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Abstract 

This paper  studies how exporting  firms optimize  their  inventory management  in order  to 
adapt to the uncertainty stemming from demand volatility. We motivate our analysis with a 
stochastic  inventory  management  framework.  We  use  monthly  micro  data  on  French 
exporters  and  find  that  greater  uncertainty  is  associated  with  lower  sales  volume. We 
decompose this effect to  its two margins, the number of shipments and average shipment 
size to find that the number of shipments decreases more quickly as uncertainty  increases 
which is in line with firms adjusting their inventory policy as well as their exported volume as 
a  result  of  increased  uncertainty. Also,  uncertainty was  found  to matter more  at  distant 
markets where the uncertainty between firm actions and the arrival of the products  is the 
largest. 
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1. Introduction

Demand volatility matters for business optimizing inventories and supply chains.

According to an authoritative industry publication, the Gartner 2014 Supply Chain

Study, 45% of supply chain managers mentioned ”Forecast accuracy and demand vari-

ability”, as a major obstacle. Similarly, the 2014 Study of the Chief Supply Chain

Officer of SCM World, a leading consulting firm recorded that 70-80% of respondents

in a wide variety of industries such as consumer packaged goods, high-tech, chemicals,

as well as distribution and retail, are ”concerned about demand volatility”1. The im-

portance of looking at demand uncertainty from a business as usual standpoint is under-

lined by volatility stemming from characteristics of a modern and globalized economy,

including ”customer choices, product customization, rapid technological improvements,

global competition and upstream supply fluctuations”2 as argued by Rajesh Gangad-

haran of Celuro, a consultancy. These trends not only make demand more volatile, but

make its forecast significantly harder, and hence increase uncertainty about demand.

Given the centrality of demand volatility in inventory and supply chain management,

firms invest significant resources to improving demand prediction and accommodating

inherent volatility.

Demand volatility and the uncertainty related to it may be even more pronounced

in international commerce as time-to-ship products exacerbate the impact of demand

uncertainty on firms’ decisions (Coleman, 2009; Steinwender, 2015). Many authors

have investigated the effect of uncertainty resulting from the occasional macro-economic

shocks, such as currency crises, and political or institutional changes. Demand volatility,

which is an integral part of business as usual, has received less attention. The fact that

demand volatility seems to be a key concern of logistic experts suggests that it may

affect the structure of logistics decisions and, in turn, the cost structure and amount of

international trade. All this implies that the role of uncertainty should be studied not

only at the time of policy shocks, but also in an equilibrium setting, where firms face

an unpredictable fluctuation in demand for their products. The centrality of logistics

in determining cost structures also suggests that inventory management models may

be key in understanding these effects.

1www.scdigest.com/ASSETS/FIRSTTHOUGHTS/14-06-26.php?cid=8223 and
www.e2open.com/assets/pdf/papers-and-reports

2www.sdcexec.com/article/10289792/supply-chain-strategies-to-manage-volatile-demand
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Measuring uncertainty at national level is hard. However, detailed trade data pro-

vide a way to test inventory models describing firms reaction to demand volatility

because two central margins of inventory policies, shipment frequency and are also ob-

servable. In the presence of uncertainty regarding distant buyers, firms adjust their

inventory policies by using frequency of delivery as a margin of adjustment. Conse-

quently, from a trade perspective, shipment frequency is another margin of exports

worth studying: the question is not whether you export (extensive firm margin), or

how much you export (intensive margin), but how often you export, conditional on

your foreign sales.3 Such a “transaction margin” has already been observed in the

trade literature, although it received limited attention.4

In the absence of uncertainty, the optimal policy of exporters would be straight-

forward. An analogy with the well-known Baumol-Tobin framework provides a good

description for determining the optimal combination of the number of shipments and

value per shipment for different export markets in a deterministic setting, given the

transport technology: the number of shipments and the quantity per shipment increase

in proportion to the square root of demand intensity. This question has already been

studied in the trade literature. Kropf and Saure (2012) derive a Melitz-type model

encapsulating the fixed costs of shipping; they show that higher fixed costs reduce the

frequency of shipments and increase the value per shipment.5 In Hornok and Koren

(2015), consumers have a preference for frequent shipments as timely consumption offers

higher utility. In their model per-shipment costs reduce shipment frequency, increase

shipment size and the product price.6

In this paper we depart from this deterministic case and ask how idiosyncratic

demand uncertainty abroad affect the size and frequency of trade flows. This issue

3Firms can also adjust by shipping different sets of products and/or to a different sets of destinations.
Iacovone and Javorcik (2010) examine how uncertainty affects trade patterns considering product level
dynamics within firms for Mexico. The margin of adjustment here falls on products and uncertainty
leads to product churning and limited value for new flows. In these cases, the experience discussed by
Araujo and Ornelas (2007) and Albornoz et al. (2012) help explain exporters’ behavior. We will here
focus on product-destination decisions: we assume that firms have already chosen their portfolio of
exported products to each destination.

4When analyzing Colombian transaction-level data, Eaton et al. (2008) show that the distribution
of the number of transactions is highly skewed. Ariu (2011) also decomposes trade using the number of
transactions using monthly trade data for Belgium and finds the transaction margin to be important
at both the firm-level and country level decompositions.

5Using Swiss data they estimate per shipment fixed costs at USD 6,500 in 2007.
6Also, on explicit modeling of trade technology, see Behrens and Picard (2011) or Kleinert and

Spies (2011).
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is complex because uncertainty increases logistics costs and makes holding relatively

larger inventories optimal in order to reduce back-order costs. Larger logistics costs

lead to smaller trade volume. Reduced export volume together with larger optimal

inventories both affect trade frequency negatively. For shipment size, however, the

effect of increased uncertainty is less clear cut: the negative effect of reduced exports

may be subdued by the increase in the relative size of shipments required to maintain

a relatively larger inventory level. We address these issues based on an extension of

Zipkin (2000) – an established text from the area of logistics and inventory optimization

– and apply it to a CES demand framework.7

Inventory models – standard in the theory of logistics management – have been

shown to be useful frameworks when explaining the impact of large demand shocks in

the presence of transaction and inventory costs (Alessandria et al., 2011). The models

in Alessandria et al. (2010) and Alessandria et al. (2011) were designed to explain time

series evidence after large trade shocks. They consider a dynamic version of the decision

to be made by the importer as to importing or not. Instead, our simple and tractable

approach will reflect the inventory decisions of a firm exporting to many markets in the

presence of uncertainty8.

In order to study these decisions made by exporters, we use the highly disaggregated

nature of monthly export data for individual exporters and consider the frequency

of shipments as a new margin of trade. We define this frequency as the number of

months within a year in which an international shipment is recorded for a given firm-

product-destination. We use data from the French Customs at the level of the individual

exporting firm. Importantly for our exercise, the Customs provides monthly firm export

data by destination and product category.

We firstly provide evidence on how the frequency of shipments and the value per

shipment adjust to different levels of foreign demand. We observe that the frequency

of shipments is used by firms to smooth the impact of business conditions on their

7We deviate from the literature (Hornok and Koren, 2015; Hummels and Schaur, 2013) by focusing
on the supply side and firm level maximization. More precisely, we concentrate on logistics decisions
and hence, the cost function of transportation, rather than organizational decisions.

8Inspired by the Great Recession, Novy and Taylor (2013) also investigate the role of macro un-
certainty on trade volumes. They relate a real option model of stochastic inventory management to
the trade reaction model of Bloom (2009) emphasizing the role of imported intermediate inputs. Us-
ing monthly US import and industrial production data, they suggest a link between uncertainty and
macro-economic cyclicality.
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different markets. As predicted by an analogy with Baumol-Tobin, the adjustment to

market size is roughly channeled half through the number of shipment and half through

their size.

We then address our focal question concerning the impact of uncertainty on sales,

and the number and size of shipments. We rationalize our analysis within a stochastic

inventory framework focusing on uncertainty of the demand. Firms will pay per ship-

ment cost to reach their foreign clients, pay a storage cost at destination, and serve

clients as they appear. We build this technology into an international trade framework

with CES preferences. This framework predicts that: (i) higher uncertainty reduces

the export value, the number of shipments and has an ambiguous impact on the aver-

age value of shipments; (ii) holding export value fixed, higher uncertainty reduces the

number of shipments and increases the average value per shipment; (iii) the effect of

uncertainty is magnified by shipment time: uncertainty only matters if transportation

take a relatively long time. These predictions are confirmed on our cross-section of

detailed firm level export data.

Several additional issues that may be relevant to firms’ sales and logistic decisions

are excluded from the scope of this paper. When time matters, firms can optimize

transportation by choosing between modes of air and maritime cargo (Harrigan, 2010;

Hummels and Schaur, 2013).9 Evans and Harrigan (2005) argue that an additional ad-

justment path is location choice: products that need to be served in a timely fashion will

be produced closer to destination markets, thus affecting specialization patterns.10 We

consider here that location choices are given, and address firms’ strategies conditional

on these choices.11

The remaining of the paper is structured as follows. Section 2 provides descrip-

tive statistics on shipment frequency for a cross-section of individual exporters at the

product and destination level. Section 3 presents the basic setup and insights from a

theory of optimal shipment policy in the presence of uncertainty, while details of the

9Indeed, as Hummels and Schaur (2010) demonstrated, uncertainty of demand will affect transport
behavior, in the presence of higher demand uncertainty, a greater share of shipments will by air
transport. We will address this issue by restricting our estimations to maritime transport in the
robustness test section.

10Uncertainty is indeed impacting many other dimensions of individual firms decisions like investment
in the presence of irreversibility (Bloom and Van Reenen, 2007), in line with the traditional real option
argument (Dixit and Pindyck, 1994). We focus here on trade models.

11We use export data for one exporting country, and consider as a robustness maritime routes only.
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theoretical model are presented in the Appendix. Testable predictions are confronted

to the data in Section 4, where we describe estimation methodology, core results and

robustness checks. The last section concludes.

2. Stylized facts

In our dataset from the French Customs for 2007, the unit of observation is monthly

export value by a firm i of product j to a destination k; products are treated at the 6-

digit HS level12. Such data enable us to calculate a proxy for the number of shipments:

it will be approximated by the frequency of shipments defined as the number of months

within a year in which an international shipment is recorded for a given firm-product-

destination. Naturally it is easily possible that a firm sends more than one shipment in

one month, in which case our measured frequency will underestimate the true number

of shipments. We will return to this issue in our robustness checks.

As we are interested in firm optimization, having firm identifiers as well as product-

destination information is crucial. Furthermore, the fact that we can link exports onto

different markets and products of the same firms will allow assessing the marginal

association with demand, partialling out unobserved firm characteristics. Hence, we

can study how the very same firm adjusts to different market conditions.

Figure 1 provides a first look at the distribution of trade frequency13. It shows that

a large number of firms ship their products only a few months in a year, providing us

a large sample and sufficient variation to estimate the determinants of frequency. The

relatively low share of observations with 11 or 12 months, where underestimating the

true number of shipments is the most likely, and the smooth shape of the function for low

frequencies suggest that our frequency variable measures the true number of shipments

quite closely especially for frequencies below 10. As a result, in most applications, we

will truncate the frequency distribution at 9 and check the importance of this censoring

in the robustness section.

We observe a fair number of single shipments: almost 45% of firms ship only once

a year to EU markets (left panel of Figure 1) but more than 60% do so to extra-EU

markets (resp. right panel). Less than 10% of exporters ship their products every month

12We excluded Ships and Aircraft because these items are not exported through usual transport
technology but through self-propulsion.

13We restrict the sample to incumbent exporters, i.e. firms which exported the same product to the
same country in 2006, to exclude censored information from firms which entered during 2007
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to their EU markets, as opposed to a smaller fraction towards extra-EU markets.

Figure 1: Frequency of shipments, number of months, 2007, all and extra-EU
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Notes: firm-destination-product (HS6) level. Source: French Customs, authors’ calculation.

Table 1 provides statistics on the heterogeneity of export frequency. Interestingly,

the upper quartile is corresponding to five shipments only: choosing when to export is

really a choice to be made by firms. The corresponding strategy has many dimensions

worth looking at. Different destinations will be served differently. In EU destinations,

the frequency is higher: the median is 3 shipments compared to one for extra-EU trade

relationships. This higher frequency can be driven by proximity (authorizing less costly

shipments), by market size (large markets can be served more frequently), by type of

products exported.14 Considering market size, we observe that destinations with above

the median GDP receive more frequent shipments than destinations below the median.

Finally, the largest companies ship their products more often: the 75th percentile of

the frequency distribution for large firms is 7 compared to 3 for smaller firms. This

observation underlines the importance of controlling for firm characteristics.

14Composition of exporters would impact the results the other way round (smaller exporters ship
less and less frequently).

6



Table 1: Descriptive statistics of the number of shipments (2007)

Mean p25 Median p75
Total 3.7 1 2 5

Within EU27 4.6 1 3 8
Extra EU27 2.3 1 1 2

Large countries (GDP) 3.8 1 2 6
Small countries (GDP) 1.8 1 1 2

Large firms 4.3 1 2 7
Small Firms 2.8 1 1 3

Let us now interpret frequency and ‘shipment size’ (yearly export value over fre-

quency) as new margins of trade. Using a simple analogy with the Baumol-Tobin

model, when demand is deterministic and exogenous, optimal frequency and optimal

shipment size should increase in proportion to the square root of the demand. A sim-

ple gravity framework can help decomposing the different margins of exports at the

firm-product-country level and illustrate how frequency is used by firms to smooth the

impact of different business conditions on their different markets. In this simple gravity

framework, we consider only market size (GDP of the destination country) and variable

trade costs – as proxied by the time to ship from Le Havre in France to the destination

market – as explanatory variables.15

Results are reported in Table 2. As expected, the total value sold by the firm is

increasing in GDP and decreasing in time to ship. The number of shipments accounts

for the bulk of the impact of trade costs, while shipment frequency and size capture

larger demand on a more equal footing: roughly 40 percent of the increase in exports

to larger markets channels through the number of shipments. This is in line with

the theoretical prediction inspired from Baumol-Tobin, though below the 50 percent

predicted by such simple theoretical framework.

The stylized facts presented in this Section brush a simple world where the median

firm ships exports on an infrequent basis (twice a year on a given destination for a given

product), and the more so on remote destinations (once a year for extra-EU destina-

tions). In a deterministic setting, firms adjust to larger market size on two margins

in order to minimize logistics costs by increasing both the number of shipments and

shipment size. But this reasoning hardly makes justice to the complexity of decisions

15Annual GDP data are from the World Bank. Using alternatively great cycle distance in kilometers
or total imports – excluding imports from France – as a measure of demand varying across destination-
and-product provides qualitatively similar results.
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to be made by exporters. To better characterize this optimization problem, we firstly

need to model the decision to be made by the exporter in presence of uncertainty. This

is done in the next section.

Table 2: Frequency as a trade margin

(1) (2) (3)
Dep.Var. Tot. Value Nbr shipment Avg. Value

Log GDP 0.161*** 0.069*** 0.092***
(0.008) (0.003) (0.008)

Log time to ship -0.045** -0.054*** 0.009
(0.018) (0.003) -0.018

Firm*product FE Yes Yes Yes

Observations 548,813 548,813 548,813
Number of id 307,622 307,622 307,622
R-squared 0.041 0.043 0.023

Extra-EU exports sample. Shipment frequency truncated for 1-
9 months. Robust standard errors in parentheses, clustered by
destination-product level. ***, **, * denotes significance at 10%,
5%, 1% level, respectively.

3. Inventory model

Consider the following management problem of an exporting firm: how many Barbie

dolls should I ship from my Chinese assembly line to the UK for next Christmas? This

question illustrates the role of uncertainty on demand (children might prefer electronic

devices this year) aggravated by distance (Guangzhou to Southampton is up to a 30

days sailing route) and inventory costs. Posting new orders in case of underestimation

of demand will be very costly (air delivery), while ordering more than demanded means

storing unsold dolls. Hence, uncertainty faced by the firm is positively affected by the

uncertainty of demand and the time to ship (aggravated potentially by perishability

given season specific demand).

This example is indeed an extreme case of a more fundamental optimization problem

faced by firms making decisions on the size of likely sales and on the modes and details

of how to best serve their clients. In this section, we present the building blocks of an

inventory management model tailored for exporting. We discuss key insights, while the

model is fully presented in the Appendix. This framework will help us in formulating

predictions to be tested in the empirical part of the paper.
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In what follows, we will first present the model structure, discuss demand and

uncertainty. Then we describe the functioning of the inventory model and offer relevant

insights and predictions.

Inventory model for exporters – In this paper, we propose a framework which is

suitable for analysing the effect of demand uncertainty in international trade. Firms

consider external demand at each of their (product-destination) markets and optimize

their shipment process based on available cost information. Looking at exporters has the

advantage of identifying variation in demand from rather detailed international trade

data. We will see that volatility of demand differs substantially across destination and

product markets. Firms face uncertainty regarding their sales in all their markets – an

important feature of business.

Note that in this model we investigate a direct exporter, and assume that the firm

pays all logistic costs and sells to foreign clients directly from its warehouse in the

foreign country. We do not consider this a very strong restriction, however. While

many firms work with several buyers and customers, a great deal of firms are supplying

overseas firms under an agreement, or even making specific products ordered by foreign

partners. Yet, this does not change the overall validity of this setup, because the two

parties face the same structure of costs and sources of uncertainty.16

Model structure – Modeling inventory management of firms is widely studied17 and

there are several frameworks to choose from when studying optimal inventory behavior.

In this paper, we build upon a stochastic inventory management model with a contin-

uous revision order-quantity/re-order point, called (r, q) policy. Stochastic demand is

important in order to encompass uncertainty, and the inventory management literature

has also shown that the “order-quantity/re-order point”, called (r, q) policy is optimal

under many conditions and it is frequently used in practice. In an (r, q) policy, firms

monitor the fluctuation of sales and reorder goods of worth q should inventory fall below

16For instance, consider a case when a French company exports a consumption good to the US on
orders of a large retail chain. In this case, it may be the retailer who pays the costs and takes the
risks but it will make decisions based on the same information set and facing the same demand and
cost conditions. As a result, the effect of demand and cost variables on frequency of shipments shall
be qualitatively similar to the case where exporters conditions minding final consumers. Of course,
transaction prices may be different in the two settings; logistic costs will then be excluded from sales
price. Also, the impact of firm characteristics such as financial strength (capacity for lending) may
depend upon which partner we consider but this is not central to our case.

17See for instance the Hadley Within review from 1984, the textbook by Zipkin we rely on, or
Frederick S. Hillier, Gerald J. Lieberman (2004) Chapter 18 of Introduction to Operations Research
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a certain limit, r. Continuous revision implies that firms consider re-ordering at any

point in time. Given the significant shipping times characteristic in international trade

using a continuous time approximation does not constrain the generality of the model.

Also, we assume that lead-time (the shipping time) is deterministic.

Trade cost – Following the international trade literature, we assume that trade costs

are composed of four parts. First, sending a shipment requires k per-shipment cost.

Second, holding one unit of the product for one unit of time requires spending h on

inventory costs. Third, when firms run out of stocks, back-ordering one item costs b.

Fourth there is an iceberg type trade costs. Note that iceberg trade costs are paid

independently of the inventory policy decisions.

Demand and uncertainty – A crucial part of the theory is the way we model demand

uncertainty. Let us first assume that demanded quantity is exogenous, i.e. prices and

quantities are given, and demand during a unit of time is normally distributed, with

N(λ,Ψ2λ). Importantly, relevant demand will be a product of per time unit average

demand, λ and time required for the shipment to arrive, L, while Ψ reflects market-

specific demand uncertainty proportional to its mean. The key measure of uncertainty

for the firm is the variability of demand between its actions and the arrival of the

shipment overseas, a product of L and the markets specific volatility of demand. We

will be interpreting L broadly, taking up the time difference between order and delivery.

Based on anecdotal evidence, in overseas transport, L typically ranges between 2-12

months as it would not only include actual shipment but administration and with just

in time production, assembly as well.18

Defining the optimal quantity – The aim of this model is to express the optimal size

of quantities to be shipped in function of expected demand and uncertainty. In section

6.5 of the Appendix, we will show that the optimal base-stock policy has no closed form

solution. However, it will be derived that instead, we can offer an implicit functional

form, and calculate functional form of bounds. Indeed, the optimal quantity may be

approximated as:

ln q∗ = α + βdem lnλ+ βuncΨ
√
L (1)

18It may include: notification of partner, discussion of details of delivery, implementation, production
– depending on the good this may include assembly, order of parts, production of certain components,
retooling, resetting machines – packaging, administration of delivery, delivery from factory gate to
harbor, containerizing, shipping, delivery to distribution, check and verification of delivery.
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The optimal quantity is a increasing function of demand intensity and decreasing

function of the product of shipment time and uncertainty (λ and Ψ
√
L ). Importantly,

betas are functions of structural parameters (k,h,b) of the model.

Concerning the level of cost, one can show that the optimal cost of general (r, q)

policies can be approximated as:

C∗(r,q) = τλ+
(
C1 + C2

√
Ψ2L

)√
λ (2)

Costs are positively related to
√
λ and are also increasing in (Ψ

√
λL). Also, C1 and

C2 are positive parameters, which are functions of k, h and b. For international trade

transactions, we added the iceberg-type cost (τ) to this function.

Insights and predictions – Our model generates four insights. First, there are

economies of scale in logistics, owing to the per-shipment cost component: as demand

grows, firms send more units in each shipment, generating a declining marginal cost

function. In other words, firms can serve large markets with a lower marginal cost than

smaller markets. Second, it is optimal for firms to adjust to larger demand on two

margins: they send both larger and more frequent shipments. Third, logistics costs

increase in demand uncertainty, because firms are more likely to pay back-order costs

when demand is more volatile. As a result, the marginal cost curve in a more uncertain

market is above that of a more stable market - as illustrated in Figure 2. Moreover,

economies of scale are also more important on more uncertain markets. Fourth, as a re-

sponse to uncertainty, it is optimal for firms to adjust the parameters of their inventory

policy, r and q in such a way, that they send less frequent but larger shipments.

Let us highlight the intuition behind the uncertainty-shipment linkage result. In

our setting, there is an inventory level (s∗) which would be optimal if the per shipment

costs was zero. The expected inventory cost is an increasing function of the distance

of the inventory level from this optimal level - i.e. one can define a U-shaped expected

cost function of inventory levels with its minimum at s∗. A key insight is that this

function becomes less convex when uncertainty is higher because inventory levels will

change more anyway during the time the shipment arrives, hence the starting level

of inventories matter less (similarly to call options for stocks with different volatility

levels).

Let us consider a firm’s decision weather to send an extra shipment. Its marginal

cost is k independently from the level of demand uncertainty. Its marginal benefit is

11



that the inventory level will be held more tightly in the vicinity of s∗. But staying

close to s∗ matters less when volatility is large (and the expected cost function is less

convex), so the marginal benefit of sending the extra shipment decreases in volatility.

As a result, firms send less frequent shipments under more demand uncertainty.

Optimization across markets – Firms will take into account demand conditions, in-

cluding uncertainty, when deciding about shipment schemes to each of their markets.

Let us now consider optimal decisions of firms facing a downward-sloping demand func-

tion. To do this, we embed the downward sloping marginal cost function into a CES

demand framework 19. For one particular market, the demand for firm i may be given

by the CES demand function in that export market:

λi =
I

P 1−σ p
−σ
i , (3)

where I denotes income, and P the price level in the export market.

To illustrate, consider in Figure 2 the marginal cost functions (MC) approximated

earlier, together with a marginal cost function for a firm only facing iceberg-type trade

costs.20 We may make several observations. Obviously, marginal costs are higher when

logistics costs are taken into account. The marginal cost function is also decreasing in

quantity owing to increasing returns in inventory management. Finally, the marginal

cost is larger and more convex in the stochastic case thanks to the increasing returns

in handling demand volatility.

Let us now compare two markets of different size, as depicted in Figure 3. Firms

obviously sell more on the larger market, and economies of scale in logistics makes their

output elasticity with respect to market size to be larger than one. This implies that

firms will send both more frequent and larger shipments when demand is higher. Note

that a farther away market will have higher iceberg trade costs and a smaller effective

market size.

Insights and predictions across markets – As we have seen an increase in uncertainty

pushes up the marginal cost curve, leading to a fall in exports. As for the components

of export quantity - its frequency and its size - we have a strong prediction for frequency

19Note that modelling dynamic pricing of the firm following realized demand shocks goes beyond
the scope of this paper.

20Note that due to uncertainty on demand, the MC curve is above what would be a deterministic
setting.
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Figure 2: Optimal decisions with different market size

only. In fact, the number of shipments is affected by higher uncertainty through two

channels. Smaller quantity implies that firms will send a lower number of shipments and

higher uncertainty in itself leads to less frequent shipments even when holding quantity

fixed. Hence, these two forces point to the same direction: we expect a negative effect

of increased uncertainty on the number of shipments.

This is not case for shipment size. On the one hand, the reduced export quan-

tity predicts a negative effect. Higher uncertainty, on the other hand, leads to larger

shipments when holding quantity fixed. Hence, the net effect of the two channels can

go either way depending on the cost structure and the elasticity of demand. We can

predict, however, that increased uncertainty is associated with larger shipments when

we control for quantity.

Finally, as we have discussed, the amount of uncertainty relevant for the firm is

the product of uncertainty and shipment time. This predicts an interaction between

uncertainty and distance: the effects of uncertainty discussed in the previous paragraphs

should be larger in farther away markets.
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Figure 3: Optimal decisions with different market size

4. Estimation methodology and results

This section will first present the estimation method and present our approach to

measuring uncertainty. Then, we present the core results, followed by robustness tests

regarding measurement of uncertainty, sample selection and econometric specification.

Our theoretical framework yields a number of predictions on quantity sold as well as

number of shipments. Unfortunately, in our database many firms fail to report quantity

(while all report sales values). Furthermore, sometimes firms do only report quantity for

some products/destinations (for instance, coverage to shipments to Central-America is

rather low.) The probability of non-reporting may well be correlated with our variables

of interest: this variable is more likely to be missing for less frequently exporting firms

or in smaller markets. I order to handle this potential endogenous selection issue, we

will use sales revenue as our main dependent variable rather than quantity.

To mitigate this disconnect, we will control for conditions of demand and compe-

tition with both firm-product and country fixed effects. In this cross-sectional data,

this should capture a great deal of variation of prices. Importantly, as shown in the

Appendix (Table 9), core results do not change importantly when we use quantity as a

dependent variable on the smaller sample.
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4.1. Estimation method

Our theoretical predictions relate the uncertainty that firms face on specific mar-

kets to (i) their shipment frequency (Fijk), and (ii) their average shipment value (qijk)

and (iii) their total (annual) shipment value (λijk ≡ Fijkqijk). We take logs in each

variable and estimate the model at firm-product-destination (i, j, k) level in 2007. The

estimating equation is:

ln yijk = α + βuncΨjk + θij + ηk + εijk (4)

Where yijk represents any of the three dependent variables. Given our focus on estimat-

ing uncertainty, we will use a set of fixed effects to capture unobserved heterogeneity.

In particular, θij are firm-product fixed effects controlling for composition effects due to

the self-selection of most productive firms into difficult markets (Eaton et al., 2004).21

Additionally, unobserved cost characteristics may be related to both firm features such

as discount rate or product attributes such as weight. We also include destination

specific fixed effects (ηk) that shall pick distance and market size (represented in the

model as Ik) as well as costs associated with destination market interest rates, or doing

business types of costs. Regarding the identification in this double fixed effect model,

we compare the sales of a given firm selling the same (6-digit) product at two markets

with different level of demand volatility. For both markets, we look at how sales may

deviate from the average sales of French firms to that country22. Standard errors are

clustered at the destination-product level23.

One concern regarding our estimation strategy is that the number of months with

positive shipments is a noisy proxy of the number of shipments in a given year. While

21Another selection issue arises from the fact that we do not observe all firms/products on all markets
and that this selection is not random. The potential negative correlation arising from selection into
export markets would however bias our results towards zero. As a robustness test, we follow Crozet
et al. (2012) and estimate Equation 4 for fqijk considering explicitly censoring points depending on
markets using the minimum positive value of exports observed on each market. This methodology
is however not directly applicable to the breakdown in the shipment and average value margins. As
expected, this methodology yields a larger coefficient on uncertainty. Results are available on request.

22For example, we compare firm A’s sales of shirts in Argentina less the average sales by a French
firm in Argentina to firm A’s sales of shirts in Brazil less the average French firm sales in Brazil. We
relate this difference in relative sales to the difference between shirt market uncertainty in Brazil and
Argentina.

23According to Cameron and Miller (2011), it is maybe useful to use two-way clustering at the
destination and the product level or the destination and firm level. We tested models accordingly, and
it did not change results qualitatively. Results are available on request.
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it is a reliable approximation for low frequency exports, it may be biased for high

frequency exporters (see Figure 1). To handle this problem, we opted for the simplest

and most conservative treatment and excluded the upper tail of the distribution focusing

on firm-product-destination observations for 1-9 shipments. In terms of generality, this

is not a very serious problem, as this requires dropping only 7.6 percent of observations.

However, it implies loosing the larger exporters and the ability to identify the role of

very frequent shipments. In robustness section 4.4, we show that our result are robust

to a direct treatment of censoring using a tobit estimator.

We also exclude within-EU exports. The main reason for doing this is the fact

that data on intra- and extra-EU trade are measured differently: different reporting

thresholds apply to the collection of export data for EU and non-EU countries which

may lead to systematic measurement error in measured frequencies.24 Logistics effects

of uncertainty may also be less important within the EU, because transport is much

closer to just-in-time there. Finally, excluding EU countries also which also guarantees

that we will disregard neighboring countries to France.25

4.2. Measuring uncertainty

From an empirical point of view, an important issue is the measurement of uncer-

tainty faced by exporters. In our model of inventory management, stochastic demand

makes firms uncertain about their final demand on a market. The relevant dimension

of uncertainty we aim at capturing is, therefore, related to sales dynamics over time at

the firm level. This measured uncertainty may be related to both variations in overall

annual demand on the market and the process of reallocation of market shares across

firms.

Our uncertainty variable Ψjk is measured at the product-destination level. It cap-

tures the volatility of sales firms have experienced in the past on a given market: it is

the average of firm-level sales variation. To measure it, we use 8 years of data previous

to our point of estimation, and look at the variance of annual sales changes of all French

firms exporting a given product j to a given destination k. First we calculate the vari-

ance of change in (log) sales from one year to another for each firm in the sample, and

24All extra EU export shipments over 1,000 Euros are to be declared to the French Customs whereas
for exports to other EU Member states the declaration is compulsory if the yearly cumulated value of
exports to the other 26 EU Member states taken together is larger than 150,000 Euros.

25With the exception of Switzerland.
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then, take the mean across firms. Formally, consider N French firms (indexed by i)

selling on a specific market (j, k) over the period 1999-2006:

Ψjk = ln

(1/N)
N∑
i=1

√√√√√
1/(n− 1)

n∑
t=1

Ẋ2
ijk,t −

(
1/(n− 1)

n∑
t=1

Ẋijk,t

)2

 (5)

where Ẋijk,t is the log change in the value of exports of product j by firm i to destination

k over the one-year period (t − 1) to t. We use information on changes in firm sales

observed at least three times on the same (destination/product) market over 1999-2006.

In all regression analysis, we take log of this average.

This log uncertainty measure has a mean of 0.15 and varies substantially across

countries (for instance 0.1 in Australia, 0.21 in Brazil, 0.26 in South Africa). Impor-

tantly for our exercise, it varies across product markets within countries. It has a

standard deviation of 0.37 in our sample (the top 5% reaching 0.67, and lowest 5%

-0.48).

We are aware that several studies considered uncertainty, stemming from produc-

tivity shocks (Bloom et al., 2012), price volatility (Hummels and Schaur, 2010) or in-

stability of political-institutional variables (Handley and Limao, 2012). Our approach

is dedicated to the choices of individual exporters confronted with demand uncertainty

is somewhat different, as we are concerned with the volatility of demand itself, and

its use will complement existing approaches. Robustness estimations with alternative

measures of uncertainty are provided in section 4.4.

4.3. Core results

We now turn to testing the predictions of the inventory model with results shown in

Table 3. A firm facing one standard deviation (or 0.37) higher log uncertainty for a given

product/destination market tends to sell 1.67% less on average at that market (column

(1)). This is a significant economic magnitude: in terms of trade volumes, one standard

deviation higher level of uncertainty at a market is equivalent to approximately 37%

larger trade costs.

Columns (2) and (3) decompose this elasticity into two margins as suggested by the

model. Here, the negative relationship is mainly explained by fewer shipments per year

in that destination: shipment frequency is less by 0.34% (column(2)), while shipment
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Table 3: Core results

(1) (2) (3) (4) (5)
Dep.Var. Tot. Value Nbr shipment Avg. Value Nbr shipment Avg. Value

Log uncertainty -0.042*** -0.034*** -0.008 -0.021*** 0.021***
(0.009) (0.004) (0.007) (0.003) (0.003)

Log tot. value 0.316*** 0.684***
(0.001) (0.001)

Firm*product FE Yes Yes Yes Yes Yes
Destination FE Yes Yes Yes Yes Yes

Observations 548,813 548,813 548,813 548,813 548,813
Number of id 307,622 307,622 307,622 307,622 307,622
R-squared 0.058 0.057 0.047 0.494 0.811

All regressions include firm-product fixed effects as well as destination fixed effects. Extra-
EU exports sample. Shipment frequency truncated for 1-9 months. Robust standard errors
in parentheses, clustered by destination-product level. ***, **, * denotes significance at
10%, 5%, 1% level, respectively.

size does not change significantly (column (3)). These results are much in line with our

predictions: an increase in uncertainty leads to larger marginal cost, which results in a

fall in export value and shipment frequency.

Remember that uncertainty affects average shipment size via two channels. Directly,

higher uncertainty increases average package size, but indirectly, it lowers overall sales

(λ) and this reduces shipment size, too. The outcome of this depends on model param-

eters in general. In our case the total effect is close to zero (column(3)).

In columns (4) and (5) we focus on the direct effect only, by running the same

regression as before, but this time, controlling for the total value exported by the firm

to the given market. This allows one to see whether firms choose a different combination

of margins under different levels of uncertainty even when they deliver the same total

quantity. Our estimated equation becomes:

ln yijk = α + β1Ψjk + β2 lnλijk + ηk + θij + εijk, (6)

which is estimated both for Fijk and qijk. The results confirm that controlling for

the annual total sales, the product-destination markets with higher uncertainty are

associated with fewer but larger transactions.

For given value exported, a 10% higher uncertainty is associated with 0.21% larger

shipment size (and hence, 0.21% less transactions ). This is the estimated value of
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the direct impact of uncertainty on optimal logistics choice - i.e. disregarding the

indirect channel. This exercise is also an illustration of how firms with larger sales have

on average both more frequent shipments (31.6%) and larger sized shipment packages

(68.4%), hence the direct channel accounts for about 2/3 of the impact.

Next, we test whether demand volatility matters more for far away markets, as predicted

by the stochastic inventory framework where effective uncertainty is the product of time

to ship and demand volatility. We test this by interacting the volatility variable with

time to ship.

We use data computed by Berman et al. (2012) on the time to ship between any

two countries, assuming a speed of 20 knots for maritime transports and 60 knots for

shipments by road. Further, we use travel time by maritime (and road for neighboring

and landlocked countries) transportation as a proxy for the time gap between sending

and delivering goods to final consumers.26 As travel time is hard to measure when

air freight is included, we therefore restrict our sample to maritime shipments which

represent 52% of our sample for this exercise.27

To test this prediction, we interact in Table 4 our time to ship and volatility vari-

ables. Equation (4) becomes:

lnFijk = α + β1Ψjk + β2 lnLk ∗Ψjk + β3 lnV alueijk + ηk + θij + εijk. (7)

We estimate two versions of this model. First, we consider time to ship linearly in the

interaction, followed by a model introducing a dummy for far away transactions. The

parametric model presented in column (1) provides empirical evidence that shipment

time magnifies the impact of uncertainty: the number of shipment decreases more with

uncertainty when the destination market takes a long time to reach. Alternatively, the

non-parametric specification presented in column (2) confirms that the negative impact

of uncertainty on the number of shipment falls particularly on destination market whose

time to ship is larger than the median.

26Using great circle distance provides quantitatively similar results.
27Data on the mode of transport at the frontier are from Comext, which details the mode of transport

of extra-EU trade by destination and HS6 digit level and differentiate between sea, rail, road, air, postal
consignment, fixed transport installations, inland water transports or own propulsion. We use the
information on the main mode of transport by market (product × destination) to identify shipments
by sea from other modes of transport.
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Table 4: The role of travel time

(1) (2)
Dep. Var Nbr ship. Nbr ship.

Log uncertainty 0.019 -0.006
(0.014) (0.005)

Time to ship × log uncertainty -0.012***
(0.005)

High time to ship dum. × log uncertainty -0.023***
(0.006)

log tot value 0.326*** 0.326***
(0.001) (0.001)

Firm*product FE Yes Yes
Destination FE Yes Yes

Observations 289,781 289,781
Number of id 165,294 165,294
R-squared 0.499 0.499

Maritime shipment only. All regressions include firm-product fixed effects as
well as destination fixed effects. Extra-EU exports sample. Shipment frequency
truncated for 1-9 months. Robust standard errors in parentheses, clustered by
destination-product level. ***, **, * denotes significance at 10%, 5%, 1% level,
respectively.

4.4. Robustness

Our benchmark measure of uncertainty is the average variation in sales faced by

French firms in their (j, k) markets. There are several alternative approaches. In

this section, we analyze the robustness of our findings using alternative measures of

uncertainty, estimation methods and sample restrictions.

Measurement of uncertainty:

In terms of uncertainty measure, we are suggesting three alternatives.

First, firms may look at demand uncertainty from the vantage point of market,

rather than firm-level demand fluctuations based on past experience. To capture this,

we first consider aggregate uncertainty over time, computed as the relative standard

deviation of French quarterly sales (j, k) for 32 quarters (1999-2006). We added zeros

to quarters when annual sales that year were non zero and applied a simple seasonal

adjustment by calculating quarter dummies as deviations from a trend.

Second, we note that both our benchmark and the aggregate uncertainty variable

may be endogenous to the (i, j, k) shipment. To avoid this, we construct a second

aggregate uncertainty variable using the volatility, at the (j, k) level, of imports from
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countries other than France. Specifically, our second aggregate measure of uncertainty

is the standard deviation of growth rates (in log) of imports by (j, k) markets from

all countries except France over 2005/2006. Product level import data are taken from

BACI. Such measure of aggregate uncertainty in a market is likely to be less sensitive

to idiosyncratic shocks to large French firms on narrow product/destination markets.

A similar strategy is applied in Autor et al. (2013).

Third, we exploit the history of firms on specific markets and consider a firm’s

experience in a given market as a measure of uncertainty about its own demand on

specific markets. To the extent that local experience helps a firm to learn about its

market, it can reduce uncertainty. Our measure of firm’s experience in a given market

(j, k) is simply the number of years since entry on the export market (1994 being the first

available year). Of course this variable captures firm age and overall export experience.

However, given our firm-product fixed effect specification, this shall be partialled out.

Note that this variable has the opposite expected sign as all other, as a greater number

represents more certainty while for other variables, it implies greater uncertainty.

Results are presented in Table 5 for the number of shipments, comparing the effect

to the benchmark case (column 1), one by one. Results presented before are confirmed

as all uncertainty variables behave similarly to our benchmark.

Estimation and censoring: Here we test the sensitivity of our results to the use of

alternative estimators and treatment of the censoring of our dependent variable. For all

of this, we focus on the number of shipments only, and results are presented in Table 6.

Estimates for the unconstrained model, for average shipment size and total sales may

be found in Appendix B.

Column (1) reproduces column (4) from Table 3 to ease comparability. Consider

first the issue of censoring. The fact that we have monthly data to proxy frequency has

led us to focus on markets with no more than 9 shipments, and hence we now also use

the full sample with all transactions. We present results of our preferred specification

for alternative estimators and systematically compare with estimations done with the

full sample (instead of keeping only the 1-9 shipments). Column (2) shows the baseline

results for the whole sample, i.e. also including observations with shipments 10-12. Note

that the number of observations is not so different: this restriction involved dropping

4.8% of observations. The estimated coefficient is slightly larger in absolute terms (-

0.027 vs -0.021), and this remains true for other specifications. In column (3), as an

alternative way to handle censoring, we present results using a panel data Tobit model,
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Table 5: Robustness: alternative uncertainty measures

(1) (2) (3) (4)
Dep. Variable log nbr shipments

Log uncertainty -0.022***
(0.003)

Log aggregate uncertainty over time -0.070***
(0.003)

Log aggregate uncertainty across countries -0.015***
(0.004)

Experience by (j, k) market 0.017***
(0.000)

Log tot. value 0.318*** 0.317*** 0.312*** 0.319***
(0.001) (0.001) (0.001) (0.001)

Firm*product FE Yes Yes Yes Yes
Destination FE Yes Yes Yes Yes

Observations 504,078 504,078 504,078 504,078
Number of id 287,510 287,510 287,510 287,510
R-squared 0.498 0.500 0.504 0.498

The first column is benchmark index used so far. Log aggregate uncertainty over time is a j, k
aggregate volatility over 32 quarters. Log aggregate uncertainty across countries is variation
of annual change for all countries but France. Experience is the number of shipment years
since 1994. Extra-EU exports and incumbent firms only. Shipment frequency truncated for
1-9 months. Robust standard errors in parentheses, clustered by destination-product level.
***, **, * denotes significance at 10%, 5%, 1% level, respectively.
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in which all observations with more than 9 months are treated as censored.28 Once

again, the key negative relationship between shipment frequency and uncertainty is

confirmed.

Our second concern is potential inconsistency resulting from heteroscedasticity in

data. To handle this, we use Poisson pseudo-maximum likelihood estimator proposed

by Santos Silva and Tenreyro (2006). This methodology is consistent with average

value of shipment estimation and the number of shipments proxied by the number of

non-zero monthly exports, at the firm-destination-product level. Poisson PML results

with destination fixed effects – presented in column (4) of Table 6 – confirm key results.

Table 6: Robustness: estimators and censoring

(1) (2) (3) (4)
log nbr shipments

OLS Fixed Effects Tobit RE Poisson PML
Sample baseline All All baseline

transactions transactions

Log uncertainty -0.021*** -0.027*** -0.069*** -0.028***
(0.003) (0.003) (0.002) (0.003)

Log tot. value 0.316*** 0.335*** 0.300*** 0.338***
(0.001) (0.001) (0.000) (0.001)

Firm*product FE Yes Yes - Yes
Destination FE Yes Yes Yes Yes

Observations 548,813 575,999 575,999 312,865
Number of id 307,622 310,961 310,961 71,674
R-squared 0.494 0.577

All regressions include firm-product fixed effects as well as destination fixed
effects. Extra-EU exports sample. Robust standard errors in parentheses,
clustered by destination-product level. ***, **, * denotes significance at 10%,
5%, 1% level, respectively.

Sample restrictions: So far we have focused on a full sample of observations outside

of the EU, with the only sample restriction due to censoring. Here, we propose two

additional sample reductions for robustness check.

First, a potentially important issue when looking at frequency in a particular year

is the impact of entries. New entrants on a market do not necessarily have a full year

28Changing the censoring limit to 8 or 10 months does not change the results importantly. Results
are available on request.
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of presence (e.g. they can enter in June 2007) which is flawing any attempt of mea-

suring export frequency or even export performance (Berthou and Vicard, 2013). In

order to address this issue, in Table 7 we limit the sample to incumbent firms (firms

that exported in any month of 2007 a given product to a given destination and were

present in 2006 for this product-destination pair). Results remain qualitatively un-

changed for total value and shipment frequency. As for the quantity, we now get a

small but negative coefficient suggesting that for incumbents, the indirect (sales vol-

ume optimization) effect of higher uncertainty slightly outweighs the direct (inventory

management reorganization) effect.

Second, Table 8 provides results of all our specifications on the sample of markets

mainly served through maritime transportation used in Table 4. This robustness check

reflects to the concern that the effect of demand uncertainty may be quite different

for maritime and other types of transportation. Here as well we find a significantly

negative average shipment size coefficient.

Table 7: Excluding new entrant firms

(1) (2) (3) (4) (5)
VARIABLES Total value Avg.Value Nbr shipments Nbr shipments Nbr shipments

Log uncertainty -0.071*** -0.020** -0.052*** -0.028*** 0.026
(0.011) (0.008) (0.005) (0.004) (0.016)

Time x Log uncertainty -0.017***
(0.005)

Log tot. value 0.339*** 0.343***
(0.001) (0.001)

Observations 313,062 313,062 313,062 313,062 173,599
R-squared 0.063 0.056 0.055 0.522 0.520
Number of id 149,105 149,105 149,105 149,105 82,377

Excludes firm-product-market triads when the firm did not export in 2006. All regressions
include firm-product fixed effects as well as destination fixed effects. Robust standard errors
in parentheses, clustered by destination-product level. ***, **, * denotes significance at
10%, 5%, 1% level, respectively.

Considering all these robustness checks, we can see that point estimates of the un-

certainty elasticity of shipment frequency to vary between -0.021 (our baseline estimate)

and -0.069 suggesting that presenting results on the non-EU, truncated sample with no

additional restrictions and with fixed effects is a rather conservative approach.
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Table 8: Only maritime transport

(1) (2) (3) (4)
VARIABLES Total value Avg.Value Nbr shipments Nbr shipments

Log uncertainty -0.058*** -0.022*** -0.036*** -0.017***
(0.010) (0.008) (0.005) (0.003)

Log tot. value 0.326***
(0.001)

Observations 289,781 289,781 289,781 289,781
R-squared 0.064 0.059 0.051 0.499
Number of id 165,294 165,294 165,294 165,294

Includes firms and destination-product markets when there is evidence on mar-
itime transport use. All regressions include firm-product fixed effects as well
as destination fixed effects. Robust standard errors in parentheses, clustered
by destination-product level. ***, **, * denotes significance at 10%, 5%, 1%
level, respectively.

5. Conclusion

Commerce is always confronting firms with uncertainty requiring planning and op-

erational optimization to use optimal logistics. Selling on foreign markets exacerbates

uncertainty as it takes time often months to re-optimize inventories following fluc-

tuations in demand. This paper focuses on the exporting firms problem aiming to

understand how can firms adapt to volatility. Markets with high uncertainty tend to

create more transaction costs for firms. This can be mitigated by flexibly adjusting

inventory management policies: altering the reorder point and shipment frequency.

Microeconomic decisions, made by firms on the number of shipments, may therefore

dampen the impact of uncertainty on aggregate trade flows . The purpose of this paper

was to propose a simple modeling framework of such decisions and to bring it to the

data.

To this end, we took a stochastic inventory management model, directly derived

the logistics cost function from this model and included it to a CES framework. In

this framework the marginal cost function is larger and steeper for more uncertain

markets, hence expected sales is a direct (decreasing) function of demand uncertainty.

The model helped us understand that shipment size will be affected by two opposing

channels, an indirect one (via lower sales in more uncertain markets) and a direct one

(under higher uncertainty, it is optimal to shop the same quantity in larger shipments)

effect. The indirect channel is expected to be negative higher uncertainty is translated

into higher expected optimization costs and hence, lower expected sales. The direct
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channel is expected to be positive firms will hope to have larger batches at site to

serve unexpected demand. At the same time, shipment frequency is lowered by both

channels in the case of higher uncertainty. Importantly, as the cost of not being able to

serve a customer is a function of delivery time, uncertainty matters only for shipments

to distant markets.

Key model predictions were confirmed by evidence using French monthly trade data

for 2007. In particular, shipment frequency was proxied by the number of monthly non-

zero shipments. Our empirical analysis confirms that firms behavior varies by market

conditions in terms of uncertainty. For markets with 10% higher demand uncertainty,

firms on average reduce their annual sales by 0.4% and cut the number of their shipments

by 0.3%. Finally, we predict and observe that decreasing time to ship increases more

the number of shipments and total exports to more distant and more uncertain markets.

Modeling the effect of uncertainty with logistics models shows an additional and very

intuitive channel through which uncertainty affects trade: under larger uncertainty

firms have to hold larger inventories, which increase their marginal cost in a non-

linear way. We have also shown, that the effective uncertainty faced by firms is the

product of time to ship and demand volatility. This framework suggests a number of

macro and policy consequences. First, this framework provides an additional factor

when considering trade costs: time-to-ship can increase logistics costs to a much larger

degree than its direct impact of shipping costs. This suggests an additional advantage

of reducing time-to-ship either by technological progress or policy interventions (doing

business etc): with shorter shipping times firms will also face lower effective uncertainty,

which further reduces their marginal cost and increases trade volume. Second, these

advances may have a heterogeneous effect for different countries: as the added cost of

inventory management is most likely to be largest for distant and small countries with

volatile demand, such countries will benefit the most from reducing trading times when

logistics costs are considered. For instance, some of such countries may gain better

chances to integrate into global value chains. Third, our framework shows that besides

direct shipping costs per-shipment cost and inventory costs may also be important

in determining trade. Hence policies and technological progress which affects these

(reducing the cost of smaller shipments, providing low-cost and high quality logistics

centers) should also have trade-enhancing effects.
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6. Appendix A: Theoretical framework

We now provide a more detailed description of our theoretical framework. First we

present key features of the inventory management model we chose and explain how it

will be applied for exports. This is followed by a detailed presentation of the model

setup, inventory management behavior and firm optimization. Before introducing the

(r, q) inventory policies, we start with the special case of base-stock policy in subsec-

tion A:basestock. In subsections and 6.6, we show the logic of optimization in the

general (r, q) policy setup building on the previous results about base-stock policies.

Once optimal quantity and shipment size is determined, we extend this by allowing for

endogeneous demand - shaped by local market conditions and shipment reactions.

6.1. Key features

The theoretical model builds on Chapter 6 of Zipkin (2000), an established textbook

on inventory management. We gather important features, simplify the presentation,

refocus the model on the problem at hand and extend it to a CES demand system.

Streamlining and extending the model leads to a simple framework used for the first

time – to the best of our knowledge – in the framework of international trade.

As discussed in the main text, we will use a “world-driven”, stochastic demand model

with a deterministic leadtime. In a “world-driven” stochastic demand model, demand

occurs independently once every unit of time and the state of the world will partly

determine demand. The state of the world includes anything relevant from macro-

economic conditions to industry shocks. This initial approach assumes that demand

fluctuation is external to the given firm’s optimization framework: its actions will not

affect the distribution of possible demand in the next period and beyond.

We also assume that firms follow and (r, q) inventory policy: it will reorder goods

of worth q should inventory fall below a certain limit, r.

Out of several options, we picked this setup for several reasons. First, stochastic

demand is crucial for our purposes, as we are mainly interested in the effect of demand

volatility on exporting. Uncertainty has a structure that resonates exporters’ problem:

demand is a product of some basic feature (such as market structure, institutions,

technology) and market size, as featured in world-driven systems. Second, the model

captures the fact that it takes time to export, and hence adds a time dimension to
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uncertainty.29 Third, while we’ll use the normal approximation of the MCDC process,

we know that this structure is flexible enough to include several scenarios, including a

model where importers also optimize their inventories.

Note finally that this model assumes independent inventory management process

for multi-product firms and hence, allows determining rules for single products only.

Under – a fairly realistic – assumption of product-specific production, shipment and

distribution, this may be an acceptable simplification.

6.2. Exporters facing uncertainty

In the next step, we embed such steady state inventory behavior into a framework

with CES demand on foreign markets. Firms will consider external demand at each

of their (product-destination) markets and optimize their shipment process based on

available cost information. This is much in line with our empirical framework, which

has the advantage of identifying variation in demand from rather detailed international

trade data.

We assume that demand during a unit of time is normally distributed, withN(λ,Ψ2λ).

Variance is written as a product of market size and Ψ, which represents the variability

of demand for the product-country combination relative to its mean. This is a useful

abstraction as it allows considering it as personal demand aggregated for countries.

Relevant demand is a product of per time unit average demand, λ and time required

for the shipment to arrive, L.30

We assume that trade costs are composed of four parts. First, sending a shipment

requires k per-shipment cost. Second, holding one unit of the product for one unit

of time requires spending h on inventory costs. Third, when firms run out of stocks,

backordering one item costs b. Fourth, there are iceberg type trade costs, to be paid

independently of the inventory policy decisions.

To follow the inventory behavior, we will define some stock variables. First, I(t) will

be the inventory on hand at time t. Second, B(t) will denote outstanding backorders.

29The model does not include stochastic leadtime, i.e. random variation in transportation time.
Using a stochastic leadtime model would complicate things a lot, while having modest benefit, as we
cannot observe individual leadtimes, only proxy time spent in transportation by the distance between
France and the destination countries

30This can be interpreted as an approximation of a Poisson or, more genarally, a Markov-chain-
driven counting (MCDC) process. Zipkin (2000) shows (p206) that the Normal approximation in our
context works rather well
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Third, IO(t) will represent inventory on order, the number of units which were ordered,

but have not arrived.

The total average cost in the long run depends on the average order frequency,

inventory stock and backorder stock per unit of time. These will be denoted by F̄ , Ī

and B̄, respectively. Under these assumptions, average cost per period (C) will be:

C = kF̄ + hĪ + bB̄ (8)

According to the (r, q) inventory policy, the firm orders q units of the product

whenever its inventory level fall below r31.

6.3. Base-stock policy: setup

In order to approach the general (r, q) inventory policies, we start with the special

case of base-stock policy. The definition of the base-stock policy is that the firm can

order infinitesimally small quantities, q = ε at any time t. To analyze total cost, we

assume that the stock level in time t = 0 is exactly s = r+ε > 0 hence I(0) = B(0) = s.

Consider any t > L. The number of outstanding orders only includes orders between

t−L and t. The logic of base policy also means, that each of these orders corresponds to

a demand, hence the stock of outstanding orders equals the leadtime demand D(t−L, t)
during this period:

IO(t) = D(t− L, t) (9)

Consider now the net inventory position, I(t) − B(t). In the base-stock policy, by

definition, the sum of the net inventory position and that of outstanding orders is

always s.

I(t)−B(t) = s− IO(t) (10)

As this is just a linear transformation of IO(t), it also has a normal limiting distribution,

with mean s and variance of Ψ2λL.

The normal distribution of the net inventory position allows us calculating the prob-

31Throughout this Appendix, we will use the following notation: λ: demand rate; L: Lead time; Ψ:
long-run variance to mean ratio; k: per-shipment cost, b: backorder cost; h: holding cost; ω:= b/(b+h);
c: variable production cost; τ : variable transportation cost; r: reorder point; q: batch size; F :
frequency, f = λ/q; C: Average cost per period; F̄ : Average order frequency, Ī: Average inventory
stock; B̄: Average backorder stock; s: r + 1, base-stock level; I(t): inventory level at time t; B(t):
number of outstanding backorders at time t; IO(t): Inventory on order; D(t): cummulative demand
through time t.
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ability of a positive inventory level and the expected backorder and inventory positions.

The probability that the inventory level is positive:

P (I(t) ≥ 0) =

∫ ∞
s

1

Ψ
√
λL

φ

(
x− λ
Ψ
√
λL

)
dx = 1− Φ

(
s− λ

Ψ
√
λL

)
, (11)

where φ is the standard normal probability density function, and Φ is the c.d.f. of the

standard normal distribution.

Given this probability, one can calculate the expected inventory level and backorder

cost:

B̄(s) =

∫ ∞
s

(x− s) 1

Ψ
√
λL

φ

(
x− λ
Ψ
√
λL

)
dx = (s− λ) Φ

(
s− λ

Ψ
√
λL

)
+Ψ
√
λLφ

(
s− λ

Ψ
√
λL

)
−(s− λ)

(12)

Ī(s) = s− λ+ B̄ = (λ− s) Φ

(
λ− s

Ψ
√
λL

)
+ Ψ
√
λLφ

(
λ− s

Ψ
√
λL

)
− (λ− s) (13)

One may simplify the notation by introducing the standard loss function, Φ1
(

s−λ
Ψ
√
λL

)
=∫∞

s

(
x− s−λ

Ψ
√
λL

)
φ (x) dx and get:

B̄(s) = Φ1

(
s− λ

Ψ
√
λL

)
Ψ
√
λL (14)

Ī(s) = Φ1

(
− s− λ

Ψ
√
λL

)
Ψ
√
λL (15)

Figure 4 shows how these functions behave under different conditions. The ex-

pected stock of backorders increases while that of inventories decreases nonlinearly as

s increases. Also, larger variance is associated with larger expected backorders as well

as larger inventory costs for a given s. Finally, both functions are convex.

Another important property is that both performance measures are affected by L

and Ψ through their effect on variance of demand, which, in turn, is a multiplicative

function of the two variables. The effective uncertainty a firm faces is the product of

leadtime and volatility of demand. Hence volatile demand plays an important role only

in far-away countries.
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Figure 4: Expected backorder and Inventory costs

Notes: In the figure σ is a shorthand for Ψ
√
λ. The parameters used for the figure

are λ = 10, h = 1, b = 1.5, k = 1.5.

6.4. General (r, q) policies

The (r, q) policy can be interpreted as a generalized case of the base-stock policy,

where q may take any value. The main insight when considering these policies is that

their performance measures are the unweighted averages all the base-stock policies with

s ∈ [r, r + q].

To gain some intuition for this statement, imagine what happens in very short time

intervals. We are interested in the behavior of the inventory position, I(t)−B(t)+IO(t).

As long as I(t) − B(t) + IO(t) ≥ r, the new demand is satisfied from the inventory,

while it jumps instantly to r + q as soon as it falls below r. Hence, we can imagine

the state space as a circle with a perimeter of q, going from r to r + q. The inventory

position always moves clockwise on this cycle according to the normal distribution of

the demand. As the magnitude of this movement does not depend on our position on

the circle, the inventory position can take any value between r and r + q with equal

probability so its limiting distribution is uniform on this interval. Hence, this is a
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continuous-time Markov-chain32.

It is also intuitive to show, that for a fixed t, the random variables IP (t) and

D(t, t+L) are independent, because IP (t) only depends on the demand process realized

before t.

Third, we can generalize equation (10) for this case. For all t ≥ 0, the difference

of inventory and backorder stocks (net inventory) is the sum of the realized demand in

the previous L time and the inventory position L periods ago:

I(t)−B(t) = I(t− L)−B(t− L) + IO(t− L)−D(t− L, t] (16)

This formula provides a description of the distribution of I(t)−B(t), because I(t−
L) − B(t − L) + IO(t − L) is distributed uniformly and D(t − L, t] has a normal

distribution, and the two are independent from each other33.

Thanks to the uniform distribution of I(t− L)− B(t− L) + IO(t− L), the distri-

bution of each performance measure can be expressed as the unweighted integral of the

performance measure of base-stock policies with s ∈ [r, r + q]. In particular,

B̄(r, q) =

∫ r+q

r

B̄(s) ds =

∫ r+q

r

Φ1

(
s− λ

Ψ
√
λL

)
Ψ
√
λL ds (17)

Similarly,

Ī(r, q) =

∫ r+q

r

Ī(s) ds =

∫ r+q

r

Φ1

(
λ− s

Ψ
√
λL

)
Ψ
√
λL ds (18)

Finally, frequency, the expected number of shipments per time unit is the fraction

of the mean demand and shipment size, which is the expression used in the core of the

text:

F̄ =
λ

q

6.5. Optimal base-stock policy

In this subsection we first show the optimal inventory policy for the base-stock

model followed by showing the bounds for the optimal solution in the general (r, q) case

32A more formal proof is provided by Zipkin (2000), p. 193.
33A more formal derivation is given by Zipkin (2000), p. 195.
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where no closed form solution exists.

Under the base-stock model, the firm minimizes:

C(s) = hĪ(s) + bB̄(s) =

[
hΦ1

(
− s− λ

Ψ
√
λL

)
+ bΦ1

(
s− λ

Ψ
√
λL

)]
Ψ
√
λL (19)

Two such functions with different uncertainty levels are illustrated in Figure 6.

Importantly, the partial derivative of the cost function with respect to variance of

demand is a bell-shaped curve:

∂C

∂(Ψ
√
λL)

= (h+ b)φ

(
s− λ

Ψ
√
λL

)
(20)

Logistic costs can be minimized simply by differentiating the cost function with

respect to s. The solution for the optimal base stock level can be expressed with using

the inverse normal c.d.f, Φ−1():

s∗ = λ+ Φ−1 (ω) Ψ
√
λL (21)

Let us turn now to the characterization of the optimal policy, q(r, q)∗, in the general

(r, q) case. The optimal q is bounded by two functions34. First, the optimal q is larger

than the optimal q when uncertainty is zero and positive backorders are allowed (
√

2kλ
ωh

).

Second, it has an upper bound which is the sum of the optimal q in the deterministic

case and the optimal cost in the base-stock policy divided by bh
b+h

. In particular:

√
2kλ

ωh
≤ q(r, q)∗ ≤

√
2kλ

ωh
+

(b+ h)

ωh
φ
(
1− Φ−1 (ω)

)
Ψ
√
λL (22)

Taking logs and using the formula ln 1 + x ≤ x yields:

1

2
ln

2k

ωh
+

1

2
lnλ ≤ ln q(r, q)∗ ≤ 1

2
ln

2k

ωh
+

1

2
lnλ+

(b+ h)
1
2

2ωhk
φ
(
1− Φ−1 (ω)

)
Ψ
√
L (23)

The optimal cost of general (r, q) policies is also bounded by similar functions.

bounded by two functions, depending on the optimal cost in the deterministic case

(C∗D =
√

2khωλ) and the optimal cost of the base-stock policy35:

34See Zipkin (2000) (p. 218)
35This theorem is proved in Zipkin (2000) pp. 218-221.
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C∗s = (b+ h)φ
(
[1− Φ]−1 (ω)

)
Ψ
√
λL (24)

In particular, the optimal cost of the (r, q) policy, C∗(r,q), is bounded by:

√
2khωλ+ C∗2s ≤ C∗(r,q) ≤

√
2khωλ+ C∗s (25)

Again, as both bounds increase in C∗s which, in turn, increases both in λ and Ψ
√
L,

we will assume that the cost function of the firm behaves this way.

6.6. Optimization with an (r, q) model

In this subsection, we will show the logic of optimization in the general (r, q) policy

setup building on the previous results about base-stock policies. In the general case,

k > 0 so q is not infinitesimal. While there is no closed-form solution for these general

policies, one can characterize them effectively by relying on the fact that their perfor-

mance measures can be calculated as an unweighted average of all base-stock policies

between r and q. Let us denote the cost of an (r, q) policy with C(r, q). This function

takes the following form:

C(r, q) =
kλ+

∫ r+q
r

C(s) ds

q
, (26)

hence, the cost is the sum of the per-shipment costs and the average cost of correspond-

ing base-stock policies.

The optimal q of such a policy can be illustrated in Figure 5. The C(s) function

shows the cost function of the base-stock policies for different values of s. For any

optimal q, the cost of the base-stock policies corresponding to r and q + r should be

the same, which is represented by H(q). Let us define A(q) as the shaded area between

the U-shaped curve and the horizontal line defined by H(q). A(q) is given by:

A(q) = qC(r + q)−
∫ r+q

r

C(s) ds. (27)

The graph helps understand how we find the optimal value of shipment size, q. Let

us assume, that we send just one less shipment. The marginal benefits of this is k for

each unit of demand λ. The marginal cost of sending one shipment less is that the q

units in it will be distributed across the other shipments and the logistic cost on each

of these units will be approximately H(q). Integrating over these units (from r to r+q)
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Figure 5: Opitimality condition for a general (r, q) policy

Notes: The graph depicts an inventory cost functions for various base-stock levels,
s as well as the optimal reorder point, r and the optimal shipment size, q. The
parameters used for the figure are λ = 10, h = 1, b = 1.5, k = 1.5, Ψ

√
λ = 0.5.

The shaded area, A(q) illustrates the marginal cost of sending one less shipment.

the cost difference, H(q)− C(s), is equal to A(q). As a result, in optimum:

A(q) = kλ (28)

Understanding the process, we can now illustrate the impact of uncertainty, i.e.

how the optimal shipment size, q is affected by an increase in the variance of demand,

Ψ
√
λL. Let us assume that volatility increases by a small amount, ε. The original

optimal quantity will be denoted by q1. Two functions with different volatilities and the

optimal choices are shown on the same Figure 6, the dotted line curve corresponding

to higher variance of demand. Given that C(s) is always convex, the cost function

corresponding to larger volatility will be ‘less convex’36. As a result, using q1 when

36The partial derivative of C(s) w.r.t the variance is (h+b)φ
(

λ−s
Ψ
√
λL

)
. Hence the difference between

the C(s) and C ′(s) can be approximated by the bell-curve shaped ε(h+ b)φ
(

λ−s
Ψ
√
λL

)
where φ denotes

the standard normal density function.
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Figure 6: Inventory cost functions

Notes: The graph depicts the optimal (r, q) policy for two uncertainty levels.

When uncertainty is lower, Ψ
√
λ = 0.5 the optimal policy is represented by q1

and r1. When uncertainty is high, Ψ
√
λ = 1, the optimal choices are q2 and r2.

The parameters used for the figure are λ = 10, h = 1, b = 1.5, k = 1.5.

volatility is increased by ε cannot be optimal, because A(q) will be smaller for this

less convex function – the new optimum will be q2 in our figure. Hence, the optimal

q should be increasing in the variance; larger Ψ
√
λL is associated with larger and less

frequent shipments.

As noted earlier, there is no closed form solution to the optimal shipment size.

However, we can get a bit more precise picture about the behavior of the optimal

quantity q(r, q)∗ by using results about its bounds (equation 23).

The bounds show that optimal q is a function of technology parameters (k,ω,h,b) as

well as two of our key variables, λ and Ψ
√
L. Hence we will use an implicit functional

form:

qi = f(λ,Ψ
√
L, •) (29)

Based on the functional form of the bounds, we can approximate this as:
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ln q∗ = α + βdem lnλ+ βuncΨ
√
L (30)

Based on the bounds above, one can derive some predictions for the parameters in

this equation. First, it is reasonable to assume that 0 < βdem < 1. Second, the model

also predicts that βunc > 0, hence higher uncertainty increases shipment size.

Furthermore, given equation (2), we can write

ln f ∗ = −α + (1− βdem) lnλ− βuncΨ2L (31)

Finally, let us look at the cost function. Concerning the level of cost, one can show

that the optimal cost of general (r, q) policies is bounded by two functions, as described

earlier. Both bounds increase in the cost of the optimal base-stock policy, C∗s which, in

turn, increases both in λ and Ψ
√
L: we will assume that the cost function of the firm

behaves this way. These bounds are increasing proportionally with
√
λ and are also

increasing in (Ψ
√
λL). Hence, we can assume that this is the case with the optimal cost

of the general (r, q) policy. Based on these bounds one can write up an approximation

of the logistics cost function which is increasing in demand intensity and uncertainty.

In the next section, in particular, we will use the following approximation:

C∗(r,q) = τλ+
(
C1 + C2

√
Ψ2L

)√
λ (32)

Note that we add the iceberg-type cost to this function. Also, C1 and C2 are positive

parameters, which are functions of k, h and b. As this function is only an approximation

from the two bounds, one cannot write up a closed form for these parameters. Still,

this form provides a tractable function for our simple derivations in the next section.

6.7. Extension to an endogenous demand system

Until now, we have assumed that demanded quantity is exogenous. It is, however,

an endogenous decision affected by cost structure and exogenous demand parameters.

Let us consider one particular market and assume that the demand for firm i is given

by the CES demand function in that export market:

λi =
I

P 1−σ p
−σ
i . (33)

Where I denotes income, and P the price level in the export market. Combining
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the CES demand function with the cost function previously derived yields the following

profit function, Πi = (pi − ci)λi − C∗(r,q):

Πi =
I

1
σ

P
1−σ
σ

λ
σ−1
σ

i − (c+ τ)λi − C1λ
1
2
i − C2

√
Ψ2Lλ

1
2
i (34)

Where is ci the variable cost of production. This function is maximized when:

dΠi

λi
=
σ − 1

σ

I
1
σ

P
1−σ
σ

λ
− 1

σ
i − (c+ τ)− 1

2

(
C1 + C2

√
Ψ2L

)
λ
− 1

2
i = 0. (35)

This equation once again does not have a closed-form solution, and thus we will

only consider it in a implicit functional form:

λi = g(I, τ,
√

Ψ2L, •) (36)

Importantly, one can calculate how optimal quantity is affected by the exogenous

variables by implicit function differentiation. In the following paragraphs, we are inter-

ested in the effects of market size, I, trade cost, τ and demand volatility.

To fix ideas, note that the marginal cost function is the following:

MCi = ci + τ +
1

2
(C1 + C2

√
ψ2L)

1√
λ

(37)

In Figure 3 in the main text, we immediately observe that market size, I is impacting

the optimal decision (here there are two markets with different I): taking into account

inventory costs leads to lower quantity on both markets than a firm which only pays

iceberg transportation costs. Also, the firm facing inventory costs increases its sales to

a larger degree as market size increases, thanks to increasing returns to logistics. It is

also shown by implicitly differentiating the first order condition:

dλi
dI

=
λi

I − 1
4
σ2

σ−1

(
C1 + C2

√
Ψ2L

) (
I
P

)σ−1
σ λ

2−σ
2σ
i

(38)

Consider now the effect of τ on λ. With implicit differentiation:

dλi
dτ

= − λ
1+σ
σ

i

σ−1
σ2

I
1
σ

P
1−σ
σ
− 1

4

(
C1 + C2

√
Ψ2L

)
λ

2−σ
2σ
i

(39)
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Again, when inventories are costless (h = 0 ⇒ C1 = 0) and if there were no

uncertainty , we would get back the usual result for the CES case with iceberg trade

costs.37 In presence of uncertainty, the predictions of the model with respect to market

size and τ are unchanged, but the nonlinearities are further magnified by uncertainty.

Expressing the effect of uncertainty by implicit differentiation yields:

dλ

d
√
ψ2L

=
1
2
C2λ

1−σ
σ2

I
1
σ

P
1−σ
σ
λ

σ−2
2σ + 1

4
(C1 + C2

√
ψ2L)

< 0 (40)

Hence, uncertainty reduces quantity sold, and the effect depends on the elasticity

of demand and the slope of the marginal cost curve. When analyzing the effect of

uncertainty on shipment size and the number of shipments, we should combine this

observation with the previous result that – with fixed quantity – uncertainty leads to

larger and less frequent shipments.

6.8. Wrapping up

In the previous subsections, we have derived the following expressions for our three

endogenous variables, exported quantity, shipment size and number of shipments. Here

we will wrap up our empirical predictions regarding the effect of uncertainty on these

variables.

λi = g(I, τ,
√

Ψ2L, •) (41)

ln f ∗ = −α + (1− βdem) lnλ(I, τ,
√

Ψ2L, •)− βuncΨ2L (42)

ln q∗ = α + βdem lnλ(I, τ,
√

Ψ2L, •) + βuncΨ
√
L (43)

Regarding the first equation, dλ

d
√
ψ2L

< 0, as shown before. As a result, we expect a

negative effect of uncertainty on total exports.

37When inventories are costly, however, the smaller effective demand on more distant markets drives
up the marginal costs because firms cannot benefit from increasing returns to scale in logistics tech-
nology. As a consequence, the fall in export is larger in our model than in models assuming iceberg
transportation costs, and this difference is increasing in C1 =

√
2hkω.
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Regarding frequency, we have:

df ∗

d
√
ψ2L

= (1− βdem)
dλ

d
√
ψ2L

− βunc < 0 (44)

The first term in this equation represents the indirect effect of uncertainty: when

uncertainty increases, total exports decrease, hence frequency decreases. −βunc shows

the direct effect of increased uncertainty on frequency: even when quantity is fixed,

larger uncertainty leads to more frequent shipments to minimize logistics costs. As

both terms are negative, we expect the total effect of uncertainty to be negative on

frequency. Also, when controlling for total quantity, we expect a negative direct effect

of uncertainty on frequency.

Regarding shipment size, we get:

dq∗

d
√
ψ2L

= βdem
dλ

d
√
ψ2L

+ βunc (45)

Now, the indirect effect is negative while the direct effect is positive. Hence, the sign

of total effect of uncertainty of shipment size is uncertain, depends on the magnitude of

βunc relative to βdem
dλ

d
√
ψ2L

. The direct effect, βunc, however, is expected to be positive.

Overall, equations (43), (42), (41) provide the predictions for our empirical analysis.
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7. Appendix C: Additional tables

Table 9: Core results - with quantity as dependent variable

(1) (2) (3) (4) (5)
Dep.Var. Tot. Quantity Nbr shipment Avg. Quantity Nbr shipment Avg. Quantity

log uncertainty -0.050*** -0.028*** -0.022*** -0.016*** 0.016***
(0.010) (0.004) (0.008) (0.003) (0.003)

Log total quantity 0.231*** 0.769***
(0.001) (0.001)

Firm*product FE Yes Yes Yes Yes Yes
Destination FE Yes Yes Yes Yes Yes

Observations 417,098 417,098 417,098 417,098 417,098
R-squared 0.039 0.053 0.032 0.398 0.868
Number of id 226,545 226,545 226,545 226,545 226,545

Reduced sample, where quantity is available. All regressions include firm-product fixed effects as
well as destination fixed effects. Extra-EU exports sample. Shipment frequency truncated for 1-9
months. Robust standard errors in parentheses, clustered by destination-product level. ***, **, *
denotes significance at 10%, 5%, 1% level, respectively.
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Table 10: Pseudo Poisson Maximum Likelihood

(1) (2) (3) (4) (5)

VARIABLES Total value Nbr shipments Avg.Value Nbr shipments Nbr shipments

Log uncertainty -0.051 -0.049*** 0.042 -0.028*** 0.032**
(0.053) (0.004) (0.038) (0.003) (0.016)

Time x log uncertainty -0.019***
(0.005)

Log tot. value 0.338*** 0.343***
(0.001) (0.002)

Observations 312,865 312,865 312,865 312,865 161,866
R-squared
Number of id 71,674 71,674 71,674 71,674 37,379

All regressions include firm-product fixed effects as well as destination fixed effects. Robust
standard errors in parentheses, clustered by destination-product level. ***, **, * denotes
significance at 10%, 5%, 1% level, respectively.

Table 11: Uncensored OLS

(1) (2) (3) (4) (5)

VARIABLES Tot. Value Avg.Value Nbr. Shipment Nbr. Shipment Nbr. Shipment

Log uncertainty -0.112*** -0.048*** -0.064*** -0.027*** 0.011
(0.010) (0.007) (0.005) (0.003) (0.013)

time x log uncert -0.012***
(0.004)

Log tot. Value 0.335*** 0.343***
(0.001) (0.001)

Observations 575,999 575,999 575,999 575,999 303,945
R-squared 0.094 0.068 0.095 0.577 0.576
Number of id 310,961 310,961 310,961 310,961 167,036

Includes above 9/year firm-product-destination observations. All regressions include firm-
product fixed effects as well as destination fixed effects. Robust standard errors in paren-
theses, clustered by destination-product level. ***, **, * denotes significance at 10%, 5%,
1% level, respectively.
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