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Abstract

This paper analyzes the optimal insurance for low-probability high-
severity accidents, such as nuclear catastrophes, both from theoreti-
cal and applied standpoints. The risk premium of such catastrophic
events may be a non-negligible proportion of individuals’ wealth when
the absolute risk aversion is very large in the accident state. The op-
timal indemnity schedule converges to a limit when the probability of
the accident tends to zero. In the case of the limited liability of an
industrial firm that may cause large scale damages, this limit sched-
ule, and the associated corporate insurance contract, correspond to a
straight deductible indemnification rule, in which victims are ranked
according to the severity of their losses. The empirical part of the
paper is an application of these general principles to the case of nu-
clear corporate liability. We calibrate a model using French data in
order to estimate the optimal liability upper limit of a nuclear energy
producer. We show that the upper limit adopted in 2004 through the
revision of the Paris Convention is probably lower than the socially
optimal level.

∗Ecole Polytechnique, France.
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1 Introduction
What qualifies a low-probability high-severity accident risk as a disaster risk?
How should individuals and societies cover these risks? The present paper
approaches these questions from theoretical and applied perspectives. Our
motivation and ultimate objective is to analyze the case of nuclear accident
risk.

We address the first question by characterizing individual preferences
under which the normalized risk premium (i.e., the risk premium per unit
of variance) may remain significant, even when the loss probability is very
small. We then investigate the optimal insurance coverage of an individual
who faces the risk of an accident with very low probability. We show that
the normalized risk premium has a lower bound, which is a weighted average
of absolute risk aversion values in the interval defined by the potential values
of final wealth. In particular, under decreasing absolute risk aversion, a high
absolute risk aversion (or, equivalently, a low risk tolerance) in the accident
state may entail a large risk premium, even if the accident probability is very
low. Concerning the optimal insurance coverage, we find that it converges
to a limit when the accident probability goes to zero. This limit depends on
the usual determinants of insurance demand: the insurance pricing rule and
the individuals’ wealth and degree of risk aversion.

In a second stage, we consider the risk of an industrial accident, such as
a nuclear catastrophe, that may affect the entire population of a country.
Should an accident occur, the firm has to indemnify the victims according to
liability law, and it purchases insurance to prevent any insolvency. We char-
acterize the indemnification rule that should be implemented by a utilitarian
regulator. We show that it converges toward a straight deductible indemnity
schedule, capped by an upper limit, when the accident probability goes to
zero. In particular, the optimal coverage depends on the cost of capital that
has to be levied to sustain the indemnification mechanism.

Finally, as an application of these theoretical principles, we consider the
case of nuclear risk. Using studies conducted by experts in safety for a nuclear
reactor in France, we calibrate a model of collective insurance choice and we
characterize the optimal level of coverage for the victims of a large scale
nuclear accident. In particular, we use data from the cat bond market to
infer the premium that would be required by investors to set up an insurance
deal for nuclear accidents. Our simulations suggest that the French nuclear
liability law should be more ambitious that it currently is, even after the
recent revision of the international Paris Convention in 2004.

The paper is organized as follows. Section 2 analyzes the risk premium
and the insurance demand for a low-probability high-severity accident, from
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the perspective of a risk averse individual who is facing such a risk. Section 3
characterizes the optimal coverage and the corresponding corporate liability,
when a large scale industrial accident may affect the whole population of
a country. Section 4 illustrates these general results through a calibrated
model of nuclear catastrophe coverage. Section 5 concludes, Section 6 is an
appendix that contains proofs, tables and figures.

2 Risk premium and insurance demand for

catastrophic risks

2.1 The risk premium of low-probability and high-severity
risks

Consider an expected utility risk averse individual with a von Neumann-
Morgenstern utility function u(x) such that u′ > 0 and u′′ < 0, where x is
the individual’s wealth. Let A(x) = −u′′(x)/u′(x) and T (x) = 1/A(x) be her
indices of absolute risk aversion and of risk tolerance, respectively. She holds
an initial wealth w, and she is facing the risk of a loss L < w with probability
p. Thus m(p, L) = pL and σ2(p, L) = p(1 − p)L2 are the expected loss and
the variance of the loss, respectively. The certainty equivalent C(p, L) of this
lottery is defined by

u(w − C) = (1− p)u(w) + pu(w − L).

We also denote
θ(p, L) ≡ C(p, L)−m(p, L)

σ2(p, L)
the normalized risk premium, that is the risk premium per unit of variance
of the risk. Straightforward calculations give

C ′p(p, L) = u(w)− u(w − L)
u′(w − C) > 0,

C ′′p2(p, L) = −C ′p(p, L)2A(w − C) < 0.

Thus, C(p, L) is increasing and concave with respect to p, and of course we
have C(0, L) = 0.

Put informally, the risk (p, L) may be considered as catastrophic for the
individual if C(p, L) is non-negligible, for instance as a proportion of her
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initial wealth w, although p is small or even very small. Obviously, this may
occur if C ′p(0, L) is large. We have

C ′p(0, L) = u(w)− u(w − L)
u′(w) . (1)

Using l’Hôpital’s Rule gives

θ(0, L) ≡ lim
p−→0

θ(p, L) =
C ′p(0, L)− L

L2 . (2)

Thus, for L given, the larger C ′p(0, L), the larger the normalized risk premium
when p goes to zero.

We know from the Arrow-Pratt approximation that the risk premium of
low-severity risks per unit of variance is proportional to the index of absolute
risk aversion. Indeed, we have

lim
L−→0

θ(p, L) = A(w)
2 for all p ∈ (0, 1),

which of course also holds when p goes to 0, that is

lim
L−→0

θ(0, L) = A(w)
2 .

When L is large, it is intuitive that the size of the risk premium depends on
function A(x) not only in the neighborhood of x = w, but over the whole
interval [w − L,L]. Proposition 1 and its corollaries confirm this intuition.
Proposition 1 provides an exact formula for θ(0, L) which is a weighted av-
erage of A(x) exp{

∫ w
x A(t)dt}/2 when x is in [w−L,w]. Corollary 1 directly

deduces a lower bound for θ(0, L), and Corollary 2 considers the case where
L = w and the index of relative risk aversion R(x) is larger or equal to one.1
In that case, the lower bound of θ(0, L) is the (non-weighted) average of A(x)
when x ∈ [0, w].

Proposition 1 For all L > 0, we have

θ(0, L) = 1
2

∫ w

w−L
[k(x)A(x) exp{

∫ w

x
A(t)dt}]dx

where k(x) = 2[x− (w − L)]/L2 and∫ w

w−L
k(x)dx = 1.

1Most empirical studies usually lead to values of R(x) that are larger (and sometimes
much larger) than one, and thus the assumption made in Corollary 2 does not seem to be
very restrictive in practice.
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From A(t) > 0 ∀t ∈ [x,w], we derive the following corollary.

Corollary 1 For all L > 0, we have

θ(0, L) > 1
2

∫ w

w−L
k(x)A(x)dx.

Corollary 2 If L = w, R(x) ≡ xA(x) ≥ 1 for all x and u(0) ∈ R then

θ(0, L) > 1
2w

∫ w

0
A(x)dx.

With the DARA case in mind, Proposition 1 and its corollaries suggest
that θ(0, L) may be large if A(x) is large when x goes to w − L. A simple
example, illustrated in Figure 1, is as follows. Assume L = w and

u(x) =
{

1− exp(−ax) if x ≤ x̂
b+ cx if x > x̂

where b = 1 − w exp(−ax̂)/(w − x̂) and c = exp(−ax̂)/(w − x̂), and x̂ is a
fixed parameter such that 0 < x̂ < w. Thus u(0) = 0, u(w) = 1 and A(x) = a
if x ≤ x̂ and A(x) = 0 if x > x̂.2 When a is increasing (with a given value of
x̂), the individual becomes more risk averse in the neighborhood of the bad
outcome x = 0, with unchanged normalization u(0) = 0, u(w) = 1. We then
have C ′p(0, L) = 1/c = (w − x̂) exp(ax̂) and thus C ′p(0, L) is increasing with
a and goes to infinity when a goes to infinity. Since x̂ is arbitrarily small, we
learn from this example that C ′p(0, L) may be large if the individual is highly
risk averse in the neighborhood of the loss state x = w − L, or equivalently
if her risk tolerance is very small around this state.

Symmetrically, Proposition 2 shows that, under non-increasing absolute
risk aversion, the normalized risk premium θ(p, L) may be large when p is
close to zero only if A(w−L) is very large, that is only when the individual’s
risk tolerance is very small in the accident state.

Proposition 2 Assume R(x) ≡ xA(x) ≤ γ for all x ∈ [w − L,w]. Then,
under non-increasing absolute risk aversion, we have

θ(0, L) < (γ + 1)A(w − L)
2 ,

and
C(p, L) < pL

[
1 + (γ + 1)A(w − L)

2 L

]
.

2u(x) is not strictly concave since u′′(x) = 0 if x > x̂, but this is just for simplicity.
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Figure 1: x̂ = 30, w = 100

Proposition 2 provides upper bounds for the normalized risk premium
θ(0, L) and for the certainty equivalent C(p, L) when the individual displays
non-increasing risk aversion. γ is an upper bound for the index of relative
risk aversion R(x) when x is in the interval [w − L,w]. The upper bound
of θ(0, L) is proportional to A(w − L), which is the index of absolute risk
aversion in the loss state. Consequently, C(p, L) may be non-negligible when
p is very small, say as a proportion of loss L, only if A(w−L) is large. On the
contrary, assume A(w − L) = A(w), i.e., the index of absolute risk aversion
remains constant in [w − L,w]. In that case, we would have R(x) < R(w)
for all x < w, and thus γ = R(w), which implies

C(p, L) < pL

[
1 + R(w)

2 + R(w)2

2

]
.

Assuming R(w) = 2 or 3 would give C(p, L) < 4pL or C(p, L) < 7pL,
respectively. Thus, if p is very small, then C(p, L)/L is very small.3

3For the sake of numerical illustration, consider the case of a large scale nuclear disaster
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Thus, under non-increasing absolute risk aversion, we may conclude that
the risk premium of low-probability high-severity accidents may be non-
negligible (and thus that the coverage of such a risk is a relevant issue)
if and only if the risk tolerance is very low in such catastrophic cases.

CRRA preferences are an instance of such a case with T (x) = γx, where γ
is the index of relative risk aversion. We then have T (x) −→ 0 and A(x) −→
∞ when x −→ 0. However, CRRA preferences are not very satisfactory
from a theoretical standpoint, since the utility is not defined when wealth is
nil. This corresponds to discontinuous preferences in which any lottery with
zero probability for the zero wealth state is preferred to any lottery with a
positive probability for this state. If preferences are of the HARA type, then
risk tolerance is a linear function of wealth, and we may write T (x) = a+ bx,
with a > 0 and 0 < b < 1. In such a case, we have A′(x) < 0, A(0) = 1/a
and R(x) > 1. In particular, the individual’s absolute risk aversion index is
decreasing but upper bounded. A straightforward calculation then gives

1
2w

∫ w

0
A(x)dx = 1

2bw ln
(

1 + bw

a

)
,

and thus, Corollary 2 shows that for all M > 0, we have θ(0, L) > M if

a <
bw

exp(2bwM)− 1 .

The right-hand side of the previous inequality is positive and decreasing in b
and M . Thus, θ(0, L) is arbitrarily large if a = T (0) is small enough and/or
if b = T ′(x) is small enough. In words, the risk tolerance should be low in
the neighborhood of the catastrophic state x = 0 for the normalized risk
premium θ(0, L) to be large.

Proposition 3 establishes a sufficient condition under which θ(0, L) is (ar-
bitrarily) large when the individual is sufficiently risk averse (or, equivalently,
when her risk tolerance is sufficiently low) in the catastrophic loss state.

Proposition 3 Assume T (x) ≡ t(x, ε), with ε > 0, t(w − L, 0) = t′x(w −
L, 0) = t′′xx(w−L, 0) = 0 and t′x(x) > 0 for x > w−L. Then for all M > 0,
θ(0, L) > M if ε is small enough.

that may occur with probability p = 10−5, with total losses of $100b evenly spread among
1 million inhabitants (think of people living in the neighborhood of the nuclear plant). In
the case of an accident, each inhabitant would suffer a loss L = $100, 000, with expected
loss pL equal to $1, and risk premium equal to $4 or $7, which would be negligible, say
as a proportion of their annual electricity expenses. Postulating larger but still realistic
values of the index of relative risk aversion would not substantially affect this conclusion.
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In Proposition 3, it is assumed that the risk tolerance increases slowly (less
than degree-two polynomials) when wealth increases in the neighbourhood
of w−L. In such a setting, the normalized risk premium may be arbitrarily
large if the risk tolerance in the loss state is small enough.

2.2 Insurance demand for catastrophic risks
We now assume that the individual can purchase insurance for a low-probability
high-severity risk (p, L). Insurance contracts specify the indemnity I in the
case of an accident, i.e., when the individual suffers the loss L, and the pre-
mium P to be paid to the insurer, with P = (1 + σ)pI, where σ > 0 is the
loading factor such that p(1+σ) < 1. The policyholder then faces the lottery
(w1, w2), with corresponding probabilities 1− p and p, where w1 and w2 de-
note respectively the wealth in the no-loss and loss states, with w1 = w − P
and w2 = w − P − L + I. A straightforward calculation shows that feasible
lotteries are defined by

[1− p(1 + σ)]w1 + (1 + σ)pw2 = w − (1 + σ)pL, (3)

with
w2 − w1 + L ≥ 0, (4)

for the sign condition I ≥ 0 to be satisfied. The optimal lottery maximizes
the individual’s expected utility

(1− p)u(w1) + pu(w2),

in the set of feasible lotteries. It is such that the marginal rate of substitution
−dw2/dw1|Eu=ct. = (1 − p)u′(w1)/pu′(w2) is equal to the slope (in absolute
value) of the feasible lotteries lines, that is

(1− p)(1 + σ)u′(w1) = [1− (1 + σ)p]u′(w2). (5)

Figure 2 shows the locus of optimal lotteries in the (w1, w2) plane when
p changes. Point A represents the situation with no insurance, and point B
represents the optimal lottery when p goes to zero.

Let w1(p, L), w2(p, L) denote the optimal state-contingent wealth levels
when I > 0, that is when σ is not too large. Let us also denote

w∗1(L) ≡ lim
p−→0

w1(p, L) = w,

w∗2(L) ≡ lim
p−→0

w2(p, L),
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Figure 2: w = 10000, L = 5000, u(x) = −x−3

3

with
u′(w∗2(L)) = (1 + σ)u′(w), (6)

which implies w∗2(L) < w = w∗1(L). Thus, when p goes to 0, the optimal
insurance contract (P, I) goes to a limit (P ∗, I∗), with P ∗ = 0 and I∗ =
w∗2(L) + L − w∗1(L) < L. When p is positive but close to 0, we still have
I < L and P = (1 + σ)pI ' (1 + σ)pI∗. Since w∗2(L) = w−L+ I∗, (6) gives

u′(w − L+ I∗) = (1 + σ)u′(w),

or
I∗ = u′−1((1 + σ)u′(w))− w + L,

and thus I∗ is decreasing with σ. The previous reasoning is valid only if
I∗ > 0, which holds if

u′(w − L) > (1 + σ)u′(w),

that is, if the loading factor σ is not too large.
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Lemma 1 σ ≤ θ(0, L)L is a sufficient condition for I∗ > 0.

Hence, the agent will be willing to buy a positive (and potentially large)
amount of coverage if the normalized risk premium θ(0, L) is larger than the
ratio of the loading factor σ divided by the size of the loss L.

Finally, we may characterize the effect of a change in L and/or w on
optimal insurance coverage. An increase dL > 0 for w given induces an
equivalent increase dI∗ = dL. A simultaneous increase dw = dL > 0 induces
an increase dI∗ > 0 in coverage, while an increase in wealth with unchanged
loss dw > 0, dL = 0 entails a decrease in optimal coverage dI∗ < 0 under
DARA references, i.e., when A′ < 0. Of course, there is nothing astonishing
here. These are standard comparative statics results, which are extended here
to the asymptotic characterization of catastrophic risk optimal insurance.
They are summarized in Proposition 4.

Proposition 4 When p goes to 0, the optimal insurance coverage I goes to
a limit I∗, and when p is close to 0, coverage I and premium P are close to
I∗ and (1 + σ)pI∗, respectively. I∗ is lower than L, and it is decreasing with
σ. A simultaneous uniform increase in L and w induces an increase in I and
P . Under DARA, an increase in w with L unchanged induces a decrease in
I and P .

3 Optimal catastrophic risk coverage for a
population

With the case of nuclear accident risk in mind, we now consider a population
of individuals who face the risk of a catastrophic event (called "the accident")
caused by a firm. Such an accident may affect the individuals differently,
according to their risk exposure and also to their good or bad luck. The
population has unit mass, and it is composed of n groups or types indexed
by i = 1, ..., n, and a proportion αi of the population belongs to group i,
with α1 + α2 + ... + αn = 1. In the case of a nuclear accident caused by
a given reactor, the groups correspond to various locations that may be
more or less distant from the nuclear power plant. The accident occurs with
probability π. In the case of an accident, a proportion qi ∈ [0, 1] of type
i individuals suffer damages, with financial damages x̃i for each individual
in this subgroup of victims. x̃i is a random variable, whose realization is
denoted xi, and which is distributed over the interval [0, xi] with c.d.f. Fi(xi)
and density fi(xi) = F ′i (xi). The random variables x̃i are independently
distributed among type i individuals. Thus, we assume that in group i,
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the victims are randomly drawn with probability qi, and the Law of Large
Numbers guarantees that the proportion of affected individuals is equal to
qi, while their damages are independently distributed. The total cost of an
accident is equal to

n∑
i=1

αiqi

[∫ xi

0
xif(xi)dxi

]
=

n∑
i=1

αiqiEx̃i.

Under our assumptions, this total cost is given, but the distribution of loss
between members of each group is random.

Each type i individual is covered by an insurance contract that specifies
an indemnity Ii(xi) ≥ 0 for all xi in [0, xi]. This insurance coverage is taken
out by the firm at price P . Once again, with the nuclear liability law in mind,
we assume that the firm has to indemnify the victims according to the legal
rule Ii(xi) and also - in order to prevent any bankruptcy risk - that it has to
purchase insurance to cover its liability. Thus, Ii(xi) is at the same time the
payment by the firm to type i individuals and the transfer from the insurer
to the firm. The firm pays a premium P per individual, and this premium
is passed on to the prices of the firm’s product (say, on to the consumers’
electricity bills). We assume that all consumers purchase the same quantity
of the firm’s products, and thus it is as if the insurance premium were paid
by the individuals themselves.

Assume that the insurer allocates an amount of capital per individual K
in order to pay indemnities, should an accident occur. This is an amount
of resource brought by investors, held in a liquid form, and that will be
attributed to the insurer with probability π. A simple example (at least
from a conceptual standpoint) is when the insurer issues a cat bond with par
value K. The cat bond will pay some return (a spread above the risk-free
rate of return), and it will be reimbursed to investors only if no accident
occurs. Otherwise, the cat bond will default, and its proceeds will be used
by the insurer to indemnify the victims.4

We know from the Law of large Numbers that the average indemnity paid
to type i victims in the case of an accident is∫ xi

0
Ii(xi)fi(xi)dxi,

4In practice, a Special Purpose Vehicle (SPV) is created by the sponsor as a legal entity
able to host the cat bond. This SPV acts as an insurer or reinsurer with respect to the
sponsor. It issues the bond, delivered to the investor in exchange for the principal payment,
which entitles to a regular coupon. Upon the occurrence of a contractually defined event,
called the trigger, the bond defaults and the sponsor gets to keep the principal. Cat bonds
are used by insurers and reinsurers to hedge against large losses among their portfolios of
insureds, and by large corporations to cover some catastrophic events.
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and thus the total indemnity payment can be financed if

K = (1 + σ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)fi(xi)dxi,

where σ is a loading factor that represents the claim handling costs that the
insurer faces beyond the indemnification costs. This cost of capital is covered
by the premiums raised by the insurer, so we have

P = c(π,K)

with capital cost c(π,K), with c′K > 0, c′K2 ≥ 0, c′π > 0.5
Let w1 and w2i(xi) be the wealth of a type i individual if she is not affected

by an accident (which occurs with probability 1− πqi), and if she is affected
with loss xi (which occurs with probability πqi and conditional loss density
fi(xi)), respectively. We have

w1 = w − P,
w2(xi) = w − P − xi + Ii(xi).

All individuals have the same initial wealth w and the same risk preferences
represented by utility function u, with u′ > 0, u′′ < 0.

The set of feasible allocations {w1, w21(x1), ..., w2n(xn), C1, ..., Cn, K} is
defined by

u(w − Ci) = (1− πqi)u(w1) + πqi

∫ x̄i

0
u(w2i(xi))fi(xi)dxi, (7)

w2i(xi)− w1 + xi ≥ 0 for all i = 1, ..., n, (8)

K = (1 + σ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)f(xi)dxi, (9)

w1 = w − c(π,K). (10)
Equation (7) defines the certainty equivalent loss Ci incurred by type i

individuals, and equation (8) is a positivity constraint on the indemnity paid
by the insurer. (9) defines the capital that is required to pay indemnities,
and (10) follows from w1 = w − P and P = c(π,K).

5If capital were levied through a cat bond, then c(K,π)/K would be the spread over
LIBOR, i.e., the compensation per euro required by investors for running the risk of losing
their capital with probability π. A risk neutral investor would require c(π,K) = πK to
accept this risk. See Section 4 for further developments.
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We consider a utilitarian regulator that designs the risk coverage mecha-
nism in order to minimize the social cost of an accident, which is the weighted
sum of certainty equivalent to individuals’ losses. The corresponding opti-
mization program is also a way of characterizing the Pareto optimal allo-
cations when ex-ante transfers between groups are possible.6 This may be
written as minimizing

n∑
i=1

αiCi,

with respect to {w1, w21(x1), ..., w2n(xn);C1, C2, ..., Cn, K}, subject to condi-
tions (7),(8), (9) and (10). Proposition 5 characterizes the optimal solution
of this problem when π goes to 0.

Proposition 5 Assume c′K(π,K) ≥ π and limπ→0 c
′
K(π,K) = 0. Then,

when π goes to zero, the optimal indemnity schedules Ii(xi) converge toward
a unique straight deductible I∗(xi) = max (xi − d∗, 0). The deductible d∗ and
the capital K∗ are defined by

u′(w − d∗) = (1 + σ)u′(w) lim
π→0

c′K(π,K∗)
π

,

K∗ = (1 + σ)
n∑
i=1

αiqi

[∫ xi

d∗
(xi − d∗)fi(xi)dxi

]
.

Proposition 5 shows that the optimal indemnity schedule for small π
involves full coverage of the victims above a straight deductible d∗ (the same
for all individuals whatever their type).7 This amounts to saying that the
victims should be ranked in order of priority on the basis of their losses: the
victims with loss xi should receive an indemnity only if the victims with loss
x′i larger than xi receive at least x′i − xi. This simple characterization of
optimal indemnification will be used in the simulation conducted in Section
4. As in the simple model of Section 2.1, we may derive comparative statics
properties about the asymptotic deductible d∗. In particular, it is increasing
in σ and, under DARA preferences, it is increasing in wealth.

d∗ andK∗ are also affected by the marginal cost of capital. If the investors
were risk neutral and perfectly aware of the probability of an accident, we

6See Proposition 6 in the appendix.
7The fact that the deductible does not depend on type i is true only asymptotically

when π −→ 0. Otherwise, the optimal indemnity schedule involves type-dependent de-
ductibles di, with Ii(xi) = max{xi− di, 0}. This is because lower deductibles would allow
the regulator to transfer wealth from more risky types to less risky types (say from the
groups with qi high to the groups with qi low if the conditional distribution of losses Fi(xi)
is the same for all groups). This compensatory effect vanishes when π goes to 0.
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would have c(π,K) = πK, i.e., the cost of capital would just be equal to
the risk premium that compensates the expected loss due to the default. We
would have c′K(π,K) ≡ π. In such a case, the cost of capital would not affect
the optimal indemnity schedule.

However, as we will see in more detail in Section 4 with the example of
the cat bond market for low-probability triggers, because of the aversion of
investors towards risk or towards ambiguity, or for other reasons, it is much
more realistic to keep the cost of capital in a more general form c(π,K) In
that case, as will be illustrated in Section 4, the cost of capital does affect
the optimal indemnity schedule.

4 Nuclear catastrophe coverage
The liability of nuclear energy producers is regulated by the Paris (1960) and
Brussels (1963) conventions in Europe and by the Price-Anderson act (1957)
in the US. The no-fault liability is entirely channeled to the operator of the
power plants, but it is limited to a given amount. The Price-Anderson act
forces the nuclear industry to secure a coverage of approximately 10 billion US
dollars, while the Paris and Brussels conventions have recently been revised
to bring the coverage through corporate liability to a minimum of 700 million
euros.

Our objective in this section is to characterize the optimal level of cover-
age K∗ for large-scale nuclear accidents. The probability of a nuclear disaster
is difficult to assess because of the lack of data. This scarcity is of course a
blessing for societies, but it prevents us from using the usual data analysis
techniques. Neither the probabilities, nor the extent of economic damages can
be inferred with a reasonable degree of accuracy from past events. Instead,
we have to rely on the analysis developed by nuclear safety specialists. In
particular, the Probabilistic Safety Assessment (PSA) studies seek to under-
stand the odds and the stakes of a major accident along several dimensions:
sanitary, environmental, economic, etc. Designed to improve prevention and
the ex-post management of a crisis situation, they deliver, as a by-product,
useful information about the probabilities of different scenarios, analyzed in
detail in Dreicer et al. (1995) and Markandya (1995). Additional studies
from international agencies, such as the French Institute for Radioprotection
and Nuclear Safety (IRSN, 2013) and the Nuclear Energy Agency (NEA,
2000), also develop the methodology for estimating the costs associated with
the various accident scenarios predicted by PSA studies.

As in Eeckhoudt et al. (2000), we make use of the aggregate information
on costs and probabilities drawn from PSA studies to construct individual
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lotteries. These lotteries are subsequently used to estimate the social cost
and optimal coverage of a nuclear accident.

4.1 The nuclear risk model
We consider the risk associated with one major8 accident on the French
territory. The 58 French nuclear reactors are gathered into 19 power plants.
Based on Eeckhoudt et al. (2000), we assume that 2 million people live
around each power plant. There are therefore 38 million people who live
nearby a power plant (less than 100km) and 28 million people who live further
away. We index these two groups by i = 1, 2. π denotes the probability that
a major nuclear accident affects one reactor. Since this probability is quite
uncertain, we let it vary between 58× 10−6 and 58× 10−4.9 In the case of an
accident, an agent of group i can face Si different situations, each state s =
1, ..., Si being characterized by a probability fis, with fi1 +fi2 + ...+fiSi

= 1.
Losses can be either economic, environmental or sanitary. We monetize all
of them by assuming that individuals have an initial global wealth w. This
wealth is multiplicatively affected by a financial factor and a health factor. A
health shock has two effects. On the one hand, it lowers current and future
financial wealth due to the cost of treatment. On the other hand, it impedes
the agent’s ability to earn income in the future.10

The social planner decides the levels of coverage K1 = ∑S1
s=1 f1sI1s and

K2 = ∑S2
s=1 f2sI2s dedicated to indemnify victims of groups 1 and 2, re-

spectively, should an accident occur. Ki entitles people from group i to an
indemnity Iis(K) = max(Lis − di) in state s, where di is the correspond-
ing deductible,11 and Lis is the money equivalent of individual i’s loss in
state s, described in section 4.2. The insurance premium per individual is
P (K) = c(π,K), with

K = (1 + σ)(38
66K1 + 28

66K2),

where σ is a loading factor associated with claim handling costs. Our numer-
ical simulations use σ = 0.3, which is seen as a good estimate for property

8We use ST21 as a benchmark for the number of direct victims in our baseline scenario.
The PSA studies referenced above provide the technical background on which ST21 relies

9We ignore the probability that more than one reactor could be affected a given year.
10This is a crude but simple way to express the complementarity between health and

wealth: the welfare gain of an increase in wealth is negatively affected if health worsens,
and vice versa. See Finkelstein et al. (2013) on this complementarity.

11Proposition 5 established that optimal contracts feature a straight deductible for all
groups.
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and liability insurance.12 Final wealth is then defined as

wfis(Ki) = w − Lis + Iis(Ki)− P (K),

and the certainty equivalent Ci as

u(w − Ci) = (1− π)u(w − P (K)) + π
Si∑
s=1

fisu(wfis(K)). (11)

For the sake of numerical tractability, we specify a Harmonic Absolute Risk
Aversion (HARA) utility function

u(x) = ζ
(
η + x

γ

)1−γ
,

whose domain is such that η+(x/γ) > 0, and with the condition ζ(1−γ)/γ >
0, that guarantees that the function is indeed increasing and concave. The
coefficient of absolute risk aversion is

A(x) =
(
η + x

γ

)−1
. (12)

The HARA class nests the Constant Relative Risk Aversion (CRRA) case
when η = 0, and the Constant Absolute Risk Aversion (CARA) when γ →
+∞. Except for the CARA and CRRA limit cases, HARA functions satisfy
decreasing absolute risk aversion and increasing relative risk aversion. Studies
on individual data, such as Levy (1994) and Szpiro (1986), have isolated a
plausible range between 1 and 5 for the index of relative risk aversion.

4.2 Recovering the individual lotteries
We use figures similar to Eeckhoudt et al. (2000) to calibrate our baseline
scenario. The number of direct victims in the baseline scenario (scenario 1)
is summarized in Table 1.

Distance Population Financial loss Death Severe health effect
< 100 km 2 million 10,000 500 1,000
≥ 100 km 64 million 0 3,000 6,000

Table 1: scenario 1

When an accident occurs, an individual of group 1, who lives nearby
a power plant, has a probability 1/19 of living nearby the damaged power

12The numerical results are robust to realistic changes in the parameter σ.
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plant (< 100 km), in which case she can die, suffer a severe health effect
or a severe financial loss if she lives in the plume of radioactivity. With
probability 18/19, she lives away from the damaged power plant (≥ 100 km)
and can die or suffer a severe health effect, but with a lower probability.

Each person in the most exposed group 1 can potentially be in 6 distinct
states (3 health states × 2 financial states). Individuals from group 2 never
incur the direct financial loss, so they can only be in three different states.
The lotteries associated with the baseline scenario are summarized in Tables
2 and 3. The initial wealth w is calibrated in euros, as the sum of the
asset value currently held, plus the expected discounted future wealth of the
average French citizen, which yields w = 870, 000 euros.13

In states s = 1 and s = 2, agents of group i = 1 die, which is why they
suffer the same money-equivalent loss of 739, 500 euros. They may or may
not suffer the financial loss, but in the case of death, this additional financial
loss does not affect their welfare. In case of death, the agent is able to
retain a fraction of her initial wealth, that can be understood as a bequest or
subsistence parameter. Appendix 6.6 shows the robustness of our analysis to
changes in this bequest parameter. Notice that our calibration implies Values
of a Statistical Life (VSL) of the order of magnitude of several million euros,
which is consistent with the estimates provided in Viscusi and Aldi (2003)’s
meta-analysis.14 In state s = 3, they face the combined consequences of a
severe health and financial loss. In states s = 4 and s = 5, they suffer either
the severe health effect or the financial shock, respectively.

State Direct loss Total loss L1s f1s (conditional)
s = 1 739,500 739,500 6.5789e-08
s = 2 739,500 739,500 6.3844e-05
s = 3 400,000 401,624 1.3158e-07
s = 4 260,000 261,624 1.2769e-04
s = 5 100,000 101,624 2.6296e-04
s = 6 0 1,624.2 9.9978e-01

Table 2: lotteries for type i = 1

To these direct consequences, one must add more diffuse economic costs
that are qualified as indirect costs in Schneider (1998) and subsequent works.
They are difficult to quantify and to attribute to a given individual. Examples

13The details of this calibration are presented in Appendix 6.3.
14Weitzman (2009) discusses at length the link between the subsistence parameter and

the Value of a Statistical Life, and the implications of VSL calibration for Cost-Benefit
analysis of climate risks.
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of such costs are : loss of attractiveness of an impacted territory, loss in terms
of image for the industrial sector, etc.15 For simplicity, we assume that these
costs are evenly shared by all individuals in the economy16 and we keep the
total cost of the accident fixed at 100 billion euros. In group i = 1, agents in
state s = 6 only face the indirect loss from the accident.

For group i = 2, individuals die in state s = 1, suffer the severe health
effect in state s = 2 but only the indirect loss in state s = 3. Alternative
scenarios (scenario 2,3,4 and 5) are generated by multiplying the number of
direct victims considered in Table 1 by 2,3,4 and 5, respectively, while keeping
the total cost fixed at 100 billion euros. The total cost of direct losses ranges
from 5.4 billion euros, in scenario 1, to approximately 27 billion euros, in
scenario 5. The total cost of indirect losses therefore varies between 73 and
94.6 billion euros. Because we assume that indirect losses are mutualized,
they only affect marginally the optimal coverage level. The assumption that
total cost is 100 billion euros is therefore innocuous.17

State Direct loss Total loss L2s f2s (conditional)
s = 1 739,500 739,500 5.3571e-05
s = 2 260,000 261,624 1.0714e-04
s = 3 0 1,624.2 9.9984e-01

Table 3: lotteries for type i = 2

4.3 The cost of capital
Bantwal and Kunreuther (2000) suggest that ambiguity aversion, loss aver-
sion, uncertainty avoidance, as well as transaction costs due to legal and
technical complexities, may account for the reluctance of investment man-
agers to invest in the cat bond market. This argument suggests cat bonds
prices may, in practice, be well above the actuarially fair cost.

In order to asses empirically the link between the probability π that the
trigger is activated, and the cost of a cat bond, we use the Artemis database18,

15Here we do not discuss the effect of the catastrophe on growth as the literature has
not reached a consensus on the growth effect of disasters. For example, Gignoux and
Menéndez (2016) find a positive effect for the case of earthquake in India while Strobl
(2012) finds a negative effect for the case of hurricanes in the Caribbeans.

16We could also treat these indirect costs as uninsurable background risks. Under the
risk vulnerability assumption, these background risks would increase the degree of risk
aversion toward insurable risks.

17In particular, assuming a total cost of 50 billions would not modify our results.
18http://www.artemis.bm/
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which provides information on the main cat bonds transactions, including
the nature of perils, types of trigger, probability of a capital loss, expected
loss,19 spreads, and identity of sponsors. The database contains more than
two-hundred issues, some of which are divided in several tranches, character-
ized by different levels of risk, and therefore by different spreads. We only
have complete information for 107 of the most recent tranches, spanning an
interval of five years (2011-2015).

We estimate a model20 of the form

si = β0 + β1E`i + β2
(
E`i

)2
+ γXi + εi,

where cat bonds (or tranches of cat bonds in the case of multi-tranche cat
bonds) are indexed by i. si = c(πi, Ki)/Ki is the spread over LIBOR, E`i is
the expected investor’s loss expressed as a fraction of the cat bond’s par value
K, and Xi is a set of control variables. Table 4 delivers the OLS estimates
of β̂1 and β̂1.21 Both parameters are significant at the usual levels.22

Estimates
E`i 2.3329∗∗∗

(8.8959)
E`2

i −7.787∗∗∗
(−3.3595)

R2 0.8209
ŝ(58 ∗ 10−5)− ŝ(0) 1.3505 ∗ 10−3

Table 4: OLS estimates

In order to insure the nuclear risk, we consider a simple cat bond, for
which the capital is entirely transferred to the sponsor when the trigger
is activated. Thus, the expected loss is simply equal to the probability of
default: E` = π. Using the estimated values of β̂1, β̂1 and γ̂ allows us to
write the expected spread of such a cat bond as

ŝ(π) = β̂0 + β̂1π + β̂2π
2 + γ̂X.

We compute the predicted cost of capital for a low-probability event as
ĉ(π,K) = [ŝ(π)− ŝ(0)]K. We here consider ŝ(0) as the cost of capital (over

19The probability of a capital loss and the distribution of losses are evaluated by mod-
eling companies independent from the sponsor and the investor.

20Lane and Mahul (2008) use a similar data set to estimate a linear relation.
21The full table, along with alternative specifications is reported in Appendix 6.4.
22The t-statistics are reported in parenthesis below the estimates. ∗∗∗ : significant at

1% level.
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LIBOR) that the firm would incur if K was levied under the same liquidity
and maturity conditions as with a cat bond, but without the reference to
nuclear liability.23

This predicted cost is of the order of magnitude of the probability π of a
catastrophe, but it is above actuarially fair price. In addition, the concavity
of the relationship between s and π suggests that low-probability events
display a higher loading factor, making them more difficult to insure.

4.4 Optimal coverage
Using the definition (11) with P (K) = ĉ(π,K), we are now in the position
to simulate the certainty equivalents for individuals of both types i = 1 and
i = 2. The optimal coverage levels K∗1 and K∗2 minimize the social cost
SC(K1, K2), where

SC(K1, K2) = [38 C1(K1, K2) + 28 C2(K1, K2)]× 106.

We first discretize the space of possible values and minimize SC(K1, K2) for
all levels ofK. This yields the optimal coverage levelsK1(K) andK2(K) con-
ditionally on total coverage. We then minimize SC(K) ≡ SC(K1(K), K2(K)),
which yields K∗, K∗1 and K∗2 .

Figures 3a, 3b and 3c display function SC(K) for scenarios 1 to 5, with
an upward shift when we go from scenario 1 to scenario 5. For π = 58×10−6,
π = 58×10−5 and π = 58×10−4, the simulations reported here correspond to
levels of relative risk aversion R = 1 and R = 2, where R and R respectively
denote the relative risk aversion when the individual suffers the largest loss
(state s = 1) or no loss at all (s = 6 or 3, according to the individual’s type).

(a) π = 58 ∗ 10−6 (b) π = 58 ∗ 10−5 (c) π = 58 ∗ 10−4

Result 1 The optimal choice of coverage K∗ does not change with the acci-
dent probability π.

23In other words, if nuclear accidents are the only potential source of insolvency, then
ŝ(0)+ LIBOR is taken as the risk-less cost of capital. This cost was implicitly equal to 0
in the theoretical model of section 3.
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R 1 2
VSL 4.967e+06 7.405e+06

Scenario 1 1.755e+09 1.950e+09
Scenario 2 3.705e+09 3.705e+09
Scenario 3 5.460e+09 5.655e+09
Scenario 4 7.410e+09 7.605e+09
Scenario 5 9.165e+09 9.360e+09

Table 5: Coverage K∗, R = 2

R 1 2
VSL 4.967e+06 7.405e+06

Scenario 1 9.605e-02 1.652e-01
Scenario 2 1.691e-01 2.746e-01
Scenario 3 2.263e-01 3.524e-01
Scenario 4 2.725e-01 4.105e-01
Scenario 5 3.105e-01 4.556e-01

Table 6: Welfare gain, R = 2

Notice that, for a given scenario, all the social cost curves have the same
shape and therefore the same optimum point K∗. This is a direct applica-
tion of Proposition 5.24 Our numerical simulations confirm that the optimal
coverage has converged, at least for values of π lower than 58× 10−4.

From a policy perspective, this result implies that the exact value of the
probability π of a nuclear accident should not play any role in the optimal
coverage choice. Whether the true probability is 58× 10−4 or 58× 10−6, our
model suggests that the same level of coverage should be purchased, even
though the price of coverage would not be the same.

Result 2 A collective risk should have a higher coverage when its conse-
quences are more concentrated on a subset of individuals.

We have assumed that the most serious accidents are characterized by more
severe losses incurred by the victims (deaths, diseases and relocation), keep-
ing constant the aggregate cost of the accident. To know what scenario best
reflects the risk of a nuclear accident is a technical question, in which we
have no say, but the economic insight is that the most severe losses, and the
first that should be indemnified, are the ones that bring the agent’s wealth
close to her subsistence level. The indirect losses, that we have assumed to
be already mutualized, play a marginal role on the optimal level of coverage
K∗.

Finally and despite the acknowledged difficulty of the calibration exercise,
the two following results attempt to quantify the optimal levels of coverage
and deductible.

Result 3 In our baseline assumption (R = 2 or R = 3 ), the optimal levels
of coverage are higher than 1.755 billion euros, that is to say more than
twice the 700 million euros provided for by the 2004 revision of the Paris
Convention.

24Note that the scale of the vertical axis varies with π in Figures 3a, 3b and 3c.
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R 1 2
VSL 4.967e+06 7.405e+06

Scenario 1 3.977e+05 3.553e+05
Scenario 2 3.760e+05 3.760e+05
Scenario 3 3.831e+05 3.693e+05
Scenario 4 3.764e+05 3.661e+05
Scenario 5 3.809e+05 3.727e+05

Table 7: Deductible group 1, R = 2

R 1 2
VSL 4.967e+06 7.405e+06

Scenario 1 3.974e+05 3.545e+05
Scenario 2 3.759e+05 3.759e+05
Scenario 3 3.831e+05 3.688e+05
Scenario 4 3.759e+05 3.652e+05
Scenario 5 3.802e+05 3.716e+05

Table 8: Deductible group 2, R = 2

For example, Table 5 and 6 show that, if we consider scenario 1, R = 2
and R = 2, then K∗ should be equal to 1.950 billion euros. The associated
relative welfare gain, calculated as [SC(K∗)−SC(0)]/SC(0) would be above
16.52%. Of course, welfare gains for group 2, taken separately, would be
higher. Higher values for the coefficients of relative risk aversion, or a more
pessimistic loss scenario would lead to much higher values of K∗ and sub-
stantially higher welfare gains. In addition, considering a higher probability
of occurrence of the accident would yield a higher welfare gain.

Result 4 The deductibles implied by the choices of K∗1 and K∗2 are identical
for the two groups and do not depend on the scenario under consideration.

This result is also a direct application of Proposition 5. Tables 7 and 8
show that in the CRRA case R = R = 2, the deductible is between 350, 000
and 380, 000 euros for both groups and in any scenario.25 These levels of
deductible represent slightly less than half of the individual’s maximum po-
tential loss. It implies that only people in the worst states (s = 1, 2, 3 for
group 1 and s = 1 for group 2) are indemnified. Finally, Tables 7 and 8
confirm the intuition that deductibles should decrease with risk aversion.

5 Conclusion
This paper has developed a theory of optimal insurance for low-probability
high-severity events. Starting with a characterization of what is a catas-
trophic risk for an individual, we have then analyzed the optimal insurance
scheme for a catastrophic accident, caused by an industrial activity. This
has lead us to apply this approach to the case of nuclear accident risk.

25The small variation in deductible that we observe between the five scenarios and the
two groups is only due to the coarseness of the discretization. Increasing tightness would
yield values always closer from the theoretical predictions of Proposition 5.
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We have shown that the risk premium of a low-probability high-severity
event can remain large when the accident probability goes to zero, if the
coefficient of absolute risk aversion is sufficiently large (or equivalently risk
tolerance is sufficiently low) in the accident state. In addition, the optimal
indemnity converges to a positive limit. In the case of an industrial catas-
trophe that may affect the whole population of a country, the asymptotic
indemnity schedule is characterized by a straight deductible, common to all
individuals.

Our results also suggest that the nuclear liability law could be much more
ambitious than what it currently is in France, where the nuclear corporate
liability just meets the requirements of the revised Paris convention, contrary
to other countries, such as Germany, where this liability has been extended
far beyond these requirements.
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6 Appendix

6.1 Proposition 6
Let us assume that the government can redistribute wealth between groups
through ex ante lump sum transfers. We denote ti the net transfer paid to
each individual of group i, the government budget constraint being written
as

n∑
i=1

αiti = 0.

Now we have

w1 = w − P + ti,

w2i(xi) = w − P − xi + Ii(xi) + ti.

and the certainty equivalent loss incurred by type i individuals is still denoted
by Ci, with

u(w − Ci + ti) = (1− πqi)u(w1 + ti)

+πqi
∫ xi

0
u(w2i(xi) + ti)f(xi)dxi. (13)

An allocation is written asA ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K},
and A is feasible if (8), (9),(10) and (13) are satisfied.

Definition 2 A is Pareto-optimal if it is feasible and if there does not exist
another feasible allocation Â={ŵ1, ŵ21(x1), ..., ŵ2n(xn), Ĉ1, ..., Ĉn, t̂1, ..., t̂n, K̂}
such that Ĉi− t̂i ≤ Ci− ti for all i = 1, ..., n, with Ĉi0 − t̂i0 < Ci0 − ti0 for at
least one group i0.

Proposition 6 A ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K} is a Pareto-
optimal allocation if and only if it minimizes ∑n

i=1 αiCi in the set of feasible
allocations.

6.2 Proofs

Proof of Proposition 1
From equation (1), we have

C ′p(0, L) = u(w)− u(w − L)
u′(w) =

∫ w

w−L

u′(x)
u′(w)dx.
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Since
u′(x) = u′(w)−

∫ w

x
u′′(t)dt,

for all x ∈ [w − L,w], we may write

C ′p(0, L) = L−
∫ w

w−L

u′(x)
u′(w)dx

= L−
∫ w

w−L

[∫ w

x

u′′(t)
u′(w)dt

]
dx

= L+
∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx,

and thus

θ(0, L) = 1
L2

∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx.

Integrating by parts gives

θ(0, L) = 1
2

∫ w

w−L
k(x)A(x) u

′(x)
u′(w)dx, (14)

where k(x) = 2x−(w−L)
L2 , with ∫ w

w−L
k(x)dx = 1.

In addition, we have

u′(x) = u′(w) exp{
∫ w

x
A(x)dx},

, which yields the result.
Proof of Corollary 2
When L = w, we have

θ(0, L) > 1
w

∫ w

0

xu′(x)
wu′(w)A(x)dx,

from Proposition 1. Furthermore, we have

d[xu′(x)]
dx

= xu′′(x) + u′(x)

= −u′(x)[R(x)− 1],
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and thus
d[xu′(x)]

dx
≤ 0 if R(x) ≥ 1.

We deduce
θ(0, L) > 1

w

∫ w

0
A(x)dx if R(x) ≥ 1.

Proof of Proposition 2
Using A′ ≤ 0 in equation (14) allows us to write

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
[x− (w − L)]u′(x)dx

Using R(x) ≤ γ and u′′(x) < 0 yields

d

dx
[
(
x− (w − L)

)
u′(x)] = u′(x)[1−R(x)− u′′(x)

u′(x) (w − L)]

≥ u′(x)[1−R(x)]
≥ u′(x)(1− γ)
≥ u′(w)(1− γ),

for all x ∈ [w − L,w]. Hence, we have(
x− (w − L)

)
u′(x) + (w − x)u′(w)(1− γ) ≤ [w − (w − L)]u′(w)(

x− (w − L)
)
u′(x) ≤ Lu′(w) + (w − x)u′(w)(γ − 1)

= u′(w)[L+ (w − x)(γ − 1)],

for all x ∈ [w − L,w]. Consequently,

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
{u′(w)[L+ (w − x)(γ − 1)]} dx

= A(w − L)
L2

[
L2(γ + 1)

2

]

= A(w − L)(γ + 1)
2 .

Using C ′′p < 0 and C(0, L) = 0 allows us to write

C(p, L) < C ′(0, L)p
= pL+ θ(0, L)pL2

≤ pL

[
1 + A(w − L)(γ + 1)L

2

]
.
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Proof of Proposition 3
Tε(x) ≡ t(x, ε), with ε > 0, t(w−L, 0) = t′x(w−L, 0) = t′′xx(w−L, 0) = 0

and t′x(x, 0) > 0 for x > w − L. Let M > 0. Then, for ε small enough, there
exist x0(M, ε) and x1(M, ε) such that

w − L < x0(M, ε) < x1(M, ε),
Tε(x0(M, ε)) = [x0(M, ε)− (w − L)]2/L2M ,

Tε(x1(M, ε)) ≤ [x1(M, ε)− (w − L)]2/L2M,

Tε(x) < [x− (w − L)]2/L2M if x0(M, ε) < x < x1(M, ε),
x0(M, ε) −→ w − L when ε −→ 0,
x1(M, ε) −→ x∗1(M) > 0 when ε −→ 0.

Thus, we have

Tε(x) ≤ [x1(M, ε)− (w − L)][x− (w − L)]
L2M

,

or equivalently

Aε(x) > L2M

[x1(M, ε)− (w − L)][x− (w − L)] ,

if x0(M, ε) < x < x1(M, ε). Hence, we may write

θ(0, L) >
1
2

∫ w

w−L
k(x)A(x)dx

>
1
2

∫ x1(M,ε)

x0(M,ε)

(
2[x− (w − L)]

L2 × L2M

[x1(M, ε)− (w − L)][x− (w − L)]

)
dx

>
∫ x1(M,ε)

x0(M,ε)

M

x1(M, ε)− (w − L)dx

= M × x1(M, ε)− x0(M, ε)
x1(M, ε)− (w − L) .

Since x0(M, ε) −→ w − L and x1(M, ε) −→ x∗1(M) when ε −→ 0, the right-
hand side of the previous inequality goes to M when ε −→ 0, and we deduce
that θ(0, L) is larger than M for ε small enough.

Proof of Lemma 1
We have I∗ > 0 iff

σ <
u′(w − L)− u′(w)

u′(w)

= − 1
u′(w)

∫ L

w−L
u′′(x)dx

=
∫ L

w−L
A(x) u

′(x)
u′(w)dx.
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Using Lk(x)/2 < 1 for all x ∈ (w − L,w] gives∫ L

w−L
A(x) u

′(x)
u′(w)dx >

L

2

∫ L

w−L
k(x)A(x) u

′(x)
u′(w)dx = Lθ(0, L),

and thus we have I∗ > 0 if θ(0, L)L ≥ σ.

Proof of Proposition 5
The planner’s program is to minimize ∑i αiCi under constraints (7), (8),

(9) and (10). The Kuhn-Tucker multipliers associated with each set of con-
straints are respectively γi, φi(xi), η and ρ. The optimality conditions are

αi − γiu′(w − Ci) = 0 (15)
γiπqiu

′(w2i(xi))fi(xi)− η(1 + σ)αiqifi(xi) + φi(xi) = 0, (16)

u′(w1)
n∑
i=1

(1− πqi)γi −
n∑
i=1

∫ x̄i

0
φi(xi)dxi − ρ+ η(1 + σ)

n∑
i=1

αiqi = 0, (17)

−η + ρc′K(π,K) = 0, (18)
φi(xi) ≥ 0 and φi(xi) = 0 if w2i(xi)− w1 + xi > 0 ∀i. (19)

Let xi be such that w2i(xi)− w1 + xi > 0. Thus, we have φi(xi) = 0 from
(19) and (16) gives

πγiu
′(w2i(xi)) = η(1 + σ)αi. (20)

(15) and (20) yield

u′(w2i(xi)) = η

π
(1 + σ)u′(w − Ci). (21)

Hence, if there exist x0
i , x

1
i ∈ [0, x̄i] such that w2i(x0

i ) − w1 + x0
i > 0 and

w2i(x1
i )− w1 + x1

i > 0, then we must have

u′(w2i(x0
i )) = u′(w2i(x1

i )),

which implies
w2i(x0

i ) = w2i(x1
i ).

Consequently, w2i(xi) is constant over the set of xi for which w2i(xi)− w1 +
xi > 0, and we can write

w2i(xi) = w1 − di,

with di < xi for all xi in this set and

u′(w1 − di) = η

π
(1 + σ)u′(w − Ci). (22)
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Now let xi be such that w2i(xi)− w1 + xi = 0. Using (15), (16) and (19)
allows us to write

u(w2i(xi)) = u′(w1 − xi) ≤
η

π
(1 + σ)u′(w − Ci).

Using (21), and u′′ < 0 we deduce xi ≤ di. Thus, we have established that
there exists a di such that

w2i(xi) = w1 − di if xi > di, (23)
w2i(xi) = w1 − xi if xi ≤ di. (24)

When π → 0, we have w1 −→ w and Ci −→ 0 from (10) and (7) respec-
tively. (22) then gives di −→ d∗ ∀i with

u′(w − d∗) = (1 + σ)u′(w) lim
π→0

η

π
. (25)

(15), (17) and (18) imply

lim
π→0

1− η

c′K(π,K) + η(1 + σ)
n∑
i=1

αiqi −
n∑
i=1

∫ x̄i

0
φi(xi)dxi = 0. (26)

Suppose that η does not go to zero when π does. In such a case, we would
have η

c′K(π,K) −→ +∞ when π −→ 0 since c′K(π,K) −→ 0, and thus

lim
π→0

η[ 1
c′K(π,K) + (1 + σ)

n∑
i=1

αiqi] = +∞.

Since φi(xi) ≥ 0 ∀i, this is in contradiction with (26). Thus, we have

lim
π−→0

[
1− η

c′K(π,K) −
n∑
i=1

∫ x̄i

0
φi(xi)dxi

]
= 0. (27)

If di ≤ 0, we have w2i(xi)− w1 + xi > 0 and φi(xi) = 0 ∀xi. Hence
n∑
i=1

∫ x̄i

0
φi(xi) = 0.

If di > 0, we have φi(xi) = 0 for xi > di, and thus (15), (16) and (24) give∫ x̄i

0
φi(xi)dxi =

∫ di

0
φi(xi)dxi (28)

= −παqi
∫ di

0
[ u
′(w − xi)
u′(w − Ci)

− η

π
(1 + σ)]fi(xi)dxi. (29)
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Using the fact that η −→ 0 when π −→ 0 gives

lim
π→0

∫ x̄i

0
φi(xi)dxi = 0,

and from (26) we derive
lim
π→0

η

c′K(π,K) = 1.

Using (25), we finally deduce

u′(w − d∗) = (1 + σ)u′(w) lim
π→0

c′K(π,K)
π

> u′(w),

where the last inequality derives from σ > 0 and c′K(π,K) ≥ π. We obtain
d∗. Since Ii(xi) = w2i(xi) + xi − w1, we deduce that Ii(xi) −→ I∗(xi) =
max (xi − d∗, 0) when π −→ 0.

Proof of Proposition 6
Assume that A minimizes ∑n

i=1 αiCi in the set of feasible allocations, and
suppose that it is not Pareto-optimal. Then there exists a feasible allocation
Â and a group i0 such that Ĉi− t̂i ≤ Ci− ti for all i and Ĉi0 − t̂i0 < Ci0 − ti0 .
Consequently,

n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (30)

Since A and Â are feasible, we have
n∑
i=1

αiti =
n∑
i=1

αit̂i = 0, (31)

and thus (30) and (31) give
n∑
i=1

αiĈi <
n∑
i=1

αiCi,

which contradicts the fact that A minimizes ∑n
i=1 αiCi in the set of feasible

allocations.
Conversely, assume that A is a Pareto-optimal allocation, and suppose

that it does not minimize ∑n
i=1 αiCi in the set of feasible allocations. Thus

there exists a feasible allocation Â such that ∑n
i=1 αiĈi <

∑n
i=1 αiCi, and

thus
n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (32)
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Let us choose t̂i such that

t̂i = Ĉi + ti − Ci

for all i 6= ii0 , which does not contradict the feasibility of Â if we choose

t̂i0 = −
∑

i 6=i0
t̂i. (33)

We have
Ĉi − t̂i = Ci − ti for all i 6= i0. (34)

Furthermore, (32),(33) and (34) give

Ĉi0 − t̂i0 < Ci0 − ti0 . (35)

(34) and (35) contradict the fact that A is Pareto-optimal.
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6.3 Calibration of initial wealth and losses
The French national statistical agency, INSEE provides an average estimated
Gross National Product per capita of 32,227 euros26 and an average age of
39.2 years old27. The French National Institute on Demographics (INED)
provides an estimated life expectancy of 73.2 for the average 39.228 years old
citizen. Lifetime wealth is obtained as the annual GDP per capita discounted
at rate 2% on a 34 years horizon. This yields an expected discounted future
wealth of 805 310 euros, rounded to 800 000 euros. The INSEE also provides
an estimated average of 70 000 euros of current assets. We therefore consider
that initial wealth is 870 000 euros.

The worst case scenario is a fatal outcome that occurs in states s = 1 and
s = 2. As in Eeckhoudt et al. (2000), we assume that when this worst state
materializes, the agent is only able to retain a fraction, equal to θ = 10%
of her initial wealth, that can be interpreted as a subsistence parameter.
Whether or not the agent suffers a financial loss does not matter in this case.
In state s = 3, the agent suffers a severe health loss, due to radioactivity
exposure as well as a direct financial loss. The cost of health treatment and
the health induced reduction in future income is estimated in Eeckhoudt et
al.(2000) at 260,000 euros. In addition, we assume that the combination of
the health and wealth shock further impede initial wealth by an additional
70,000 euros. Total loss in this state is therefore estimated at 400,000 euros.
In state s = 4, the agent only faces the 260, 000 euros health loss. In state
s = 5, she faces the 70,000 euros financial loss. In addition, the obligation
to move away from her house generates an additional reduction of 30,000 on
future wealth.

The Value of a Statistical Life (VSL) represents the agent’s willingness
to pay to marginally decrease her probability of dying. For an individual of
group 1, let fd be the probability of dying, u(w) the utility associated with
the initial state and u(wd), the utility associated with the death state. The
willingness to pay for a marginal decrease in the death probability is called
VSL and is given by

dfd
dw

= u(w)− u(wd)
(1− fd)u′(w) + fdu′(wd)

.

In our calibration and for an individual of group 1, we have fd = f11 + f12,
w = 870, 000, wd = 870, 000− 848, 350 = 21, 650 and u is a HARA function.

26http://www.bdm.insee.fr
27http://www.insee.fr/
28http://www.ined.fr/
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6.4 OLS Estimates
D2011, D2012 and D2013 are three dummies taking value 1 if cat bond i was
issued in 2011,2012 and 2013 (respectively). D2014 is left out of the regression
and defines the reference group. We see that all prices were significantly
above the 2014 prices, with a peak in 2011. DJapan, DUS and DOther take
value 1 if cat bond i was issued in Japan, US or in any other country outside
Europe. The reference group is Europe. DFirst takes value 1 if the cat bond
corresponds to a sponsor’s first issue. DInsur takes value 1 if the cat bond was
issued by an insurance (or reinsurance company). DPrivate or by a private
company other than an insurance company. The dummy that take value 1
when the cat bond is issued by a state sponsored program such as the World
Bank or the Caribbeans Countries Risk Insurance Facility (CCRIF) is left
outside as the reference. DIndex and DParam take value 1 respectively if the
trigger of the cat bond is an industry loss index or a parametric trigger. The
reference group is the indemnity trigger.
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Quad 1 Quad 2 Linear 1 Linear 2
constant −0.0064 −0.0017

(−0.5822) (−0.1487)

E(l)i 2.3329∗∗∗ 2.3156∗∗∗ 1.5129∗∗∗ 1.5131∗∗∗
(8.8959) (8.8725) (14.9794) (14.9812)

(E(l)i)2 −7.7870∗∗∗ −7.6155∗∗∗
(−3.3595) (−3.3070)

D2011 0.0534∗∗∗ 0.0536∗∗∗ 0.0544∗∗∗ 0.0544∗∗∗
(3.6594) (3.6694) (3.5387) (3.5427)

D2012 0.0376∗∗∗ 0.0372∗∗∗ 0.0424∗∗∗ 0.0423∗∗∗
(6.8104) (6.7814) (7.5474) (7.6334)

D2013 0.0116∗∗ 0.0112∗∗∗ 0.0134∗∗∗ 0.0428∗∗∗
(2.5888) (2.5238) (2.8499) (2.8694)

DJapan 0.0059 0.0022 0.0080 0.0133
(0.5237) (0.2365) (0.6731) (0.7185)

DUS 0.0170∗ 0.0138∗∗ 0.0217∗∗ 0.0070∗∗∗
(1.9455) (2.0349) (2.3829) (3.0678)

DOther 0.0081 0.0054 0.0121 0.0208
(0.7553) (0.5610) (1.0778) (1.1285)

DFirst 0.0015 0.0010 0.0030 0.0113
(0.3256) (0.2061) (0.5949) (0.5762)

DPrivate 0.0225 0.0164 0.0360∗∗ 0.0028∗∗
(1.3059) (1.1958) (2.0395) (2.5785)

DInsur 0.0087 0.0062 0.0063 0.0057
(1.0497) (0.8733) (0.7229) (0.7529)

DIndex −0.0128 −0.0135∗ −0.0093 −0.0095
(−1.6562) (−1.7622) (−1.1561) (−1.1993)

DParam −0.0131∗∗∗ −0.0138∗∗∗ −0.0108∗∗ −0.0110∗∗∗
(−2.9995) (−3.2566) (−2.3844) (−2.5310)

R2 0.8209 0.8204 0.8013 0.8013
ŝ(10−5) 2.3329 ∗ 10−5 2.3156 ∗ 10−5 1.5129 ∗ 10−5 1.5131 ∗ 10−5

Table 9: OLS estimates
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6.5 Figures

Figure 4: π = 10−4

Figure 5: π = 10−5
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Figure 6: π = 10−6
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6.6 Tables
The following tables summarize the numerical results of section 4. Each table
presents the either optimal coverage or the welfare gain for a given set of hypothe-
ses. The cost of handling claims is set to σ = 0.3, which is viewed as a reasonable
estimate in the literature. However changes in this parameter have a very limited
impact on the simulation results. As we have shown in the previous section, the
calibration of π does not play any role in the determination of ∗. Here we use
π = 10−5.

R and R are the indexes of relative risk aversion in the death state and in
the non-loss state, respectively. Since HARA functions feature Increasing Relative
Risk Aversion, it must be that R < R. The scenarios that are considered vary
across lines. All results are expressed in euros.

Within each table, we fix R and we let R vary through the columns. From left
to right, we therefore increase the agent’s risk aversion. For each level of R, we
provide two tables. The first delivers our estimates for the optimal level of coverage
and the second computes the welfare gain relative to the no-coverage situation.

The most sensitive parameter is usually the subsistence level θ. Our results
indicate that while the optimal coverage is robust to changes in θ, the estimated
welfare gains are quite sensitive. As expected, optimal coverage increases with the
severity of the scenario under consideration and with the degree of risk aversion.

6.6.1 Optimal coverage and welfare gains with θ = 0.90

R 1
Scenario 1 9.750e+08
Scenario 2 1.755e+09
Scenario 3 2.730e+09
Scenario 4 3.705e+09
Scenario 5 4.485e+09

Table 10: Coverage, R = 1

R 1
Scenario 1 1.443e-02
Scenario 2 2.768e-02
Scenario 3 3.985e-02
Scenario 4 5.104e-02
Scenario 5 6.138e-02

Table 11: Welfare gain, R = 1
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R 1 2
VSL 4.9665e+06 7.4048e+06

Scenario 1 1.755e+09 1.950e+09
Scenario 2 3.705e+09 3.705e+09
Scenario 3 5.460e+09 5.655e+09
Scenario 4 7.410e+09 7.605e+09
Scenario 5 9.165e+09 9.360e+09

Table 12: Coverage, R = 2

R 1 2
VSL 4.9665e+06 7.4048e+06

Scenario 1 9.605e-02 1.652e-01
Scenario 2 1.691e-01 2.746e-01
Scenario 3 2.263e-01 3.524e-01
Scenario 4 2.725e-01 4.105e-01
Scenario 5 3.105e-01 4.556e-01

Table 13: Welfare gain, R = 2

R 1 2 3
VSL 6.2319e+06 1.1386e+07 1.6135e+07

Scenario 1 2.145e+09 2.145e+09 2.145e+09
Scenario 2 4.095e+09 4.290e+09 4.290e+09
Scenario 3 6.240e+09 6.435e+09 6.435e+09
Scenario 4 8.190e+09 8.580e+09 8.580e+09
Scenario 5 1.034e+10 1.073e+10 1.073e+10

Table 14: Coverage, R = 3

R 1 2 3
VSL 6.3723e+06 1.2257e+07 1.8843e+07

Scenario 1 1.293e-01 2.555e-01 3.598e-01
Scenario 2 2.204e-01 3.947e-01 5.164e-01
Scenario 3 2.879e-01 4.823e-01 6.040e-01
Scenario 4 3.399e-01 5.426e-01 6.599e-01
Scenario 5 3.813e-01 5.865e-01 6.988e-01

Table 15: Welfare gain, R = 3
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R 1 2 3 4
VSL 2.2109e+07 4.3029e+07 4.6975e+07 4.2608e+07

Scenario 1 2.925e+09 3.120e+09 3.120e+09 3.120e+09
Scenario 2 5.850e+09 6.045e+09 6.045e+09 6.045e+09
Scenario 3 8.775e+09 9.165e+09 9.165e+09 9.165e+09
Scenario 4 1.170e+10 1.209e+10 1.229e+10 1.229e+10
Scenario 5 1.463e+10 1.521e+10 1.521e+10 1.541e+10

Table 16: Coverage, R = 4

R 1 2 3 4
VSL 2.2109e+07 4.3029e+07 4.6975e+07 4.2608e+07

Scenario 1 4.310e-01 7.125e-01 8.415e-01 9.038e-01
Scenario 2 5.878e-01 8.234e-01 9.090e-01 9.465e-01
Scenario 3 6.689e-01 8.685e-01 9.339e-01 9.616e-01
Scenario 4 7.185e-01 8.929e-01 9.469e-01 9.693e-01
Scenario 5 7.519e-01 9.082e-01 9.549e-01 9.740e-01

Table 17: Welfare gain, R = 4

R 1 2 3 4 5
VSL 3.8504e+07 6.3288e+07 5.5351e+07 4.4793e+07 3.6861e+07

Scenario 1 3.510e+09 3.510e+09 3.510e+09 3.510e+09 3.510e+09
Scenario 2 7.020e+09 7.020e+09 7.215e+09 7.215e+09 7.215e+09
Scenario 3 1.034e+10 1.053e+10 1.073e+10 1.073e+10 1.073e+10
Scenario 4 1.385e+10 1.424e+10 1.424e+10 1.424e+10 1.443e+10
Scenario 5 1.736e+10 1.775e+10 1.775e+10 1.794e+10 1.794e+10

Table 18: Coverage, R = 5

R 1 2 3 4 5
VSL 3.8504e+07 6.3288e+07 5.5351e+07 4.4793e+07 3.6861e+07

Scenario 1 6.090e-01 8.730e-01 9.483e-01 9.747e-01 9.860e-01
Scenario 2 7.447e-01 9.279e-01 9.717e-01 9.863e-01 9.925e-01
Scenario 3 8.045e-01 9.478e-01 9.798e-01 9.903e-01 9.947e-01
Scenario 4 8.382e-01 9.580e-01 9.838e-01 9.923e-01 9.957e-01
Scenario 5 8.598e-01 9.643e-01 9.863e-01 9.934e-01 9.964e-01

Table 19: Welfare gain, R = 5
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6.6.2 Optimal coverage and welfare gains with θ = 0.975

R 1
Scenario 1 9.300e+08
Scenario 2 1.875e+09
Scenario 3 2.805e+09
Scenario 4 3.750e+09
Scenario 5 4.680e+09

Table 20: Coverage, R = 1

R 1
Scenario 1 4.653e-02
Scenario 2 8.647e-02
Scenario 3 1.211e-01
Scenario 4 1.514e-01
Scenario 5 1.782e-01

Table 21: Welfare gain, R = 1

R 1 2
VSL 1.8926e+07 3.3396e+07

Scenario 1 1.665e+09 1.680e+09
Scenario 2 3.345e+09 3.360e+09
Scenario 3 5.010e+09 5.040e+09
Scenario 4 6.690e+09 6.720e+09
Scenario 5 8.355e+09 8.400e+09

Table 22: Coverage, R = 2
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R 1 2
VSL 1.8926e+07 3.3396e+07

Scenario 1 3.599e-01 5.139e-01
Scenario 2 5.191e-01 6.699e-01
Scenario 3 6.088e-01 7.453e-01
Scenario 4 6.664e-01 7.897e-01
Scenario 5 7.065e-01 8.190e-01

Table 23: Welfare gain, R = 2

R 1 2 3
VSL 1.1036e+08 2.8702e+08 4.2413e+08

Scenario 1 2.025e+09 2.025e+09 2.040e+09
Scenario 2 4.050e+09 4.065e+09 4.065e+09
Scenario 3 6.075e+09 6.090e+09 6.105e+09
Scenario 4 8.100e+09 8.130e+09 8.130e+09
Scenario 5 1.013e+10 1.016e+10 1.017e+10

Table 24: Coverage, R = 3

R 1 2 3
VSL 1.1036e+08 2.8702e+08 4.2413e+08

Scenario 1 7.864e-01 9.192e-01 9.579e-01
Scenario 2 8.755e-01 9.560e-01 9.775e-01
Scenario 3 9.099e-01 9.690e-01 9.842e-01
Scenario 4 9.281e-01 9.756e-01 9.876e-01
Scenario 5 9.394e-01 9.796e-01 9.897e-01

Table 25: Welfare gain, R = 3

R 1 2 3 4
VSL 5.0096e+08 9.8738e+08 8.6853e+08 6.9773e+08

Scenario 1 2.580e+09 2.595e+09 2.595e+09 2.595e+09
Scenario 2 4.800e+09 4.830e+09 4.830e+09 4.830e+09
Scenario 3 7.035e+09 7.065e+09 7.065e+09 7.080e+09
Scenario 4 9.270e+09 9.300e+09 9.300e+09 9.315e+09
Scenario 5 1.149e+10 1.154e+10 1.154e+10 1.155e+10

Table 26: Coverage, R = 4
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R 1 2 3 4
VSL 5.0096e+08 9.8738e+08 8.6853e+08 6.9773e+08

Scenario 1 9.518e-01 9.903e-01 9.965e-01 9.983e-01
Scenario 2 9.741e-01 9.949e-01 9.982e-01 9.991e-01
Scenario 3 9.818e-01 9.964e-01 9.987e-01 9.994e-01
Scenario 4 9.857e-01 9.972e-01 9.990e-01 9.995e-01
Scenario 5 9.880e-01 9.977e-01 9.992e-01 9.996e-01

Table 27: Welfare gain, R = 4

R 1 2 3 4 5
VSL 1.3733e+09 1.2765e+09 8.9388e+08 6.7680e+08 5.4322e+08

Scenario 1 2.970e+09 2.985e+09 2.985e+09 3.000e+09 3.000e+09
Scenario 2 5.340e+09 5.355e+09 5.355e+09 5.355e+09 5.355e+09
Scenario 3 7.695e+09 7.710e+09 7.725e+09 7.725e+09 7.725e+09
Scenario 4 1.005e+10 1.008e+10 1.010e+10 1.010e+10 1.010e+10
Scenario 5 1.242e+10 1.245e+10 1.245e+10 1.247e+10 1.247e+10

Table 28: Coverage, R = 5

R 1 2 3 4 5
VSL 1.3733e+09 1.2765e+09 8.9388e+08 6.7680e+08 5.4322e+08

Scenario 1 9.893e-01 9.987e-01 9.997e-01 9.999e-01 9.999e-01
Scenario 2 9.943e-01 9.993e-01 9.998e-01 9.999e-01 1.000e+00
Scenario 3 9.960e-01 9.995e-01 9.999e-01 1.000e+00 1.000e+00
Scenario 4 9.969e-01 9.996e-01 9.999e-01 1.000e+00 1.000e+00
Scenario 5 9.974e-01 9.997e-01 9.999e-01 1.000e+00 1.000e+00

Table 29: Welfare gain, R = 5
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