0.010	(3.50)	27.4%	40,116
Scaled by market cap	0.090	(3.39)	27.0%	40,116
Number of patents	0.002	(2.15)	16.8%	40,116
Citation-weighted patent counts	0.001	(2.08)	16.9%	40,116
Patents in top 10% of citations	0.007	(2.10)	16.4%	40,116
Panel C: Additional Controls				
Contemporaneous sales growth and stock return variables	0.048	(3.03)	30.1%	39,910
CEO overconfidence	0.057	(2.31)	35.9%	13,613
Firm fixed effects	0.062	(2.22)	38.9%	39,199
District \times year fixed effects	0.059	(3.64)	37.2%	39,919
Panel D: Sample Restrictions				
Non-zero innovation	0.040	(3.09)	44.8%	12,986
Exclude 2000-2001	0.063	(3.33)	39.5%	34,223

Table 5: Valuable Innovation and Cumulative Abnormal Returns Around Class Action Lawsuit Filing and Dismissal

This table regresses cumulative abnormal returns around the filing and dismissal of meritless class action lawsuits on valuable innovation. Cumulative abnormal returns are measured over event days (-3,+3), where abnormal returns are estimated based on the Fama-French-Carhart 4-factor model estimated over days t=-300 to t=-50. Meritless lawsuits are identified as lawsuits that eventually get dismissed. Control variables are the same as in Table 2, specification (5). t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

	Cumulative abnormal return (-3,+3)					
	Fil	ling	Disn	nissal		
	(1)	(2)	(3)	(4)		
Innovation value $_t$	-0.140	-0.302	-0.016	0.036		
	(-1.86)	(-2.48)	(-0.27)	(0.43)		
Controls	No	Yes	No	Yes		
Industry \times year f.e.	Yes	Yes	Yes	Yes		
N	309	211	349	244		
\mathbb{R}^2	0.338	0.479	0.276	0.370		

Table 6: Valuable Innovation and Lawsuit-Triggering Events

This table regresses next-period stock return volatility, return skewness, an indicator for extreme low returns, and an indicator for extreme negative earnings surprises, on innovation value. Stock return volatility and return skewness are computed based on daily stock returns for any given firm-year. Extreme negative return is an indicator equal to one if the first percentile of daily stock returns of a firm is in the bottom 5% across all firms in the same calendar year. Negative earnings surprise is an indicator equal to one if the firm's most negative quarterly earnings surprise is in the bottom 5% across all firms in the same calendar year. Earnings surprises are computed as the difference between the announced quarterly EPS and the consensus forecast from IBES, scaled by the stock price at the end of the previous calendar quarter. Control variables are the same as in Table 2, as well as one lag of the dependent variable. t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

	Stock return	Return	Extreme negative	Negative earnings
	volatility $_{t+1}$	$skewness_{t+1}$	$\operatorname{return}_{t+1}$	$surprise_{t+1}$
	(1)	(2)	(3)	(4)
Innovation value $_t$	-0.041	-0.071	-0.016	-0.005
	(-2.09)	(-0.63)	(-0.93)	(-0.23)
Controls	Yes	Yes	Yes	Yes
Industry \times year f.e.	Yes	Yes	Yes	Yes
N	37,808	37,808	37,473	19,166
\mathbb{R}^2	0.670	0.123	0.150	0.104

Table 7: Valuable Innovation and Firm Growth

This table regresses measures of firm growth on valuable innovation output. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017), scaled by book assets. We estimate the following equation:

$$log(X_{i,t+\tau}) - log(X_{it}) = \lambda_{jt} + \beta_{\tau} \mathcal{I}_{it} + \gamma_{\tau} Z_{it} + \eta_{i,t+\tau}, \tag{4}$$

where τ varies between one and five years, λ_{jt} and 2-digit-SIC industry \times year fixed effects, and Z_{it} is a vector of control variables that includes $log(X_{it})$, the same variables as the controls in Table 2, specification (5), as well as log values of firm capital, employment, and stock return volatility. As dependent variables, we use capital stock, number of employees, the nominal value of output, and profits, all defined as in Kogan, Papanikolaou, Seru, and Stoffman (2017). t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

		Horizon		
1	2	3	4	5
Panel A: Capital				
0.143	0.268	0.336	0.414	0.503
(4.07)	(4.21)	(3.57)	(3.39)	(3.38)
Panel B: Labor				
0.096	0.179	0.212	0.208	0.193
(2.76)	(2.97)	(2.40)	(1.81)	(1.38)
Panel C: Output				
0.132	0.083	0.109	0.074	0.105
(2.27)	(0.89)	(0.89)	(0.48)	(0.58)
Panel D: Profits				
0.368	0.449	0.572	0.591	0.614
(7.24)	(5.20)	(4.91)	(4.09)	(3.53)

Table 8: Valuable Innovation and Corporate Disclosure

This table regresses changes in disclosure tone on valuable innovation output. In column (1), the dependent variable is the annual change in the average Loughran-McDonald positive word proportion in 10-K filings. In column (2), the dependent variable is the change in the forward-looking intensity of the firm's MD&A disclosure provided by Muslu, Radhakrishnan, Subramanyam, and Lim (2015). Control variables are the same as in Table 2, specification (5), as well as one lag of the dependent variable. t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

	Δ Positive word proportion _t	Δ Forward-looking intensity $_t$
	(1)	(2)
Innovation value $_t$	0.001	0.018
	(4.33)	(3.61)
Controls	Yes	Yes
Industry \times year f.e.	Yes	Yes
N	28,126	21,538
\mathbb{R}^2	0.183	0.407

APPENDIX

A Instrumental Variable Regressions

The first instrument for valuable innovation we use is tax-induced changes in the user cost of R&D capital, a strategy motivated by previous studies in the literature (e.g., Matray and Hombert (2017), Bloom, Schankerman, and Van Reenen (2013)). The underlying idea is that R&D tax credits motivate investment in R&D, and that more investment in R&D will increase the total value of innovation output in the following years. The instrument exploits the fact that different firms within the same industry and year face different changes in state-level R&D tax credits depending on the geographical distribution of their R&D activity. State-level tax credits can be considerably more generous than federal tax credits and are therefore a relevant concern for firms when deciding about R&D investments.

To construct the instrument, we use estimates of the user cost of R&D capital provided by Wilson (2009) and match them to the geographical distribution of the firm's R&D activity. To estimate the geographical distribution of R&D activity, we follow Bloom, Schankerman, and Van Reenen (2013) and use the 3-year moving average share of the firm's inventors located in each state, using the PatEx database to retrieve inventor locations. We then compute the weighted average change in the R&D user cost over the years t-3 and t-4 relative to the innovation output year, in order to capture changes in the tax incentives prevailing around the time of patent filing (which on average occurs three years prior to the grant).

To be a valid instrument, changes in the user cost of R&D must satisfy the relevance and exclusion conditions. The relevance condition requires that the instrument is related to our variable of innovation value, \mathcal{I}_{it} , in the first-stage regression. Since the purpose of R&D tax credits is to promote innovation, and since the evidence in Wilson (2009) and the related literature finds R&D tax credit are successful in that regard, the instrument satisfies the relevance condition. The exclusion restriction requires that the instrument affects the dependent variable only via its effect on the independent variable to be instrumented. The existing literature above suggests that R&D tax credits satisfy this condition due to a large degree of randomness regarding the introduction and level of R&D tax credits on the state level (see, for example, Bloom, Schankerman, and Van Reenen (2013)).²³

 $^{^{23}}$ One may worry about state-level economic conditions being correlated with changes in R&D tax credits. If local economic conditions are also correlated with shareholders' propensity to file a meritless lawsuit, this may bias our inference. Alleviating these concerns, Bloom, Schankerman, and Van Reenen (2013) search for evidence of a correlation of changes in tax credits with state-level economic conditions, but do not find such evidence. In addition, since we will have two instruments, we can estimate a specification using both instruments simultaneously and use the Hansen J-test to test the exclusion restriction. We do not reject the null hypothesis that our two instruments are valid.

The second instrument we use exploits the patent grant process at the USPTO and is based on the leniency of the USPTO patent examiners assigned to outstanding patent applications of the firm (see Sampat and Williams (2018)). New patent applications at the USPTO are categorized based on the type of technology, and directed to a specialized group of examiners called Art Unit. Within an Art Unit, a supervisor then allocates new patent applications to examiners. Sampat and Williams (2018) argue that the overall leniency of the assigned patent examiner is a valid instrument for the ultimate grant outcome. First, regarding the relevance criterion, patent examiners have a substantial amount of discretion when handling patent applications, and hence, likely have significant influence on the grant decision. Second, regarding the exclusion restriction, interviews with current and former USPTO examiners have indicated that the assignment process of examiners to new patent applications is effectively random within a given art unit and filing year (Lemley and Sampat (2012)). Sampat and Williams (2018) provide evidence supporting this conditional random assignment assumption by showing that patent applications assigned to "lenient" and "strict" examiners do not differ on observable characteristics at the time of patent application. Further strengthening the random assignment argument, we find that average examiner leniency is uncorrelated with predicted innovation value, where innovation value is predicted as a function of the firm-level control variables in Table 2 (see Table A.2).

We construct our measure of average patent examiner leniency as follows. For each patent application, we compute examiner leniency, following Sampat and Williams (2018), as the average approval rate using all other applications evaluated by the same examiner. We then regress this measure on Art Unit × year fixed effects in order to capture only variation within the same Art Unit and application year, and average the residuals across all outstanding patent applications for a given firm at the end of each calendar year. We add the number of pending applications as an additional control variable.

Table A.1 presents the results of our two-stage least squares estimates. Panel A shows the first-stage regression. Consistent with the existing literature, we find a strong negative relationship between the user cost of R&D capital and valuable innovation, and a positive relationship between examiner leniency and valuable innovation.²⁴ Panel B presents results from the second stage. For both instruments, we find that instrumented innovation value continues to be a strong predictor of meritless class action lawsuits. Adding the control variables from Table 2, specification (5), hardly affects the point estimates, supporting the assumption that our instruments are exogenous.

The IV point estimates imply a larger effect of valuable innovation on meritless litigation risk than the OLS estimates. A one-standard-deviation increase in valuable innovation leads to a 2.1 ($=0.330\times0.063$) and 4.5 ($=0.718\times0.063$) percentage point increase in the likelihood of a meritless

 $^{^{24}}$ The F-statistics suggest these are reasonably strong instruments.

lawsuit being filed against the firm, respectively. There could be several potential explanations for this difference in economic magnitudes. First, measurement error in our innovation value variable will lead to an attenuation of the OLS coefficient, but not of the IV coefficient. Our measure of innovation value, being based on stock market reactions, is almost certainly subject to measurement error. In particular, if the stock market is able to anticipate the grant of particularly valuable patents, the KPSS measure will be downward biased. Second, the decision to file a lawsuit may be influenced by unobservable firm characteristics that are also correlated with innovation value. For example, if better-run firms are both, more likely to produce valuable patents and less likely to be subject to securities class action lawsuits, our OLS coefficients will be biased downwards.

However, we would like to point out that our OLS and IV coefficients are not statistically different from each other. Hence, it is possible that the difference in coefficient estimates is merely a result of estimation error. Our main conclusion from the IV regression is thus that it confirms our main OLS result: valuable innovation has an economically sizable effect on a firm's likelihood to be the target of a meritless securities class action lawsuit.

Table A.1: Instrumental Variable Regressions

This table shows results from instrumental variable regressions. Panel A reports the first-stage results and Panel B the second stage. We use two instrumental variables. The first instrument is the change in the firm's user cost of R&D capital, measured during years (-4,-3) prior to the innovation year. We obtain state-level user cost of R&D capital from Wilson (2009), and use the location of the firm's inventors to estimate the geographical distribution of R&D activity over the previous three calendar years. The second instrument is the average leniency of the USPTO patent examiners assigned to the outstanding patent applications of the firm at the end of the year prior to valuable innovation. We compute examiner leniency for each application as the average approval rate for all other applications processed by the same examiner over her career (excluding the application itself), after residualizing on art unit by application-year fixed effects. Control variables are the same as in Table 2, specification (5). In columns (3) and (4), we also control for the log of the number of outstanding patent applications. Both instrumental variables and sorted into deciles within industry and year. t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

Panel A: First stage

		Innovati	on value $_t$	
	(1)	(2)	(3)	(4)
Δ R&D user $cost_{(t-4,t-3)}$	-0.004	-0.002		
	(-10.29)	(-6.70)		
Examiner leniency $_{t-1}$			0.001	0.001
			(2.73)	(3.44)
Controls	No	Yes	No	Yes
Industry \times year f.e.	Yes	Yes	Yes	Yes
N	13,875	13,875	13,875	13,875
F-test statistic	105.82	44.88	7.43	11.86

Panel B: Second stage

	Meritless class action lawsuit filing $_{t+1}$					
	(1)	(2)	(3)	(4)		
Innovation value $_t$	0.281	0.330	0.748	0.718		
	(2.86)	(1.72)	(1.63)	(1.74)		
Controls	No	Yes	No	Yes		
Industry \times year f.e.	Yes	Yes	Yes	Yes		
N	13,875	13,875	13,875	13,875		

Table A.2: Predicted Innovation Value and Patent Examiner Leniency

The table reports results from regressing predicted innovation value on patent examiner leniency. In columns (1) and (2), we predict innovation value as a function of the control variables in Table 2, specifications (2) and (5), respectively. Innovation value is measured as the economic value of patents granted to the firm, as provided by Kogan, Papanikolaou, Seru, and Stoffman (2017). We control for the number of pending applications in both specifications. t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

	Predicted inn	Predicted innovation value $_t$	
	(1)	(2)	
Examiner leniency $_{t-1}$	0.000	0.000	
	(-0.82)	(-0.79)	
Industry \times year f.e.	Yes	Yes	
N	22,304	20,724	
\mathbb{R}^2	0.24	0.26	

B Do Successful Innovators Commit More Fraud?

In this section, we would like to zoom in on meritorious lawsuits and investigate whether valuable innovation output may link positively to the propensity to commit fraud. This question is relevant, even though valuable innovation showed no significant link to meritorious lawsuits in our baseline test in Table 2. The reason is that lawsuits can only be brought for true frauds if they are detected, which implies that more fraud can be committed even if we do not see an increase in meritorious lawsuits. In our setting, a lower detection probability, perhaps because innovative firms are more opaque for outsiders, may offset a greater propensity to commit fraud among successful innovators. Separating fraud commission from fraud detection is the aim of this section.

Separating fraud commission from fraud detection is a long-standing challenge for studies of corporate fraud. We follow the standard approach in the literature to deal with the problem of partial observability and estimate a Poirier (1980) bivariate probit model. At the heart of this model is the idea that fraud commission and fraud detection can be separated if a researcher is willing to commit to a specific way of modelling the two as separate, but related equations. Our exposition in this section largely follows Wang, Winton, and Yu (2010). Specifically, we denote F_{it}^* as the latent variable determining firm i's decision to commit fraud in year t and L_{it}^* as the latent variable that governs the subsequent detection of a possible fraud, respectively:

$$F_{it}^* = \beta_F' X_{F,it} + \eta_{it} \tag{5}$$

$$L_{it}^* = \beta_L' X_{L,it} + \epsilon_{it}, \tag{6}$$

where $X_{F,it}$ and $X_{L,it}$ are vectors of observable variables determining fraud commission and detection, respectively. A key assumption of Poirier (1980)'s model is that η_{it} and ϵ_{it} are distributed bivariate standard normal; their correlation is denoted by ρ . Fraud is committed ($F_{it} = 1$) if $F_{it}^* > 0$, and it is detected ($L_{it} = 1$) if $L_{it}^* > 0$. The realizations of F_{it} and L_{it} are not directly observed; instead, we observe the product $Z_{it} = F_{it}L_{it}$.²⁵ Let Φ denote the bivariate standard normal cumulative distribution function. Then the model for the observable variable Z_{it} is given by:

$$P(Z_{it} = 1) = \Phi(\beta_F' X_{F,it}, \beta_L' X_{L,it}, \rho)$$

$$\tag{7}$$

$$P(Z_{it} = 0) = 1 - \Phi(\beta'_F X_{F,it}, \beta'_L X_{L,it}, \rho)$$
(8)

²⁵The dependent variable is thus an indicator equal to one if the firms starts to engage in fraud in a given calendar year, and zero otherwise. We use the start of the class action period as opposed to the year of the lawsuit filing to identify fraud starts.

and the log-likelihood of the model by

$$\mathcal{L}(\beta_F, \beta_L, \rho) = \sum \log(P(Z_{it} = 1)) + \sum \log(P(Z_{it} = 0)). \tag{9}$$

The above model is fully identified and can be estimated using the maximum-likelihood method under two conditions. First, $X_{F,it}$ and $X_{L,it}$ must not contain exactly the same variables. That is, the researcher needs to identify variables which affect only fraud detection but not fraud commission, or vice versa. Second, the explanatory variables need to exhibit sufficient variation.

We implement the model as follows. First, we follow Dyck, Morse, and Zingales (2014) and use option grants as well as the percentage of incentive pay as instruments in the fraud commission equation. We include a standard set of observable control variables proposed by the existing fraud literature. Specifically, we control for firm characteristics (Tobin's Q, the log of total book assets, cash holdings (defined as cash over lagged assets), leverage, return on assets), proxies for monitoring intensity by outsiders (institutional ownership, ownership concentration, analyst coverage), and executive compensation (executive stock holdings over total pay, and the log of the value of exercisable stock options held by the CEO).²⁶

Because the second requirement for bivariate probits – explanatory variables need to exhibit sufficient variation – effectively makes it impossible to include industry × year fixed effects, we include year fixed effects and control for industry-level heterogeneity as in Dyck, Morse, and Zingales (2014)) by adding indicators for Qui-Tam industries and regulated industries as additional controls. Columns (1) and (2) in Table A.3 present results which indicate that valuable innovation does not significantly affect a firm's propensity to commit fraud (column (1)) or, to be litigated conditional on committing fraud (column (2)).

In the next two specifications, we add variables that exclusively affect fraud detection. Following Wang, Winton, and Yu (2010), we use abnormal stock return, abnormal stock volatility, and abnormal turnover in the detection equation. All three variables are measured over the two calendar years *after* the year of fraud commission. We compute abnormal versions of returns, volatility and turnover by absorbing industry \times year effects. Columns (3) and (4) show that, if anything, valuable innovation decreases fraud commission and increases fraud detection.

²⁶Previous work has documented that managers who have more stock options are more likely to manipulate accounting numbers, which may indicate a generally greater willingness of managers with high-powered incentives to engage in fraud and be sued (e.g., Burns and Kedia (2006), Bergstresser and Philippon (2006)). Because measures of executive pay are available only for a subset of firms, and because restricting our sample to only firms with available pay data would severely reduce the number of cases we can analyze, we include dummy variables indicating missing executive pay variables, and thus, effectively, estimate an average effect for these firms.

Table A.3: Bivariate Probit Model

This table presents results from a bivariate probit model with partial observability. The dependent variable is a dummy variable equal to one if the firm starts to commit fraud in the next calendar year, and zero otherwise. Frauds are identified as class action lawsuits that do not get dismissed and do not settle for less than \$3m. The estimation of fraud propensity is indicated by F = 1, and the estimation of lawsuit filing (or "detection") likelihood is indicated by L = 1. Incentive pay refers to the average of the ratio of restricted stock grants divided by total compensation across executives for a firm-year. Log option value is measured as the log of the sum of the in-the-money exercisable options for all executives. Abnormal stock returns, volatility, and turnover are estimated after averaging the raw measures over the two calendar years following the year where fraud commission is measured, and regressing them on industry-year fixed effects. Volatility is measured as the standard deviation of daily stock returns. Control variables are Tobin's Q, the log of total assets, cash holdings, leverage, ROA, past stock return, institutional ownership, log of number of analysts following, as well as year dummies and indicators for Qui Tam and regulated industries, defined as in Dyck, Morse, and Zingales (2014). t-statistics, reported in parentheses, are based on standard errors that allow for clustering at the firm level.

	F=1	L=1	F=1	L=1
	(1)	(2)	(3)	(4)
Innovation value $_t$	0.274	-0.440	-1.385	4.185
	(0.47)	(-0.91)	(-2.51)	(1.73)
Incentive pay	0.055		0.078	
	(2.46)		(2.37)	
Log option value	0.195		0.686	
	(0.66)		(1.68)	
Competitor lawsuits				
Abnormal stock return				-13.556
				(-5.01)
Abnormal stock volatility				0.419
				(1.56)
Abnormal turnover				0.041
				(3.36)
Incentive pay missing	0.456	-0.153	0.666	-0.193
	(0.38)	(-0.47)	(1.90)	(-0.67)
Log option value missing	0.148	0.269	0.776	0.152
	(0.42)	(0.95)	(1.49)	(0.54)
Controls	Yes	Yes	Yes	Yes
Year f.e.	Yes	Yes	Yes	Yes
N	38,229	38,229	30,213	30,213