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Abstract

How effectively does a decentralized marketplace aggregate information that is dis-

persed throughout the economy? We study this question in a dynamic setting where asset

sellers have private information that is correlated with an unobservable aggregate state.

A common feature of all equilibria is that each seller’s trading behavior provides an infor-

mative and conditionally independent signal about the aggregate state. We ask whether

the state is revealed as the number of informed traders grows large. Perhaps surprisingly,

the answer is no; we provide generic conditions under which information aggregation nec-

essarily fails. In another region of the parameter space, aggregating and non-aggregating

equilibria can coexist. We solve for the optimal information policy of a social planner who

observes trading behavior and chooses what information to reveal. The information gen-

erated in a laissez-faire economy is always inefficient when aggregation fails; the optimal

policy conceals some information from the agents in order to accelerate trade.

JEL: G14, G18, D47, D53, D82, D83.

Keywords: Information Aggregation; Information Design; Decentralized Markets; Adverse Se-

lection; Optimal Information Policy; Transparency.

∗Asriyan: CREi, UPF and Barcelona GSE. Fuchs: UT Austin McCombs School of Business and Universidad
Carlos III de Madrid. Green: Haas School of Business, UC Berkeley. Asriyan acknowledges financial support
from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Cen-
tres of Excellence in R&D (SEV-2015-0563). Fuchs acknowledges support from the ERC Grant 681575. We
thank Jason Roderick Donaldson, Sergei Kovbasyuk, Giorgia Piacentino, Anton Tsoy, Victoria Vanasco, and
seminar/conference participants at CREi-UPF, EIEF, HEC Paris, Imperial College London, TSE, UC3M, AEA
meetings in Atlanta, Advances in Information Economics Conference in Como, Finance Theory Group, 17th
SAET Conference on Current Trends in Economics, and Society for Economic Dynamics for helpful suggestions
and feedback.



1 Introduction

Since the seminal work of Hayek (1945), the question of whether markets effectively aggre-

gate dispersed information has been a central one in economics. Formal investigations of this

question are plentiful (see Section 1.1 for a discussion). Yet, they are typically conducted in a

setting with a single (perhaps divisible) asset about which traders have dispersed information.

Whether information is aggregated then usually boils down to whether the equilibrium price

reveals the value of the asset conditional on the union of traders’ information. This broad class

of models is natural for many applications from static common-value auctions to dynamic trad-

ing in financial markets. For other applications (e.g., real estate, OTC markets), information

dispersion arises due to dispersion in ownership, and one is interested in the extent to which ag-

gregate trading behavior across heterogeneous assets reveals information about the underlying

state of the economy. In this paper, we explore such a setting.

Building on the framework of Asriyan, Fuchs, and Green (2017), we investigate the question of

information aggregation in a dynamic setting with many assets, whose values are independently

and identically drawn from a distribution that depends on an underlying aggregate state. The

value of each asset is privately observed by its seller, who receives offers each period from

competitive buyers. We ask whether the history of all transactions reveals the aggregate state

as the number of informed sellers in the economy (denoted by N) grows large.

To answer this question, we begin by characterizing the set of equilibria for arbitrary N . Due

to a complementarity between the amount of information collectively revealed by others and

the optimal strategy of an individual seller, multiple equilibria can exist. A feature common

to all equilibria is that each individual seller’s trading behavior provides an informative and

conditionally independent signal about the aggregate state. Therefore, one might intuitively

expect that, by the law of large numbers, the state would be revealed as the number of sellers

tends to infinity.

Our first main result shows that the intuition is incorrect. We provide necessary and sufficient

conditions under which there does not exist any sequence of equilibria that reveal the state as

N → ∞. The reason why aggregation fails is that the information content of each individual

seller’s behavior tends to zero at a rate of 1/N , just fast enough to offset the additional number

of observations. As a result, some information is revealed by the limiting trading behavior, but

not enough to precisely determine the underlying state. Roughly speaking, the conditions for

non-aggregation require that the correlation of asset values is sufficiently high and that agents

are sufficiently patient. Intuitively, these conditions guarantee that if the aggregate state were to

be revealed with certainty tomorrow, then the option value of delaying trade today is relatively

high. An immediate corollary is that information aggregation always obtains in a static model.
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That is, dynamic considerations are a necessary ingredient for non-aggregation.

When the non-aggregation conditions are not satisfied, there exists a sequence of equilibria

such that information about the state is aggregated as N → ∞. However, even in this case,

information aggregation is not guaranteed. Our second main result shows that there exists a

region of the parameter space in which there is coexistence of equilibria that reveal the state

with equilibria that do not. The key difference across the two types of equilibria is the rate at

which trade declines as the number of informed sellers grows. In the non-aggregating equilibria,

trade declines at rate 1/N whereas in aggregating equilibria, the rate of trade declines slower

than 1/N . We are not aware of analogous coexistence results in the literature.

Whether information aggregates has important implications for welfare, prices, and trading

behavior. To understand them, it is useful to draw comparison to a fictitious economy in which

the state is exogenously revealed after the first trading period. When information aggregates,

both trading volume and welfare converge to their levels in the fictitious economy and the

volatity of prices conditional on the true state goes to zero. In contrast, along a sequence of

non-aggregating equilibria, trading volume and welfare are strictly lower than in the fictitious

economy and the conditional price volatility remains strictly positive even as N →∞.

Two immediate implications follow. First, from a social welfare perspective, aggregating

equilibria are always preferable to non-aggregating equilibria when they co-exist. Thus, among

laissez-faire outcomes, aggregation is optimal. Second, if all equilibria are non-aggregating, then

a planner could improve overall welfare by learning and revealing the true state. Of course, it

is not obvious how the planner would learn the true state. It is more natural to think that the

planner is uninformed, but can learn about the true state by observing the trading behavior of

market participants. The problem facing the planner is then how best to reveal this information

to other agents in the economy.

We address this question in Section 4. Doing so involves formulating and solving an infor-

mation design problem that is related to the literature on Bayesian persuasion (Kamenica and

Gentzkow, 2011; Rayo and Segal, 2010). One key difference is that the planner’s problem in

our model must take into account the fact that her policy influences the information content of

trading behavior and therefore the information content of whatever is revealed. In other words,

the statistical properties of the information that is revealed by the planner endogenously de-

pends on the planner’s revelation policy. Our solution technique involves two steps. First, we

solve the information design problem for an “informed” planner who (exogenously) learns the

aggregate state at t = 1. The solution to this problem helps us derive an upper bound on

the surplus that can be attained by an uninformed planner. We then construct a policy under

which the payoffs converge to the upper bound as N →∞.

To describe the optimal information policy, it is useful to draw comparison with the laissez-
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faire outcomes, i.e., the set of equilibrium outcomes in which all agents observe the full history

of trading behavior. We characterize precisely when the optimal information policy coincides

with one of the laissez-faire outcomes. Our characterization amounts to a threshold discount

rate that depends on model parameters, below which the optimal information policy coincides

with one of the laisses-faire outcomes. Above the threshold, laissez-faire equilibria generate

information inefficiently; the optimal information policy involves concealing some information

in order to promote a greater volume of trade in the first period. Moreover, the optimal

information policy Pareto dominates laissez-faire, i.e. all market participants would agree to

delegate information dissemination about past trades to the social planner. These findings have

implications for policies aimed at promoting market transparency.

Recently, there has been a strong regulatory push towards making financial markets more

transparent (i.e., disclosing more information about trading activity to market participants).

For example, one of the stated goals of the Dodd-Frank Act of 2010 is to increase transparency

and information dissemination in the financial system. The European Commission is consider-

ing revisions to the Markets in Financial Instruments Directive (MiFID), in part to improve the

transparency of European financial markets. Our results highlight a potential trade-off for such

policies and provide a justification for limiting the amount of information available to market

participants.

The introduction of benchmarks that reveal some aggregate trading information has also

received recent attention by policy makers and academics. Duffie et al. (2017) analyze the role

of benchmarks (e.g., LIBOR) in revealing information about fundamentals and suggest that

the introduction of benchmarks is welfare enhancing. Our analysis highlights an important

consideration that is absent in their setting. Namely, that the informational content of the

benchmark may change once it is published due to endogenous responses by market participants.

1.1 Related Literature

In addition to the welfare implications studied in this paper, there are also variety of other

reasons for why information aggregation may be a desirable property. For instance, such infor-

mation may be useful for informing firms’ investment decisions (Fishman and Hagerty, 1992;

Leland, 1992; Dow and Gorton, 1997; Camargo et al., 2015), government interventions (Bond

et al., 2009; Bond and Goldstein, 2015; Boleslavsky et al., 2017), and monetary policy (Bernanke

and Woodford, 1997). Markets that convey more information can also be more useful for provid-

ing better incentives to managers (Baumol, 1965; Fishman and Hagerty, 1989) and mitigating

the winner’s curse in common-value auctions (Milgrom and Weber, 1982). As documented

by a number of papers in this literature, the feedback loop between real decisions and price
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informativeness may undermine the ability of markets to aggregate information and lead to

aggregation failures.1 To highlight how our mechanism differs from this literature, we abstract

from any such considerations here and leave the value of aggregation unspecified.

Within static environments, there is a large literature that studies questions regarding infor-

mation aggregation. Seminal works on this topic include Grossman (1976), Wilson (1977), Mil-

grom (1979), Hellwig (1980), and Kyle (1989). More recent progress on this question has been

made by Pesendorfer and Swinkels (1997), Kremer (2002), Rostek and Weretka (2012), Lauer-

mann and Wolinsky (2013), Bodoh-Creed (2013), Albagli et al. (2015), Axelson and Makarov

(2017), and Siga and Mihm (2018), among others.2 By and large, this literature is largely de-

fined by a centralized trading environment in which there is a single asset about which agents

have dispersed information. The question of information aggregation is whether the price is

a sufficient statistic for the union of this dispersed information. In contrast, we explore a

decentralized trading environment with heterogeneous assets and ask whether the history of

trading behavior is sufficient to infer the underlying state. Moreover, our results pertaining to

non-aggregation crucially rely on dynamic considerations—with a single opportunity to trade,

information is always aggregated.

Kyle (1985) studies a dynamic insider trading model and shows that the insider fully reveals

his information as time approaches the end of the trading interval. Foster and Viswanathan

(1996) and Back et al. (2000) extend this finding to a model with multiple strategic insiders with

different information. Ostrovsky (2012) further generalizes these findings to a broader class of

securities and information structures. He considers a dynamic trading model with finitely many

partially informed traders and provides necessary and sufficient conditions on security payoffs

for information aggregation to obtain. Our paper differs from these works in that we study a

setting with heterogeneous but correlated assets owned by privately informed sellers. We ask

whether information aggregates as the number of sellers becomes arbitrarily large. Despite the

fact that we look at the limit as N → ∞, the strategic considerations do not vanish in our

model since there is an idiosyncratic component to the value of each asset.

Golosov et al. (2014) consider an environment in which a fraction of agents has private infor-

mation about an asset while the other fraction are uninformed. Agents trade in a decentralized

anonymous market through bilateral matches, i.e., signaling with trading histories is not possi-

ble. They find that information aggregation obtains in the long run. In contrast, in our setting

observing trading histories plays a crucial role: signaling through delay diminishes the amount

of trade, thus reducing the information content of the market, leading to the possibility that

1See Bond et al. (2012) for a survey of both the theoretical and empirical literature on the real effects of
information conveyed through markets.

2Palfrey (1985) and Vives (1988) explore this question within a Cournot setting.
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information aggregation fails.

Lauermann and Wolinsky (2016) study information aggregation in a search market, in which

an informed buyer sequentially solicits offers from sellers who have noisy information about

the buyer’s value. They provide conditions under which information aggregation fails, and

they trace this failure to a strong form of winner’s curse that arises in a search environment.

Although our model is quite different, we share the common feature that the fear of adverse

selection hinders trade and thus reduces information generation in markets.

Also, within a search framework, Lester et al. (2018) look at how equilibrium trade, margins

and information changes as the probability of meeting a dealer is increased. They show that as

the meeting frequency increases the information flow to the market might decrease. Roughly

speaking, this corresponds to our finding that information aggregation is more likely to fail as

we increase the discount factor.3

Babus and Kondor (2016) explore how the network structure affects information diffusion

in a static OTC model with a single divisible asset. They show that strategic considerations

do not influence the degree of information diffusion. However, the network structure com-

bined with a private value component leads to an informational externality that constrains the

informativeness of prices and hence the informational efficiency of the economy.

Finally, our paper is related to a growing literature that studies dynamic markets with

adverse selection (e.g., Janssen and Roy (2002), Hörner and Vieille (2009), Fuchs and Skrzypacz

(2012), Fuchs et al. (2016), Daley and Green (2012, 2016)). Our innovation is the introduction

of asset correlation, which allows us to study the information aggregation properties of these

markets. This paper builds upon our previous work, Asriyan et al. (2017) (henceforth AFG),

which demonstrates that multiple equilibria can exist in a model with two informed sellers. In

this paper, we focus on the information aggregation properties of equilibria. In order to do

so, we extend the two-seller model of AFG to a model with an arbitrary number of sellers.

Characterizing the set of equilibria in the two-period model with an arbitrary number of sellers

(Sections 2.4-2.5) follows closely from AFG. The main contribution of this paper is twofold.

First, we explore the information aggregation properties of equilibria as the market grows

large, and their implications for trade and welfare (Section 3). Second, we study the normative

implications by considering the information design problem of a social planner who observes

trading behavior and chooses what information to communicate to the traders (Section 4).

Here, we also contribute to the recently growing literature on information design (Bergemann

and Morris, 2013, 2016). In addition to the information policy affecting the ex-ante incentives

as in Boleslavsky and Kim (2018), we show how the endogeneity of the planner’s information

set puts constraints on optimal policy.

3A higher discount factor translates into a lower expected time until the next opportunity to trade.
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2 The Model

There are N + 1 sellers indexed by i ∈ {1, ..., N + 1}, with N ≥ 1. Each seller is endowed with

an indivisible asset and is privately informed of her asset’s type, denoted by θi ∈ {L,H}. Seller

i has a value cθi for her asset, where cL < cH . The value of a type-θ asset to a buyer is vθ and

there is common knowledge of gains from trade, vθ > cθ.

We start by considering a model in which there are two trading periods: t ∈ {1, 2}. We

generalize our results to an infinite-horizon model in the Appendix.4 In each period, each seller

is matched with two competing buyers who make private offers to the seller. Each buyer can

make one offer; a buyer whose offer is rejected gets a payoff of zero and exits the game. The

payoff to a buyer who purchases an asset of type θ at price p is vθ − p. Sellers discount future

payoffs by a factor δ ∈ (0, 1). The payoff to a seller with an asset of type θ, who agrees to trade

at a price p in period t is (
1− δt−1

)
cθ + δt−1p. (1)

If the seller does not trade at either date, his payoff is cθ. One can interpret cθ and vθ as the

present value of the flow payoffs from owning the asset to the seller and buyer respectively.5

All players are risk neutral.

Asset values are correlated with an unobservable underlying state, S, that takes values in

{l, h}. The unconditional distribution of θi is P(θi = H) = π ∈ (0, 1). Assets are mutually

independent conditional on the state, but their conditional distributions are given by P(θi =

L|S = l) = λ ∈ (1−π, 1). To allow for arbitrarily high level of correlation, we set P(S = h) = π.

Our correlation structure introduces the possibility that trades of some assets convey relevant

information about the aggregate state and therefore the value of other assets. To capture this

possibility, we assume that all transactions are observable. Therefore, prior making offers in

the second period, each buyer observes the set of assets that traded in the first period.

Notice that by virtue of knowing her asset quality, each seller has a private and conditionally

independent signal about the aggregate state of nature. Thus, if each seller were to report

her information truthfully to a central planner, the planner would learn the aggregate state

with probability one as N → ∞. Our interest is to explore under what conditions the same

information can be gleaned from the transaction data of a decentralized market. To ensure

that strategic interactions remain relevant, we focus on primitives which satisfy the following

assumptions.

4The two-period model facilitates a more precise characterization of the set of equilibria and thus a sharper
intuition for our main results.

5Alternatively, we could specify the seller’s payoff in (1) as δt−1(vθ − cθ) and interpret cθ as the seller’s
production cost.
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Assumption 1 πvH + (1− π)vL < cH .

Assumption 2 vL < (1− δ)cL + δcH .

The first assumption, which we refer to as the “lemons” condition, asserts that the adverse

selection problem is severe enough to rule out the efficient equilibrium in which all sellers trade

immediately. In this equilibrium, trade is uninformative about the underlying state (regardless

of N). The second assumption implies a lower bound on the discount factor and ensures that

dynamic considerations remain relevant. Our main results do not rely on this assumption but

it simplifies exposition and rules out fully separating equilibria, which are also independent of

N .

2.1 Remarks on Modeling Assumptions

To illustrate the key mechanism for our findings as clearly as possible, we have made several

rather stark assumptions regarding the buyers’ side of the market. In particular, buyers are

short-lived in that they can only make one (private) offer, they have identical values and

information, and they compete in Bertrand fashion. This ensures that (1) a buyer makes zero

(expected) profits on any accepted offer (2) there do not exist mutually agreeable unrealized

trades (except possibly when both the buyer and the seller are indifferent). The primary

purpose of these assumptions is to isolate the reason by which trade is delayed due to the

seller’s strategic considerations and to ensure that prices (i.e., buyers’ offers) respond to new

information.

While these features seem natural and are not strictly necessary for most our results, it is

worth discussing them in a bit more detail. First, that buyers make offers in only one period is a

fairly standard assumption in this literature (e.g., Swinkels, 1999; Kremer and Skrzypacz, 2007;

Hörner and Vieille, 2009). The set of equilibrium outcomes we identify remain equilibrium

outcomes in a model where buyers make offers over multiple periods provided those offers

are publicly observable (though it is possible that other equilibria also exist). Complications

arise when buyers are long-lived and offers are private as then a buyer may have incentive to

experiment in the first period by making an offer that loses money if it is accepted in order to

make profits conditional on a rejection.

If buyers’ values or information is not identical, then a seller may have incentive to delay trade

in the first period in order to meet a more favorable buyer in the second period. The assumption

that each buyer is matched to a single seller in a given period is purely for convenience and can

easily be relaxed. In what follows, we will also assume that buyers in the second period only

observe first-period transactions but not transaction prices. This too is simply for convenience.
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Because buyers are uninformed and make the offers, no additional information (beyond whether

a transaction occured) is revealed by the price.

2.2 Strategies and Equilibrium Concept

A strategy of a buyer is a mapping from his information set to a probability distribution over

offers. In the first period (i.e., at t = 1), a buyer’s information set is empty. In the second

period, buyers’ information set is a vector in {0, 1}N+1 which indicates whether each asset

traded in the first period. If asset i trades in the first period, then it is efficiently allocated

and it is without loss to assume that buyers do not make offers for it in the second period

(Milgrom and Stokey, 1982). The strategy of each seller is a mapping from her information set

to a probability of acceptance. Seller i’s information includes her type, the set of previous and

current offers as well as the information set of buyers.

We use Perfect Bayesian Equilibria (PBE) as our solution concept. This has three im-

plications. First, each seller’s acceptance rule must maximize her expected payoff at every

information set taking buyers’ strategies and the other sellers’ acceptance rules as given (Seller

Optimality). Second, any offer in the support of the buyer’s strategy must maximize his ex-

pected payoff given his beliefs, other buyers’ strategy and the seller’s strategy (Buyer Optimal-

ity). Third, given their information set, buyers’ beliefs are updated according to Bayes’ rule

whenever possible (Belief Consistency).

2.3 Updating

Since buyers in the second period do not observe the level of offers in the first period, they

update their beliefs based on whether each asset traded. Let σθi denote the probability that

buyers assign to seller i trading in the first period if her asset is type θ. There are two ways by

which the prior about seller i is updated between the first and second periods. First, conditional

on rejecting the offer in the first period, the buyers’ interim belief is given by

πInti ≡ P(θi = H|reject at t = 1) =
π(1− σHi )

π(1− σHi ) + (1− π) (1− σLi )
. (2)

Second, before making offers in the second period, buyers learn about any other trades that

took place in the first period. How this information is incorporated into the posterior depends

on buyer beliefs about the trading strategy of the other sellers (i.e., σθj , j 6= i). Let zj ∈ {0, 1}
denote the indicator for whether seller j trades in the first period, and let z = (zj)N+1

j=1 and

z−i = (zj)j 6=i. Denote the probability of z−i conditional on seller i being of type θ by ρiθ (z−i),
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which can be written as

ρiθ(z−i) ≡
∑
s∈{l,h}

P (S = s|θi = θ) ·
∏
j 6=i

P
(
zj|S = s

)
, (3)

where P (zj = 1|S = s) =
∑

θ∈{L,H} σ
θ
j · P (θj = θ|S = s) is the probability that buyers assign

to seller j trading in state s. Provided there is positive probability that i rejects the bid at

t = 1 and z−i is realized, we can use equations (2) and (3) to express the posterior probability

of seller i being high type conditional on these two events:

πi(z−i) ≡ P(θi = H|zi = 0, z−i) =
πInti · ρiH (z−i)

πInti · ρiH (z−i) + (1− πInti ) · ρiL(z−i)
. (4)

2.4 Equilibrium Properties

AFG establish several properties that must hold in any equilibrium of the two-seller model. It

is rather straightforward to show that these properties extend to the model studied here with

an arbitrary number of sellers. However, developing an intuition for them will be useful for

understanding our main results in Sections 3 and 4, so we provide some explanation of them

here. The interested reader may wish to reference AFG for further intuition.

In order to introduce them, we will use the following definitions and notation. We refer to

the bid for asset i at time t as the maximal offer made across all buyers for asset i at time

t. Let V (π̃) ≡ π̃vH + (1 − π̃)vL denote buyers’ expected value for an asset given an arbitrary

belief π̃. Let π̄ ∈ (π, 1) be such that V (π̄) = cH , and recall that πi denotes the probability that

buyers assign to θi = H prior to making offers in the second period.

Property 1 (Second period) If seller i does not trade in the first period, then in the second

period:

(i) If πi > π̄ then the bid is V (πi), which the seller accepts w.p.1.

(ii) If πi < π̄ then the bid is vL, which the high type rejects and the low type accepts w.p.1.

(iii) If πi = π̄, then the bid is cH = V (πi) with some probability φi ∈ [0, 1] and vL otherwise.

Note that a high type will only accept a bid higher than cH . When the expected value of

the asset is above cH (as in (i)), competition forces the equilibrium offer to be the expected

value. When the expected value of the asset is below cH (as in (ii)), buyers cannot attract

both types without making a loss. Thus, only the low type will trade and competition pushes

the bid to vL. Finally, when the expected value of the asset is exactly cH (as in (iii)), buyers
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are indifferent between offering cH and trading with both types or offering vL and only trading

with the low type.

Notice that Property 1 implies a second period payoff to a type-θ seller i as a function of

(πi, φi), which we denote by Fθ(πi, φi), where

FH (πi, φi) ≡ max {cH , V (πi)} , (5)

and

FL(πi, φi) ≡


vL if πi < π̄

φicH + (1− φi)vL if πi = π̄ (6)

V (πi) if πi > π̄.

From seller i’s perspective, the strategy of seller j 6= i in the first period is relevant because

it influences the distribution of news z−i and therefore the distribution of πi. In particular,

the (expected) continuation value of a seller from rejecting an offer in the first period can be

written as

Qi
θ ≡ (1− δ)cθ + δ

∑
z−i

ρiθ(z−i)Fθ(πi(z−i), φi). (7)

It depends on seller i’s own trading strategy σθi through the interim belief. But, importantly,

it also depends on (i) the correlation of types with the state and (ii) the strategies of sellers

j 6= i, since both influence the distribution of “news” ρiθ that the buyers receive about seller i

in the second period.

Property 2 (Skimming) In any equilibrium, the expected continuation value of the high type

is strictly greater than that for the low type: Qi
H > Qi

L.

This result, often referred to in the literature as a “skimming” property, is due to the fact

that both the flow payoff cθ and the continuation payoff Fθ are higher for the high type, and

because the high type rationally expects a (weakly) better distribution of buyer posteriors (thus

prices) in the second period.

Property 3 (First period) In the first period, the bid for each asset is vL. The high-type

seller rejects this bid with probability 1. The low-type seller accepts it with probability σi < 1.

By Property 2, any offer that is acceptable to a high type in the first period is accepted by

the low type w.p.1. But Assumption 1 implies that any such offer yields negative profits for the

buyers. Hence, in equilibrium only low types trade in the first period and competition pushes

the bid to vL. Finally, if σi = 1, then the bid in the second period must be vH (Property 1). But
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then the low-type seller i would strictly prefer to delay trade to the second period (Assumption

2), a contradiction.

Property 4 (Symmetry) In any equilibrium, σi = σ > 0 for all i. If buyer mixing is part of

the equilibrium then φi = φ for all i.

The key step to prove symmetry is to show that if σi > σj ≥ 0, then Qi
L > Qj

L. This follows

from the fact that, due to imperfect correlation, πi (and therefore Qi
L) is more sensitive to i’s

own trading probability than it is to that of the other players. Note that if Qi
L > Qj

L, then

the low-type seller i strictly prefers to wait, which contradicts σi > 0 being consistent with an

equilibrium. That there must be strictly positive probability of trade then follows: if σi = 0

for all i, then no news arrives and buyers in the second period would have the same beliefs

as buyers in the first period. This would imply that the second period bid is vL but in that

case the low-type sellers would be strictly better off by accepting vL in the first period, which

contradicts σi = 0.

2.5 Equilibria

Given Properties 1–4, we can drop the subscripts and denote a candidate equilibrium by the pair

(σ, φ). Because all equilibria are symmetric, any information about seller i that is contained

in news z−i does not depend on the identity of those who sold but only on the number (or

fraction) of other sellers that traded. For example, suppose that z−i = z(K) where z(K) is

such that
∑

j 6=i z
j = K ≤ N . Then

ρiθ(z(K)) =
∑
s∈{l,h}

pKs · (1− ps)N−K · P(S = s|θi = θ),

where ps ≡ σ · P(θi = L|S = s) is the probability that any given seller trades in state s.

Naturally, the probability of observing K trades among sellers j 6= i is
(
N
K

)
· ρiθ(z(K)).

Furthermore, since any equilibrium involves σ ∈ (0, 1), a low-type seller must be indifferent

between accepting vL in the first period and waiting until the second period. The set of equilibria

can thus be characterized by the solutions to

Qi
L(σ, φ) = vL, (8)

where we now make explicit the dependence of the continuation value on the strategy (σ, φ).

As we show in the next proposition, there can be multiple solutions to (8) and hence multiple

equilibria.
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Proposition 1 (Existence and Multiplicity) An equilibrium always exists. If λ and δ are

sufficiently large, there exist multiple equilibria.

Intuitively, a higher σ has two opposing effects on the seller’s continuation value. On the

one hand, the posterior beliefs and thus prices in the second period are increasing in σ, which

increases the expected continuation value Qi
L. On the other hand, as other low types trade

more aggressively, the distribution over buyers’ posteriors shifts towards lower posteriors, thus

decreasing Qi
L. The latter force generates complementarities in sellers’ trading strategies, which

results in multiple equilibria when the correlation between assets is high and traders care

sufficiently about the future.

We now turn to our main question, specifically, whether information about the underlying

state is aggregated as the number of informed participants. To understand the essence of this

question, first notice that the trading behavior of each seller provides an informative signal

about the aggregate state. If the seller trades in the first period, than she reveals her asset’s

type is L, which is more likely when the aggregate state is l than when it is h. Conversely, if

the seller does not trade, then buyers update their beliefs about the asset toward H and their

belief about the aggregate state toward h. Moreover, the amount of information revealed by

each seller is increasing in the low-type’s trading probability, which we now denote by σN (in

order to explicitly indicate its dependence on the number of other informed participants).

If the information content of each individual trade were to converge to some positive level

(i.e., limN→∞ σN = σ̄ > 0), then information about the state would aggregate. The reason is

that by the law of large numbers the fraction of assets traded would concentrate around its

population mean σ̄ · P(θi = L|S = s), which is strictly greater when the aggregate state is l

than when it is h. If, on the other hand, σN decreases to zero at a rate weakly faster than 1/N

(i.e., limN→∞N · σN <∞), then information would not aggregate. In this case, despite having

arbitrarily many signals about the state, the informativeness of each signal goes to zero fast

enough that the overall amount of information does not reveal the true state.

Of course, the equilibrium trading behavior of each individual seller is determined endoge-

nously. Therefore, in order to establish information aggregation properties of equilibria, we

need to understand how the set of equilibrium values of σN changes with N . Moreover, since

different equilibria have different σN , the limiting information aggregation properties could be

different for different sequences of equilibria. As we will see in the next section, neither of the

two cases mentioned in the previous paragraph is pathological.
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3 Information Aggregation

Consider a sequence of economies indexed by N (standing for N + 1 assets), and let σN denote

an equilibrium trading probability in the first period and πStateN be the buyers’ posterior belief

that the aggregate state is h, conditional on having observed the outcome of trade in the first

period. That is, given a trading history z = (zj)N+1
j=1 , πStateN (z) ≡ P(S = h|z). We say that:

Definition 1 There is information aggregation along a given sequence of equilibria if

πStateN →p 1{S=h} as N →∞, where →p denotes convergence in probability.

Our notion of information aggregation requires that, upon observing the trading history,

buyers learn all the information available in the market that is relevant to infer the aggregate

state. Asymptotically, this is equivalent to asking whether agents’ beliefs about the aggregate

state become degenerate at the truth.6

3.1 A ‘Fictitious’ Economy

Before presenting our main results, it will be useful to consider a ‘fictitious’ economy in which

buyers observe the true state S via an exogenous signal before making second period offers.

This benchmark economy is useful because it approximates the information revealed in the true

economy if there is information aggregation. We proceed by deriving a necessary and sufficient

condition under which the fictitious economy supports an equilibrium with trade in the first

period (Lemma 1). We then show that the same condition is necessary, though not sufficient,

for information aggregation (Theorem 1). Intuitively, information aggregation requires trade.

But if the fictitious economy does not support an equilibrium with trade, then (by continuity)

there cannot exist a sequence of equilibria along which information aggregates.

First, note that Properties 1, 2, and 3 trivially extend to the fictitious economy. Second,

observe that conditional on knowing the true state, the information revealed by other sellers is

irrelevant for buyers when forming beliefs about seller i. That is, buyers’ posterior belief about

seller i following a rejection in the first period and observing the true state is s is given by

πficti (s) =
πInti · P(S = s|θi = H)

πInti · P(S = s|θi = H) + (1− πInti ) · P(S = s|θi = L)
, (9)

where πInti is the interim belief given in (2). This implies that seller i’s continuation value in the

fictitious economy, which we denote by Qi,fict
θ (σi, φi) is independent of the trading strategies of

6That our definition involves convergence in probability is standard in the literature (see e.g., Kremer
(2002)).
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the other sellers. Analogous to (7), the continuation value is given by

Qi,fict
θ (σi, φi) = (1− δ)cθ + δ

∑
s

P(S = s|θi = θ)Fθ

(
πficti (s), φi

)
(10)

Since there are no complementarities between sellers’ trading strategies, the fictitious econ-

omy has a unique equilibrium, which must be symmetric. As in Daley and Green (2012), due to

the exogenous arrival of information, it is possible that the equilibrium of the fictitious economy

will involve zero probability of trade in the first period.

Lemma 1 The unique equilibrium of the fictitious economy involves zero probability of trade

in the first period (i.e., σfict = 0) if and only if

Qi,fict
L (0, 0) ≥ vL. (?)

Furthermore, (?) holds if and only if λ and δ satisfy the following:

λ ≥ λ̄ ≡ 1− π(1− π̄)

1− π

and

δ ≥ δ̄λ ≡
vL − cL

vL − cL + (1− λ) ·
(

1− (1−λ)(1−π)
π

)
· (vH − vL)

.

This result is intuitive. The equilibrium of the fictitious economy features no trade whenever

the low type’s option value from delaying trade to the second period is high. This occurs when

both the information revealed in the second period is sufficiently informative about the seller’s

type (i.e., λ ≥ λ̄) and for a given correlation the future is sufficiently important (i.e., δ ≥ δ̄λ).

3.2 When Does Information Aggregate?

We now establish our first main result, which shows that (?) is also the crucial determinate of

the information aggregation properties of equilibria.

Theorem 1 (Aggregation Properties)

(i) If (?) holds with strict inequality, then information aggregation fails along any sequence

of equilibria.

(ii) If (?) does not hold, then there exists a sequence of equilibria along which information

aggregates.
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The proof of the first statement uses the observation that if information were to aggregate,

then for N large enough the continuation payoffs of the sellers are close to the continuation

payoffs in the fictitious economy. Thus, when (?) holds strictly, delay is also uniquely optimal

when there are a large but finite number of assets. But this contradicts Property 4, which

states that σN ∈ {0, 1} cannot be part of an equilibrium for any finite N . In fact, when (?)

holds strictly, the trading probability σN is positive but must go to zero at a rate proportional

to 1/N , which is fast enough to prevent information from aggregating. The rate is also slow

enough to ensure that the market does not become completely uninformative in the limit. In

that case, the bid for any asset in the second period would be vL with probability arbitrarily

close to one; hence, the low types would strictly prefer to trade in the first period (implying

σN = 1), which would contradict Property 4.

On the other hand, when the fictitious economy has an equilibrium with positive trade in

the first period (i.e., if (?) does not hold), we can explicitly construct a sequence of equilibria in

which the trading probability σN is bounded away from zero. Clearly, information is aggregated

along such a sequence. Nevertheless, even when aggregating equilibria exist, it is not the case

that information will necessarily aggregate along every sequence of equilibria.

Theorem 2 (Coexistence) There exists a δ̂ < 1 such that whenever δ ∈ (δ̂, δ̄λ) and λ is suf-

ficiently large, there is coexistence of sequences of equilibria along which information aggregates

with sequences of equilibria along which aggregation fails. If either λ < λ̄ or δ is sufficiently

small, then information aggregates along any sequence of equilibria.

To prove the first statement, we first note that for a given δ < 1, if λ is sufficiently large, then

we must have δ < δ̄λ and thus by Theorem 1 aggregating equilibria must exist. We then show

that if we fix δ above a certain threshold, then for a sufficiently large λ, also non-aggregating

equilibria must exist. In particular, we explicitly construct a sequence of equilibria in which

the second period bid is vL for all histories except the one in which no seller has traded in the

first period. In these equilibria, the probability of the event that no seller has traded in the

first period remains bounded away from zero, in both states of nature! Thus, even as N →∞,

the uncertainty about the state of nature does not vanish.

The second part of Theorem 2 provides sufficient conditions under which information nec-

essarily aggregates. While this result is not particularly surprising, it is instructive to observe

that the possibility of aggregation failure requires the two key ingredients of the model: (1)

sufficient correlation across assets (i.e. λ > λ̄) and (2) that strategic delay is relevant (i.e. δ is

large enough).

Figure 1 summarizes our main results by illustrating the regions of the parameter space

for which aggregation holds and fails as well as the region of coexistence. In the top-right
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Figure 1: When does Information Aggregate? This figure illustrates the regions of the parameter space
over which information aggregation obtains or fails.

(darkly shaded) region, (?) holds and hence there do not exist sequences of equilibria that

aggregate information. Otherwise, aggregating equilbria exist (Theorem 1). In the bottom-left

(unshaded) region, all sequences of equilibria aggregate information and in the middle-right

(lightly shaded) region, sequences in which information aggregates coexist with sequences in

which information aggregation fails (Theorem 2).

Perhaps surprsingly, our main results can be extended to a model with more than two trading

periods. Intuitively, one might expect that with more trading periods there are more opportuni-

ties to learn from trading behavior and hence more information will be revealed. However, there

is a countervailing force; there are more opportunities for (strategic) sellers to signal through

delay. It turns out that two factors essentially cancel each other out. In the Appendix, we

extend the model the model to allow for an infinite number of trading periods and demonstrate

that the analogs of Theorems 1 and 2 continue to hold.

3.3 Trading Behavior and Welfare in a Large Market

The ex-ante equilibrium surplus of seller i is:

W i
N = (1− π)(Qi

L,N − cL) + π(Qi
H,N − cH),
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Figure 2: The left panel illustrates how the welfare per trader depends on the number of traders. The right
panel shows the corresponding strategy of a low-type seller in the first period. The parameters are such that
only aggregating equilibria exist.

where Qi
θ,N is given by (7) when the market size is N + 1. Because buyers are competitive and

thus break even, WN is effectively the per trader surplus in our economy. On the other hand,

the per trader surplus in the unique equilibrium of the fictitious economy is:

W i,fict = (1− π)(Qi,fict
L − cH) + π(Qi,fict

H − cH),

where Qi,fict
θ is given by (10). The following proposition shows that aggregating equilibria

behave very much like the fictitious economy.

Proposition 2 (Aggregating Equilibria) Consider a sequence of equilibria along which in-

formation aggregates. Then, along this sequence:

(i) limN→∞ σN = σfict, and

lim
N→∞

P

(
(N + 1)−1

N+1∑
j=1

zj ≤ x|S = s

)
= I{x ≥ σfictP(θi = L|S = s)}.

(ii) The volatility of prices conditional on the true state goes to zero.

(iii) limN→∞W
i
N = W i,fict.

Figure 2 illustrates this result graphically by plotting the equilibrium trading surplus WN

and the trading probability σN against the market size N . For small N , multiple equilibria

exist due to strategic complementarities among different sellers, and W i
N and σN can either

increase or decrease with N . As N grows large, however, the aggregate state gets learned,
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Figure 3: The left panel illustrates how the welfare per trader depends on the number of traders. The right
panel shows the corresponding strategy of the seller in the first period. The parameters are such that (?) holds
and, hence, absent intervention aggregating equilibria do not exist.

the complementarities vanish, and both welfare and trading behaviour converge to those of the

fictitious economy. The implication is that, in this economy, conditional on the aggregate state,

the volatility in asset prices and trading volume (in both periods) goes to zero. As we show

next, however, the picture changes dramatically in when information fails to aggregate.

Proposition 3 (Non-Aggregating Equilibria) Consider a sequence of equilibria such that

information aggregation fails along any of its subsequences. Then, along this sequence:

(i) NσN ∈ (κ, κ) for some constants κ, κ > 0, and for any convergent subsequence {σNk}
with κ ≡ limk→∞ σNkNk,

lim
k→∞

P

(
Nk+1∑
j=0

zj ≤ x|S = s

)
=

bxc∑
n=0

1

n!
· (κP(θi = L|S = s))n · e−κP(θi=L|S=s).

(ii) The volatility of prices conditional on the true state remains strictly positive.

(iii) lim supN→∞W
i
N < W i,fict.

In non-aggregating equilibria, strategic considerations do not vanish as the market grows

large, which leads to (excess) volatility in prices conditional on the state and welfare that is

below the fictitious benchmark. Figure 3 illustrates this result graphically.

The contrast between Propositions 2 and 3 demonstrates that aggregating equilibria have

several nice properties that are not shared by their non-aggregating counterparts. Two imme-

diate implications follow. First, from a social welfare perspective, aggregating equilibria are
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always preferable to non-aggregating equilibria when they co-exist. Thus, among laissez-faire

outcomes, aggregation is optimal. Second, if the only laissez-faire outcomes are non-aggregating

and a social planner could manage to learn the true state at t = 1, then she could improve

welfare by revealing her information to market participants.

Of course, it is not obvious how a planner would be able to acquire such information. It is

more natural to think that the planner is uninformed, but can learn about the true state by

observing the trading behavior of market participants. The problem facing the planner is then

how best to reveal this information to other agents in the economy. In the next section, we

tackle precisely this problem.

4 Optimal Information Policy

How should an (uninformed) planner disclose trading behavior to maximize social welfare?

Before analyzing the planner’s problem, it is useful to compare the problem we consider to the

literature on Bayesian persuasion (Kamenica and Gentzkow, 2011; Rayo and Segal, 2010) and

“information design” problems more generally (Bergemann and Morris, 2013, 2016).7 On one

hand, the problems are quite similar. Both involve designing an information revelation policy

to induce other players to take certain actions. On the other hand, the planner’s problem in our

setting must take into account a novel feedback effect. Namely, the planner’s policy influences

the information content of trading behavior, and therefore the information content of whatever

is revealed. In short, the statistical properties of the information the planner can reveal, which

is typically exogenous in a Bayesian persuasion setting, depends on the policy itself.

Our solution method for answering this question will proceed in two steps. First, we consider

the information design problem of a planner who (exogenously) learns the aggregate state at the

end of period t = 1. We refer to this as the Informed Planner’s Problem. We characterize the

solution to this problem, which for δ large enough involves partially concealing the aggregate

state in order to increase the volume of trade compared to the laissez-faire outcome. We then

return to the problem of interest and provide the necessary and sufficient conditions under

which the (uninformed) planner can achieve the same outcome as the informed one. When

these conditions do not hold, the planner distorts trade in the first period in order to learn

the state, which results in lower welfare than when the planner is informed. Finally, we relate

our normative findings to the information aggregation properties of equilibria and discuss their

7Bergemann and Morris (2017) provide a more general treatment of information design problems drawing
a distinction between whether the designer has an informational advantage (as in Bayesian persuasion) or not
(as in communication games). In our model, the planner has no informational advantage ex-ante but has a
technology for acquiring one in the interim. Another important distinction of our setting is that the planner
has only limited means by which she can elicit information.
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policy implications.

4.1 Informed Planner’s Problem

In this section, we set up the informed planner’s problem and characterize its solution. In doing

so, we will assume that the planner (exogenously) learns the aggregate state at t = 1 and can

design and commit to an information policy ex-ante, the results of which are publicly revealed

after trading at t = 1. Therefore, buyers of asset i at date t = 2 can observe (i) whether asset

i traded in the first period, and (ii) any additional information revealed by the planner.

The planner’s objective is to maximize the expected discounted gains from trade. Because

we focus on a public information policy and all assets are ex-ante identical, it is sufficient to

consider the problem of maximizing the expected discounted gains from trade for a single asset.

The planner’s objective can be written as

W = (1− π)(σ + δ(1− σ))(vL − cL) + π(P(πi = π̄|H)φ+ P(πi > π̄|H))δ(vH − cH), (11)

where πi is the (random) buyers’ posterior belief at t = 2 that the seller is H-type.

From Kamenica and Gentzkow (2011), the problem of choosing state-dependent distribu-

tions over signals is equivalent to choosing a distribution of posteriors about the state that is

Bayes plausible. Let p̃ denote the random variable representing the buyers’ posterior about the

state conditional on observing the information revealed by the planner and let G denote the

distribution of p̃. Bayes plausbility requires that the expected posterior be equal to the prior

EG{p̃} = π (12)

Of course, the planner’s choice of G will influence both the behavior of the seller and the buyers

as captured by (σ, φ).

Definition 2 (Informed Planner’s Problem) The informed planner’s problem is to choose

a triple (G, σ, φ) to maximize (11) subject to two constraints:

(1) Bayes Plausibility (i.e., (12)), and

(2) Given G, (σ, φ) must be an equilibrium of the game.

We say that (G, σ, φ) is feasible if it satisfies (1) and (2). We let QG
θ (σ, φ) denote the conintu-

ation value to a type-θ seller. For any G, Properties 1-3 must hold in any equilibrim. Moreover,

as in Section 2.5, if σ ∈ (0, 1) then constraint (2) requires that the low type’s continuation value

must equal vL. However, with an informed planner, it is no longer true that low type sellers
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must trade with strictly positive probability in the first period (as in Property 4). More specif-

ically, it is possible to design G such that there exist equilibria in which σ = 0 and QG
L ≥ vL.

Instead of (8), equilibria are characterized by (G, σ, φ) such that

QG
L(σ, φ) ≥ vL (13)

σ
(
QG
L(σ, φ)− vL

)
= 0 (14)

The following lemma puts a bound on the set of feasible σ that can be implemented.

Lemma 2 Define σ̄ implicitly by π (l, σ̄) = π̄ and define σ ≡ inf{σ ∈ [0, 1], π(h, σ) ≥ π̄}, then

σ is feasible only if σ ∈ [σ, σ̄].

The proof is simple. If σ > σ̄ (< σ), then QG
L > vL(< vL) regardless of what information is

revealed by the planner. The next lemma simplifies the informed planner’s problem by showing

that, for any candidate σ, it is enough to consider information policies with at most three beliefs

in the support.

Lemma 3 For any feasible σ, the solution to the informed planner’s problem can be achieved

with a information policy that has a support S(σ) ⊆ {0, p̄(σ), 1}, where p̄(σ) is such that

πi(p̄(σ), σ)) = π̄.

The intuition behind Lemma 3 is as follows. Take any (G, σ, φ) such that p̂ ∈ (0, p̄(σ)) is in

the support of G. The low type’s payoff in the second period following the realization of p̂ is

vL and the high type gets cH . The same payoffs can be achieved by a policy that reveals either

p = 0 or p = p̄(σ) and where φ is adjusted down to keep QL unchanged. Thus, it is without

loss to restrict attention to policies that do not involve posteriors p ∈ (0, p̄(σ)).

Next, consider any policy (G, σ, φ) such that p̃ ∈ (p̄(σ), 1) is in the support of G. Let G′

be a new information policy that reassigns the weight on p̃ to p̄(σ) and 1 (respecting Bayesian

plausibility), it can be shown that QG′
H (σ, φ) ≥ QG

H(σ, φ) and QG′
L (σ, φ) ≤ QG

L(σ, φ). Therefore,

it is possible to find σ′ ≥ σ such that (G′, σ′, φ) is a feasible policy under which both seller

types are weakly better off.

Thus, for any given σ, the information policy (i.e., G) of the informed planner has been

reduced to choosing a pair (µ0, µ1) ∈ [0, 1]2, where µk = PrG(p = k), and the Bayes plausibility

constraint reduces to

µ1 + (1− µ0 − µ1)p̄(σ) = π.

Definition 3 We say that the planner’s policy is fully revealing if µ0 = 1− π and µ1 = π.
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If the policy attaches a strictly positive weight to p̄(σ) (i.e., if µ0 + µ1 < 1) then some

information is concealed. To further characterize the solution, it is useful to first consider a

modified planning problem, in which (13) is required to hold with equality and which we will

show arises naturally when the planner is uninformed (see Lemma 5).

When constraint (13) holds with equality, the planner’s objective reduces to maximizing the

payoff of the high type seller,

QG
H = cH + δ · P(S = h|θ = H)

π
· µ1 · (V (π(h;σ))− cH) , (15)

where π(h;σ) is the posterior belief when the state is revealed to be h. Note that QG
H is

increasing in µ1 since the planner reveals that the state is h more frequently (and the price in

that event is highest), and it is increasing in σ since the pooling price in that state is higher.

Crucially, whether the planner faces a tradeoff between µ1 and σ depends on whether revealing

the state more frequently increases the continuation value of the low type.

Lemma 4 Consider a variant of the informed planner’s problem in which the inequality in

(13) is required to hold with equality. Then the solution to this problem is as follows:

(i) If Qi,fict
L (σ̄, 0) ≤ vL, then the optimal information policy is fully revealing, σ∗ = σ̄, and

φ∗ is such that Qi,fict
L (σ̄, φ∗) = vL.

(ii) If Qi,fict
L (σ̄, 0) > vL then the optimal information policy conceals some information: µ∗0 =

0, µ∗1 = π−p̄(σ∗)
1−p̄(σ∗) , and σ∗ is such that QG∗

L (σ∗, 0) = vL.

Intuitively, the reason why the planner conceals information is closely related to the option

value effect of information that we identified in the fictitious economy of Section 3.1: the

prospect of the high state being revealed more frequently can generate an increase in the low

type’s expected future prices and increase inefficient trade delays.

Lemma 4 will be useful in the study of the uninformed planner’s problem. Before moving

to that problem, however, we complete the characterization of the informed planner’s true

problem. If (13) is slack, then it must be that the low-type seller trades with probability zero

in the first period (by (14)). In this case, the planner’s problem reduces to maximizing the

probability of trade with the high type in the second period. As the next result demonstrates,

this is accomplished by never fully revealing the high state.

Proposition 4 There exists a δ̃ < 1 such that the solution to the informed planner’s problem

is as follows.

(i) The constraint (13) holds with equality if and only if δ < δ̃, in which case the optimal

policy is characterized by Lemma 4.
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(ii) If δ ≥ δ̃ then the optimal policy involves σ∗ = µ∗1 = 0.

As we will see in the next section, a policy like the one in part (ii) of Proposition 4 is not

feasible for the uninformed planner.

4.2 Uninformed Planner’s Problem

We are now ready to tackle our problem of interest where, rather than being endowed exoge-

nously with knowledge of the state, the planner must learn it from the trading history she

observes. As a result, we also need to keep track of the market size, indexed by N , since it will

affect the information the planner observes in the first period. This latter feature also makes it

cumbersome to employ the typical Bayesian persuasion approach since the Bayesian plausibility

constraint is no longer sufficient. Instead, we work directly on the planner’s information policy,

which is defined as a mapping MN from the trading histories she observes, which elements of

{0, 1}N , to distributions over signals that are publicly observed by agents in the economy.

The planner’s objective is to maximize the expected discounted gains from trade,

WN = (1−π)(σN + δ(1−σN))(vL− cL) +π
(
PMN (πi = π̄|H)φN + PMN (πi > π̄|H)

)
δ(vH − cH),

(16)

where PMN (·|θ) denotes the conditional probability distribution over the buyers’ posteriors

induced by MN . We let QMN
θ (σN , φN) denote the continuation value to a type-θ seller.

Definition 4 (Uninformed Planner’s Problem) The uninformed planner’s problem is to

choose a triple (MN , σN , φN) to maximize (16) subject to (σN , φN) being an equilibrium of the

game.
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The key difference from the informed planner’s problem is that the information content of

any signal revealed by the planner is endogenous to the equilibrium trading probability σN .

This has the following important implication.

Lemma 5 The solution to the uninformed planner’s problem must involve σN > 0 and

QMN
L (σN , φN) = vL. (17)

Intuitively, if σN were equal to zero, the planner has no relevant information and any signals

she reveals are completely uninformative. But then “no trade” cannot be consistent with

equilibrium when traders do not expectation arrival of information (see discussion following

Property 4).

Combining Lemma 5 with Proposition 4 implies that, when δ > δ̃, the uninformed planner

cannot achieve the same level of surplus as the informed planner can attain, even as N →
∞. Futher, Lemma 5 implies that the solution to the modified informed planner’s problem

characterized in Lemma 4 provides an upper bound on the level of surplus that the uninformed

planner can achieve. Clearly, a policy for the uninformed planner that achieves this upper

bound must also be optimal for any δ.

Proposition 5 (Pareto Optimum) There exists a sequence {MN , σN , φN} along which WN →
W ∗ and σN → σ∗, where σ∗ and W ∗ are respectively the trading probability and welfare under

the information policy of the modified informed planner’s problem in Lemma 4.

To prove this result, we construct an information policy consisting of a binary signal, ωN ∈
{b, g}, where the planner sends signal ωN = g with probability µ∗1 when she observes that the

fraction of sellers who traded at t = 1 is below some threshold τ ∈ (0, 1), and she sends signal

ωN = b otherwise. We show that, when σN is close to σ∗ and τ is chosen appropriately, the

planner asymptotically learns the state and the information content of her policy converges

to that of the information policy of the informed planner as characterized in Lemma 4, which

may or may not be fully revealing. Finally, we use continuity arguments to find a sequence of

trading probabilities σN which both converges to σ∗ and is consistent with equilibrium under

this information policy, for all N .

It is worth noting that the optimal information policy achieves a Pareto improvement over

the laissez-faire outcomes. The reason is that the buyers break even, the low type’s payoff is

vL (see Lemma 5) and, thus, all the additional surplus generated by the planner’s policy is

captured by the high types. The implication of this observation is that all agents would be

happy to delegate the information dissemination about past trades to the social planner.
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5 Concluding Remarks

We study the information aggregation properties of decentralized dynamic markets in which

traders have private information about the value of their asset, which is correlated with some

underlying ‘aggregate’ state of nature. We provide necessary and sufficient conditions under

which information aggregation necessarily fails. Further, we show that when these conditions

are violated, there can be a coexistence of non-trivial equilibria in which information about

the state aggregates with equilibria in which aggregation fails. Our findings suggest there are

important differences in the aggregation properties of multi-asset decentralized markets (as

studied here) and single-asset centralized markets as typically explored in the literature.

We then consider the normative implications of our theory. We solve for the optimal informa-

tion policy of a social planner who observes the trading behavior and chooses what information

to communicate to the traders. We show that the information generated in a laissez-faire econ-

omy is always inefficient when aggregation fails. The optimal policy conceals favorable “news”

from the traders in order to accelerate trade and increase trading surplus. We discuss the

implications of our theory for policies of information dissemination in markets.
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A Proofs for Sections 2 and 3

Proof of Property 1. For (i) and (ii), see the proof of Lemma 1 in Daley and Green (2016).

Conditional on reaching the second trading period and the buyers’ belief, πi, the strategic

setting for trading a given asset i is identical to theirs. Moreover, by their Lemma A.3, the

bid price must earn zero expected profit. To demonstrate (iii), we will show that the bid price

must be either vL or cH when πi = π̄ by ruling out all other bids.

Clearly, at t = 2, the reservation price of the low-type seller is cL and the reservation price of

the high-type seller is cH . Hence, if the bid is strictly above cH , both types will accept w.p.1 and

the winning buyer earns negative expected profit. Next, suppose there is positive probability

that the bid is strictly less than vL. Then, for ε > 0 small enough, a buyer could earn strictly

positive expected profit by deviating and offering vL − ε. Finally, if the bid is strictly between

vL and cH , the high type will reject, the low type will accept and the winning buyer makes

negative profit. Thus, we have shown that the equilibrium bid price at t = 2 when πi = π̄ must

be either vL or cH .

Proof of Property 2. Since cH > cL and FH ≥ FL, the continuation value of the low type

seller from rejecting the bid vL in the first period satisfies:

Qi
L = (1− δ) · cL + δ · EL{FL(πi, φi)}

< (1− δ) · cH + δ · EL{FL(πi, φi)}

≤ (1− δ) · cH + δ · EL{FH(πi, φi)}.

Therefore, in order to prove that Qi
H > Qi

L, it is sufficient to show that EH{FH(πi, φi)} ≥
EL{FH(πi, φi)}. Recall that FH is increasing in πi and independent of φi. Hence, the desired

inequality is implied by proving that conditional on θi = H, the random variable πi (weakly)

first-order stochastically dominates πi conditional on θi = L.

Note that the distribution of πi in the second period is a function of the trading probabilities

of the seller i and of the realization of news from sellers j 6= i, zji ∈ {0, 1}. Fix the interim

belief πσi , and consider news z′−i and z′′−i (which occur with positive probability) such that the

posterior πi satisfies πi(z
′
−i) ≥ πi(z

′′
−i), i.e., z′−i is “better news” for seller i than z′′−i. But note

that:

πInti · ρiH(z′−i)

πInti · ρiH(z′−i) + (1− πInti ) · ρiL(z′−i)
= πi(z

′
−i) ≥ πi(z

′′
−i) =

πInti · ρiH(z′′−i)

πInti · ρiH(z′′−i) + (1− πInti ) · ρiL(z′′−i)
,

which implies that
ρH(z′−i)

ρL(z′−i)
≥ ρH(z′′−i)

ρL(z′′−i)
, i.e. the ratio of distributions ρH(·)

ρL(·) satisfies the monotone

likelihood ratio property. This in turn implies that ρH(·) first-order stochastically dominates
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ρH(·), which establishes the result.

Proof of Property 3. We first show that the bid in the first period is vL w.p.1. From

Property 2, the strict ranking of seller continuation values implies that, in any equilibrium,

if the high type is willing to accept an offer with positive probability then the low type must

accept w.p.1. Thus, given Assumption 1, any bid at or above cH would lead to negative expected

profit. Any bid in (vL, cH) also leads to losses since it is only accepted by the low type. If the

bid was strictly less than vL, a buyer can make strictly positive profits by offering vL − ε, for

ε > 0 small enough. Thus, any deterministic offer strictly below vL can be ruled out. The only

deterministic bid possible is vL, at this point there is no profitable deviation for the other buyer

than offering vL as well. The same arguments rule out any mixed strategy equilibrium that has

a mass point anywhere other than vL. Finally, mixing continuously over some interval of offers

cannot be an equilibrium. We show this by contradiction. If one of the buyers mixes over some

interval [b, b] with b = vL then the other buyer must be offering vL with probability 1 because

otherwise he would never want to offer vL, which leads to zero profits w.p.1. If instead b < vL,

the other buyer’s best response can never have b (or anything below) as part of its support.

This bid will lose with probability 1 and thus earn zero profits, while bidding b+vL
2

would lead

to strictly positive profits.

Next, it is clear that the high type would reject bid vL, since vL < cH . To see that the

low type must accept with probability less than one, note that if in equilibrium the low type

accepted w.p.1, then the posterior belief would assign probability 1 to the type being high in

the next period. The offer in the second period (as argued in Property 1) would then be vH

but, given Assumption 2, the low type seller would then want to deviate and trade in period 2

at vH rather than at vL in period 1.

Proof of Property 4. The proof that all equilibria involve strictly positive probability of

trade in the first period is in the text. We show here that all equilibria must be symmetric. In

search of a contradiction, assume there exists an equilibrium in which σA > σB ≥ 0 for some

A,B ∈ {1, ..., N}. We establish the result by first showing that the beliefs for seller A are more

favorable than for seller B, following all news realizations; then we show that good news about

seller A are more likely to arrive than good news about seller B.

Let πIntσi
denote the interim belief when (low type) seller i trades w.p. σi (by Property 3 the

high type does not trade in first period). Consider the posterior belief about seller i ∈ {A,B}
following some news z−i =

(
zji
)
j 6=i:

πi (z−i) =
πIntσi
· ρiH (z−i)

πIntσi
· ρiH (z−i) +

(
1− πIntσi

)
· ρiL (z−i)
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where we can express ρiθ(z−i) as:

ρiθ(z−i) =
∑
s∈{l,h}

P(S = s|θi = θ) · P
(
(zji )j 6=i,i′|S = s

)
· P(zi

′

i |S = s)

for i, i′ ∈ {A,B} and i′ 6= i. Note that ρiθ(z−i) depends on σi′ only through the term P
(
zi
′
i |S
)
.

We now show that σA > σB implies that:

1− πIntσA

πIntσA

· ρ
A
L(z−i)

ρAH(z−i)
<

1− πIntσB

πIntσB

· ρ
B
L (z−i)

ρBH(z−i)
, (18)

which will establish that πA(z−i) > πB(z−i) for all news z−i. There are two cases to consider,

depending on whether zi
′
i = 0 or zi

′
i = 1.

If zi
′
i = 1, then P

(
zi
′
i = 1|S = s

)
= σi′ ·P(θi′ = L|S = s) and the likelihood ratio

1−πIntσi

πIntσi

· ρ
i
L(z−i)

ρiH(z−i)

decreases in σi but is independent of σi′ . Intuitively, if seller i′ traded, her type is revealed to

be low, and the intensity with which she trades is irrelevant for updating. But then inequality

(18) follows because πIntσi
is increasing in σi.

If zi
′
i = 0, then P

(
zi
′
i = 0|S = s

)
= 1 − σi′ · P(θi′ = L|S = s), and now the likelihood ratio

1−πIntσi

πIntσi

· ρ
i
L(z−i)

ρiH(z−i)
decreases in both σi and σi′ . However, given that both i and i′ did not trade

(both are good news for i), inequality (18) follows because the assets i and i′ are imperfectly

correlated and
1−πIntσi

πIntσi

· ρ
i
L(z−i)

ρiH(z−i)
is more sensitive to trading probability σi than to σi′ .

Now, note that σA > σB also implies that the probability that seller B trades and releases

bad news about seller A is lower than the probability that seller A trades and releases bad news

about seller B. Since the posteriors following good news are higher than following bad news,

this establishes the result.

Finally, the symmetry in φi follows from monotonicity of Qi
L in φi whenever buyer mixing is

part of an equilibrium.

Proof of Proposition 1. To prove existence of an equilibrium, it suffices to show there exists

a (σ, φ) ∈ [0, 1]2 such that equation (8) holds, i.e., QL(σ, φ) = vL where the second argument

states that all other sellers also trade with intensity σ. Note that by varying σ from 0 to 1,

QL ranges from [(1− δ)cL + δvL, (1− δ)cL + δvH ]. By continuity of QL and Assumption 2, the

intermediate value theorem gives the result.

Let us denote by πi(zi;σ) the posterior belief following news realization z−i in an equilibrium

with trading probability σ. Consider the following two candidate equilibria. The first candidate

is an equilibrium in which the posterior belief about the seller satisfies πi(z(0);σ) = π̄, and the

second candidate equilibrium is when the posterior belief about the seller satisfies πi(z(N);σ) =

π̄. Although there can be other equilibria as well, we do not focus on them. We will now show
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that these two equilibria coexist when λ and δ are large enough.

1. πi(z(0);σ) = π̄. Note that there is at most one such equilibrium since the trading intensity

σ in this category is fully pinned down by the requirement that πi(z(0);σ) = π̄. Let x be the

value of σ such that πi(z(0);x) = π̄. As φ varies from 0 and 1, QL(x, φ) varies continuously from

(1−δ)cL+δvL to (1−δ)cL+δ(ρiL(z(0))cH +(1−ρiL(z(0)))vL) where ρiL(z(0)) > 0. Hence, there

exists a δ̄λ < 1, such that QL(x, 1) = vL. Clearly, this equilibrium exists if δ > δ̄λ. Moreover,

it is straightforward to show that infλ ρ
i
L(z(0)) > 0. Hence, this equilibrium exists if δ is larger

than δ̄ ≡ supλ∈(1−π,1) δ̄λ < 1.

2. πi(z(N);σ) = π̄. Note that there is at most one such equilibrium since the trading intensity

σ is fully pinned down by the requirement that πi(z(N);σ) = π̄. Let y be the value of σ such

that πi(z(N); y) = π̄. As φ varies from 0 to 1, QL varies continuously from

(1− δ)cL + δ

ρiL(z(N))vL +
∑

z−i 6=z(N)

ρiL(z−i)V (πi(z−i; y))


to

(1− δ)cL + δ

ρiL(z(N))cH +
∑

z−i 6=z(N)

ρiL(z−i)V (πi(z−i; y))

 .

Moreover, it is straightforward to show that limλ→1 ρ
i
L(z(N)) = 1. Therefore, it follows that

the range of QL converges to the interval ((1− δ)cL + δvL, (1− δ)cL + δcH ] as λ goes to 1. By

Assumption 2, vL is in this interval. This establishes the existence of the threshold λ̄δ such that

this equilibrium exists whenever δ > δ̄ and λ > λ̄δ.

Thus, we conclude that multiple equilibria exist when δ > δ̄ and λ > λ̄δ.

Proof of Lemma 1. Uniqueness of equilibrium follows from the fact that Qi,fict
L = (1 −

δ)cL + δvH > vL when σi = 1, and because Qi,fict
L is monotonically increasing in σi, and in φi

when buyer mixing is part of an equilibrium. Hence, the unique equilibrium must feature no

trade if Qi,fict
L (0, 0) ≥ vL. Finally, it is straightforward to check that Qi,fict

L (0, 0) ≥ vL holds if

and only if λ ≥ λ̄ and δ ≥ δ̄λ.

For the proof of Theorem 1, it will be useful to reference the following lemma, which is

straightforward to verify so the proof is omitted. Let πi(s;σ) denote the buyers’ posterior belief

about seller i following a rejection, conditional on observing that the state is s. Then, for

s ∈ {l, h}, we have:

πi(s;σ) =
πσ · P (S = s|θi = H)

πσ · P (S = s|θi = H) + (1− πσ) · P (S = s|θi = L)
,
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where as before πσ is the interim belief.

Lemma A.1 Given a sequence {σN}∞N=1 of trading probabilities corresponding to a sequence of

equilibria along which information aggregates, we also have convergence of posteriors: πi(z−i;σN)→p

πi(S;σN) as N →∞.

Proof of Theorem 1. Part (i). Suppose to the contrary that (?) holds with strict inequality,

but that information aggregation obtains. Recall that in equilibrium, for any N , we must have:

vL = Qi
L(σN , φi) = (1− δ) cL + δ

∑
z−i

ρiL (z−i) · FL (πi (z−i;σN) , φi) ,

where∑
z−i

ρiL (z−i) · FL (πi (z−i;σN) , φi) =
∑
s=l,h

P (S = s|θi = L)
∑
z−i

P (z−i|S = s) · FL (πi (z−i;σN) , φi)

> λ · vL + (1− λ) ·
∑
z−i

P (z−i|S = h) · FL (πi (z−i;σN) , φi) ,

because in equilibrium we must have FL (πi (z(0);σN) , φi) > vL.

Since by Lemma A.1, πi (z−i;σN)→p πi (h;σN) when the state is h, and because (?) holding

strictly implies that πi (h;σN) > πi (h; 0) > π̄, we have that for a given ε > 0, if N is large

enough, then: ∑
z−i

P (z−i|S = h) · FL (πi (z−i;σN) , φi) > V (πi (h;σN))− ε.

Therefore, we conclude that for sufficiently large N :

vL = Qi
L (σN , φi) > (1− δ) cL + δ · (λ · vL + (1− λ) · V (πi (h;σN)))− δ · (1− λ) · ε

> (1− δ) cL + δ · (λ · vL + (1− λ) · V (πi (h; 0)))− δ · (1− λ) · ε.

Since ε was arbitrary, it must be that:

vL ≥ (1− δ) cL + δ · (λ · vL + (1− λ) · V (πi (h; 0))) ,

which violates (?) holding with strict inequality, a contradiction.

Part (ii). If (?) does not hold, then in the fictitious economy, the unique equilibrium trading

probability in the first period must satisfy σ∗ > 0. We next construct an equilibrium sequence

{σN} of the actual economy such that the sequence is uniformly bounded away from zero, which
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then implies that information aggregates along this sequence. First, consider a sequence {σ̂N},
not necessarily an equilibrium one, such that σ̂N = σ̂ ∈ (0, σ∗), i.e., this is a sequence of constant

trading probabilities that are positive but strictly below σ∗. Along such a sequence, information

clearly aggregates and, by Lemma A.1, πi (z−i, σ̂N) →p πi (S, σ̂N). Therefore, combined with

the fact that πi (z−i, σ̂N) = πi (z−i, σ̂) < πi (z−i, σ
∗), there exists an N∗ such that for N > N∗,

we have:

EL {FL (πi (z−i, σ̂N) , φi)} < EfictL {FL (πi (S, σ
∗))} =

vL − (1− δ) · cL
δ

,

where the last equality holds since σ∗ > 0 implies that, in the fictitious economy, the low type

must be indifferent to trading at t = 1 and delaying trade to t = 2. The correspondence

EL {FL (πi (z−i, σ) , ·)} is upper hemicontinuous in σ for each N , and has a maximal value of vH

that is strictly greater than EfictL {FL (πi (S, σ
∗))}. Hence, for each N > N∗, we can find a σN

such that σN ≥ σ̂N > 0 and EL {FL (πi (z−i, σN) , φi)} = vL−(1−δ)·cL
δ

. This delivers the desired

equilibrium sequence {σN} along which information aggregates.

Proof of Theorem 2. We establish the conditions for the coexistence of aggregating and

non-aggregating equilibria. To do so, we first show that if λ > λ̄, there exists a δ2(λ) < 1 such

that non-aggregating equilibria exist if δ > δ2(λ). Second, we show that for λ large enough

δ2(λ) < δ̄λ. Therefore, both non-aggregating and aggregating equilibria exist if δ ∈ (δ2(λ), δ̄λ),

since (?) is violated (see Theorem 1).

Consider a candidate sequence of equilibria with trading probabilities {σN}, such that σN =

κN ·N−1 and:

πi
(
z(0);κN ·N−1

)
= π̄ (19)

Solving (19) for κN and taking the limit as N →∞ gives κN → κ where

κ ≡ 1

λ− (1−λ)(1−π)
π

· log

 λ−
(

1−π̄
π̄
· π

1−π

)
· (1−λ)(1−π)

π(
1−π̄
π̄
· π

1−π

)
·
(

1− (1−λ)(1−π)
π

)
− (1− λ)

 ∈ (0,∞). (20)

Seller i expects to receive an offer of vL in all events other than z(0) and an expected offer

φicH + (1 − φi)vL for some φi ∈ [0, 1] in the event z(0). Therefore, the sequence of trading

probabilities defined above constitutes an equilibrium if δ is sufficiently high and the probability

of the event z(0) conditional on the seller’s type being low is bounded away from zero. To

36



establish the latter, note that:

P (z(0)|θi = L) =
∑
s=l,h

P (S = s|θi = L) · (1− σN · P (θi = L|S = s))N

=
∑
s=l,h

P (S = s|θi = L) ·
(
1− κN ·N−1 · P (θi = L|S = s)

)N
→
∑
s=l,h

P (S = s|θi = L) · e−κ·P(θi=L|S=s) > 0,

where the last limit as N →∞ follows from Lemma A.2. In these equilibria, information fails

to aggregate because as a result P (z(0)|S = s) is bounded away from zero in both states of

nature (see Lemma A.4). Thus, for each λ > λ̄, we have established the existence of a δ2(λ) < 1

such that non-aggregating equilibria exist whenever δ > δ2(λ). Finally, from (20) we have that:

limλ→1

∑
s=l,h

P (S = s|θi = L) · e−κ·P(θi=L|S=s) =
1− π̄
π̄
· π

1− π
∈ (0, 1),

and hence limλ→1 δ2(λ) < 1. Letting δ̂ = limλ→1 δ2(λ) and noting that limλ→1 δ̄λ = 1 implies

the result.

Next, we establish that when λ < λ̄ or δ is sufficiently small, then only aggregating equilibria

exist. First, suppose that λ < λ̄ and assume to the contrary that information aggregation fails

along some sequence of equilibria, and pick a subsequence of equilibria with σN → 0 as N goes

to ∞ (See Lemma A.3 for the existence of such a subsequence). But note that for each N , we

have πi(z−i, σN) ≤ πi(h, σN), i.e., the posterior beliefs must be weakly lower than if the state

were revealed to be high. Since πi(h, σN) is continuous in σN , and since λ < λ̄ implies that

πi(h, 0) < π̄, it follows that for N large enough all posterior beliefs are strictly below π̄. But

then for N large, Qi
L < vL and therefore σN = 1, contradicting Property 3.

Second, consider δ̂ defined by vL = (1 − δ̂)cL + δ̂V (π), and assume that δ < δ̂ (Note that

Assumption 2 can still be satisfied since V (π) < cH). Suppose to the contrary that information

aggregation fails along a sequence of equilibria, and again pick a subsequence of equilibria

with σN → 0 as N goes to ∞. By continuity, we must also have that πIntσN
→ π along this

subsequence. But, note that for each N along this subsequence, it must be that:

vL = Qi
L(σN , φi) = (1− δ)cL + δEL{FL(πi(z−i, σN), φi)}

≤ (1− δ)cL + δEL{V (πi(z−i, σN))}

≤ (1− δ)cL + δV (πIntσN
).

where the first inequality follows immediately from (6) and the second from the fact that V is
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linear function and πi(z−i, σN) is a supermartingale conditional on θi = L. Since δ < δ̂ and

V (πIntσN
)→ V (π), the last expression is lower than vL for N large enough, a contradiction.

Proof of Proposition 2. In Progress... Consider a sequence of equilibria along which

information aggregates and let {σN} denote the corresponding sequence of trading probabilities.

By Theorem 1, it must be that either (?) holds with equality or it is violated, i.e. Qi,fict
L = vL

and σfict ≥ 0. If {σN} (or any subsequence of it) were strictly above σfict and bounded away

from it, then it is straightforward to show that, for N large enough, due to the convergence

of posteriors (see Lemma A.1) we have Qi
L,N > Qi,fict

L = vL and therefore σN = 0, which

contradicts Property 4. On the other hand, if σN were strictly below σfict and bounded away

from it, then again, for N large enough, we would have Qi
L,N < Qi,fict

L = vL and therefore

σN = 1, which contradicts Property 3. Hence, σN converges to σfict.

It is clear that the distribution of YN in state S becomes degenerate at σfictProb (θi = L|S = s).

Finally, in any equilibrium, we have Qi
L,N = vL = Qi,fict

L and the convergence of posteriors also

implies that Qi
H,N → Qi,fict

H , which establishes the welfare result.

Proof of Proposition 3. The bounds on the equilibrium trading probabilities follow from

Lemma A.3. The convergence of distributions follows by the Poisson Limit Theorem. The

proof of the welfare result to be completed.

Lemma A.2 Let {αx} be any non-negative sequence of real numbers such that αx → α as

x→∞ where α ∈ (0, 1). Then
(
x−αx
x

)x → e−α as x→∞.

Proof. Assume that for any γ ∈ (0, 1),
(
x−γ
x

)x → e−γ as x → ∞. Then, given ε > 0

so that ε < α < 1 − ε, if x is large enough then |αx − α| < ε,
(
x−α−ε
x

)x ≥ e−α−ε − ε, and(
x−α+ε
x

)x ≤ e−α+ε + ε. This in turn implies that:

e−α−ε − ε ≤
(
x− α− ε

x

)x
≤
(
x− αx
x

)x
≤
(
x− α + ε

x

)x
≤ e−α+ε + ε.

Since ε is arbitrary, we conclude that
(
x−αx
x

)x → e−α as x→∞. Next, we prove the supposition

that for any γ ∈ (0, 1),
(
x−γ
x

)x → e−γ as x → ∞. Note that
(
x−γ
x

)x
= ex·log(x−γx ) and by

L’Hospital’s rule:

limx→∞x · log

(
x− γ
x

)
= limx→∞

log
(
x−γ
x

)
x−1

= −limx→∞
γ · x
x− γ

= −γ.

By continuity, limx→∞e
x·log(x−γx ) = e−γ.
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Lemma A.3 Suppose that there is a sequence of equilibria {σN} along which information ag-

gregation fails. Then there exist a subsequence of equilibria with trading probabilities {σNm}
such that for some 0 < κ < κ̄ <∞, we have κ < σNmNm < κ̄ for all m.

Proof. Suppose for contradiction that for all subsequences with trading probabilities {σNm}
we have limm→∞ σNmNm = ∞. Let Xi denote the indicator that takes value of 1 if seller i

has traded in the first period. Define YNm = N−1
m ·

∑Nm
i=1 Xi be the fraction of sellers who have

traded in the first period, and note that conditional on the state being s, YNm has a mean ps,Nm

and variance N−1
m · ps,Nm · (1− ps,Nm), where recall that ps,Nm = σNm · P(θi = L|S = s). Since

pl,Nm > ph,Nm ,

P
(
YNm ≥

ph,Nm + pl,Nm
2

|S = h

)
= P

(
YNm − ph,Nm ≥

pl,Nm − ph,Nm
2

|S = h

)
≤ P

(
(YNm − ph,Nm)2 ≥

(
pl,Nm − ph,Nm

2

)2

|S = h

)

And by Markov’s inequality:

P

(
(YNm − ph,Nm)2 ≥

(
pl,Nm − ph,Nm

2

)2

|S = h

)
≤

E
{

(YNm − ph,Nm)2 |S = h
}(

pl,Nm−ph,Nm
2

)2

=
N−1
m · ph,Nm · (1− ph,Nm)(

pl,Nm−ph,Nm
2

)2

= 4 ·
σNm · P (θi = L|S = h)− σ2

Nm
· P (θi = L|S = h)2

Nm · σ2
Nm
· (P (θi = L|S = l)− P (θi = L|S = h))2
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which by our assumption tends to 0 as m→∞. By a similar reasoning, we have that:

P
(
YNm <

ph,Nm + pl,Nm
2

|S = l

)
= P

(
pl,Nm − YNm >

pl,Nm − ph,Nm
2

|S = l

)
≤ P

(
(pl,Nm − YNm)2 >

(
pl,Nm − ph,Nm

2

)2

|S = l

)

≤
E
{

(YNm − pl,Nm)2 |S = l
}(

pl,Nm−ph,Nm
2

)2

=
N−1
m · pl,Nm · (1− pl,Nm)(

pl,Nm−ph,Nm
2

)2

= 4 ·
σNm · P (θi = L|S = l)− σ2

Nm
· P (θi = L|S = l)2

Nm · σ2
Nm
· (P (θi = L|S = l)− P (θi = L|S = h))2

which again tends to 0 as m → ∞. Combining these two observations, we conclude that

information about the state must aggregate along all subsequences, a contradiction.

Next, suppose for contradiction that for all subsequences with trading probabilities {σNm}
we have that limm→∞ σNmNm = 0. Then, given any ε > 0 and m large enough, we have:

(1− σNm · P (θi = L|S = s))Nm =

(
Nm − σNm ·Nm · P (θi = L|S = s)

Nm

)Nm
≥
(
Nm − ε
Nm

)Nm
for s ∈ {l, h}, where the last expression converges to e−ε by Lemma A.2. Since ε is arbitrary,

(1− σNm · P (θi = L|S = s))Nm goes to 1 as m→∞. Hence, we have that for θ ∈ {L,H}:

P (YNm = 0|θi = θ) =
∑
s=l,h

P (S = s|θi = θ) · (1− σNm · P (θi = L|S = s))Nm → 1.

Now, consider the posterior belief about the seller conditional on event that no seller has

traded. For any m, since the low type must expect offers above vL with positive probability

and since z(0) is the best possible news, it must be that:

πi(z(0), σNm) ≥ π̄

⇐⇒
πσNm · P(YNm = 0|θi = H)

πσNm · P(YNm = 0|θi = H) + (1− πσNm ) · P(YNm = 0|θi = L)
≥ π̄.

But note that, since σNm → 0 and πσNm is continuous, the left-hand side converges to π < π̄, a

contradiction.

Lemma A.4 Consider a sequence of equilibria with trading probabilities {σN} such that σNN <
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κ̄ for some κ̄ <∞. Then P (YN = 0|S = s) is bounded away from zero, uniformly over N , for

s ∈ {l, h}.

Proof. We have that P (YN = 0|S = s) = (1− ps,N)N for s ∈ {l, h}. By assumption, ps,N ≤
N−1 · κ̄ · P (θi = L|S = s). Therefore,

P (YN = 0|S = s) ≥
(
1−N−1 · κ̄ · P (θi = L|S = s)

)N
and by Lemma A.2, limN→∞ (1−N−1 · κ̄ · P (θi = L|S = s))

N
= e−κ̄·P(θi=L|S=s) > 0.

B Proofs for Section 4

To be completed.

C Infinite Horizon Model

In this section, we extend our aggregation results to a setting with an infinite number of trading

opportunities t ∈ {1, 2, ...}. Intuitively, one might expect that with more trading periods there

are more opportunities to learn from trading behavior and hence more information will be

revealed. However, there is a countervailing force; there are more opportunities for (strategic)

sellers to signal through delay. It turns out that two factors essentially cancel each other out.

Besides allowing for an infinite number of trading opportunities, the model and the informa-

tion structure is identical to the one presented in Section 2. The only additional notation we

will require is the public history at (the end of) date t, which we denote by zt = {z1, ..., zt},
consists of the history of all the trades that have taken place at dates prior to and including t.

Note that zt also corresponds to buyers’ information set prior to making offers in date t+ 1.

Characterizing the set of all possible equilibria in the infinite horizon model is more difficult

because the space of relevant histories is a complex object. In principle, the path of play can

depend on sellers’ beliefs about the quality of other sellers’ assets, the distribution of buyers’

beliefs about the quality of each seller’s asset, the buyers’ and the sellers’ beliefs about the

aggregate state, as well as the number of assets remaining on the market. Nevertheless, we are

able to obtain sharp predictions regarding the information aggregation properties of the set of

equilibria.

In order to illustrate these findings, we must generalize our notion of information aggregation.

Let πStatet,N denote the buyers’ posterior belief that the state is high, conditional on having

observed the trading history, zt, in an economy with N + 1 sellers.
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Definition 5 There is information aggregation at date t along a given sequence of equi-

libria if πStatet,N →p 1{S=h} as N →∞.

We say that information aggregates along a given sequence if there exists a t < ∞ such that

information aggregates at date t. Otherwise, we say that information aggregation fails.

The following theorem shows that, with an infinite trading horizon, (?) is indeed necessary

and sufficient to rule out aggregating equilibria.

Theorem 3 Consider the infinite horizon model.

(i) If (?) holds with strict inequality, then information aggregation fails along any sequence

of equilibria.

(ii) If (?) does not hold, then there exists a sequence of equilibria along which information

aggregates.

(iii) There exists a δ̂ < 1 such that whenever δ ∈ (δ̂, δ̄λ) and λ is sufficiently large, there is

coexistence of sequences of equilibria along which information aggregates with sequences

of equilibria along which aggregation fails.

The proof hinges on arguments similar to those used in the two-period economy. For (i), we

show that the earliest date in which information about the state is supposed to aggregate is

similar to the first period in a two-period economy. That is, suppose that information aggregates

at some date τ but not before. Because (?) holds, the option value of waiting for the state

to be revealed is sufficiently high to make sellers strictly prefer to delay trade at date τ . But

if sellers do not trade in date τ , then no information is revealed, which means that τ cannot

possibly be the earliest date of aggregation.

In order to establish (ii) and (iii), we construct a class of equilibria that essentially share

the information aggregation properties of the two-period economy. A feature of this class is

that once the belief about the seller weakly exceeds π̄, all future bids are pooling. When (?)

does not hold (i.e., δ < δ̄λ or λ < λ̄), we show that such equilibria exist and that there is

an equilibrium sequence within this class along which information aggregates. Then, following

arguments similar to those for the proof of Theorem 2, we show that under the conditions

stated in (iii), there also exists another sequence of equilibria (still within the class) in which

aggregation fails.

C.1 Proof of Theorem 3

We establish parts (i)-(iii) of Theorem 3 separately.

Proof of Theorem 3, part (i). We proceed by contradiction and suppose to the contrary
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that there is some finite date t at which information aggregates. In particular, suppose that

information has not aggregated before t, but it aggregates at t. Consider seller i who trades

with probability in (0, 1) at t. We know that the number of such sellers must grow to∞ with N ,

since otherwise there would be insufficient information learned at t. Without loss of generality

assume that all sellers trade with probability in (0, 1) at t. By the skimming property, the bid

for this seller’s asset must be vL, which the high type rejects whereas the low type accepts with

some probability σi,N ∈ (0, 1).

Let Qi,N
L,t denote the low type seller i’s continuation value from rejecting a bid vL at time t.

Define

Q̄N
t ≡ (1− δ) · cL + δ · (λL,t · vL + (1− λL,t) · V (πi(h; 0)) , (21)

where (i) λL,t = Pt(S = l|θi = L) is the posterior belief that the state is l conditional on trading

history up to period t and the seller’s type being L, and (ii) πi(h; 0) is the posterior belief about

the seller i conditional on the state being h. In Lemma C.1, we show that:

lim
N→∞

Pt
(
Qi,N
L,t ≥ Q̄N

t

)
= 1, (22)

i.e., Q̄N
t provides a lower bound on the low type’s continuation value. Next, we use this result

to show that with probability bounded away from zero in both states of nature, if N is large

enough, then Qi,N
L,t > vL. This immediately implies that the low types strictly prefer to delay

trade at t, contradicting aggregation and thus establishing our result.

Since (?) holds, Q̄N
1 > vL. Thus, information aggregation must fail in the first period. In

Lemma C.2, we show that failure of information aggregation at t implies that the probability of

the event that no seller trades in that period must be bounded away from zero, uniformly over

N , in both states of nature. Because this event is ‘good’ news about the state, then following

it in the first period, we have λL,2 < λL,1 and, thus, Q̄N
2 > vL. But then again information

aggregation must fail in the second period and, therefore, the probability that no seller trades

in the second period must remain bounded away from zero in both states of nature. Repeating

this argument until period t, we can construct a history that occurs with probability bounded

away from zero in both states of nature, in which Q̄N
t > vL, as was stated above.

Proof of Theorem 3, part (ii). The proof is by construction. Consider a candidate

equilibrium in which for any period t, the following properties hold:

(i) If πi,t < π̄, then the bid is vL, which the low type accepts w.p. σt ∈ [0, 1) whereas the

high type rejects w.p.1.

(ii) If πi,t > π̄, then the bid is V (πi,t) and both types accept it w.p.1.
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(iii) If πi,t = π̄, then the bid is V (πi,t) w.p. φt (and both types accept it w.p.1) and is vL w.p.

1− φt (and both types reject it).

The only off-equilibrium path event in a candidate satisfying (i)-(iii) is a rejection when πi,t > π̄,

in which case the interim belief as given by Bayes rule is not well defined. For such cases, we

specify πσi,t = πi,t (i.e., unexpected rejections are attributed to random trembles).8

We will now verify that an equilibrium satisfying (i)-(iii) exists (with off-path beliefs as

specified immediately above). To do so, consider any history and let Nt (Nt) denote the number

(set) of sellers who have not yet traded at the beginning of period t. Notice that the seller’s

value function under the proposed equilibrium is the same as in (5) and (6), where (πi, φi) is

replaced by (πi,t, φt). By symmetry of the candidate, πi,t = πj,t = πt for all j 6= i ∈ Nt. We

now show that there exists (σt, φt+1) such that profitable deviations do not exist:

(i) Suppose that πt < π̄. Since continuation values in period t + 1 are the same as in the

two-period model, we know by Proposition 1, that for any Nt, there exists at least one

(σt, φt+1) pair such that the low types’ continuation value is exactly vL. Hence, a low-type

seller is willing to mix. Clearly, a high-type seller strictly prefers to reject.

(ii) Suppose that πt > π̄ and seller i rejects, Since all other seller accept w.p.1. there is no

information revealed by other sellers and therefore (given the off-path specification above)

πi,t+1 = πt. Therefore, rejecting the offer leads to a payoff of (1− δ)cθ + δFθ(πt) < V (πt).

(iii) Suppose that πt = π̄. If trade does not occur, buyers in period t+1 attribute all rejections

to a low offer made by buyers in period t. Hence, if the seller rejects, πi,t+1 = πi,t and by

the same argument as in (ii), such a deviation is not profitable for the seller.

That buyers do not have a profitable deviation from the candidate follows a similar reasoning

to the argument for Property 1 in the two-period model. Belief consistency is by construction.

Thus, there exists an equilibrium of the candidate form.

Notice that, by construction, the second period payoff to a type-θ seller is the same as in

the two-period model. Therefore, if (?) does not hold then following the same argument as in

the proof of Theorem 1, we can construct a sequence of first-period trading probabilities {σN,1}
that are uniformly bounded away from zero, which ensures information aggregates in the first

period.

Proof of Theorem 3, part (iii). From Theorem 3, part (ii), when (?) does not hold,

there is a sequence of equilibria along which information aggregates. In the class of equilibria

8The precise specification of off-path beliefs is not crucial for the construction, any πσi,t ≤ min{g(πi,t), 1}
will suffice, where g(πi,t) > πi,t is such that (1 − δ)cH + δV (g(πi,t)) = V (πi,t) and ensures that a high type
cannot profitably deviate from rejecting.
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constructed in the proof of Theorem 3 (ii), equilibrium play in the first play coincides with the

equilibrium play of all equilibria in the two period economy of Section 3. As a result, under the

same conditions as in Theorem 2 (namely, that δ ∈ (δ̂, δ̄λ)), there exists a sequence of equilibria

along which information aggregation fails in the first period. Furthermore, by construction of

this sequence of equilibria (see proof of Theorem 2), (i) the probability of the event that no

seller trades in the first period remains bounded away from zero in both states of nature and

(ii) the posterior belief about the seller in the second period following this event is equal to

π̄. But then, following this event, by construction no additional information about the state is

revealed through trade.

In what follows, we prove the two lemmas used in the proof of Theorem 3, part (i).

Lemma C.1 Suppose that (?) holds, and information aggregates in period t but not before.

Then limN→∞ Pt
(
Qi,N
L,t ≥ Q̄N

t

)
= 1.

Proof. The low type’s continuation value from rejecting bid vL at date t is:

Qi,N
L,t = (1− δ) · cL + δ ·

(
λL,t · Et

{
F i,N
L,t+1|S = l

}
+ (1− λL,t) · Et

{
F i,N
L,t+1|S = h

})
> (1− δ) · cL + δ ·

(
λL,t · vL + (1− λL,t) · Et

{
F i,N
L,t+1|S = h

})
,

where Et
{
F i,N
L,t+1|S = s

}
denotes the low type’s expected payoff conditional on history up to t

and the state being s. For the inequality, we used the fact that the payoffs at t + 1 must be

strictly above vL with positive probability, since otherwise no seller would be willing to delay

trade to t+ 1. We next show that, for any ε > 0,

lim
N→∞

Pt
(
F i,N
L,t+1 ≥ V (πi(h; 0))− ε|S = h

)
= 1, (23)

which, since ε is arbitrary, will establish the result.

Suppose that the state is h and let T be the smallest number of periods such that:

(1− δT ) · cH + δT · vH < V (πi(h; 0)),

which is finite since (?) implies V (πi (h; 0)) > cH . Since information aggregates at t (by

hypothesis), we can choose N large enough so that (w.p. close to 1) the agents’ belief that the

state is h is close to 1 in the periods t+ 1 through t+ 1 + T . Let us consider histories in which

this is the case. If we show that (w.p. going to 1 as N goes to ∞) the bid at t + 1 is pooling

and both seller types accept the bid, then we are done.

Suppose to the contrary that for any N , there is strictly positive probability (bounded away

from zero) that the bid is not pooling at t + 1. There are two cases to consider at t. First, it
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could be that, with probability bounded away from zero, the buyers make a bid that is rejected

by both types. Second, it could be that, with probability bounded away from zero, the bid is

vL and the low types accept it with positive probability.

The first case is straightforward to rule out, since otherwise the buyers could profitably

deviate and attract both seller types to trade at date t. For the second case, note that also at

t+ 2, with probability bounded away from zero, the bid vL must be made and accepted by the

low type with some probability. Otherwise, if the pooling bid were made instead (w.p. close

to 1), the low type would not be willing to trade at t+ 1 (Assumption 2). We can repeat this

argument until and including period T and construct sub-histories that occur with probability

bounded away from zero, in which the buyers make a bid vL which is accepted with positive

probability by the low types in periods t+ 1 through t+ 1 + T .

Let Ωτ denote the set of sub-histories at τ ∈ {t + 1, ...t + 1 + T} in which the bid is vL in

periods t+ 1 through τ , and let ωτ denote an element of Ωτ . For τ ′ > τ , let Ωτ ′|ωτ denote the

sub-histories in Ωτ ′ that have ωτ as a predecessor. Now, for any ωτ ∈ Ωτ , in order for buyers

not to be able to attract the high type at τ , it must be that:

V (πi,τ (ωτ )) ≤ Qi,N
H,τ (ωτ ), (24)

i.e., the high type would weakly prefer to reject a pooling offer and get his continuation value.

The high type’s continuation value in turn satisfies:

Qi,NH,τ (ωτ ) ≤ (1− δ) · cH + δ ·max
{
EH{Qi,NH,τ+1|{Ωτ+1|ωτ}},EH{V (πi,τ+1)|{Ωτ+1|ωτ}c}

}
.

Since the beliefs that the state is h are arbitrarily close to 1 in all periods τ ∈ {t+1, t+1+T},
the posterior beliefs about the seller are arbitrarily close to each other in any such period τ .

Hence, combining with (24), for any ε > 0, we can choose N large enough so that:

Qi,N
H,τ (ωτ ) ≤ (1− δ) · cH + δ · EH{Qi,N

H,τ+1|{Ωτ+1|ωτ}}+ ε

for all τ ∈ {t+ 1, t+ 1 + T}, which implies that:

Qi,N
H,t+1(ωt+1) ≤

(
1− δT

)
· cH + δT · EH{Qi,N

H,t+1+T |{Ωt+1+T |ωτ+1}}+ ε̂,

where ε̂ can be made small by choosing ε small. Since the value to the seller in any period

cannot exceed vH , then with probability approaching 1 as N goes to ∞,

V (πi(h; 0))− ε̂ ≤ V (πi,t+1(ωt+1)) ≤
(
1− δT

)
· cH + δT · vH + ε̂,
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which, since ε̂ is arbitrary, contradicts our choice of T .

Lemma C.2 Suppose that information aggregation fails at t along a sequence of equilibria with

time-t trading probabilities {σi,N}. Then there is a subsequence of equilibria along which the

probability that no seller trades at t remains bounded away from zero, in both states of nature.

Proof. Assume that there is a subsequence of equilibria with trading probabilities {σNm} with∑Nm
i=1 σi,Nm < κ̄ <∞ for some κ̄ > 0 and all m. Note that 1−σi,Nm ·P (θi = L|S = s) ≥ e−σi,Nm ·K

for any K satisfying 1− P (θi = L|S = l) ≥ e−K . But for any such K, we have:

P (no seller trades at t|S = s) = ΠNm
i=1 (1− σi,Nm · P (θi = L|S = s))

≥ ΠNm
i=1e

−σi,Nm ·K

= e−K·
∑Nm
i=1 σi,Nm

≥ e−K·κ̄ > 0,

which establishes the result.

We are left to prove the assertion that there is a subsequence {σNm} with
∑Nm

i=1 σi,Nm <

κ̄ < ∞ for some κ̄ > 0 and all m. Suppose to the contrary that for all subsequences

limm→∞
∑Nm

i=1 σi,Nm = ∞. Let Xi ∈ {0, 1} denote the indicator that seller i has traded

and YNm = N−1
m

∑Nm
i=1 Xi denote the fraction of sellers who have traded. Let pi,Nm (s) =

σi,Nm · P (θi = L|S = s) and note that:

µNm(s) ≡ E {YNm|S = s} = N−1
m ·

Nm∑
i=1

pi,Nm (s) ,

and

νNm(s) ≡ E
{

(YNm − µNm(s))2 |S = s
}

= N−2
m ·

Nm∑
i=1

pi,Nm (s) · (1− pi,Nm (s)) .

Since µNm(l) > µNm(h),

P

(
YNm ≥

µNm(h) + µN(l)

2
|S = h

)
= P

(
YNm − µNm(h) ≥ µNm(l)− µNm(h)

2
|S = h

)
≤ P

(
(YNm − µNm(h))2 ≥

(
µNm(l)− µNm(h)

2

)2

|S = h

)
.

47



And, by Markov’s inequality:

P

(
(YNm − µNm(h))2 ≥

(
µNm(l)− µNm(h)

2

)2

|S = h

)
≤ νNm(h)(

µNm (l)−µNm (h)

2

)2

=
N−2
m ·

∑Nm
i=1 pi,Nm (h) · (1− pi,Nm (h))(

N−1
m ·

∑Nm
i=1

pi,Nm (l)−pi,Nm (h)

2

)2

= 4 ·
∑Nm

i=1 σi,Nm · P (θi = L|S = h)−
∑Nm

i=1 σ
2
i,Nm
· P (θi = L|S = h)2(∑Nm

i=1 σi,Nm

)2

· (P (θi = L|S = l)− P (θi = L|S = h))2
,

which by our assumption tends to 0 as m goes to ∞. By a similar reasoning, we have that:

P

(
YNm < N−1

m ·
Nm∑
i=1

pi,Nm (l) + pi,Nm (h)

2
|S = l

)
→ 0,

as m goes to ∞. Combining these two observations, we conclude that information about the

state must aggregate along all subsequences, a contradiction.
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