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Abstract

This paper extends the stochastic DSICE model of Cai et al. (Cai
et al. 2015a, 2015b) to include the case of spatial transport of heat
and moisture from the Equator to the Poles. This well-known and
important phenomenon in climate science has been neglected in pop-
ular IAM’s, e.g. RICE and DICE (Nordhaus 2010, 2013). Spatial
transport leads to another well-known phenomenon in climate science
called polar amplification where a one degree increase in the global
yearly mean temperature anomaly causes a more than one degree in-
crease of the yearly mean temperature anomaly in the high latitudes
(Langen and Alexeev 2007). This extension allows us to compare the
optimal paths of key quantities like the Social Cost of Carbon (SCC),
emissions, abatement, and damages and their uncertainty bands when
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heat and moisture transport are neglected as in the received literature
on IAMs to when this important phenomenon documented by climate
science is included. We view our paper as a first step towards adding
additional aspects of climate dynamics like heat and moisture trans-
port across latitudes and polar amplification to the existing literature
on IAMs.

Keywords: Integrated Assessment Model, spatial transition, cli-
mate policy, social cost of carbon, tipping point, Epstein-Zin prefer-
ence

JEL Classification: Q54, Q58, C61, C63
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1 Introduction

A major characteristic of leading Integrated Assessment Models (IAMs) such
as RICE-2011 or DICE-2013R (Nordhaus 2010, 2013) is that the geophysical
sector of the model determines the mean surface temperature through the
carbon cycle, which in turn determines the damage function. Thus damages
are related to the mean surface temperature of the planet.

A well-established fact in the science of climate change, however, is that
when the climate cools or warms, high latitude regions tend to exaggerate
the changes seen at lower latitudes (e.g. Langen and Alexeev 2007; IPCC
2013, p.396). This effect is called polar amplification and indicates that
under global warming the temperature at the latitudes closer to the Poles
will increase faster than at latitudes nearer to Equator. Polar amplification is
especially strong in the Arctic and is sometimes called “Arctic amplification”.
For example, Bekryaev et al. (2010) document a high-latitude (greater than
60 °N) warming rate of 1.36 degrees centigrade per century from 1875 to
2008. This is a trend almost twice that of the Northern Hemisphere trend
of 0.79 degrees centigrade per century.

Polar amplification has been associated with the surface albedo feedback
(SAF),1 but recent research suggests that significant polar amplification may
also emerge as a result of atmospheric heat and moisture transport polar-
wise, even without SAF (Langen and Alexeev 2007). Spatial heat and mois-
ture transport, and the resulting polar amplification, suggest that a better
representation of the climate science underlying the IAMs would be a geo-
physical sector structure which accounts for these phenomena. This implies
that, in the IAM output, the surface temperature anomaly will be differenti-
ated across spatial zones of the globe. The spatial temperature differentiation
will be important for the economics of climate change because it will provide
the impact of polar amplification on the structure of the economic damages.
Polar amplification will accelerate the loss of Arctic sea ice, which in turn has
consequences for melting land ice. Melting land ice is associated with a po-
tential meltdown of Greenland and West Antarctica ice sheets which might

1The SAF mechanism can be traced back to Arrhenius (1896).
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cause serious global sea level rise. Another source of damage related to polar
amplification relates to the thawing of the permafrost, which is expected to
bring widespread changes in ecosystems and to damage infrastructure, along
with release of greenhouse gases which exist in permafrost carbon stocks (see
for example IPCC 2013; Schaefer et al. 2014; Schuur et al. 2015).

Furthermore, recent studies suggest that Arctic amplification is expected
to increase the frequency of extreme weather events (Francis and Vavrus
2014; Francis and Skific 2015). Lenton and Schellnhumber’s (2007, Figure 1)
well-known “burning embers” diagram shows the ranking of tipping elements
by order of proximity to the present. Note that the “nearest” three potential
tipping points are located in the high latitudes of the Northern Hemisphere
(Arctic summer sea ice loss, Greenland ice sheet melt, boreal forest loss).
Because of polar amplification in the Arctic each degree increase in planetary
yearly mean temperature leads to approximately two degrees increase in
the Arctic latitudes. Indeed Livinia and Lenton (2013) say, “Examination
of satellite data for Arctic sea-ice area reveals an abrupt increase in the
amplitude of seasonal variability in 2007 that has persisted since then.” Hence
this is a type of tipping event that has already occurred and may have been
caused earlier because of polar amplification.

Thus natural phenomena occurring in high latitudes, due to spatial heat
and moisture transport, can cause economic damages in lower latitudes.
These spatial impacts, which could have important implications for cli-
mate change policies, are not embodied in the current generation of IAMs.
The RICE model (Nordhaus 2010), the regional version of DICE (Nordhaus
2013), still treats the climate system with the globally average measure of
temperature and neglects heat and moisture transport and, especially, polar
amplification. The novel contribution of the present paper is to develop an
IAM which incorporates spatial impacts associated with heat and moisture
transport, along with treatment of uncertainty and tipping points. As far as
we know no other IAM treats these issues as we do here. For example, the
Dynamic Stochastic Integration of Climate and Economy (DSICE) model of
Cai et al. (2015a) is especially well equipped to produce distributions of the
Social Cost of Carbon (SCC) so that the impacts of realistic uncertainties
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on the SCC may be properly assessed, since policy analysis must take into
account higher moments of the uncertainty distribution of SCC, not just the
mean. To put it another way the SCC must be treated as a stochastic process
in order to properly assess the uncertainty in the SCC which is required for
risk and uncertainty management. Hence the DSICE model seemed to us to
be the natural place to add aspects of climate dynamics like heat and mois-
ture transport across regions and to investigate what difference this extra
component of realism makes to the optimal paths of the SCC, optimal emis-
sions in each region, optimal adaptation in each region and optimal tradeoff
between economic growth and climate damages in each region. We hasten to
note before we begin that our Spatial-DSICE is an optimal planning model
and it is beyond the scope of this paper to deal with the free rider problem
attacked in Nordhaus’s recent paper (Nordhaus 2015). However, we believe
that our Spatial-DSICE model will help provide additional technical support
for Nordhaus’s calculations of the net benefits as well as uncertainty bands
surrounding net benefits for countries located in Southern and Northern lat-
itude belts of joining his climate club. Indeed, that task is on our research
agenda. At the risk of repeating we go into some more detail below.

The DSICE framework (Cai et al. 2015a, 2015b), is a stochastic gener-
alization of DICE that has been used to compute estimates of uncertainty
bands around central values of the SCC, as well as to compute adjustments
to the SCC when realistic economic uncertainties are taken seriously and
wide differences of projections of potential tipping points from expert opin-
ions may occur. However, DSICE does not consider impact from either
regional economics or regional temperatures. Thus in the present paper is
to introduce spatial heat and moisture transport which cause polar ampli-
fication into the DICE-2013R (Nordhaus and Sztorc 2013) and its stochas-
tic generalization, DSICE. Spatial heat and moisture transport induces a
spatial structure into the geophysical sector of DICE and DSICE. We call
the resulting IAM a Spatial-DSICE. The Spatial-DSICE is the first, to our
knowledge, to introduce the well-known climate dynamics phenomenon of
spatial heat/moisture transport into DICE type IAMs where the quanti-
tative impact of including spatial heat/moisture transport can be assessed
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under realistic uncertainties.2 By comparing the predictions of the standard
DICE with the predictions of the Spatial-DSICE, using the same economic
parameters, our purpose is to explore the impacts on the design of climate
policy of ignoring the existing spatial transport phenomena. For example,
by ignoring spatial transport, do we overestimate or underestimate optimal
emission paths, carbon taxes, and the SCC, and what is the impact on the
general shape of the uncertainty bands around these paths when heat and
moisture transport is neglected? On a more general level, we are trying to
bring the geophysical sector of the IAMs closer to current climate science,
which will undoubtedly improve the reliability of economic predictions.

Perhaps, more importantly, treating the increase in the temperature
anomaly as the same over the whole planet by neglecting polar amplifica-
tion when the temperature anomaly increases almost twice as much in the
high latitudes will understate the projected arrival time of potential tipping
points and potential abrupt changes in the Arctic latitudes. Since the higher
latitudes in the Northern Hemisphere are where the three “nearest” tipping
elements are located (Lenton and Schellnhuber 2007, Figure 1) not taking
heat and moisture transport into account will bias estimates of the stochastic
“arrival” time of these three potential tipping points, i.e. the hazard function
will be biased towards predicting a later arrival of a tipping point time for
tipping elements in the high latitudes which are triggered by temperature
rise.

In developing the Spatial-DSICE, we follow the two-region approach of
Langen and Alexeev (2007) and define two regions: region 1 is the region
north of latitude 30°N to 90°N, while region 2 is the region from latitude 90°S
(the south pole) to 30°N. Heat and moisture transport takes place north-
bound from the tropic belt of region 2 towards the 30°N to 90°N belt of
region 1, and is ignored for the southern hemisphere for dimension reduction
as the polar amplification in the south pole is not as serious as in the north

2Brock and Xepapadeas (2015) considered a simple deterministic model and showed
that by ignoring spatial heat and moisture transport and the resulting polar amplification,
the regulator may overestimate or underestimate the tax on GHG emissions. The structure
of their economic model is, however, simplified and this makes it difficult to discuss realistic
policy options.
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pole.
The interaction of the geophysical sector of the Spatial-DSICE with the

economic sector is reflected in the damage function. We introduce separate
damage functions in each region and allow for damages in region 2 to be
caused by an increase in temperature (i.e. polar amplification) in region 1.
For example, the increased amplification of the temperature anomaly in the
high north latitudes increases the hazard rate of tipping events in the high
north latitudes towards earlier arrival times. Hence any associated damages
caused to lower latitudes from warming in the higher north latitudes, e.g.
increased melting of land ice leading to sea level rise damages in the lower
latitudes, will be increased by polar amplification even though the high north
latitudes may benefit from additional warming.

The rest of the economic module is based on a two-region differentiation
of DICE-2013R (Nordhaus and Sztorc 2013). We model the economic inter-
actions between the two regions with an adjustment cost function; and we
allow for adaptation expenses in each region.

We expect that our results will provide new insights regarding the impor-
tance of spatial phenomena in climate change policy, and will indicate the
potential benefits of bringing IAMs closer to the science of climate change.

The paper is organized as follows. Section 2 builds a deterministic ver-
sion of Spatial-DSICE, where we calibrate our spatial climate system and
economic system based on DICE and RICE as well as data in the other
literature like IPCC (2013). Section 3 analyzes results of the determinis-
tic model. Section 4 extends the deterministic model to be stochastic, i.e.,
Spatial-DSICE, using a tipping point as one representative risk and Ep-
stein–Zin preferences to address the smoothness of consumption across time
and risk aversion following DSICE. Section 5 discusses the results of Spatial-
DSICE. Section 6 concludes.

2 Deterministic Model

Our deterministic model is based on DICE-2013R (Nordhaus 2013; Nordhaus
and Sztorc 2013), which maximizes social welfare with tradeoffs between
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Figure 1: The Spatial-DSICE model

carbon dioxide (CO2) abatement, consumption, and investment. Our model
has been augmented relative to DICE-2013R to include adaptation to climate
change following de Bruin et al (2009). The Spatial-DSICE model has two
regions: the first one (indexed with i = 1) is the north region from latitude
30°N to 90°N, the second one is the left tropic/south region from latitude
90°S to 30°N. We model it as a social planner problem with both economic
and climate interaction between two regions. The big picture of the model
setup is depicted in Figure 1 (ignoring the stochastic climate tipping part in
the figure), and we describe its details below.
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2.1 The Climate System

The climate system contains three modules: carbon cycle, temperature sys-
tem, and sea level rise (SLR).

2.1.1 Carbon cycle

DICE-2013R uses three-layer carbon concentrations: atmospheric carbon,
carbon in the upper ocean, and carbon in the deep ocean. However, from
our calibration, we find that the mass of carbon concentration in the dean
ocean is almost invariant because the interaction coefficient between the
upper ocean and the deep ocean is nearly zero. This reflects the saturation
of ocean absorption with higher temperatures and carbon content. This tells
us that we can drop the deep ocean in our model. Thus, we use Mt =

(MAT
t ,MUO

t )> to represent the carbon concentration in the atmosphere and
the upper ocean, and then the two-layer carbon cycle system is

Mt+1 = ΦMMt + (Et, 0)> , (1)

where Et is the global carbon emission (billions of metric tons) and

ΦM =

[
1− φ12 φ21

φ12 1− φ21

]
(2)

The parameters φ12 and φ21 are calibrated against four RCP scenarios: using
each RCP emission scenario as the input Et, our carbon cycle outputs a
path of atmospheric carbon concentration, and MAGICC also provides a
corresponding atmospheric carbon concentration path. At the same time, we
also calibrate φ12 and φ21 so that our atmospheric carbon concentration path
generated with the optimal DICE emission path matches the corresponding
optimal DICE atmospheric carbon concentration path (see Figure 2).
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Figure 2: Fitting Atmospheric Carbon Concentration

2.1.2 Temperature subsystem

The global radiative forcing representing the CO2 concentrations impact on
the surface temperature of the globe (watts per square meter from 1900) is

Ft = η log2
(
MAT
t /MAT

∗
)

+ FEX
t , (3)

with η = 3.8 as in DICE-2013R, where FEX
t is the global exogenous radiative

forcing.
We use Tt = (TAT

t,1 , T
AT
t,2 , T

OC
t )> to represent the temperature anomaly

(relative to 1900 levels) in the atmosphere (two regions) and the global ocean.
Thus, the temperature system is

Tt+1 = ΦTTt + ξ1Ft (1, 1, 0)> , (4)

where we assume that the global radiative forcing has the same effect on
both regions, and

ΦT =

 1−B − γ1 − ξ2 γ1 + γ2 ξ2

γ1 1−B − γ1 − γ2 − ξ2 ξ2

ξ3 ξ3 1− 2ξ3
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Figure 3: Fitting Surface Temperature of RCP or RICE scenarios

We calibrate B,ξ1, ξ2, ξ3,γ1,γ2 by

• matching four RCP globally average atmospheric temperature path-
ways: using each RCP emission pathway as the input, our carbon cycle,
radiative forcing and temperature system provide paths of atmospheric
temperatures in two regions, we average two paths to get a globally
average atmospheric temperature path, whilst MAGICC also provides
a corresponding globally average atmospheric temperature path. See
the left panel of Figure 3).

• matching the RICE optimal climate pathway. See the left panel of
Figure 3).

• matching the historical spatial temperatures in 1900-2015 from GISS
(see the right panel of Figure 3)

• matching the spatial temperatures in 2081-2100 to the ones given in
IPCC (2013). See Figure 4.

2.1.3 Sea Level Rise

Sea level rise (SLR) is a serious problem caused by global warming. From
IPCC (2013) Table 4.1, if the whole Antarctic ice sheet melts, it will lead to
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Figure 4: Spatial temperature using RCP or RICE radiative forcing scenarios
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Figure 5: Fitting SLR

about 58 meters sea level rise; and if the whole Greenland ice sheet melts,
it will have more than 7 meters sea level rise. Moreover, once ice sheet
collapses, it is irreversible for millennia even if forcing is reversed (IPCC
2013, Table 12.4). Nerem et al (2010) estimate the global mean sea level rise
is around 3.2 mm per year (mm/yr) in the last two decades. IPCC (2013)
Table 13.5 shows that SLR in 2100 are from around 0.44 meters for RCP2.6
to around 0.74 meters for RCP8.5, while the likely range of SLR in 2100 is
from 0.3 meters to 1 meter. Except measuring in yearly rates, IPCC (2013)
Figure 13.14 shows that the likely range of SLR is from 1 to 3 meters per
Celsius of globally average surface temperature increase if the warming is
sustained for millennia.

We let the sea level rise St to be endogenous and irreversible. We assume
that its transition law depends on contemporaneous north surface temper-
ature so that a higher temperature implies a higher rate of SLR. Thus, we
let

St+1 = St + π5T
TA
t,1 (5)

where π5 is calibrated using the SLR data for four RCP scenarios in Table
13.5 and Figure 13.11 of IPCC (2013). Figure 5 shows our fitted SLR paths
which are close to the median projections in Figure 13.11(a) of IPCC (2013).
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2.2 The Economic System

2.2.1 Production

We use the annual analogs of the exogenous paths of DICE-2013R in five-
year time units, including the carbon intensity technology factor σt, and the
adjusted cost for backstop θ1,t. We use region-specific total productivity fac-
tor (TFP) At,i. Sachs (2010) stresses on ecological specific technical progress
and lists five reasons why TFP’s in low latitude zones tend to be smaller than
temperate latitude zones. Of course there are exceptions as Sachs points out
(e.g. Hong Kong and Singapore, and, now, lower latitude parts of China
and parallel parts of “Asian Tigers”). However, theory suggests that the
economies that are “behind” should grow faster than the leaders because the
leaders have already done the “heavy lifting” of the TFP R&D which pre-
sumably the followers could copy. For example, Sachs and McArthur (2002)
discuss the transition from “adopter” to “innovator” for countries. Desmet
and Rossi-Hansberg (2014, 2015) also discuss the spatial diffusion of tech-
nology with no migration or free migration.

Let TAT
t,i be temperature in the atmosphere at time t and region i. The

gross output at time t is

Yt,i ≡ At,iKα
t,iL

1−α
t,i , (6)

with α = 0.3 and Lt,i is exogenous population at time t and region i aggre-
gated from RICE.3 We let

At,i = A0,i exp
(
αAi
(
1− exp

(
−dAi t

))
/dAi

)
where A0,i, αAi and dAi are calibrated to match the productivity path in
region i which are computed from RICE by aggregating across the RICE
subregions in region i4 (see Figure 6).

3For region i and time t, we sum up population over the RICE subregions locating in
region i (if one RICE subregion locates across our border lines 30°N or 30°S, then we give
a rough estimate with the ratio of land of the subregion locating in the region i).

4We first estimate Kt,i, Lt,i and Yt,i by summing over those in RICE subregions locat-
ing in our region i for each time t, and then compute the total factor productivity paths
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Figure 6: Fitting Total Factor Productivity

2.2.2 Damages

We follow RICE to let
DS
t,i = π1,iSt + π2,iS

2
t

reflect the damage in fraction of output from sea level rise (SLR) St. We
calibrate π1,i and π2,i to match the damage from surface temperature change
above the initial year (i.e., 2010) level which are computed from RICE.5See
Figure 7.

We follow DICE and RICE to let

DT
t,i = π3,iT

AT
t,i + π4,i(T

AT
t,i )2 (7)

reflect the fraction of non-SLR damage to output from surface temperature
change above the 1900 level. We calibrate π3,i and π4,i to match the dam-
age from surface temperature anomaly which are computed from RICE.6See

At,i = Yt,i/(Kα
t,iL

1−α
t,i ) for region i .

5We estimate Yt,i and DS
t,i = DS

t,iYt,i by summing over those in RICE regions locating
in our region i for each time t, and then compute DS

t,i = DS
t,i/Yt,i for region i . With the

data of the sea level rise path in RICE. and DS
t,i, we then calibrate π1,i and π2,i so that

the equation (7) holds.
6We use the radiative forcing path in RICE to estimate TAT

t,i using our calibrated
climate equation (4). We also estimate Yt,i and DT

t,i = DT
t,iYt,i by summing over those in

RICE regions locating in our region i for each time t, and then compute DT
t,i = DT

t,i/Yt,i
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Figure 7: Fitting SLR damage to output

Figure 8.
We include an adaptation choice variable Pt,i for each region in our model

as in de Bruin et al. (2009). The output net of climate damage is

Yt,i ≡
Yt,i

1 +DS
t,i + (1− Pt,i)DT

t,i

, (8)

where Pt,i ∈ [0, 1] is the adaptation rate for the temperature increase, but
not for SLR.

2.2.3 Emissions, Mitigation, and Adaptation

The global carbon emission at time t is

Et ≡
2∑
i=1

EInd
t,i + ELand

t ,

where ELand
t is the global carbon emission from biological processes, and

EInd
t,i = σt,i(1− µt,i)Yt,i

for region i . With the data of TAT
t,i and DT

t,i, we then calibrate π1,i and π2,i so that the
equation (7) holds.
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Figure 8: Fitting non-SLR damage to output

is the industrial emission, where µt,i ∈ [0, 1] is an emission control rate and
σt,i is the carbon intensity in region i. We let

σt,i = σ0,i exp (ασi (1− exp (−dσi t)) /dσi )

where σ0,i, ασi and dσi are calibrated to match the carbon intensity path in
region i which are computed from RICE by aggregating across the RICE
subregions in region i7 (see Figure 9).

We follow DICE-2013R to assume that mitigation expenditure is

Ψt,i ≡ θ1,t,iµθ2t,iYt,i

where θ1,t,i is the abatement cost in fractions of output in region i at time
t. We use the DICE/RICE form to define

θ1,t,i = b0,i exp
(
−αbi t

)
σt,i/θ2

where αbi and θ2 are parameters given by RICE, and b0,i is the initial backstop
7We use the Business-As-Usual (BAU) results (i.e., with µt,i ≡ 0) of RICE to estimate

the carbon intensity paths. We first estimate EInd
t,i and Yt,i under BAU by summing over

those in RICE subregions locating in our region i for each time t, and then compute the
carbon intensity paths σt,i = EInd

t,i /Yt,i for region i .
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Figure 9: Fitting Carbon Intensity

price in region i.
We follow de Bruin et al. (2009) to assume that adaptation expenditure

is
Υt,i ≡ η1P η2t,i Yt,i

with η1 = 0.115 and η2 = 3.6. Let Ŷt,i denote the output net of climate
damage, mitigation expenditure and adaptation cost, that is,

Ŷt,i = Yt,i −Ψt,i −Υt,i

2.2.4 Economic interaction

In the economic system, each region has a capital state variable Kt,i, and its
law of motion is:

Kt+1,i = (1− δ)Kt,i + It,i (9)

where It,i is investment in region i. Between two regions, there are economic
interaction cost such as tariff between countries. For example, Eaton and
Kortum (2002) find that if all countries (in their data set) collectively re-
move tariffs, then most countries will gain around 1% of output with mobile
labor, and less than 0.5% with immobile labor. We then model the economic
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interaction between two regions with the following adjustment cost function:

Γt,i ≡
ζ

2
Kt,i

(
It,i + ct,iLt,i

Ŷt,i
− 1

)2

(10)

where ζ is the intensity of the friction (ζ = 0 means the open economy,
and a large ζ approximates the closed economy with Ŷt,i = It,i + ct,iLt,i).
Anderson and van Wincoop (2001) discuss border barriers and how costly
they are. Similar adjustment cost functions have been used in Den Haan et
al. (2011) and Goulder et al. (2014). The economic interaction cost also
includes the cost for avoiding carbon leakage between two regions.

The market clearing condition is

2∑
i=1

(It,i + ct,iLt,i + Γt,i) =
2∑
i=1

Ŷt,i (11)

2.2.5 Welfare and Model

The total social welfare is

∞∑
t=0

βt
2∑
i=1

τt,iu(ct,i)Lt,i,

where β is the discount factor, ct,i are per-capita consumption, τt,i are weights
for i = 1, 2, and u is a per-capita utility function:

u(c) =
c
1− 1

ψ

1− 1
ψ

(12)

where ψ is intertemporal elasticity of substitution (IES) whose inverse is also
the elasticity of marginal utility across time.

Therefore, the social planner’s problem is

max
It,i,ct,i,µt,i,Pt,i

∞∑
t=0

βt
2∑
i=1

τt,iu(ct,i)Lt,i (13)
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subject to the transition laws (1), (4), (5), (9), and the market clearing con-
straint (11). It has eight state variables: Kt,1, Kt,2, St, Mt (two-dimensional
vector), and Tt (three-dimensional vector), as well as eight control variables
(It,1, It,2, ct,1, ct,2, µt,1, µt,2, Pt,1, Pt,2) at each time t. We calibrate IES at
0.667 and τt,i so that our consumption paths from solving (13) with the
closed economy are close to RICE’s consumption paths in two regions, as
RICE assumes the closed economy.

3 Results for Deterministic Model

Since the choice of discount factor β = 0.985 makes the welfare after 300
years have little impact on the first 100 years’ solutions, we approximate the
infinite-horizon problem (13) by a finite-horizon problem with 600 years and
assuming the last 300 years have fixed policy with µt,i ≡ 0, Pt,i ≡ Pt,300, and
both ct,iLt,i/Yt,i and It,i/Yt,i are constant for t ≥ 301. We then solve this
finite-horizon optimal control problem with CONOPT in GAMS.

Figure 10 shows the optimal climate policy paths in this century. From
the top-left panel of Figure 10, we see that the social cost of carbon (SCC)
is equal to carbon tax for each region, while the SCC in the north region is
about double of the SCC in the tropic/south region. The initial SCC is $67
per ton of carbon (/tC) for the north region and $28/tC for the tropic/south
region. This happens because the north region is much richer than the
tropic/south region and also has much more production, so the damage from
global warming is also larger (see the top-right panel of Figure 10). The
corresponding emission control rate paths are given in the bottom-left panel
showing that the north region has higher emission control rates. However, the
bottom-right panel of Figure 10 shows a reverse direction for the adaption
rate, implying that there are much more benefits from adaptation in the
already hot tropic/south region, as its marginal damage in fractions of output
from one degree warming is much higher from Figure 8.

Figure 11 shows the optimal paths in the climate system and SLR. We
can see the polar amplification pattern from the top-left panel of Figure
11: the atmospheric temperature in the north region reaches 3.4 ℃ in the
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Figure 10: Optimal Climate Policy for the Deterministic Model
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end of this century, 1.4 ℃ higher than in the tropic/south region. The
top-right panel of Figure 11 shows that SLR is increasing faster and faster
along the time and is a bit more than 0.6 meters in 2100. This happens
because the surface temperature is higher and higher in this century so ice
sheets (e.g., Greenland ice sheet, and Antarctic ice sheet) melt at higher and
higher rates. The increasing temperature comes from the increasing carbon
concentration in the atmosphere shown in the bottom-left panel of Figure
11. From the bottom-right panel of Figure 11, the industrial emission in the
north region starts to decline soon but the tropic/south region keeps growth
of emissions until 2070 as the countries in the region are poorer and want to
use cheaper fossil fuel to have higher-speed economic growth. Although the
global industrial emission starts to decline after 2045, the time lag between
emissions and carbon concentration in the atmosphere, MAT

t , makes MAT
t

to keep increasing in this century (there is also a time lag between between
MAT
t and temperatures: after 2110, MAT

t starts to decrease but two regional
atmospheric temperatures and ocean temperature keep increasing).

Figure 12 shows the optimal solutions in the economic system. From the
left panel of Figure 12, we see that the per-capita consumption growth in
the tropic/south region starts at 2.9% in the initial year and ends at 1.6%
in the end of this century, while the north region has much lower growth,
starting at 2.1% and ends at 1.15% in 2100. The difference of two growth
paths is caused by the spillover effect of technology from the north to the
tropic/south region. The economic interaction cost between two regions is
shown in the right panel of Figure 12: both regions have less than 1% output
for the economic interaction cost, while the north region is nearly stablized
0.3%, but the tropic/south region starts at 0.7% and decreases to 0.1% in
2100.

3.1 Bias from Ignoring Heat Transport and Polar Amplifi-
cation

In the above model, we use the default values γ1 = 0.00654 and γ2 = 0.05314.
Here “default values” refers to values of parameters set by our calibrations
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Figure 11: Solutions in the Climate System of the Deterministic Model
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Figure 12: Solutions in the Economic System of the Deterministic Model

to represent the spatial heat and moisture transport. Langen and Alex-
eev (2007) choose parameter settings of γ1 and γ2 at the level of abstraction
associated with use of the two-box model in their sea surface temperature ex-
periments (see also Alexeev et al 2005). In our model, we chose γ1 = 0.00654

and γ2 = 0.05314 as well as other related parameter values in the tempera-
ture subsystem to match the data of four RCP scenarios (after aggregation
over two regions), RICE path (after aggregation over the RICE subregions
for each of our regions), historical spatial data, and predictive spatial data
in IPCC (2013). See Section 2.1.2 for more details for calibration in the
temperature module.

Figure 13 compares the optimal solutions using γ1 = γ2 = 0 (i.e., ignoring
spatial heat and moisture transport and polar amplification) with the above
solutions using default γ1 and γ2. In each panel of Figure 13, black and red
lines represent solutions in the north and tropic/south regions respectively,
while the solid lines are for the default case (i.e., γ1 = 0.00654 and γ2 =

0.05314) and the broken lines are for γ1 = γ2 = 0. The top-left panel of
Figure 13 shows that the optimal SCC paths from ignoring heat transport
are higher than those with heat transport. For example, in the initial year,
the SCC is $77/tC in the north region, 15% higher than its corresponding
value with heat transport, and is $33/tC in the tropic/south region, 18%
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higher than its corresponding value with heat transport. By ignoring the heat
and moisture transport, we see that the north and tropic/south atmospheric
temperature anomaly paths merge after 2030 in the top-right panel of Figure
13, which are between the paths of two regions with heat transport. That
is, without the transport phenomena, we cannot see the polar amplification,
and the temperature anomaly in the north region is underestimated while
the temperature anomaly in the tropic/south region is overestimated. This
implies that the solutions without heat transport will underestimate the
damage in the north, and overestimate the damage in the tropic/south, which
is shown in the bottom-left panel of Figure 13. The bias also exists in
the optimal adaptation rates shown in the bottom-right panel of Figure 13:
without heat transport, the adaptation rates in the north region will be
underestimated as its corresponding atmospheric temperature anomaly is
underestimated, and the adaptation rates in the tropic/south region will
be overestimated as its corresponding atmospheric temperature anomaly is
overestimated.

4 Stochastic Model

There are a large number of uncertainties in the model. DSICE (Cai et al.
2015a) discusses two types of risks: climate and economic risks, and also deals
with parameter uncertainty over IES and risk aversion using uncertainty
quantification. Cai et al (2015b) apply DSICE to include ecosystem risks,
and Lontzek et al. (2015) and Cai et al. (2016) use DSICE to study the
impact of tipping points on the carbon tax policy.

4.1 Tipping Point

In this paper, we assume that there is a representative tipping element that
will take D years to fully unfold its damage after it happens. The final
damage level is J in fraction of output, and the tipping probability depends
on the contemporaneous atmospheric temperature in the north region. Let
Jt represent the damage level of the tipping element, and let χt be the
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Figure 13: Bias of Optimal Solutions from Ignoring Heat Transport and
Polar Amplification
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indicator representing whether the tipping event has happened or not, so
χt = 0 means that the tipping event has not happened, and χt = 1 means
that it has happened. Thus, the transition law of Jt is

Jt+1 = min(J, Jt + ∆)χt (14)

where ∆ = J/D is the annual increment of damage level after the tipping
happens, and χt is a Markov chain with the following probability transition
matrix [

1− pt pt

0 1

]
where pt is the tipping probability from state χt = 0 to χt = 1. We let

pt = exp
(
λmax

(
0, TAT

t,1 − 1
))

where λ is the hazard rate.
We use the Atlantic Meridional Overturning Circulation (AMOC) as the

representative tipping element, and employ its default setup in Cai et al.
(2016), that is, D = 50, J = 0.15, and λ = 0.00063. For its generality, we
let

χt+1 = g(χt,Tt, ωt) (15)

denote the transition law for χt. The output net of all damage including
SLR, temperature anomaly, and tipping becomes

Yt,i ≡
(1− Jt)Yt,i

1 +DS
t,i + (1− Pt,i)DT

t,i

, (16)

4.2 Epstein–Zin preference

We use Epstein–Zin preference (Epstein and Zin 1989) to isolate the IES and
risk aversion for the stochastic model. With the similar transformation as in
Cai et al. (2015a), we solve the following Bellman equation:
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Vt(xt) = max
It,i,ct,i,µt,i,Pt,i

2∑
i=1

τt,iu(ct,i)Lt,i + β
[
Et
{
V (xt+1)

Λ
}]1/Λ (17)

subject to (1), (4), (5), (9), (11), (14), (15), and (16), where

xt = (Kt,1,Kt,2,M
AT
t ,MUO

t , TAT
t,1 , T

AT
t,2 , T

OC
t , St, Jt, χt)

is the vector of state variables, Et is the expectation operator conditional on
the time-t information, and

Λ ≡ 1− γ
1− 1/ψ

where ψ is the IES (here we assume ψ > 1), and γ is the risk aversion
parameter. We use ψ = 1.5 and γ = 3.066 as in Pindyck and Wang (2013)
for our benchmark stochastic case.

5 Results for Stochastic Model

We solve the Bellman equation (17) using parallel dynamic programming
(Cai et al. 2015c) via backward induction on the BlueWaters supercomputer.
After we solve the Bellman equation, we use the optimal policy functions to
generate 10,000 simulation paths forward. That is, each simulation path
starts at the observed initial states, we simulate one sample of the shock
for the tipping point at time t, and then with the realized sample and the
optimal control policy at t, we obtain the optimal states at t+ 1.

The two top panels of Figure 14 show the distributions of the simulated
optimal social cost of carbon (SCC) for both regions. Each panel (in all
figures below) includes two lines representing two deterministic cases with
IES equal to 0.667 or 1.5. The shaded area represents the range of the
10,000 sample paths, and we give the average, 1%, 2% and 5% quantile
paths (that is, at each time, we compute the average and these quantiles of
10,000 values). We see that the initial SCC increases significantly from the
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deterministic case with ψ = 0.667 to the deterministic case with ψ = 1.5, and
then increases significantly again from the deterministic case with ψ = 1.5

to the stochastic case with ψ = 1.5 and γ = 3.066. The initial SCC for the
stochastic case is up to around $270 for both regions, about 4 times as high as
in the deterministic case with ψ = 0.667 for the north region, nearly 10 times
for the tropic/south region. The cumulative probability that the tipping
event happens before 2100 is only 5%, the 1% probability of tipping is year
2044, and the 2% probability is year 2061. Once the tipping event happens,
the social cost of carbon immediately jump down significantly although the
damage just starts to unfold in 50 years shown in the bottom-left panel of
Figure 14 for the tipping damage level Jt. This happens because the high
SCC before tipping has one intention to prevent or delay the tipping point as
its occurrence depends on the contemporaneous temperature, but after the
tipping event happens, this incentive goes away as the damage will unfold
in a deterministic way. We also plot the picture of SLR in the bottom-right
panel of Figure 14, showing that in the end of this century, we have 95%
probability that SLR will be about 0.1 meter lower than the deterministic
case with ψ = 0.667.

Figure 15 shows the distributions of the optimal simulation paths for at-
mospheric temperatures and adaptation rates in both regions for the stochas-
tic model. We see again that the north region has much higher temperature
anomaly than the tropic/south region by comparing two top panels of Figure
15 for the stochastic solutions. Moreover, it has 95% probability that the
atmospheric temperature anomaly in the stochastic case is more than one ℃
lower than the deterministic case with ψ = 0.667 in the north region, and
about 0.7 ℃ lower in the tropic/south region. Two bottom panels of Figure
15 show the optimal adaptation rates. We see again that the north region
has lower adaptation rates than the tropic/south region for the stochastic
solutions, and the stochastic results have lower rates than the determinis-
tic cases, as with the higher SCC and then the lower temperatures in the
stochastic case, we have lower needs to adapt.
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Figure 14: Optimal SCC, Tipping Damage Level, and SLR for the Stochastic
Model
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Figure 15: Atmospheric Temperature and Adaptation Rate for the Stochastic
Model
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5.1 Bias from Ignoring Heat Transport and Polar Amplifi-
cation

We examine the bias from ignoring heat and moisture transport and polar
amplification (i.e., γ1 = γ2 = 0) again for the stochastic case, shown in
Figure 16. In each panel of this figures, we use the black lines to represent
the average paths, and the red lines for the 1% quantile paths, while the
broken lines are for the case ignoring heat and moisture transport and polar
amplification, and the solid lines are for the case with the default values (i.e.,
γ1 = 0.00654 and γ2 = 0.05314).

The two top panels of Figure 16 show that ignoring heat transport and
polar amplification underestimates the SCC’s for both north and tropic/south
regions. For example, the initial SCC with γ1 = γ2 = 0 is about 10% less
than in the default case for both regions. Note that this is in the opposite
direction to the deterministic case shown in the top-left panel of Figure 13
where ignoring heat transport increases the SCC. This opposite direction
happens because ignoring heat transport will lead to a lower temperature
in the north region (shown in the bottom-left panel of Figure 16) and then
underestimate the tipping probability which depends on the atmospheric
temperature in the north region. This is also reflected in the 1% quantile
paths: the case ignoring heat transport has a 1% cumulative probability of
tipping is at year 2059, 15 years later than in the default case. With this
lower tipping probability, it means less risky and then leads to smaller SCC.

6 Conclusion

Our paper has taken a first step towards including the neglected force of
dynamic heat and moisture transport from the lower latitudes to the higher
latitudes towards the Poles into computational Integrated Assessment Mod-
els (IAMs) used in policy relevant climate economics. We divided the world
into “North” and “Tropic/South” where “North” is the region from 30°N lat-
itude to the north pole, and “Tropic/South” is the rest. Our temperature
anomaly dynamics for North and Tropic/South has two key parameters mo-
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Figure 16: Bias of Solutions from Ignoring Heat Transport and Polar Am-
plification for the Stochastic Model
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tived by Langen and Alexeev’s (2007) two box model which we calibrated to
γ1 = 0.00654 and γ2 = 0.05314. The impact of neglecting heat and moisture
transport on the optimal paths of key quantities, e.g. the SCC, emission,
adaptation, and damage can be assessed in our model by setting γ1 = γ2 = 0

and observing how the optimal paths change.
As one can see from Sections 3.1 and 5.1 (and Figures 13 and 16) the bi-

ases from neglecting heat and moisture transport are quite substantial. Note
that we have abstracted from the nonlinearity caused by Surface Albedo
Feedback (SAF) in this paper. SAF is likely to add even larger effects than
what we see in Figure 13 because its effects are in the same direction. Sub-
stantial biases from neglecting heat and moisture transport are likely to re-
main when further research produces more realistic damage functions rather
than the crude damage functions used here. See Burgess et al. (2014),
Burke and Emerick (2015) for interesting recent work on constructing and
estimating more realistic damage functions.

The direction of the biases in the anomalies in North and Tropic/South
are expected. We are less confident about the direction of biases for the
other variables except that we expect future research to also show substantial
biases in the other variables when heat and moisture transport are neglected
in welfare optimization. Barraca et al. (2015) showed remarkable reduction
of damages to morbidity and mortality due to heat stress in the U.S. Burgess
et al. (2014) showed large negative effects of extreme heat days in India,
especially in rural areas. Lack of access to air conditioning is a part of
the difference between India and the U.S. These results suggest that since
many areas in the Tropic/South in our model are poorer than the North we
might expect adaptation to be slower in the Tropic/South than in the North.
Since ignoring polar transport results in some of the increased heat due to
global warming not being moved towards the poles it makes sense that it is
socially optimal for the Tropic/South to adapt faster when heat and moisture
transport is neglected. We see this intuition supported in Figure 13.

We view this paper as taking an important step forward in calibrated
IAM’s at the “coarse grained” level of aggregation as RICE (Nordhaus 2010),
DICE 2013R (Nordhaus and Sztorc 2013) and DSICE (Cai et al. 2015a) to
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include the directional heat and moisture transport from regions closer to the
Equator towards regions closer to the Poles. When our model is calibrated to
data we found substantial biases in key quantities, temperature anomalies,
emission rates, adaptation rates, and damages when a social planner neglects
poleward heat and moisture transport. We also showed how potential arrival
times of tipping elements in the high latitudes were affected.
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