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Abstract

Long-run forecasts of economic variables play an important role in policy, planning,

and portfolio decisions. We consider forecasts of the long-horizon average of a scalar

variable, typically the growth rate of an economic variable. The main contribution is

the construction of prediction sets with asymptotic coverage over a wide range of data

generating processes, allowing for stochastically trending mean growth, slow mean

reversion and other types of long-run dependencies. We illustrate the method by

computing prediction sets for 10 to 75 year average growth rates of U.S. real per-capita

GDP, consumption, productivity, price level, stock prices and population.
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1 Introduction

This paper is concerned with quantifying the uncertainty in long-run predictions of economic

variables. Long-run forecasts and the uncertainty surrounding them play an important role

in policy, planning, and portfolio decisions. For example, in the United States, an ongoing

task of the Congressional Budget O¢ ce (CBO) is to forecast productivity and real GDP

growth over a 75-year horizon to help gauge the solvency of the Social Security Trustfund.

Uncertainty surrounding these forecasts is then translated into the probability of trust fund

insolvency.1 In�ation �Caps�and �Floors�are option-like derivatives with payo¤s tied to the

average value of price in�ation over the next decade; their risk-neutral prices are determined

by the probability that the long-run average of future values of in�ation falls above or below

a pre-speci�ed threshold.2 And, there is a large literature in �nance discussing optimal

portfolio allocations for long-run investors and how these portfolios depend on uncertainty

in long-run returns.3

Let xt denote a time series, such as the in�ation rate, the growth rate of real GDP or

the return on a portfolio of stocks. Sample data on xt are available for t = 1; :::; T , say

1947-2014. Let xT+1:T+h = h�1
Ph

t=1 xT+t denote the average value of the series between

time periods T + 1 through T + h, say the 32-year horizon 2014-2046. We are interested

in the date T uncertainty about the value of xT+1:T+h, as characterized by prediction sets

that contain xT+1:T+h with a pre-speci�ed probability (such as 90%). This is a long-horizon

problem, since the horizon h is large relative to the number of available observations T (in

the example, r = h=T t 0:5).
We structure the problem so that the coverage probability can be calculated using as-

ymptotic approximations based on a central limit theorem. In particular we suppose that

both T and h are large, and construct the prediction sets as a function of a relatively small

number of weighted averages of the sample values of xt. We apply a central limit theorem to

the variable of interest (xT+1:T+h) and the predictors, and study an asymptotic version of the

prediction problem based on the multivariate normal distribution. Were all the parameters

of this normal distribution known (or consistently estimable), the prediction problem would

be a straightforward application of optimal prediction in the multivariate normal model.

The problem is complicated by unknown parameters that characterize the stochastic

process xt and hence also the covariance matrix of the normal distribution in the large-sample

1See Congressional Budget O¢ ce (2005).
2See Fleckenstein, Longsta¤, and Lustig (2013), Hilsher, Raviv and Reis (2014), and Kitsul and Wright

(2012) who use market prices on various in�ation-related derivatives to estimate market-based predictive

distributions of in�ation.
3See, for example, Campbell and Viceira (1999), Pastor and Stambaugh (2012), and Siegel (2007).

1



problem. We assume that the �rst di¤erences �xt = xt � xt�1 are covariance stationary.
(Recall that xt is a series like the growth rate of real GDP, in�ation, or asset returns, so

this does not rule out stochastic trends in these growth rates.) Since we are interested in a

long-run prediction (xT+1:T+h, for h large relative to T ) the crucial characteristic of xt is its

(pseudo-) spectrum near frequency zero. The relative paucity of sample information about

these low-frequency properties precludes a nonparametric approach. We therefore proceed

by constructing a �exible parametric model for the shape of the spectrum near frequency zero

that nests the fractional, local-to-unity and local-level forms of long run persistence. The

uncertainty about the parameter � of this model in turn becomes an important component

of the uncertainty about xT+1:T+h.

We use both Bayes and frequentist methods to incorporate this uncertainty in our predic-

tion sets. The Bayes procedure is straightforward: given a prior for the parameter �, and the

Gaussianity of the limiting problem, the predictive density for xT+1:T+h follows from Bayes

rule, so that prediction sets are readily computed. While Bayes sets have many desirable

properties, they have the potentially undesirable property of controlling coverage (that is,

the probability that the set includes the future value of xT+1:T+h) only on average for values

of � drawn from the prior. Thus in general, coverage will fall short of this average value

for some values of �, and the speci�cs of this undercoverage will depend on the prior used.

To address this limitation we robustify the Bayes prediction sets by enlarging them so that

they have frequentist properties: the resulting sets provide (possibly conservative) coverage

for all values of �. Using ideas borrowed from Müller and Norets (2012), we do this in a way

that minimizes the sets�average expected length.

In economics, arguably the most well-known predictive densities and corresponding pre-

diction sets are the �Rivers of Blood�shown in the Bank of England�s In�ation Report. These

are judgmental prediction sets for in�ation that are computed over a four year horizon by

the members of the Bank�s Monetary Policy Committee. In contrast, we are interested in

prediction sets computed from probability models over long horizons, and the literature on

this topic is relatively sparse. Most of the existing literature on long-horizon forecasting

stresses the di¢ culty of constructing good long-term forecasts under uncertainty about the

long-run properties of the process. Granger and Jeon (2007) provide a mostly verbal account.

Elliott (2006) compares alternative approaches to point forecasts and compares their mean

squared errors. Kemp (1999), Phillips (1998) and Stock (1996, 1997) show that standard

formulas for forecast uncertainty break down in the long-horizon local-to-unity model, but

they do not provide constructive alternatives. In the related problem of estimating long-

run impulse responses Pesavento and Rossi (2006) construct con�dence sets that account

for uncertainty about the local-to-unity parameter. Chapter 8.7 in Beran (1994) discusses
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forecasting of fractionally integrated series, and Doornik and Ooms (2004) use an ARFIMA

model to generate long-run uncertainty bands for future in�ation, but without accounting for

parameter estimation uncertainty. Two strands of literature study long-run forecast uncer-

tainty for time series that we analyze by constructing series-speci�c Bayesian models. Pastor

and Stambaugh (2012) compute predictive variances of long-run forecasts of stock returns

that account for parameter uncertainty. Lee (2011) and Raftery, Li, Sevcíkova, Gerland, and

Heilig (2012) study long-run forecasts of population and fertility rates.

The outline of this paper is as follows. Section 2 formalizes the long-horizon prediction

problem and discusses the low-frequency summaries of the sample data used in the analysis.

This section also introduces two running examples: forecasting the average growth rate

of real per-capita GDP and the average level of price in�ation in the U.S. over the next 25

years. Section 3 discusses and develops the requisite statistical tools for constructing the long-

horizon prediction sets. Two sets of tools are needed. The �rst is a central limit theorem and

associated covariance matrix that yields a large-sample Gaussian version of the prediction

problem. The second are methods for constructing Bayes and frequentist prediction sets for

this limiting problem. The Bayes procedures are standard; the frequentist procedures are

not, and are developed in Section 3.3. Section 4 takes up the important practical problems of

parameterizing the covariance matrix in the limiting problem (which involves parameterizing

the spectrum of xt near frequency 0), choosing a prior for the Bayes prediction sets and a

related weighting function for the frequentist sets (to obtain a scalar criterion for comparing

the e¢ ciency of sets), and choosing the number of low-frequency averages of the sample data

to use (which involves a classic trade-o¤ between e¢ ciency and robustness). Taken together,

Sections 2-4 develop methods for constructing prediction sets with well-de�ned large-sample

optimality properties; these methods are illustrated using the GDP and in�ation running

examples throughout these sections. Section 5 uses simulations and pseudo-out-of-sample

experiments to evaluate the performance of these sets in small samples. One focus of this

analysis is the e¤ect of level or volatility "breaks" on the prediction sets. Following this

extensive background, Section 6 applies these methods to construct prediction sets spanning

up to 75 years for the eight U.S. economic time series, the running examples of real GDP and

in�ation (as measured by the CPI), but also the rates of growth of per-capita consumption

expenditures, productivity (total factor and labor productivity), population, stock prices,

and alternative measures of price in�ation. Section 7 concludes.
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2 The Prediction Problem

Let xt be the economic variable of interest which is observed for t = 1; : : : ; T . The objective

is to construct a prediction set, denoted by A, of the average value of xt from periods T + 1

to T + h,

xT+1:T+h = h
�1

hX
t=1

xT+t (1)

with the property that P (xT+1:T+h 2 A) = 1 � �, where � is a pre-speci�ed constant. The
prediction set A is constructed using the sample data for xt, so that A = A

�
fxtgTt=1

�
.4 We

restrict A in two ways. First, we allow A to depend on the sample data only through a small

number low-frequency weighted averages of the sample data, and second, we restrict A to

be scale and location equivariant. We discuss each of these restrictions in turn.

Cosine transformations of the sample data. Because h is large, the prediction sets involve

long-run uncertainty about xt. It is therefore useful to transform the sample data into

weighted averages that capture variability at di¤erent frequencies �we will be interested

in the weighted averages corresponding to low frequencies. Thus, consider the weighted

averages (x1:T ; XT ), with x1:T = T�1
PT

t=1 xt, XT = (XT (1); : : : ; XT (T � 1))0, and where
XT (j) is the jth cosine transformation

XT (j) =

Z 1

0

	j(s)xbsT c+1ds = �jTT
�1

TX
t=1

	j

�
t� 1=2
T

�
xt (2)

with 	j(s) =
p
2 cos(j�s) and �jT = (2T=j�) sin(j�=2T ) ! 1. The cosine transforms have

two properties we will exploit. First, they isolate variation in the sample data corresponding

to di¤erent frequencies: x1:T captures 0-frequency variation and XT (j) captures variation at

frequency j�=T . Second, because the 	j weights add to zero, XT (j) is invariant to location

shifts of the sample, a property we use when we construct equivariant prediction sets.

The T � 1 vector (x1:T ; XT ) is a nonsingular transformation of the sample data fxtgTt=1,
but we will construct prediction sets based on a truncated information set that includes only

x1:T and the �rst q cosine transforms, XT;1:q = (XT (1); XT (2); :::; XT (q))
0 and where q is

much smaller than T � 1. Thus, the prediction sets we consider are A = A(x1:T ; XT;1:q), and
so rely solely on variability in the data associated with frequencies lower than q�=T . We

4Of course, when xt is the �rst di¤erence of another variable yt, so that xt = yt � yt�1, then forecasts of
yT+h can be constructed from forecasts of xT+1:T+h using the identity yT+h = yT + hxT+1:T+h. Moreover,

prediction sets for xT+1:T+h and yT+h are readily converted into prediction sets for monotonic transformation

of these variables. For example, a prediction set for the average growth rate of real GDP (xT+1:T+h) yields

a prediction set for the log-level of real GDP (yT+h) or the level of real GDP (exp(yT+h)).
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compress the sample information into the q + 1 variables (x1:T ; XT;1:q) for two reasons. The

�rst is tractability: with a focus on this truncated information set, the analysis involves a

small number of variables (the (q + 2) variables (xT+1:T+h; x1:T ; XT;1:q)), and because each

of these variables is a weighted average of fxtgT+ht=1 , a central limit theorem derived in the

next section allows us to study a limiting Gaussian version of the prediction problem that is

much simpler than the original �nite-sample problem. The second motivation for truncating

the information set is robustness: we use the low-frequency information in the sample data

(x1:T and the �rst q elements of XT ) to inform us about a low-frequency, long-run average of

future data, but we do not use high frequency sample information (the last T�1�q elements
of XT ). While high frequency information is informative about low-frequency characteristics

for some stochastic processes (for example, tightly parameterized ARMA processes), this is

generally not the case, and high-frequency sample variation may lead to faulty low-frequency

inference. Müller and Watson (2008, 2013) discuss this issue in detail. In Section 4 below

we present numerical calculations that quantify the e¢ ciency-robustness trade-o¤ embodied

by the choice of q in the long-run prediction problem.

Invariance. In our applications it is natural to restrict attention to prediction sets that

are invariant to location and scale, so for example, the results will not depend on whether

the data are expressed as growth rates in percentage points at an annual rate or as per-

cent per quarter. Thus, we restrict attention to prediction sets with the property that if

y 2 A(x1:T ; XT;1:q) then m+by 2 A(m+bx1:T ; bXT;1:q) for any constants m and b 6= 0 (where
the transformation of XT;1:q does not depend on m because, as mentioned above, XT;1:q is lo-

cation invariant). Invariance allows us to restrict attention to prediction sets that depend on

functions of the sample data that are scale and location invariant; in particular we can limit

attention to constructing prediction sets for Y sT given X
s
T;1:q, where Y

s
T = YT=

q
X 0
T;1:qXT;1:q

with

YT = xT+1:T+h � x1:T (3)

and Xs
T;1:q = XT;1:q=

q
X 0
T;1:qXT;1:q.5

Running examples: Two of the economic time series studied in Section 6 are the growth

rate of U.S. real per-capita GDP and the rate of in�ation in the U.S. based on the consumer

price index. We use these series as running examples to illustrate concepts as they are

introduced. Panels (i) in Figure 1 plot the quarterly values of these time series from 1947-

2012, along with the low-frequency components of the time series formed as the projection of

5Setting m = �x1:T =
q
X 0
T;1:qXT;1:q and b = 1=

q
X 0
T;1:qXT;1:q implies that for any invariant set A,

y 2 A(x1:T ; XT;1:q) if and only if (y � x1:T )=
q
X 0
T;1:qXT;1:q 2 A(0; XT;1:q=

q
X 0
T;1:qXT;1:q), and thus also

xT+1:T+h 2 A(x1:T ; XT;1:q) if and only if Y sT 2 A(0; Xs
T;1:q).
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the series onto cos[(t�1=2)�j=T ] for j = 0; :::; 12. (The value q = 12 is used in the empirical
analysis in Section 6 for reasons discussed below). The coe¢ cients in the projection are the

cosine transformations, XT;1:q, and their standardized values, Xs
T;1:q are plotted in panels (ii).

These low-frequency components of the data are the summaries of the sample data we use to

construct long-horizon prediction sets. Looking at panels (i), in�ation exhibits much more

low-frequency variation than GDP growth rates over the sample period; this is manifested in

panels (ii) by the relatively larger magnitude of in�ation�s �rst few cosine transformations,

capturing pronounced low-frequency movements. N

3 Statistical Preliminaries

The last section laid out the �nite-sample prediction problem. In this section we review and

develop the statistical theory that will guide our approach to constructing prediction sets.

We divide the section into three subsections. The �rst provides a central limit theorem that

characterizes the large-sample behavior of the weighted averages (XT;1:q; YT ), and provides

a characterization of the limiting covariance matrix based on the properties of the (pseudo-)

spectrum for xt near frequency zero. The second subsection illustrates this framework in

the fractional I(d) model and reports prediction sets for known d and Bayes prediction sets

using a prior for d. The �nal subsection discusses the generic problem of robustifying Bayes

prediction sets to obtain sets with frequentist coverage uniformly over the parameter space.

3.1 Large-Sample Approximations

3.1.1 Asymptotic Behavior of (XT;1:q; YT )

To derive the asymptotic behavior for (XT;1:q; YT ), note that each element can be written

as a weighted average of the elements of fxtgT+ht=1 . Thus, let g : [0; 1 + r] 7! R denote a

generic weighting function, where r = limT!1(h=T ) > 0, and consider the weighted average

of fxtgT+ht=1

�T = T
1��
Z 1+r

0

g(s)xbsT c+1ds

where � is a suitably chosen constant.6 In our context, the elements of XT;1:q are cosine

transformations of the in-sample values of xt (cf. (2)), so that g(s) =
p
2 cos(j�s) for

0 � s � 1 and g(s) = 0 for s > 1; YT de�ned in (3) is the di¤erence between the out-of-

sample and in-sample average values of xt, so that g(s) = �1 for 0 � s � 1 and g(s) = r�1

6For the I(0) model � = 1=2, for the I(1) model � = 3=2, and so forth.
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for 1 < s � 1 + r. These weights sum to zero, so that the (unconditional) expectation of xt
plays no role in the study of �T .

In the appendix we provide a central limit theorem for �T under a set of primitive

conditions about the stochastic process describing xt and these weighting functions. We

will not list the technical conditions in the text, but rather give a brief overview of the key

conditions before stating the limiting result and discussing the form of the limiting covariance

matrix. In particular, the analysis is carried out under the assumption that �xt = �xT;t

is a double array process with moving average representation �xT;t = cT (L)"t, where "t
is a possibly conditionally heteroskedastic martingale di¤erence sequence with more than

2 unconditional moments.7 The moving average coe¢ cients in cT (L) are square summable

for each T , so that �xT;t has a spectrum, denoted by FT (�). The motivation for allowing

cT (L) and FT to depend on T is to capture many forms of persistence, as stemming from an

autoregressive root local-to-unity, �T = 1� c=T , for instance.
Under these and additional technical assumptions, Theorem 1 in the appendix shows

that �T has a limiting normal distribution,
8 and as an implication

T 1��

"
XT;1:q

YT

#
)
"
X

Y

#
� N (0;�) � N

 
0;

 
�XX �XY

�Y X �Y Y

!!
(4)

with X = (X1; : : : ; Xq)
0 (we omit the dependence of X on q to ease notation), and � a

function of the limiting properties of the spectrum FT near zero (see the next subsection).

The limiting density of the invariants Xs
T;1:q = XT;1:q=

q
X 0
T;1:qXT;1:q and Y sT =

YT=
q
X 0
T;1:qXT;1:q follows directly from (4) and the continuous mapping theorem,"

Xs
T;1:q

Y sT

#
)
"
Xs

Y s

#
=

"
X=
p
X 0X

Y=
p
X 0X

#
: (5)

Note that as a consequence of the imposed scale invariance, the convergence (5) does not

involve �, and the distribution of (Xs; Y s) does not depend on the scale of �. Explicit

expressions for the densities fXs and f(Xs;Y s) of Xs and (Xs; Y s) as a functions of �XX and

� are provided in the appendix.
7The restriction that E�xt = 0 rules out a deterministic trend in xt. This restriction is plausible in our

empirical analysis in which x denotes growth rates of real variables like per capita GDP, in�ation rates, and

asset returns.
8As in any central limit theorem, the conditions underlying Theorem 1 imply that no single shock has

a substantial impact on the overall variability of �T . This assumption might be violated by rare but

catastrophic events stressed in the work of Rietz (1988) and Barro (2006), for example. Note, however,

that such events would need to substantially impact the average growth rate over a long horizon to invali-

date a normal approximation.

8



With � known, it is straightforward to compute prediction sets of Y s given Xs = xs:

A calculation shows that the distribution of Y s conditional on Xs = xs satis�es (see the

appendix)
Y s � �Y X��1XXxsq

�Y Y � �Y X��1XX�XY
q
xs0��1XXx

s=q
� Student-tq (6)

so that prediction sets for Y s of a given level 1 � � are readily computed using Student-t
quantiles. These sets in turn imply asymptotically justi�ed prediction sets for Y sT via (5),

and thus also for xT+1:T+h via the de�nition of (Xs
T;1:q; Y

s
T ) and (3).

In particular, when xT;t is I(0) with long-run variance �2, it turns out that �Y X = 0,

�XX = �2Iq, �Y Y = (1 + r�1)�2, and the 1 � � prediction set for Y is given by the

interval with endpoints �tq(1��=2)
p
q(1 + r�1)X 0X, where tq(1��=2) is the (1 � �=2) quantile

of the t-distribution of q degrees of freedom. The prediction set for xT+1:T+h is therefore

x1:T � tq(1�a=2)(1 + r�1)1=2T�1=2sLR, where s2LR = (T=q)X 0
T;1:qXT;1:q.

3.1.2 The Local-to-Zero Spectrum

The appendix derives �, the covariance matrix in (4), and shows that it depends exclusively

on the low-frequency properties of xt (we omit the dependence on T to ease notation).

Speci�cally, with RT (�) = FT (�)=j1� e�i�j2 the (pseudo-) spectrum of xt, let

S(!) = lim
T!1

T 1�2�RT (!=T )

denote the "local-to-zero" spectrum of xt. The covariance matrix � depends on S(!) and

the weighting functions g(s) used for the sample averages. The details are provided in the

appendix, but a calculation for the special case in which xt is stationary (so that RT is its

spectrum) demonstrates the result.

Thus, suppose that xt is stationary. The jk�th element of � is the limiting covariance of

the two weighted averages �j;T and �k;T , where

�l;T = T
1��
Z 1+r

0

gl(s)x[sT ]+1ds = T
��

b(1+r)T cX
t=1

~gl;txt

with ~gl;t = T
R t=T
(t�1)=T gl(s)ds. Recalling that the jth autocovariance of xt is given byR �

�� RT (�)e
�i�jd�, where i =

p
�1, we obtain

E(�j;T�k;T ) = T
�2�

b(1+r)T cX
s;t=1

�Z �

��
e�i�(t�s)RT (�)d�

�
~gj;t~gk;s
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= T�2�
Z �

��
RT (�)

0@b(1+r)T cX
s=1

~gk;se
i�s

1A0@b(1+r)T cX
t=1

~gj;te
�i�t

1A d�
= T 1�2�

Z T�

�T�
RT (!=T )

0@T�1 b(1+r)T cX
s=1

~gk;se
i!(s=T )

1A0@T�1 b(1+r)T cX
t=1

~gj;te
�i!(t=T )

1A d!
!
Z 1

�1
S(!)

�Z 1+r

0

gk(s)e
i!sds

��Z 1+r

0

gj(s)e
�i!sds

�
d! = �j;k: (7)

The limit (7) shows that the elements of the covariance matrix of (X;Y )0 are simply weighted

averages of the local-to-zero spectrum S.

Several features of � follow from (7). For example, since S is an even function and gj
and gk are real valued, (7) can be rewritten as E(�j;T�k;T ) ! 2

R1
0
S(!)wjk(!)d!, where

wjk(!) = Re[
�R 1+r

0
gj(s)e

�i!sds
��R 1+r

0
gk(s)e

i!sds
�
]. With gj =

p
2 cos(�js), a calculation

shows that wjk(!) = 0 for 1 � j; k � q and j + k odd, so that E(XjXk) = 0 for all odd

j + k, independent of the local-to-zero spectrum S. Figure 2 plots wjk(�) for some selected
values of j and k and r = 1=2. The �gure displays the weights wj;k corresponding to the

covariance matrix of the vector (X1; X2; X3; X10; X11; X12; Y )0, organized into a symmetric

matrix of 9 panels. The �rst panel plots the weights for the covariance matrix of (X1; X2; X3)0,

where the weights for the variances are shown in bold and the weights for the covariances

are shown as thin curves. The second panel plots the weights associated with covariances

between (X1; X2; X3)0 and (X10; X11; X12)0, and so forth. The covariance weights wjk, j 6= k,
integrate to zero, which implies that for a �at local-to-zero spectrum S (corresponding to an

I(0) model), � is diagonal. As can be seen from the �rst and second panel on the diagonal

of Figure 1, the variance of the predictor Xj is mostly determined by the values of S in the

interval �j � 2�. Further, as long as S is somewhat smooth, the correlation between Xj

and Xk is very close to zero for jj � kj large. The �nal panel in the �gure shows the weight
associated with the variance of Y , the variable being predicted. Evidently the unconditional

variance of Y is mostly determined by the shape of S on the interval ! 2 [0; 4�], and its
correlation with Xj is therefore small for j large even for smooth but non-constant S (a

calculation shows that max! jwq+1;j(!)j decays at the rate 1=j as j !1). The implication
of these results is that the conditional variance of Y given X depends on the local-to-zero

spectrum, with the shape of S for, say, ! < 12�, essentially determining its value, even for

large q. In terms of the original time series, frequencies of j!j < 12� correspond to cycles
of periodicity T=6. For instance, with 60 years worth of data (of any sampling frequency),

the shape of the spectrum for frequencies below 10 year cycles essentially determines the

uncertainty of the forecast of mean growth over the next 30 years.
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3.2 Prediction Sets in the I(d) Model

A leading example of this analysis is given by the fractional I(d)model, which has a (pseudo-)

spectrum proportional to j�j�2d for � close to zero; this yields the local-to-zero spectrum
S(!) / j!j�2d, and the central limit result from the last subsection is applicable for �1=2 <
d < 3=2. The I(d) model captures a wide range of long-run dependence patterns including

the usual I(0) and I(1) models, but also persistence patterns between and outside these two

extremes. With negative values of d it also allows for long-run anti-persistence (which may

arise from overdi¤erencing), and with d > 1 it allows for processes more persistent than an

I(1) process.

Running example (continued): Panels (i) of Figure 3 shows the appropriately centered

and scaled Student-t predictive densities from (6) for the average growth rate of U.S. real

per-capita GDP and the average value of CPI-in�ation over the next 25 years for various

values of d in the I(d) model. For real GDP growth rates, predictive densities are shown for

d = �0:4, 0:0, 0:2 and 0:5, and for in�ation the predictive densities are shown for d = 0:0, 0:4,
0:7, and 1:0. For both series, as d increases, the variance of the predictive density increases

because more persistence leads to larger variability in future average growth. The mode

of the I(0) predictive density is given by the in-sample mean (see the discussion following

equation (6)), and the mode shifts to the left for d > 0 re�ecting the persistent e¤ect of the

slow growth and low in�ation experienced at the end of sample. In contrast, the mode of the

d = �0:4 predictive density (shown for real GDP growth rates) is larger than the in-sample
mean because faster than average growth is required to return the log-level of GDP to its

pre-Great Recession trend growth path.

Evidently, both the length and location of 25-year ahead prediction sets depend critically

on the d. This raises the question: What is the value of d for these series?

Panels (ii) summarize what the sample data say about the value of d. It plots the �low-

frequency� log-likelihood values for d based on Xs
T;1:12 and its large-sample density from

(5), and with the log-likelihood of the I(0) model normalized to zero. The numbers for

real per-capita GDP suggest only limited persistence for this series (values of d > 0:6 yield

a log-likelihood 3 points lower than the I(0) model), but values of d ranging from �0:4
(suggesting some reversion to a linear trend in the log-level of GDP, so that the growth

rate is overdi¤erenced) to 0:2 (slight persistence in the GDP growth rates) all �t the data

reasonably well. In contrast the in�ation data suggest much more persistence: the log-

likelihood has a maximum around d = 0:6 with corresponding log-likelihood values that are

between 1:9 and 2:9 points larger than the I(0) model.

Taken together, the results in panels (i) and (ii) indicate that much of the 25-year-ahead
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forecast uncertainty is associated with uncertainty about the degree of persistence in the

stochastic process, which in the I(d) model is governed by the value of the parameter d. N
Bayes Prediction Sets: A natural way to incorporate this parameter uncertainty is to use

a Bayes approach, where the limited sample information is combined with a prior on d. This

is straightforward: With � the prior on d, the Bayes predictive density for Y s conditional

on Xs = xs is given by

f�Y sjXs(ysjxs) =
R
f(Xs;Y s)jd(x

s; ys)d�(d)R
fXsjd(xs)d�(d)

with f(Xs;Y s)jd and fXsjd the densities of (Xs; Y s) and Xs in (5) with the value of � implied

by a local-to-zero spectrum S(!) proportional to j!j�2d.
Bayes prediction sets can be readily computed from the predictive density.

For example the �highest predictive density� (HPD) set for Y s is AHPD(xs) =n
ys : f�Y sjXs(ysjxs) > cv(xs)

o
, where cv(xs) solves

R
AHPD(xs)

f�Y sjXs(ysjxs)dys = 1 � �. This
HPD Bayes set is the smallest length set that satis�es the coverage constraint relative to

f�Y sjXs . Alternative Bayes prediction sets, such as equal-tailed sets, can be used instead.

Thus, let ABayes(xs) denote a generic Bayes prediction set for Y s as a function of xs. Be-

cause Y s = Y=
p
x0x and xs = x=

p
x0x, equivariance implies the extension to generic x via

ABayes(x) = fy : y=
p
x0x 2 ABayes(x=

p
x0x)g.

Running example (continued): Panels (i) of Figure 3 shows the resulting Bayes predictive

densities for �xT :T+h with a uniform prior on d 2 [�0:4; 1:0]. This mixture of Student-t
densities is no longer necessarily symmetric, as the the underlying Student-t densities don�t

have the same mode. So for instance, for the GDP series, one obtains a left-skewed Bayes

predictive distribution since larger values of d both increase uncertainty and shift the most

likely future values to the left. N

3.3 Frequentist Robusti�cation of Bayes Prediction Sets

As discussed in Section 3.1, the distributions of (X; Y ) and (Xs; Y s) depend on the covariance

matrix �, which in turn depends on the low-frequency spectrum S of xt. In the next section,

we discuss a parameterization of the spectrum that is more general than the I(d) model, so

in general, � = �(�) where � is a parameter vector. In this section we discuss the general

problem of constructing frequentist prediction sets that incorporate uncertainty about the

value of �. We provide additional details in Appendix 8.2-8.4.

The (frequentist) coverage probability of a setA, P�(Y 2 A(X)), generally depends on the
value �. A Bayes prediction set has coverage probability of 1��, on average relative to the
prior �, that is

R
P�(Y 2 ABayes(X))d�(�) = 1��, but in general, P�(Y 2 ABayes(X)) < 1��
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for some values of �. In this subsection, we "robustify" Bayes sets by enlarging them so they

have frequentist coverage: inf�2� P�(Y 2 A(X)) � 1��. There is no unique way to achieve
this. We focus on sets with smallest weighted expected length.

To be speci�c, let A(X) denote an arbitrary prediction set, and V�(A) = E�[vol(A(X))]

denote its expected length (which depends on �). The goal is to choose A to minimize V�(A)

over the parameter space � for �. In many problems, including the one considered in this

paper, there is no set A that simultaneously minimizes V�(A) for all � 2 � while maintaining
coverage, so there is an inherent trade-o¤ of expected length over di¤erent values of �. Let

W denote a weighting function that makes this trade-o¤ explicit. Consider the following

problem:

min
A

Z
V�(A)dW (�) (8)

subject to

Equivariance: y 2 A(x) implies by 2 A(bx) for all x; y and jbj 6= 0 (9)

Frequentist Coverage: inf
�2�

P�(Y 2 A(X)) � 1� �, and (10)

Bayes Superset: ABayes(x) � A(x) for all x. (11)

Because the objective function depends on the weighting function W , so will the solution,

and we discuss speci�c choices for W in the following section. The constraint (9) imposes

scale invariance �recall that location invariance in the original problem is imposed by the

choice of Y and X. The coverage constraint that de�nes a (1��)-frequentist prediction set
is given by (10).

The constraint (11) can be motivated in a variety of ways. One motivation is ad hoc

and simply says that the goal is to robustify a Bayes set by enlarging it so it has frequentist

coverage properties. Another focuses on properties of frequentist sets that do not impose

(11). Notably, conditional on particular realizations of X these sets can have unreasonably

small length; indeed they can be empty. In particular, even with � known (i.e., � = f�g),
solving (8) subject to (9) and (10) does not in general yield the known-� prediction set

(6), but rather a prediction set whose coverage of Y is equal to 1� � only on average over
repeated draws of X, but not conditional on the observed X. Müller and Norets (2012)

show that imposing (11) eliminates these arguably unattractive properties. We �nd the

Müller and Norets arguments compelling and therefore enforce the constraint (11) for the

frequentist sets used in the empirical analysis of Section 6. However, for comparison we also

study solutions that do not impose (11) in Section 4.

The solution to the program (8)-(11) can be found in three steps: the �rst step transforms

the problem to impose equivariance (9); the second uses a �least favorable distribution�for �
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to simplify the coverage constraint (10); and the third enforces (11). We discuss these steps

in turn.

Equivariance: If A(X) is scale equivariant, then Y 2 A(X) if and only if Y 2p
X 0XA(Xs). Thus, vol(A(X)) =

p
X 0X vol(A(Xs)) and V�(A) = E� [g�(Xs) vol(A(Xs))],

where g�(Xs) = E�[
p
X 0XjXs]. Imposing this restriction, the objective function (8) becomes

min
A

Z
E� [g�(X

s) vol(A(Xs))] dW (�), (12)

and the coverage (10) and Bayes superset (11) constraints can be rewritten as

inf
�2�

P�(Y
s 2 A(Xs)) � 1� � (13)

ABayes(xs) � A(xs) for all xs: (14)

Note that (12)-(14) only involve the value of A evaluated at xs, which lives on a smaller

subspace xs0xs = 1 compared to x 2 Rq, but on that subspace, A is unrestricted. The

solution to (12) subject to (13) and (14), A�(xs), then implies the solution A�(x) = fy :
y=
p
x0x 2 A�(x=

p
x0x)g to the original problem (8) subject to (9)-(11).

Frequentist Coverage: For the coverage constraint (13), suppose for a moment that � is

a random variable with distribution �, and consider solving (12) subject to the resulting

single coverage constraint Z
P�(Y

s 2 A(Xs))d�(�) � 1� �. (15)

A calculations yields the solution

A�(x
s) =

8>><>>:ys :
Z
f(Y s;Xs)j�(y

s; xs)d�(�)Z
g�(xs)fXsj�(xs)dW (�)

> cv

9>>=>>; (16)

where cv is chosen to satisfy (15) with equality. Of course, while A� satis�es the average

coverage constraint (15), it does not necessarily satisfy the uniform coverage constraint

(13) required for a frequentist prediction set. However, because any set satisfying (13) also

satis�es (15), the value of the objective (12) evaluated at A� provides a lower bound for any

set satisfying (13). Therefore, if a distribution �y can be found so that A�y satis�es (13),

it solves the minimization problem (12) subject to the uniform coverage constraint in (13).

Such a �y is called the �least favorable distribution�for the problem. Elliott, Müller, and

Watson (2014) develop numerical methods for approximating least favorable distributions in

related problems, and we use a variant of those methods here.
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Bayes Superset: The �nal step �incorporating the constraint (14) �is straightforward:

it simply amounts to replacing (16) with the set

AMN(xs) =

8>><>>:ys :
Z
f(Y s;Xs)j�(y

s; xs)d�y(�)Z
g�(xs)fXsj�(xs)dW (�)

> cvMN

9>>=>>; [ ABayes (17)

where (�y; cvMN) are now such that
R
P�(Y

s 2 AMN(Xs))d�y(�) = 1�� and inf�2� P�(Y s 2
AMN(Xs)) � 1� � (cf. Theorem 4 in Müller and Norets (2012)).

4 Parameterizations for Long-Horizon Prediction Sets

Implementation of the prediction sets discussed in the last section requires four ingredients:

(i) a parameterization of S, the local-to-zero spectrum, which yields the covariance matrix

�(�) via (7); (ii) a Bayes prior �(�), which yields the Bayes prediction set ABayes; (iii) a

frequentist weighting function W (�), which quanti�es the trade-o¤ of expected length for

various of � in the objective function (8); and (iv) a choice for q, the number of cosine

weighted averages used for the prediction problem. These are discussed in the following

three subsections.

4.1 Parameterizing the Low-Frequency Spectrum

The I(d) model introduced in Section 3.2 above is a �exible one-parameter model that

captures a wide range of long-run persistence patterns. Because of its simplicity, �exibility,

and use in other empirical analyses involving long-run behavior of economic time series, we

use the I(d) parameterization for our equal-tailed Bayes prediction sets ABayes.

However, a concern is that the family of I(d) local-to-zero spectra may not be su¢ ciently

�exible to capture all forms of long-run dependencies in economic time series. This suggests

the need for a richer class of local-to-zero spectra, and we construct such a class by considering

two other models that have proven useful for modelling low-frequency characteristics in other

contexts. The �rst is the local-level model which expresses xt as the sum of an I(0) process

and an I(1) process, say xt = e1t + (bT )
�1Pt

s=1 e2s, where fe1tg and fe2tg are mutually
uncorrelated I(0) processes with the same long-run variance. The I(1) component has

relative magnitude 1=b and is usefully thought of as a stochastically varying �local mean�

of the growth rate xt, as arising from some forms of stochastic breaks. In this model,

S(!) / b2+!�2. The second model is the local-to-unity AR(1) model, widely used to model
highly persistent processes. In this model xt = (1�c=T )xt�1+et, where et is an I(0) process,
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and a straightforward calculation shows that S(!) / 1=(!2+c2). (Note that (b; c)! (1;1)
and (b; c)! (0; 0) recover the I(0) and I(1) model, respectively). The I(d), local-level and

local-to-unity models are nested in the parameterization

S(!) /
�

1

!2 + c2

�d
+ b2 (18)

where b = c = 0 for the I(d) model, d = 1, and c = 0 for the local-level model, and d = 1,

and b = 0 for the local-to-unity model.9

Figure 4 plots the logarithm of the local-to-zero spectrum of the I(d) model in panel (a),

and of this bcd-model in panel (b). The bcd-parameterization allows us to capture a wide

range of monotone shapes for the low frequency (pseudo-) spectrum of xt, including, but

not limited to, the three benchmark models discussed above. In the analysis below we let

� = (b; c; d), so that �(�) is given by (7) with the local-to-zero spectrum S as in (18).

4.2 Bayes and Frequentist Weighting Functions

In the empirical analysis in Section 6, we assume that S is characterized by the bcd-model,

with �0:4 � d � 1:0 and b; c � 0.10 As mentioned above, we construct Bayes sets using a
9This is recognized as the local-to-zero spectrum of the process xt = e1t+(bT d)�1zt, where (1��TL)dzt =

e2t with �T = 1� c=T and fe1tg and fe2tg are mutually uncorrelated I(0) processes with the same long-run
variance. It is also recognized as the spectrum of the Whittle-Matérn process from spatial statistics (e.g.,

Lindgren (2013)). Autocovariances for this process are derived in the appendix.
10In an earlier version of this paper we allowed for values of d as large as 1:4. However upon re�ection,

values of d larger than 1:0 seem unnecessary for the economic variables we study (growth rates of real

variables, in�ation rates, and asset returns). Larger values of d may be appropriate in other applications,

18



prior that puts all weight on the I(d) model (so that b = c = 0); we use a prior with uniform

weight on values of d 2 [�0:4; 1:0]. The AMN sets robustify these Bayes sets so they have

frequentist coverage for all values of b; c � 0 and d 2 [�0:4; 1:0]. The analysis is usefully
thought of in terms of the various spectral shapes plotted in Figure 4, and the Bayes prior

is seen as putting equal weight on the various shapes in panel (a). Because S may take on

shapes other than those represented by the I(d) models in panel (a), the AMN sets robustify

the Bayes analysis to ensure frequentist coverage over all shapes shown in panel (b).

Construction of the AMN sets requires speci�cation of the weighting function W in (8).

As noted in Section 3.3, the function W determines the trade-o¤ between expected length

for various of �, which is necessary because there is no single prediction set that minimizes

expected length for all �. Our choice of W is guided by the observation that, even with �

known, the minimized values of V�(A) vary greatly over the values of �. For example, in the

I(d) model with known d, prediction sets are much wider when d = 1 (so that xt � I(1))

than when d = 0 (xt � I(0)). To account for these di¤erences we scale V�(A) so that it is
expressed in units of the expected length of the predictions set for known �. Denote this

scaled version of V�(A) by R�(A) = V�(A)=V
known
� , where V known� is the expected length of

the prediction set for known value of � implied by (6). This relative measure of length is

readily interpretable: R�(A) > 1 represents the "regret" about not knowing � when using

the set A. In terms of R�(A) we use a weighting function that coincides with the Bayes

prior: uniform on d 2 [�0:4; 1:0] and with b = c = 0 (so in terms of V�(A), the weighting
function W is proportional to 1=V known� ). Thus, we robustify the Bayes sets in a way that

minimizes regret using the Bayes prior while achieving frequentist coverage. We investigate

how this weighting function performs relative to other possible weighting functions below,

but �rst we consider the coverage rates of the various sets.

Table 1 shows coverage rates for 67% and 90% prediction sets for h = rT , with r = 0:5

using q = 12 cosine transforms. (This is the value of q we will use in the empirical analysis,

and is discussed more fully in the next subsection). Table 1 answers two questions. First,

what is the frequentist coverage of the Bayes prediction sets across the range of processes

represented by the spectra in panels (a) and (b) of Figure 4? And second, does the I(d)

model provide su¢ cient �exibility so that the additional parameters b and c are unnecessary

in practice? The table therefore displays coverage rates for three prediction sets: the Bayes

set, ABayes; the set robusti�ed to have correct frequentist coverage over d but with b = c = 0,

denoted AMN
d ; and the set robusti�ed to have correct frequentist coverage over (b; c; d),

AMN
(b;c;d). Coverage rates are shown for three con�gurations of (b; c; d). In the �rst, values of

(b; c; d) are drawn from the prior, so ABayes has correct coverage; in the second, the coverage

and we note that the results in Section 3.1 hold for the bcd-model with �0:5 < d < 1:5, and b; c � 0.
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probability is minimized over �0:4 � d � 1:0 with b = c = 0, so AMN
d has correct coverage;

and in the third, the coverage probability is also minimized over b; c � 0, so AMN
(b;c;d) has

the correct coverage. The table indicates that ABayes exhibits substantial undercoverage for

some values of d and (b; c; d). It also indicates substantial undercoverage of AMN
d for some

values of (b; c; d). Evidently, controlling coverage over d does not provide adequate coverage

for long-run persistence patterns associated with non-zero values of b and c. Thus, because

some economic variables are arguably well-described by stochastic processes with non-zero

value of b and c, it seems prudent to construct the AMN
(b;c;d) sets.

Figure 5 displays the approximate least favorable distributions (ALFDs) that underlie

the AMN
(b;c;d) sets. Were the A

MN
d sets adequate, these ALFDs would put no mass on non-zero

values of b and c. We display the ALFDs in terms of the local-to-zero spectral shapes familiar

from Figure 4, with thicker curves representing more mass in the ALFD. The ALFD is non-

degenerate and has most of its mass on spectra that are relatively �at for larger !, but with

a pronounced pole at zero (these spectra arise, for instance, in the local-level with moderate

b). Intuitively, in the local-level model, the strong mean reversion of the I(0) component

masks the pronounced long-run uncertainty, making it relatively hardest to control coverage.

Table 1 investigated the coverage rates of the Bayes and AMN sets for a benchmark

weighting function W and prior �. Table 2 examines the expected length of the AMN =

AMN
(b;c;d) sets and answers questions regarding the choice ofW and �. Because AMN minimizes

a weighted average of the values of the expected (normalized) length R�(A), it is impossible

to choose an alternative weighting function with uniformly lower values of R�(A). However,

it is possible to reduce R�(AMN) for any particular value of �. Thus, Table 2 compares the

value R�(AMN) for the benchmark choice of W to the value obtained by putting all W mass
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on �, for selected values of �. Said di¤erently, Table 2 compares R�(AMN) to the envelope

obtained by minimizing R�(A) over all equivariant sets A that have uniform coverage in the

bcd-model. Values of R�(A) are shown as a function of d in the I(d) model, and for selected

values in the b and c models, respectively.

The table shows results for 90% prediction sets; conclusions for 67% prediction sets are

similar. Panel (a) considers sets that are also restricted to contain the Bayes prediction set,

as in (11). For the benchmark choice of W , R�(A) = R�(A
MN) ranges from 1:15 (so that

V�(A
MN) is 15% larger than the attainable expected length with � known) when b = c = 0

and d = 1:0, to 1:89 when b = 0, c = 27, and d = 1:0. These numbers demonstrate

that parameter uncertainty is a signi�cant component of AMN . The envelope numbers are

smaller, of course, but are typically within 10% of the AMN values even for � with non-zero

b or c (where the benchmark weighting function puts zero mass).

Panel (b) of Table 2 takes up the question of the cost of imposing the Bayes-superset

constraint (11). The two rows in panel (b) are computed exactly as those in panel (a), except

that the Bayes-superset constraint is no longer enforced. Evidently, for most values of �, the

Bayes-superset constraint has a negligible impact of the expected length of the prediction

set. What is more, the envelope numbers in panel (b) are typically not much smaller than

those for AMN in panel (a), which means that the substantial regret of not knowing � is

mostly driven by the coverage constraint, and is not an artifact of our benchmark choices

for � or W . (And, as a corollary, it also implies that alternative choices for � for AMN can

not lead to substantially shorter sets on average).

We draw four conclusions from Tables 1 and 2. First, Bayes sets constructed using a uni-

form prior on d exhibit substantial undercoverage for some values of d. Second, robustifying

these sets to achieve frequentist coverage over d is inadequate for some processes with non-

zero values of b and c. Third, for many values of (b; c; d) our benchmark choices of � and W

produce sets with expected length close to the smallest achievable length under the coverage

constraint. And �nally, for most values of (b; c; d) there is little cost in terms of expected

length for constructing frequentist sets that are supersets of Bayes sets (and therefore share

some their desirable properties).

4.3 Choice of q

As discussed in Section 2, the choice of q may usefully be thought of as a trade-o¤ between

e¢ ciency and robustness. In principle, the central limit theorem for (X 0
T1:q; YT )

0 discussed

in Section 3.1 holds for any �xed q, at least asymptotically. And the larger q, the smaller

the (average) uncertainty about YT . This suggests that one should pick q large to increase
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e¢ ciency of the procedure.

At the same time, one might worry that approximations provided by the central limit

theorem for (X 0
T1:q; YT )

0 become poor for large q. The concern is not only that the high-

dimensional multivariate Gaussianity might fail to be an accurate approximation; more

importantly, any parametric assumption about the shape of the local-to-zero spectrum be-

comes stronger for larger q. In particular, for a given sample size T , the assumption that

the spectrum of xt over the frequencies [�q�=T; q�=T ] is well approximated by the spectrum
of the bcd-model becomes less plausible the larger q. Roughly speaking, we �t a parametric

model to the q observations XT;1:q, so a concern about nontrivial approximation errors arises

for large q, irrespective of the sample size T:

We are thus faced with a classic e¢ ciency and robustness trade-o¤. Recall from the

discussion of Figure 2 in Section 3.1, however, that the object of interest �the variability of

long-run forecasts, as embodied by the conditional variance of Y givenX �is a low frequency

quantity that is essentially governed by properties of xt over frequencies [�12�=T; 12�=T ].
Since the predictors XT (j) provide information for frequency j�T , this suggests that the

marginal bene�t of increasing q beyond q = 12 is modest, at least with the spectrum known.

With the spectrum unknown, X with larger q provides additional information about

its scale and its shape. The scale e¤ect is most easily understood in the I(0) model. As

discussed above, the I(0) prediction set is x1:T � tq(1�a=2)(1 + r�1)1=2T�1=2sLR, where s2LR =
(T=q)X 0

T;1:qXT;1:q. The average asymptotic length of this forecast is thus 2T��t
q
(1�a=2)(1 +

r�1)1=2E
p
X 0X=q with X � N (0; �2Iq), which decreases in q, since tq(1�a=2)E

p
X 0X=q is a

decreasing function of q.11 But the bene�t of increasing q is modest: for a 90% interval, the

average length for q 2 f24; 48;1g is only f3:0%; 4:4%; 5:8%g shorter than for q = 12, for

instance.

When the shape of the spectrum is unknown but parametrized, as in the bcd-model,

11This is analogous to the wider con�dence intervals that arise from the use of inconsistent HAC estimators;

see Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2002, 2005), and Müller (2014) for a

review.
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increasing q beyond 12 provides additional information about the shape of the spectrum

over the crucial frequencies [�12�=T; 12�=T ]. Table 3 quanti�es the combined scale and
shape e¤ects by reporting the value of the objective

R
V�(A)dW (�) in the program (8) for

q 2 f6; 12; 24; 48g. To be able to make meaningful comparisons across di¤erent values of q,
we choose W as the benchmark weighting function from the q = 12 case for all values of q,

normalized to integrate to one (so that the values in Table 3 are the weighted average regret

relative to knowing � in the q = 12 case). In this � unknown case, there is an 8% decrease

in average length as q increases from q = 12 to q = 24 and a further reduction of 5% for

q = 48: As a point of reference, the table also reports the same average length for � known.12

The reductions in lengths for q > 12 are only marginally larger than the pure scale e¤ect

in the I(0) model, corroborating the intuition above about the relative unimportance of the

spectral shape outside the [�12�=T; 12�=T ] interval for long-run forecasting.
Much of our empirical analysis uses 65 years of post-WWII data, so that a choice q = 12

relies on periodicities below 10:8 years, while q = 24 and q = 48 use periodicities below 5:4

and 2:7 years. The marginal bene�t of increasing q beyond q = 12 is modest, and q must be

chosen very much larger to substantially reduce forecast uncertainty overall. In our view, a

concern about severe spectral misspeci�cation outweighs these potential gains, so that as a

default, we suggest constructing the prediction sets with q = 12.

Running example (continued): Table 4 shows the 67% and 90% ABayes and AMN 25-

year-ahead predictions sets for real GDP growth and in�ation using the benchmark values

of the Bayes prior (�), weighting function (W ), and q = 12. The 67% ABayes and AMN sets

coincide, while the 90% AMN sets are somewhat wider than the ABayes sets. For comparison,

the table also shows the prediction sets computed from the I(0) model. These are similar

to the ABayes and AMN sets for GDP (although the 67% I(0) set is shifted to the left for

reasons discussed above), but are much di¤erent for in�ation (where the I(0) are shifted the

12These are for comparison only; the parameters of the bcd-model cannot be consistently estimated even

under q !1 asymptotics.
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right and are much narrower), and where both results are as expected given the predictive

densities and log-likelihood values displayed in Figure 3. Section 6 discusses these empirical

results in more detail. N

5 Finite Sample Experiments

In the last two sections we developed a large-sample framework for constructing Bayes and

frequentist long-run prediction sets that is tailored to models of long-run persistence typically

used for economic time series. This large sample analysis is su¢ ciently general to allow for

in-sample and out-of-sample stochastic breaks in the series, as long as these breaks occur

with su¢ cient frequency that sample averages satisfy the central limit theorem discussed

in Section 3. And the large-sample analysis also accommodates short memory stochastic

shifts in volatility. But does this large-sample analysis provide reliable prediction sets for

the sample sizes and stochastic processes typically encountered in applied economics? This

section addresses this question using two sets of �nite sample experiments. The �rst set of

experiments are Monte Carlo simulations in which we generate data with level and volatility

breaks designed to mimic the kinds of breaks seen in some macroeconomic time series.

The second set of experiments use a rolling sample of daily returns and squared returns of

the SP500 index to construct pseudo-out-of-sample prediction sets and uses actual values of

returns to evaluate these sets. We discuss these experiments in the following two subsections.

5.1 Monte Carlo Simulations with Breaks in Level and Volatility

A concern with the methods developed in the previous sections is that they might not su¢ -

ciently account for the kinds of �breaks�or �shifts�in stochastic processes that sometimes

occur with economic data. It is obviously true that arbitrary breaks can undermine any

attempt at prediction, so it is correct �but uninteresting �to point out that the methods

proposed here are not immune to arbitrarily de�ned breaks. However, it is interesting to

ask how well the methods fare in the face of breaks that plausibly have occurred in the

kinds of series to which the methods are to be applied, and that question is addressed in

this subsection. Statistical characterizations of uncertainty require a probability framework,

and therefore we consider breaks that occur probabilistically. And, because of the macroeco-

nomic applications we carry out in Section 6, the models for these breaks are motivated by

the behavior of important macroeconomic time economic series in the post-WWII United

States.
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We consider four models. The �rst two involve breaks in the level of xt

xt = �t + ut (19)

where �t denotes the "level" of xt and ut is a zero-mean stochastic process that is independent

of �t. We suppose that �t shifts discretely by an amount �� at irregular time periods
determined by the indicator st. That is

�t = �t�1 + st�t (20)

where st is an i.i.d. Bernoulli process with P (st = 1) = p, and �t = �� with equal probability
independent of st. Note that �t follows a martingale �an I(1) process �so that in large

samples its sample averages are characterized by the Gaussian limits in Section 3 (as an I(1)

model for �xed p; � > 0 and a special case of the �b�model in subsection 4.1 for �xed p > 0

and � = O(T�1)). That said, when p is small, shifts in �t occur infrequently and the �nite

sample behavior of sample averages may be quite di¤erent from their large-sample Gaussian

limit.

The second two models involve breaks in volatility. In these models xt has components

that can be represented as �tet, where et is an I(0) process and �t is a volatility process

that evolves as ln(�t) = �t, where �t follows (20). While the central limit used in Section

3 allows for certain forms of heteroskedasticity, it does not allow volatility to evolve as an

I(1) process. Thus, the volatility models in this section involve stochastic processes that are

strictly more general than the processes analyzed above, even in large samples.

We choose model parameters to match speci�c characteristics of post-WWII U.S. quar-

terly macroeconomic data. Thus, we set T = 260 (which corresponds to 65 years of quarterly

observations), and as above we consider forecast horizons of h = 0:5T = 130 with q = 12 and

the prior (�) and weighting function (W ) described in Section 4. We choose two values for

the break frequency: p = 1=40 (so a break occurs, on average, once every 40 quarters) and

p = 1=260 (so a break occurs, on average, once during the sample period period). The other

parameter values depend on the experiment and are motivated by the behavior of particular

U.S. macroeconomic time series.

Model 1 is motivated by the growth rate of average labor productivity, which visually

appears to be an I(0) process but around a time varying level. (See appendix Figure A.4.)

Labor productivity growth averaged 2:2% per year in the post-WWII period, but experienced

decade-long swings that were roughly one percentage point higher (early 1960s and late

1990s) or lower (1970s and early 1980s) than the average. The �rst model therefore takes

the form (19) with ut � iidN (0; �2u), where �u is chosen to match the long-run standard
deviation of average labor productivity, and the magnitude of the breaks in �t was chosen
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to yield a sensible value for the interquartile range (IQR) of �T � �0. Speci�cally, for each
value of p we chose two values for �; where the �rst, �small, yielded an IQR of 0:5% and the

second, �large, yielded an IQR of 1:5%.

Model 2 is similar to Model 1, but is motivated by the behavior of nominal interest

rates, which follow a pattern consistent with (19) but with ut a highly serially correlated

process. Thus for this experiment, ut was generated by an AR(1) process with coe¢ cient

0:98, Gaussian innovations with variance chosen to match 10-year U.S. Treasury Bonds, and

�small and �large chosen so that the IQR for �T � �0 was 2:0% and 4:0%, respectively.

Model 3 is designed to capture features in the data like the "Great Moderation": a low-

frequency reduction in the volatility in real U.S. macroeconomic variables. For example, the

standard deviation of growth rates of measures of real aggregate activity (GDP, employment,

etc.) fell rather abruptly by roughly 30% in the early 1980s (e.g., Stock and Watson (2002)).

Thus, in this model the data were generated as xt = �tet, with et � iidN (0; 1) and ln(�t) =
�t generated as described above with �small and �large chosen so that the IQR for ln(�T=�0)

was 0:25% and 0:75%, respectively.

Model 4 is designed to capture the changes in variability and persistence evident in the

U.S. in�ation process. Cogley and Sargent (2014), Stock and Watson (2007), and others

argue that these features can be captured by a local-level-model with stochastic volatility.

Thus, in this model we generate data as xt = e1t +
Pt

s=1 �se2s where e1t and e2t are mutu-

ally independent i.i.d. standard normal random variables, ln(�t) = �t follows the process

described above, and the parameters are chosen to mimic estimates of the time-varying

IMA(1; 1) representation of the model found in U.S. data (e.g., Watson (2014)). Speci�-

cally, �0 is chosen so that MA coe¢ cient is 0:5 in the initial period, and �small and �large were

chosen so that the IQR of the full-sample change in the MA coe¢ cient was 0:5 and 0:8.

Results for the various experiments are shown in Table 5, where panel (a) shows results

for the ABayes sets and panel (b) shows results for the AMN sets. The �rst row of each panel

shows results for the model with p = 0 (so that breaks are absent); the other rows show

results for p = 1=40, p = 1=260, and for �small and �large. When p = 0, models 1 and 3 are

i.i.d. processes for which both ABayes and AMN have coverage rates that exceed their nominal

level. This "overcoverage" occurs because ABayes provides correct average coverage for I(d)

processes that includes both small and large values of d, and coverage for small d is less than

the average coverage. Similar reasoning explains the overcoverage for AMN , which is designed

to achieve uniform coverage over (b; c; d). And with p = 0, model 2 is well approximated by

the local-to-unity model with c = 260(1� 0:98) = 5:2 and model 4 is well approximated by
an I(1) process; AMN satis�es the coverage constraint in both models, while ABayes severely

undercovers in model 4, achieving the same undercoverage shown previously in Table 1 for
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the I(d) model. Moving to the results with p > 0, ABayes has coverage rates less than its

nominal level in models 1, 2, and 4, but coverage for model 3 is similar to the results with

p = 0; coverage rates for nominal 67% AMN are approximately correct for all models, but

90% AMN sets undercover by approximately 10% in models 2 and 4 when shifts are large

and (in model 2) infrequent.

The conclusion we draw from these results is that the predictions sets based on asymp-

totic approximations developed in Sections 3 and parameterizations in Section 4 perform

reasonably well in the face of the kinds of breaks that have occurred in the post-WWII U.S.

macrcoeconomy.

5.2 Pseudo-out-of-sample Forecasts

The last section examined the performance of long-run prediction sets using simulated data,

but how well do the sets perform for actual data? Ideally, pseudo-out-of-sample experiments

could be used to answer this question using economic time series from a wide array of

stochastic processes. However, this is di¢ cult in our setting � where we are interested

in long-horizon forecasts for macroeconomic series in developed economies like the U.S. �

because the available macroeconomic data provide little pseudo-out-sample information.

But recall that the salient de�nition of a long-run forecast is that the horizon is long

relative to the sample data. And in contrast to macroeconomic data, there are long time

series on high-frequency asset returns. One empirical test of the methods developed here

is thus to see whether forecasts constructed from, say, one year of �nancial data, have

reasonable empirical coverage for forecasts of the average value over the following half year.

Speci�cally, we use daily returns constructed as rt = 100 ln(Pt=Pt�1), where Pt is the

closing value of the SP500 index; we also construct prediction sets for squared returns, r2t
(and thus forecast a measure of average realized volatility). We use daily data from January

3, 1950 through June 20, 2014, for a total of 16; 220 returns. The pseudo-out-of-sample

exercise uses a rolling sample of T = 260 observations to construct prediction sets for the

average value of rt and r2t over the next h = 0:5T = 130 periods, where the choice of T

matches the sample size used in the last section and in much of the empirical analysis in

Section 6. Rolling through the sample in this way allows us to compute 15; 831 pseudo-out-

sample prediction sets (which, of course, are correlated because of their partial overlap).

Panel (a) of Figure 6 plots rt over the full sample period. The series exhibits behavior

typical of asset returns: little apparent short-run predictability in the level, but predictable

time variation in volatility, and occasional large outliers. Panel (b) shows the 67% level

ABayes and AMN prediction sets along with the realized values of average returns over the
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rolling forecast periods. An interesting feature of the prediction sets is how often the Bayes

and frequentist sets coincide: AMN = ABayes approximately 70% of the time, as can also be

seen from panel (c). Pseudo-out-sample coverage rates for 67% and 90% prediction sets are

summarized in Table 6. Both ABayes and AMN have sample coverage rates slightly larger

than their nominal values; this result is not unexpected given the results in the preceding

sections.

Squared returns are signi�cantly more persistent than the level of returns, and are often

given as an example of an economic time series that exhibits I(d) low-frequency behav-

ior (see, for instance, Ding, Granger, and Engle (1993)). Indeed, full-sample Geweke and

Porter-Hudak (1983) regressions using the squared SP500 returns yield estimates of d of

approximately 0:4.13 Table 6 indicates that the pseudo-out-of-sample coverage for ABayes

is slightly lower than its nominal level, while the coverage of AMN remains near its nom-

inal level; again, these results are not unexpected given the simulation results of the last

subsection, and the results in Table 1.

Of course, this exercise provides only limited information about the performance of our

methods for macroeconomic variables because asset returns have substantially di¤erent prop-

erties (large outliers, relatively weak dependence in the mean, etc.). At the same time, it is

encouraging to see that our method �which is in no way adapted to the speci�cs of these

series �performs so reliably here.

6 Prediction Sets for U.S. Macroeconomic Time Series

In this section we present prediction sets for eight U.S. economic time series for forecast

horizons ranging from 10 to 75 years. These series include the growth rate of per-capita values

13Results depend somewhat on the number of periodogram ordinate used in the regression and the treat-

ment of outliers. For example, using n1=2 ordinates yields bd = 0:40, and the same regression, but dropping
the outlier associated with 1987�s Black Monday yields bd = 0:44:
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of real GDP and CPI in�ation used as the running examples, and also the growth rates of

real per-capita consumption expenditures, population, productivity (both total factor and

labor productivity), real stock returns, and prices as measured by the PCE de�ator. We

construct prediction sets using post-WWII quarterly samples, and for several series, samples

that extend into the early 20th century. We also examine prediction sets for in�ation in

Japan as a contrast to results for U.S. in�ation. Sources and details of construction of the

data are presented in the Data Appendix. Appendix Figures A.1-A.14 provide a variety of

summary statistics for each series including a plot of the series, its low-frequency components,

normalized cosine transformations, low-frequency I(d) log-likelihood values, and 67% and

90% Bayes, MN and I(0) prediction sets for all horizons between 10 and 75 years. Table

7 reports a summary of the prediction sets for prediction sets for 10, 25, 50, and 75 year

horizons.

We now discuss the results for speci�c series in more detail.

Real per capita GDP. The Bayes prediction sets for per-capita GDP narrow as the forecast

horizon increases, consistent with the reduction in variance of the sample mean for an I(0)

process. The frequentist set coincides with the Bayes set for 67% coverage and for (relatively)

short horizons for 90% coverage. However, at longer horizons the 90% frequentist sets di¤er

from Bayes sets and include smaller values of average GDP growth rates. Apparently, to

guarantee high coverage uniformly in the bcd-model at long horizons, the frequentist sets

allow for the possibility of more persistence in the GDP process, so that the slow-growth

rates of the past decade are predicted to potentially persist into the future. A comparison of

the prediction sets constructed using the post-WWII data and the long-annual (1901-2011)

series shows that the pre-WWII data tend to widen the predictions sets, presumably because

of the higher (long-run) variance in the pre-WWII data evident in Figure A.10.

At the 75-year horizon the 80% Bayes prediction interval (not shown) is 1:4 to 2:5,

which roughly coincides with the 80% interval reported by the Congressional Budget O¢ ce

(2005) for 75-year forecasts beginning in 2004. The coincidence of the Bayes/CBO sets

arises despite important di¤erences in the way they are computed. The CBO interval is

based on simulations computed from its long-run model with inputs such as TFP growth

simulated from estimated I(0) models. The CBO interval di¤ers from the Bayes interval in

two important respects. First, because the simulations are carried out using �xed values of

the model parameters, the CBO method ignores the parameter uncertainty in x1:T (as an

estimate of �) and s2LR (as a an estimate of the long-run variance). Ignoring this uncertainty

leads the CBO interval to underestimate uncertainty in the predictions. Second, in the CBO

model, GDP growth is I(0), while the Bayes method allows values of d that di¤er from

d = 0. The log-likelihood values plotted in Figure 3 suggest that GDP growth is plausibly
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characterized by a process with some low-frequency anti-persistence, and this translates into

less forecast uncertainty than the CBO�s I(0) model. Thus, the CBO method tends to

understate forecast uncertainty because it ignores parameter uncertainty in the estimated

mean and long-run variance, and to overstate forecast uncertainty because its model does

not capture long-run anti-persistence associated with negative values of d. Apparently these

two errors cancel, so that the CBO prediction interval essentially coincides with the Bayes

set.

Productivity. The log-likelihood values for d indicate that productivity (TFP and average

labor productivity) may have somewhat greater than I(0) persistence; see appendix Figures

A.3 and A.4. This translates into prediction sets that are wider than I(0) sets, particularly

for frequentist sets at large forecast horizons. Bayes intervals are essentially �at as the

forecast horizon increases (unlike in an I(0) model, where the intervals narrow), while the

frequentist sets widen (the unmodi�ed Bayes intervals systematically undercover for larger

values of d, forcing the frequentist intervals to more heavily weigh the possibility of larger

d).

Population. U.S. population growth shows considerable low-frequency variability over

the 20th century and the post-WWII period.14 Immigration and fertility dynamics are

presumably at the source of these long swings. The low-frequency MLE of d is very close to

unity over both sample periods, with the I(1) log-likelihood more than 7 points higher than

in the I(0) model. Table 7 and appendix Figures A.5 and A.12 show prediction intervals that

widen as the forecast horizon increases, a familiar characteristic of I(1) predictive densities.

There is little di¤erence in the sets constructed using the post-WWII samples and long-

samples.

In�ation. As discussed above, the in�ation process is characterized by more than I(0)

persistence, and this is re�ected in the prediction sets in two ways. First, they are not

centered at the sample mean of the series, but rather at a level dictated by the values near

the end of sample period, and second, the prediction sets widen with the forecast horizon.

The prediction intervals indicate considerable uncertainty in in�ation even at relatively short

horizons; this is true for Bayes and frequentist sets (which essentially coincide). For example,

while the 10-year 67% Bayes prediction set for U.S. CPI in�ation is (0:7; 4:9), the 90% set

widens to (�1:0; 6:4).
These predictions sets may strike some readers as too large, but it is instructive to consider

the history of Japan where the 10-year moving average of CPI in�ation was less than zero

14The quarterly post-WWII population series shown in Appendix Figure A.5 is not seasonally adjusted

and shows substantial seasonal variation. Because we focus on low-frequency transformations of the series,

this seasonality does not a¤ect the empirical results.
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from 2003 through the end of the sample. (See appendix Figure A.8.) Moreover, they are

in line with predictive densities derived from asset prices. For example, Kitsul and Wright

(2012) use CPI-based derivatives to compute market-based risk-neutral predictive densities

for 10-year ahead average values of in�ation. They �nd de�ation (average in�ation less than

0%) probabilities that averaged approximately 15% over 2011 and �high in�ation" (average

in�ation greater than 4%) of 30%.15 The corresponding probabilities computed from the

Bayes predictive density constructed using the post-WWII data are 11% for de�ation and

28% for high in�ation.

Stock Returns. Post-WWII real stock returns exhibit slightly more persistence than is

implied by the I(0) model, and this translates into prediction sets that are wider than

implied by the I(0) model. For example, at the 25-year horizon, the 67%-I(0) prediction set

(from appendix Figure A.9) is (3:1; 10:3) while the corresponding Bayes and MN prediction

sets (from Table 7) are (1:2; 11:0). The longer-span data suggest somewhat less persistence

(bdMLE = 0:0 for the 1926-2001 sample) yielding Bayes and frequentist prediction intervals

that are somewhat narrower than those constructed using the post-WWII data.

Pastor and Stambaugh (2012) survey the large literature on long-run stock return volatil-

ity and construct Bayes predictive densities using models that allow for potentially persistent

components in returns and incorporate parameter uncertainty. While their results rely on

more parametric models than ours� they use all frequencies and exact Gaussian likelihoods�

our empirical conclusions are similar. Using our notation, Pastor and Stambaugh (2012) are

concerned with the behavior of the variance of
p
h�xT+1:T+h and how this variance changes

with the forecast horizon h. If the variance of
p
h�xT+1:T+h is unchanged as h increases, and

if the predictive density is Gaussian, then the width of prediction intervals for �xT+1:T+h will

be proportional to h�1=2. Pastor and Stambaugh �nd that the variance of
p
h�xT+1:T+h is not

constant, but rather increases with h. Consistent with this, we �nd Bayes prediction sets

that narrow as h increases, but more slowly than h�1=2.

Results for di¤erent values of q. As discussed in Sections 2 and 4, the choice of q =

12 involved an e¢ ciency/robustness trade-o¤, where a larger value of q results in more

information about the scale and shape parameter, but potential misspeci�cation because the

higher-frequency spectrum may not be well-described by the same model and parameter.

It is therefore interesting to see how the prediction sets vary with q, and this is reported

in Table 8, which shows the 67% and 90% prediction sets for the 25-year ahead forecasts

for q = 6; 12; and 24. Looking across all of the entries, the prediction sets behave roughly

15See Kitsul and Wright (2012), Figures 3 and 4. Fleckenstein, Longsta¤, and Lustig (2013) estimate

somewhat lower probabilites for de�ation, but similar probabilities for in�ation exceeeding 4%. (See their

Figures 4 and 5). For a related calculation, see Figure 3 in Hilsher, Raviv, and Reis (2014).
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as expected, in the sense that they remain centered at roughly the same value but tend to

narrow as q increases. For example, averaging across the 14 series, the 67% MN prediction

set is 7% narrower using q = 24 than with q = 12 broadly consistent the results in Table

3. There are two noteworthy exceptions. First, per-capita GDP (quarterly post-WWII)

shows a lower bound for the q = 6 prediction sets that is one percentage point lower than

the corresponding value for the q = 12 sets. This arises because the q = 6 log-likelihood

functions for d are much �atter than the q = 12 functions summarized in Table 3. Thus,

when q = 6, the prediction sets account for the possibility of more persistence in the series

and this includes an extrapolation of the low-growth levels experienced by the U.S. economy

over the past decade. The second exception is quarterly U.S. in�ation. Here the lower

bounds of the q = 24 Bayes 90%-prediction sets are more than one percentage point higher

than for q = 12. This arises because the q = 24 likelihood values suggest less persistence

than q = 12 value. (When q = 24 the likelihood peaks at values of d around 0:4 while the

peak is around d = 0:7 for q = 12.)

7 Conclusions

This paper has considered the problem of quantifying uncertainty about long-run predictions

using prediction sets that contain the realized future value of a variable of interest with

prespeci�ed probability. The long-run nature of the problem both simpli�es and complicates

the problem relative to short-run predictions. The problem is simpli�ed because of our

focus on forecasting long-run averages using a relatively small number of (low-frequency)

weighted averages of the sample data. We show that these averages have an approximate joint

normal distribution, which greatly simpli�es the prediction problem. However, the prediction

problem is complicated because the covariance matrix of the limiting normal distribution

depends on the spectrum over very low frequencies, and there is limited sample information

about its shape. Uncertainty about the low-frequency characteristics of the stochastic process

is then an important component of the uncertainty about long-run predictions.

We proposed a �exible parametric model (the bcd-model) to characterize the shape of

the spectrum at low frequencies. Uncertainty about the shape then becomes equivalent to

uncertainty about the values of the bcd-parameters. Incorporating this parameter uncertainty

into prediction uncertainty is straightforward in a Bayesian framework, and we provide the

details in the context of the long-run prediction problem. However, because of the paucity of

sample information about these long-run parameters, the resulting Bayes prediction sets may

depend importantly on the speci�cs of the prior. This motivates us to robustify the Bayes sets

by enlarging them so that, by construction, they control coverage uniformly over all values
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of the bcd-parameters. We construct minimum expected length frequentist prediction sets

using an approximate �least favorable distribution� for the parameters, and we generalize

these to conditionally sensible frequentist prediction sets using ideas from Müller and Norets

(2012).

We apply these methods and construct prediction sets for nine macroeconomic time

series for forecast horizons of up to 75 years. In general, we found that for many series, the

prediction sets are wider than those that one obtains from the I(0) model, but narrower than

one would obtain from, say, the I(1) model. From a statistical point of view, this underlines

the importance of modelling the spectral shape at low frequencies in a �exible manner.

Substantively, it demonstrates that even after accounting for a wide variety of potential

long-run instabilities and dependencies, it is still possible to make informative probability

statements about (very) long-run forecasts.

Our analysis has been univariate in the sense that we have constructed predictions sets

for a scalar random variable xT+1:T+h using sample values of xt. However, answers to some

questions require multivariate prediction sets. The statistical theory discussed and developed

in Section 3 carries over directly to multivariate settings. That said, there are important

practical obstacles to constructing multivariate prediction sets. These obstacles include �nd-

ing a convenient, but �exible, parameterization of the multivariate local-to-zero spectrum,

constructing accurate approximations to least favorable distributions with high dimensional

�, and computing accurate approximations to the density of relevant invariants. Overcoming

these obstacles is left to future research.
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Data Appendix 
 

Series Sample 
period 

Description Sources and Notes 

Post- WWII Quarterly Series 
GDP  1947:Q1-

2012:Q1 
Real GDP (Billions of Chained 2005 
Dollars) 

FRED Series: GDPC96 

Consumption  1947:Q1-
2012:Q1 

Real Personal Consumption 
Expenditures (Billions of Chained 
2005 Dollars) 

FRED Series PCECC96 

Total Factor 
Productivity  

1947:Q2-
2012:Q1 

Growth Rate of TFP  From John Fernald’s Web Page: Filename Quarterly)TFP.XLSX, series name DTFP. The series is described in Fernald 
(2012) 

Labor 
Productivity 

1947:Q1-
2012:Q1 

Output per hour in the non-farm 
business sector 

FRED Series: OPHNFB 
 

Population 1947:Q1-
2012:Q1 

Population (mid Quarter) 
(Thousands) 
 

Bureau of Economic Analysis NIPA Table 7.1. Adjusted for an outlier in 1960:Q1 

Prices: PCE 
Deflator 

1947:Q1-
2012:Q1 

PCE deflator FRED Series: PCECTPI 
 

Inflation (CPI) 1947:Q1-
2012:Q1 

CPI FRED Series: CPIAUCSL. The quarterly price index was computed as the average of the monthly values 
 

Inflation (CPI, 
Japan) 

1960:Q1-
2012:Q1 

CPI for Japan FRED Series: CPI_JPN. The quarterly price index was computed as the average of the monthly values 
 

Stock Returns 1947:Q1-
2012:Q1 

CRSP Real Value-Weighted Returns CRSP Nominal Monthly Returns are from WRDS. Monthly real returns were computed by subtracting the change in the 
logarithm in the CPI from the nominal returns, which were then compounded to yield quarterly returns. Values shown are 
400×the logarithm of gross quarterly real returns. 

Longer Span Data Series 
Real GDP  1900-2011 Real GDP (Billions of Chained 2005 

Dollars) 
1900-1929: Carter, Gartnter, Haines, Olmstead, Sutch, and Wright (2006), Table Ca9: Real GDP in $1996 
1929-2011: BEA Real GDP in $2005. Data were linked in 1929 

Real 
Consumption  

1900-2011 Real Personal Consumption 
Expenditures (Billions of Chained 
2005 Dollars) 

1900-1929: Carter, Gartnter, Haines, Olmstead, Sutch, and Wright (2006), Table Cd78 Consumption expenditures, by type, 
Total, $1987  
1929-2011: BEA Real Consumption in $2005. Data were linked in 1929 

Population 1900-2011 Population 1900-1949: Carter, Gartnter, Haines, Olmstead, Sutch, and Wright (2006), Table Aa6 (Population Total including Armed 
Forces Oversees), 1917-1919 and 1930-1959; Table Aa7 (Total, Resident) 1900-1916 and 1920-1929) 
1950-2011: Bureau of the Census (Total, Total including Armed Forces Oversees), 

Inflation (CPI) 1913-2011 Consumer Price Index BLS Series: CUUR0000SA0 
Stock Returns 1926:Q1-

2012:Q1 
CRSP Real Value-Weighted Returns Described above 

 
Generally, the data used in the paper are growth rates computed as differences in logarithms in percentage points at annual rate (400×ln(Xt/Xt−1) if 
X is measured quarterly and 100×ln(Xt/X−1) if X is measured annually).  The exceptions are stock returns which are 400×Xt, where Xt is the gross 
quarterly real return (that is, Xt = 1+Rt, where Rt is the net return), and TFP which is reported in percentage points at annual rate in the source data. 



8 Appendix

8.1 Central Limit Theorem of Section 3

Theorem 1 Let �xT;t =
P1
s=�1 cT;s"t�s. Suppose that

(i) f"t;Ftg is a martingale di¤erence sequence with E("2t ) = 1, suptE(j"tj2+�) < 1 for some
� > 0, and

E("2t � 1jFt�m) � �m (21)

for some sequence �m ! 0.
(ii) For every � > 0 the exists an integer L� > 0 such that

lim supT!1 T
�1P1

l=L�T+1

�
T supjsj�l jcT;sj

�2
< �.

(iii)
P1
s=�1 c

2
T;s <1 (but not necessarily uniformly in T ). The spectral density of �xT;t thus

exists; denote it by FT : [��; �] 7! R.
(iii.a) Assume that there exists a function S : R 7! R such that ! 7! !2S(!) is integrable, and

for all �xed K, Z K

0
jFT (

!

T
)� !2S(!)jd! ! 0. (22)

(iii.b) For every diverging sequence KT !1

T�3
Z �

KT =T
FT (�)�

�4d� =

Z �T

KT

FT (!=T )!
�4d! ! 0: (23)

(iii.c)

T�3=2
Z �

1=T
FT (�)

1=2��2d� = T�1=2
Z �T

1
FT (!=T )

1=2!�2d! ! 0: (24)

(iv) For some �xed integer H, the bounded and integrable function g : [0;H] 7! R satis�esR H
0 g(s)ds = 0, and with G(r) =

R r
0 g(s)ds, for some constant C, j

PHT
t=1 e

�i�tG( t�1T )j � C�
�2T�1

uniformly in T and �:
Then

T�1=2
Z H

0
g(s)xT;[sT ]+1ds) N (0;

Z 1

�1
S(!)

����Z H

0
e�i!sg(s)ds

����2 d!) (25)

where xT;t =
Pt
s=1�xT;s.

Remarks: Note that the linear process �xT;t is not restricted to be causal. The m.d.s. struc-
ture of the driving errors "t in assumption (i) allows for some departures from strict stationarity.

It also accommodates conditional heteroskedasticity, with the second order dependence limited by

the mixingale condition (21).

With the pseudo-spectrum of xT;t de�ned as RT (�) = FT (�)=j1 � e�i�j2, assumption (iii.a) is
equivalent to

T 2
Z K

0
!2jT�2RT (

!

T
)� S(!)jd! ! 0 (26)

44



since for any �xed K, sup0�!�K jT�2 !2

j1�e�i!=T j2 � 1j ! 0. Thus, (iii.a) is equivalent to the con-

vergence of the pseudo-spectrum of xT;t to S in a T�1 neighborhood of the origin in the sense of

(26).

To better understand the role of assumptions (ii) and (iii), consider some leading examples.

Suppose �rst that �xT;t is causal and weakly dependent with exponentially decaying cT;s, jcT;sj �
C0e

�C1s for some C0; C1 > 0, as would arise in causal and invertible ARMA models of any �xed

and �nite order. Then T�1
P1
l=LT+1

�
T supjsj�l jcT;sj

�2
! 0 for any L > 0, !2S(!) is constant and

equal to the long-run variance of�xT;t, and (23) and (24) hold, since FT is bounded,
R1
KT
!�4d! ! 0

for any KT !1 and
R1
1 !�2d! <1.

Second, suppose �xT;t is fractionally integrated with parameter d 2 (�1=2; 1=2) (corresponding
to xT;t being fractionally integrated of order d+1). With �xT;t scaled by T�d, cT;s � C0T�dsd�1,
so that T�1

P1
l=LT+1

�
T supjsj�l jcT;sj

�2
!
R1
L s2d�2ds, which can be made arbitrarily small by

choosing L large. Further, for � close to zero, FT (�) � C20 (�T )�2d, so that !2S(!) = C20!�2d, and
(23) and (24) are seen to hold under weak assumptions about higher frequency properties of �xT;t.

For instance, even integrable poles in FT at frequencies other than zero can be accommodated.

Third, suppose xT;t is an AR(1) process with local-to-unity coe¢ cient �T = 1 � c=T

and unit innovation variance. Then cT;0 = 1 and cT;s = �(1 � �T )�
s
T , s > 0. Thus

T�1
P1
l=LT+1

�
T supjsj�l jcT;sj

�2
! c2

R1
L e�2csds, which can be made arbitrarily small by choos-

ing L large. Further, FT (�) = j1 � e�i�j2=j1 � �T e
�i�j2, which is seen to satisfy (22) with

S(!) = 1=(!2 + c2). Conditions (23) and (24) also hold in this example, since FT (�) � 1.
As a �nal example, suppose �xT;t = T"t � T"t�1 (inducing xT;t to be i.i.d. conditional

on "0). Here FT (�) = T 2j1 � e�i�j2 = 4T 2 sin(�=2)2, so that S(!) = 1, and (23) evaluates

to 4
R �T
KT
T 2 sin(!=2T )2!�4d! �

R �T
KT
!�2d! ! 0, and (23) to 2T�1=2

R �T
1 T sin(12!=T )!

�2d! �
T�1=2

R �T
1 !�1d! ! 0, where the inequalities follow from sin(�) � � for all � � 0.

Assumption (iv) of Theorem 1 speci�es the sense in which the weights g in (25) are smooth,

so that the properties of the g(s)-weighted average of xT;[sT ]+1 are wholly determined by the low-

frequency properties of xT;t. The number H is assumed to be an integer to ease notation. Note that

a constant g would not satisfy assumption (iv), as it does not integrate to zero, but all functions

of interest in the context of this paper do.

Lemma 1 For some 0 < r < H�1, let gq+1 : [0;H] 7! R equal gq+1(s) = �1[0 � s � 1]+r�11[1 <
s � 1 + r] and let gj : [0;H] 7! R equal to gj(s) = 1[s � 1]

p
2 cos(�js) for j = 1; : : : ; q. Then for

any �xed and real �j, g(s) =
Pq+1
j=1 �jgj(s) satis�es assumption (iv) of Theorem 1.

Proof. It is clearly su¢ cient to show that each gj satis�es the assumption. This follows from
a direct computation.

The implication of Theorem 1 that is of interest for Section 3 follows from the following Corol-

lary.
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Corollary 1 Suppose g1; : : : ; gq+1 are as in Lemma 1. Then under the assumptions of Theorem 1
(i)-(iii),

T�1=2
Z H

0

266664
g1(s)
...

gq(s)

gq+1(s)

377775xT;bsT c+1ds) N (0;�)

where �j;k =
R1
�1 S(!)

�R H
0 e�i!sgj(s)ds

��R H
0 ei!sgk(s)ds

�
d! for j; k = 1; : : : ; q + 1.

Proof. Follows from Theorem 1, Lemma 1 and the Cramer-Wold device via������
Z H

0
e�i!s

0@q+1X
j=1

�jgj(s)

1A ds
������
2

=

q+1X
j;k=1

�j�k

�Z H

0
e�i!sgj(s)ds

��Z H

0
ei!sgk(s)ds

�
.

8.2 Density of (Xs; Y s) and Related Results

Let Z = (X 0; Y )0 and U =
p
X 0X. Write �l for Lebesgue measure on Rl, and �q for the surface

measure of a q dimensional unit sphere. For x 2 Rq, let x = xsu, where xs is a point on the

surface of a q dimensional unit sphere, and u 2 R+. By Theorem 2.1.13 of Muirhead (1982),

d�q(x) = uq�1d�q(xs)d�1(u). Further, for y 2 R, consider the change of variable y = ysu with

u 2 R+ and ys 2 R, so that d�1(y) = ud�1(ys). We thus can write the joint density of (Xs; Y s; U)

with respect to �q � �1 � �1 as

(2�)�(q+1)=2j�j�1=2 exp[�1
2

 
xsu

ysu

!0
��1

 
xsu

ysu

!
]uq

and the marginal density of Zs = (Xs0; Y s)0 with respect to �q � �1 is

fZs(z
s) = (2�)�(q+1)=2j�j�1=2

Z 1

0
uq exp[�1

2u
2(zs0��1zs)]d�1(u)

= (2�)�(q+1)=2j�j�1=2 12
Z 1

0
t(q�1)=2 exp[�1

2 t(z
s0��1zs)]d�1(t)

= (2�)�(q+1)=2j�j�1=2 12�(
q+1
2 )2

(q+1)=2
�
zs0��1zs

��(q+1)=2
= 1

2�
�(q+1)=2j�j�1=2�( q+12 )

�
zs0��1zs

��(q+1)=2
where the second equality follows from the form of the Gamma density function, and � denotes the

gamma function. The implied marginal density of Xs is

fXs(xs) = 1
2�

�(q)=2j�X j�1=2�( q2)
�
xs0��1X x

s
��q=2

.

46



Similarly, with g(xs) = E[
p
X 0XjXs = xs], we obtain

fxs(x
s)g(xs) =

Z 1

0
uf(Xs;U)(x

s; u)d�1(u)

= u(2�)�q=2j�XX j�1=2
Z 1

0
uq�1 exp[�1

2u
2(xs0��1XXx

s)]d�1(u)

= 2�1=2��q=2j�XX j�1=2�( q+12 )(x
s0��1XXx

s)�(q+1)=2:

Finally, from (4), ~Y = Y � �Y X��1XXX � N (0;�Y Y � �Y X��1XX�XY ) and X are independent

normal random variables. Also, using well known properties of a multivariate standard normal

distribution, X 0��1XXX � �2q is independent of ~Xs = �
�1=2
XX X=

q
X 0��1XXX. Since X

s is a one-to-

one transformation of ~Xs, we thus obtain

~Yq
X 0��1XXX=q

q
�Y Y � �Y X��1XX�XY

jXs � tq

and the result (6) follows by dividing the numerator and denominator by
p
X 0X.

8.3 Approximate Least Favorable Distributions

In practice, it won�t be possible to compute a least favorable distribution �y that perfectly solves the

program (12)-(14). To make further progress, we follow Elliott, Müller, and Watson (2014) (EMW

in the following), and �rst formally state a lower bound on (12), and then de�ne an approximate

least favorable distribution (ALFD) �� that solves (8) within a tolerance of �.

To ease notation, write VW (A) =
R
V�(A)dW (�) and C�(A) = P�(Y s 2 A(Xs)). Also, we make

the dependence of the set (16) on cv explicit by writing

A�;cv(x
s) =

8>><>>:ys :
Z
f(Y s;Xs)j�(y

s; xs)d�(�)Z
g�(xs)fXsj�(xs)dW (�)

> cv

9>>=>>; : (27)

We begin by proving the optimality of the set A�;cv in the problem minA VW (A) subject toR
C�(A)d�(�) = 1� �.

Lemma 2 Let A�;cv be such that
R
C�(A�;cv)d�(�) = 1��. Then A�;cv solves minA VW (A) subject

to
R
C�(A)d�(�) � 1� �.

Proof. Note that any A is equivalently characterized by the test-function ' : Rq �
R 7! f0; 1g de�ned via '(ys; xs) = 1[ys 2 A(xs)]. In this notation, VW (A) =R R R

g�(x
s)fXsj�(x

s)'(ys; xs)d�q(x
s)d�1(y

s)dW (�) =
R
'(zs)f1(z

s)d�q;1(z
s), and

R
C�(A)d�(�) =R R R

fZsj�(x
s; ys)'(ys; xs)d�q(x

s)d�1(y
s)d�(�) =

R
'(zs)f0(z

s)d�q;1(z
s), where d�q;1(z

s) =

d�q(x
s) � d�1(ys), f1(zs) =

R
g�(x

s)fXsj�(x
s)dW (�) and f0(zs) =

R
fZsj�(z

s)d�(�). Thus, the
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problem is equivalent to the problem of �nding the best test that rejects (that is ' = 1) with

probability at least 1 � � when the �density�of Zs is f0, and minimizes the rejection probability
when the �density�of Zs is f1. These densities do not necessarily integrate to one, but the solution

still has to be of the Neyman-Pearson form (16), as can be seen by the very argument that proves

the Neyman-Pearson Lemma: Set '�(ys; xs) = 1[ys 2 A�;cv(xs)] and '(ys; xs) = 1[ys 2 A(xs)] for
some A that satis�es

R
C�(A)d�(�) � 1� �. Then

R
'f0d�q;1 � 1� � (we drop zs as the dummy

variable of integration for notational convenience), and

0 �
Z
('� � ')(f0 � cv f1)d�q;1

� cv(

Z
'f1d�q;1 �

Z
'�f1d�q;1)

where the �rst inequality follows from the de�nition of '� and the second from 1�� =
R
'�f0d�q;1 �R

'f0d�q;1.

A second result mirrors Lemma 1 of EMW and bounds the value of minA VW (A), formalizing

the result verbally stated in Section 3.3.

Lemma 3 Let A�;cv as in Lemma 2. Then for any A that satis�es inf� C�(A) � 1� �, VW (A) �
VW (A�;cv):

Proof. The result is immediate from Lemma 2 after noting that inf� C�(A) � 1 � � impliesR
C�(A)d�(�) � 1� �.
Lemma 3 is useful, as it provides a set of lower bounds (indexed by �) on the achievable values

of the objective (12). Thus, if a � can be identi�ed that implies a small lower bound in the sense

that a small adjustment to the critical value yields a set with uniform coverage and only marginally

larger objective, the problem has been solved as a practical matter. Again following EMW, we

denote such a distribution an ALFD.

De�nition 2 An �-approximate least favorable distribution �� is a probability distribution on �
satisfying

(i) there exists cv� such that A��;cv� satis�es
R
C�(A��;cv�)d�

�(�) = 1� �
(ii) there exists cv�� < cv� such that inf�

R
C�(A��;cv��) � 1 � �, and VW (A��;cv��) �

VW (A��;cv�) + �.

The strategy is thus to set some small tolerance level �, and to numerically identify an �-ALFD

��. By de�nition, A��;cv�� controls coverage uniformly, and invoking Lemma 3, its W -weighted

average length is at most � larger than of any prediction set that controls coverage uniformly.

Generalizations of Lemmas 2 and 3 for A(xs) additionally restricted to be a superset of some

given set B(xs) are proven entirely analogously and are omitted for brevity (cf. Lemma 3 in EMW

and Theorem 4 in Müller and Norets (2012)).
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8.4 Computation of Frequentist Prediction Sets

8.4.1 Numerical Determination of C�(A) and VW (A)

The algorithm for determining AMN below requires repeated evaluation of V�(A) and C�(A), with

A some set valued function of xs. We employ an importance sampling Monte Carlo scheme: Write

f� for the density of Zs = (Xs; Y s) under �, i.e. f�(zs) = f(Xs;Y s)j�(x
s; ys), and let fp be a proposal

density for Zs such that f� is absolutely continuous with respect to fp for all �. Then

C�(A) = Ep[
f�(Z

s)

fp(Zs)
1[Y s 2 A(Xs)]]

with Ep denoting integration with respect to fp. Furthermore, from

V�(A) = E� [g�(X
s) vol(A(Xs))]

= E�

�
g�(X

s)

Z
1[ys 2 A(Xs)]dys

�
=

Z Z
g�(x

s)fXsj�(x
s)1[ys 2 A(xs)]dxsdys

we obtain

V�(A) = Ep[
g�(X

s)fXsj�(X
s)

fp(Zs)
1[Y s 2 A(Xs)]]:

With N i.i.d. draws Zs1 ; : : : ; Z
s
m from fp, we thus obtain the importance sampling approximations

Ĉ�(A) = N�1
NX
l=1

f�(Z
s
l )

fp(Zsl )
1[Y sl 2 A(Xs

l )] (28)

V̂�(A) = N�1
NX
l=1

g�(X
s
l )fXsj�(X

s
l )

fp(Zsl )
1[Y sl 2 A(Xs

l )]: (29)

The expression (29) is numerically advantageous, as it does not require any explicit numerical

determination of the length of a set A(xs).

8.4.2 Numerical Determination of an ALFD

Our algorithm is analogous to what is suggested in EMW. It consists of two main parts: (I)

determination of a candidate �-ALFD ��; (II) numerical check of inf�2� P�(Y s 2 A��;cv��(Xs)) �
1��. Both parts are based on a discrete grid of values for �, with the grid �II for part (II) �ner and
with a wider range than the grid �I for part (I). In particular, with �I = f�0:4;�0:2; : : : ; 1:0g,
�II = f�0:4;�0:3; : : : ; 1:0g, ~BI = f0g [ fe�5; e�4; : : : ; e5g, ~BII = f0g [ fe�5:5; e�5:0; : : : ; e7:5g,
CI = f0g [ fe�3:0; e�2:3; : : : ; e4:0g, CII = f0g [ fe�3:35; e�3:0; : : : ; e7:5g; �I = f(b; 0; d)0 : d 2
�I ; (8�)

2db2 2 ~BIg [ f(0; c; d)0 : d 2 �I ; c 2 CIg [ f(b; c; 1:0)0 : c 2 CI ; ((8�)2 + c2)db2 2 ~BIg and
�II = f(b; c; d)0 : c 2 CII ; d 2 �II ; ((8�)2 + a2)db2 2 ~BIIg. Also let �� = f� : � = (0; 0; d); d 2
f�0:4;�0:2; : : : ; 1:0gg denote the support of the prior �.
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The range of values for b and c in grid �II are chosen to approximately cover all possible values

of � in the bcd-model (as b ! 1 or c ! 1, � converges to its value in the I(0) model, for any
value of d 2 �II). Preliminary results suggested that the ALFD puts no mass on � with b > 0,

c > 0 and d < 1, motivating our smaller choice for �I .

With �I the support of candidate ALFDs �, andW putting weight w� on � 2 ��, (27) becomes

A�;cv(x
s) =

(
ys :

P
�2�I ��f(Y s;Xs)j�(y

s; xs)P
�2�� w�g�(x

s)fXsj�(xs)
> cv

)

where �� � 0 and
P
�2�I �� = 1. Note that A�;cv is fully determined by the ratios �� = ��= cv,

� 2 �I , so introduce the notation A�;cv = A�.
Part (I) of the algorithm seeks to determine appropriate values of ��, � 2 �I , for an �-ALFD.

The following steps are for the AMN set that also enforces the Bayes superset constraint (11).

1. Generate i.i.d. draws Zsl , l = 1; : : : ; N from fp(z
s) = j�I j�1

P
�2�I f�(z

s) (that is, the

proposal density fp is the equal probability mixture of f� with � drawn uniformly from �I).

2. Compute and store f�(Zsl ) and fp(Z
s
l ) for � 2 �I , and g�(Xs

l )fXsj�(X
s
l ) for � 2 ��, l =

1; : : : ; N .

3. Compute V known� = V̂�(A
known
� ); � 2 �� where Aknown� is the prediction set for known �. To be

speci�c, Aknown� = [��(x
s)�tq(1��=2)��(x

s); ��(x
s)+tq(1��=2)��(x

s)] with ��(x
s) = �Y X�

�1
XXx

s

and �2�(x
s) = (�Y Y ��Y X��1XX�XY )xs0�

�1
XXx

s=q, with �XX , �Y X , �XY and �Y Y as implied

by �. Set w� = (V known� )�1=
P
t2��(V

known
t )�1, � 2 ��.

4. For each Zsl , determine 1[Y
s
l 2 ABayes(Xs

l )] = 1[FBayes(Y sl jXs
l ) 2 (�=2; 1 � �=2)], where

FBayes is the c.d.f. of the Bayes predictive distribution, that is

FBayes(Y sjXs) =

P
�2�� �fXsj�(X

s)F qt

�
Y s���(Xs)
��(Xs)

�
P
�2�� �fXsj�(Xs)

with F qt the c.d.f. of a student-t distribution with q degrees of freedom and � = 1=j��j.

5. Set �(0) = (1; : : : ; 1) 2 Rj�I j, !(0) = (4; : : : ; 4) 2 Rj�I j, RP(0) = (�; : : : ; �) 2 Rj�I j

6. Iterate over i = 1; : : : ; 500

(a) Compute RP(i)� = 1� Ĉ�(A�(i) [ABayes), � 2 �I :

(b) Set �(i+1)� = �
(i)
� exp(!

(i)
� (RP

(i)
� ��)), � 2 �I :

(c) If i � 400, set !(i+1)� = 0:1: Otherwise, set !(i+1)� = 1:03!
(i)
� if (RP(i)� ��)(RP(i)� ��) > 0

and !(i+1)� = 0:5!
(i)
� otherwise, � 2 �I :

7. Set ��� = �
(500)
� =

P
t2�I �

(500)
t , � 2 �I :
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As in EMW, the simple idea underlying Step 6.b is a �xed-point iteration that decreases ��
under overcoverage, and increases it otherwise, with the change (in logarithms) proportional to the

degree of over- or undercoverage. The idea of Step 6.c is to half the step length if the sign of the

coverage violation switched in the last iteration, and to gradually increase it otherwise. In the last

100 of the 500 iterations, a small step length is enforced regardless.

One would expect ��� of Step 7 to be a rough approximation to the least favorable distribution

with the parameter space restricted to �I . With �I a su¢ ciently �ne grid, this in turn is a

candidate for an �-ALFD �� in the sense of De�nition 2. Part (II) of the algorithm checks whether

�� constructed from ��� does indeed satisfy the properties of an �-ALFD �
�.

1. Compute the number cv� such that
P
�2�� w�Ĉ�(A��;cv� [A

Bayes) = 1� �.

2. Compute the number cv�� such that
P
�2�� w�V̂�(A��;cv�� [ ABayes) = � +P

�2�� w�V̂�(A��;cv� [A
Bayes).

3. Check whether inf�2�II Ĉ�(A��;cv�� [ABayes) � 1� �.

We set � = 0:01 throughout, so that in terms of the W -average expected length, the set

AMN = A��;cv��[ABayes is at most 1% longer than any set satisfying (9)-(11). We use N = 250; 000;

leading to Monte Carlo errors of Ĉ� of approximately 0.1-0.3%. For a given value of q, � and r,

these computations take approximately one minute on a modern PC using Fortran. We compute

AMN sets for q 2 f6; 12; 24; 48g and r 2 f0:075; 0:1; 0:15g[f0:2; 0:3; : : : ; 1:0g[f1:2; 1:4; 1:6; 1:8g: In
the empirical work, prediction intervals for other values of r are computed via linear interpolation.

8.4.3 Computation of � in bcd-model

One possibility to compute � is to notice that for all gj under consideration,
R 1+r
0 gj(s)e

i!sds can

be obtained in closed form, so that one can apply one-dimensional numerical integration to (7) for

S(!) = (c2 + !2)�d + b2. It turns out, however, that the integrand is highly oscillatory and, for d

small (d = �0:4), very slowly decaying.
We therefore now derive a numerically more stable expression for �j;k in the bcd-model. Note

that (7) is linear in S, and � for constant S can be computed from (7) in closed form. It thus

su¢ ces so obtain a more convenient expression for b = 0 (since the additional component stemming

from the I(0) component for b > 0 can be added easily).

Now for c > 0 and 1=2 < d, from (4.58) in Lindgren (2013)

c;d(s) =

Z 1

�1
(c2 + !2)�dei!sd! =

2
3
2
�dp�(jsj=c)d�1=2Id�1=2(cjsj)

�(d)
(30)

where I�(x) is the modi�ed Bessel function of the second kind, so that

�j;k =

Z 1

�1

Z 1+r

0

Z 1+r

0
gj(s)e

i!sgk(u)e
�i!u(c2 + !2)�dei!sd!dsdu (31)
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=

Z 1+r

0

Z 1+r

0
gj(s)gk(u)c;d(s� u)dsdu: (32)

We approximate (32) by a double sum with a step length of 0.0002. For c = 0, we use the implied

value for c = 0:01.

It remains to obtain a suitable expression for �1=2 < d < 1=2. Suppose g is di¤erentiable on
(HL;HU ) with derivative g0. Then by integration by parts,Z HU

HL

g(s)ei!sds =

Z HU

HL

g(s)e�cse(c+i!)sds

= g(HU )e
�HU c e

(c+i!)HU

c+ i!
� g(HL)

1

c+ i!
�
Z HU

HL

(g0(s)e�cs � cg(s)e�cs)e
(c+i!)s

c+ i!
ds

=
g(HU )e

i!HU � g(HL)ei!HL �
R HU
HL
(g0(s)� cg(s))ei!sds

c+ i!
:

All g functions entering �j;k are di¤erentiable on (0; 1) and on (1; 1 + r), so we obtainZ 1+r

0
g(s)ei!sds =

g(1 + r)ei!(1+r) � (g+(1)� g(1))ei! � g(0)�
R 1+r
0 (g0(s)� cg(s))ei!sds

c+ i!
(33)

where g+(1) the right limit of g(s) at s = 1, and g0(s) for s 2 f0; 1; 1+rg may be de�ned arbitrarily.
Now applying (33) in (31) twice, and noting that (c+ i!)(c� i!) = c2+!2, all integrals with respect
to d! in (31) are of the form C1

R1
�1(c

2 + !2)�(d+1)ei!(s�C2)d! for C1 and C2 not depending on

!, which can be computed in closed form using (30). We obtain

�j;k =

0B@ gj(1 + r)

gj(1)� g+j (1)
�gj(0)

1CA
00B@ c;d+1(0) c;d+1(r) c;d+1(1 + r)

c;d+1(r) c;d+1(0) c;d+1(1)

c;d+1(1 + r) c;d+1(1) c;d+1(0)

1CA
0B@ gk(1 + r)

gk(1)� g+k (1)
�gk(0)

1CA

�

0B@ gj(1 + r)

gj(1)� g+j (1)
�gj(0)

1CA
00B@

R 1+r
0 (g0k(s)� cgk(s))c;d+1(1 + r � s)dsR 1+r
0 (g0k(s)� cgk(s))c;d+1(1� s)dsR 1+r
0 (g0k(s)� cgk(s))c;d+1(s)ds

1CA

�

0B@ gk(1 + r)

gk(1)� g+k (1)
�gk(0)

1CA
00B@

R 1+r
0 (g0j(s)� cgj(s))c;d+1(1 + r � s)dsR 1+r
0 (g0j(s)� cgj(s))c;d+1(1� s)dsR 1+r
0 (g0j(s)� cgj(s))c;d+1(s)ds

1CA
+

Z 1+r

0

Z 1+r

0
(g0j(s)� cgj(s))(g0k(u)� cgk(u))c;d+1(s� u)dsdu:

We again approximate the integrals in this expression by sums with a step length of 0.0002, and

approximate � for c = 0 by the value implied by c = 0:01.

8.5 Proof of Theorem 1

We now introduce some notation that is used in the proof of Theorem 1, and in auxiliary Lemmas.

We �rst state these Lemmas and then the proof of Theorem 1.
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Notation: De�ne �2T = Var[T
�1=2 R H

0 g(s)xT;bsT c+1ds]. Note that with ~gT;t = T
R t=T
(t�1)=T g(s)ds

and ~GT;t = T�1
Pt�1
s=1 ~gT;t =

Pt�1
s=1

R s=T
(s�1)=T g(s)ds =

R (t�1)=T
0 g(s)ds = G( t�1T ), we �nd using

summation by parts

T�1=2
Z H

0
g(s)xT;bsT c+1ds = T�3=2

HTX
t=1

~gT;txT;t

= T�1=2 ~GT;HT+1xT;HT � T�1=2
HTX
t=1

~GT (t=T )�xT;t

= �T 1=2
HTX
t=1

G(
t� 1
T

)�xT;t

since ~GT;HT+1 = G(H) = 0.

Lemma 4 �2T ! �2 =
R1
�1 S(!)

���R H0 e�i!sg(s)ds
���2 d!.

Proof. Let T be the autocovariances of �xT;t. We �nd

Var[T�1=2
HTX
t=1

G(
t� 1
T

)�xT;t] = T�1
HTX
j;k=1

T (k � j)G(
k � 1
T

)G(
j � 1
T

)

= T�1
HTX
j;k=1

�Z �

��
ei�(k�j)FT (�)d�

�
G(
k � 1
T

)G(
j � 1
T

)

= T�1
Z �

��
FT (�)

�����
HTX
t=1

ei�tG(
t� 1
T

)

�����
2

d�:

Now for any �xed K, we will show

T�1
Z K=T

�K=T
FT (�)

�����
HTX
t=1

ei�tG(
t� 1
T

)

�����
2

d� =

Z K

�K
FT (

!

T
)

�����T�1
HTX
t=1

ei!t=TG(
t� 1
T

)

�����
2

d!

!
Z K

�K
S(!)!2

����Z H

0
ei!sG(s)ds

����2 d!: (34)

First note that for any two complex numbers a; b, ja � bj � jjaj � jbjj, so that jjaj2 � jbj2j =
j(jaj+ jbj)(jaj � jbj)j � (jaj+ jbj)ja� bj. Thus,������
����Z H

0
ei!sG(s)ds

����2 �
�����T�1

HTX
t=1

ei!t=TG(
t� 1
T

)

�����
2
������ �

2 sup
s
jG(s)j �

�����T�1
HTX
t=1

ei!t=TG(
t� 1
T

)�
Z H

0
ei!sG(s)ds

�����
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and �����T�1
HTX
t=1

ei!t=TG(
t� 1
T

)�
Z H

0
ei!sG(s)ds

�����
�

Z H

0
jei!sG(s)� ei![sT ]=TG([sT ]=T )jds

=

Z H

0
jei!s(G(s)�G([sT ]=T )) +G([sT ]=T )(ei!s � ei![sT ]=T )jds

�
Z H

0
jG(s)�G([sT ]=T )jds+ sup

s
jG(s)j

Z H

0
j1� ei!([sT ]=T�s)jds:

Since for any real a, j1�eiaj < jaj, supj!j�K j1�ei!(bsT c=T�s)j � K=T , and also jG(s)�G([sT ]=T )j �
T�1 sups jg(s)j. Thus,

sup
j!j�K

������
�����T�1

HTX
t=1

ei!t=TG(
t� 1
T

)

�����
2

�
����Z H

0
ei!sG(s)ds

����2
������! 0

and (34) follows from assumption (iii.a) by straightforward arguments.

Further, since
R H
0 ei!sg(s)ds = �i!

R H
0 ei!sG(s)ds,Z K

�K
S(!)!2

����Z H

0
ei!sG(s)ds

����2 d! = Z K

�K
S(!)

����Z H

0
ei!sg(s)ds

����2 d!:
Thus, for any �xed K,

�K(T ) = T
�1
Z K=T

�K=T
FT (�)

�����
HTX
t=1

ei�tG(
t� 1
T

)

�����
2

d��
Z K

�K
S(!)

����Z H

0
ei!sg(s)ds

����2 d! ! 0:

Now for each T , de�ne KT as the largest integer K � T for which supT 0�T j�K(T 0)j � 1=K (and

zero if no such K exists). Note that �K(T ) ! 0 for all �xed K implies that KT ! 1, and by
construction, also �KT

(T )! 0. The result now follows from

T�1
Z �

KT =T
FT (�)

�����
HTX
t=1

ei�tG(
t� 1
T

)

�����
2

d� � C2T�3
Z �

KT =T
FT (�)

1

�4
d�! 0

by assumptions (iii.b) and (iv).

Lemma 5 T�1=2 supt;T j
PHT
j=1G(

j�1
T )cT;j�tj ! 0.

Proof. Recall that for any two real, square integrable sequences fajg1j=�1 and fbjg1j=�1,P1
j=�1 ajbj =

1
2�

R �
�� Â(�)B̂

�(�)d�, where Â(�) =
P1
j=�1 aje

�i�j and B̂�(�) =
P1
j=�1 bje

i�j .

Thus
HTX
j=1

G(
j � 1
T

)cT;j�t =
HT�tX
j=1�t

G(
t+ j � 1

T
)cT;j =

1

2�

Z �

��
ei�tĜT (�)Ĉ

�
T (�)d�
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where ĈT (�) =
P1
j=�1 cT;je

�i�j and ĜT (�) =
PHT
j=1 e

�i�jG( j�1T ), so that ei�tĜT (�) =PHT
j=1 e

�i�(j�t)G( t�1T ) =
PHT�t
j=1�t e

�i�jG( t+j�1T ), and Ĉ�T is the complex conjugate of ĈT : Now since

FT (�) =
1
2� jĈT (�)j

2, we �nd by the Cauchy-Schwarz inequality that

2�j
HTX
j=1

G(
j � 1
T

)cT;j�tj = j
Z �

��
ei�tĜT (�)Ĉ

�
T (�)d�j �

p
2�

Z �

��
jĜT (�)jFT (�)1=2d�:

Also, since jĜT (�)j �
PHT
j=1 jG(

j�1
T )j, we haveZ 1=T

0
jĜT (�)jFT (�)1=2d� � T�1

HTX
j=1

jG(j � 1
T

)j �
Z 1

0
FT (!=T )

1=2d!

!
Z H

0
jG(s)jds �

Z 1

0
!S(!)1=2d! <1

where the convergence follows from assumption (iii.a). Furthermore, by assumption (iv),Z �

1=T
jĜT (�)jFT (�)1=2d� � CT�1

Z �

1=T
FT (�)

1=2��2d�.

The result follows by assumption (iii.c).

Lemma 6 For every � > 0 there exists a M > 0 such that

Var[T�1=2
Z H

0
g(s)xT;bsT c+1ds+ T

�1=2
MTX

t=�MT

0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A "t] < �.
For this M , �2T;M = Var[T�1=2

PMT
t=�MT

�PHT
j=1G(

j�1
T )cT;j�t

�
"t] satis�es lim supT!1 j�2M;T �

�2j < �.

Proof. We have

�
Z H

0
g(s)xT;bsT c+1ds =

HTX
t=1

G(
t� 1
T

)�xT;t

=
HTX
t=1

G(
t� 1
T

)
1X

s=�1
cT;s"t�s

=

1X
t=�1

0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A "t
so that, with �G = sup

0�s<H jG(s)j

Var[T�1=2
Z H

0
g(s)xT;[sT ]+1ds+ T

�1=2
MTX

t=�MT

0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A "t]
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= T�1
�MT�1X
l=�1

0@HTX
j=1

G(
j � 1
T

)cT;j�l

1A2 + T�1 1X
l=MT+1

0@HTX
j=1

G(
j � 1
T

)cT;j�l

1A2

� �G2T�1
1X

l=MT+1

0@HTX
j=1

(jcT;j�lj+ jcT;j+lj

1A2

� 4H2 �G2T�1
1X

l=MT+1

 
T sup
jsj�l�HT

jcT;sj
!2

= 4H2 �G2T�1
1X

l=(M�H)T+1

 
T sup
jsj�l

jcT;sj
!2

which can be made arbitrarily small by choosing M large enough via assumption (ii).

The second claim follows directly from Lemma 4.

Lemma 7 For any large enough integer M > 0, ��1M;TT
�1=2PMT

t=�MT

�PHT
j=1G(

j�1
T )cT;j�t

�
"t )

N (0; 1).

Proof. By the second claim in Lemma 6 and Lemma 4, �M;T = O(1) and

��1M;T = O(1). By Theorem 24.3 in Davidson (1994), it thus su¢ ces to show (a)

T�1=2 sup1�t�HT j
PHT
j=1G(

j�1
T )cT;j�t"tj

p! 0 and (b) T�1
PMT
t=�MT

�PHT
j=1G(

j�1
T )cT;j�t

�2
("2t �

1)
p! 0.

(a) is implied by the Lyapunov condition via Davidson�s (1994) Theorems 23.16 and 23.11.

Thus, it su¢ ces to show that

MTX
t=�MT

E[jT�1=2
0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A "tj2+�]! 0:

Now

MTX
t=�MT

E

264
������T�1=2

0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A "t
������
2+�
375

� T�1��=2
MTX

t=�MT

������
HTX
j=1

G(
j � 1
T

)cT;j�t

������
2+�

E(j"tj2+�)

� (sup
t
E(j"tj2+�)) � T��=2 sup

t

������
HTX
j=1

G(
j � 1
T

)cT;j�t

������
�

� T�1
MTX

t=�MT

������
HTX
j=1

G(
j � 1
T

)cT;j�t

������
2

= (sup
t
E(j"tj2+�)) �

0@T�1=2 sup
t

������
HTX
j=1

G(
j � 1
T

)cT;j�t

������
1A� � �2M;T ! 0
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where the convergence follows from Lemma 5.

For (b), we apply Theorem 19.11 of Davidson (1994) with Davidson�s X and c chosen as

XD
T;t = cDT;t("

2
t � 1) and cDT;t = T�1

�PHT
j=1G(

j�1
T )cT;j�t

�2
. Then XD

T;t=c
D
T;t = "2t � 1 is uniformly

integrable, since suptE(j"tj2+�) <1. Further,

MTX
t=�MT

cDT;t = T
�1

MTX
t=�MT

0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A2 = �2M;T = O(1)
and

MTX
t=�MT

(cDT;t)
2 = T�2

MTX
t=�MT

0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A4

= sup
1�t�HT

������T�1=2
HTX
j=1

G(
j � 1
T

)cT;j�t

������
2

� T�1
MTX

t=�MT

0@HTX
j=1

G(
j � 1
T

)cT;j�t

1A2

= sup
1�t�HT

������T�1=2
HTX
j=1

G(
j � 1
T

)cT;j�t

������
2

� �2M;T ! 0

where the convergence follows from Lemma 5.

Proof of Theorem 1:
By Lemmas 4, 6 and 7, for large enough M ,

��1T�1=2
Z H

0
g(s)xT;bsT c+1ds =

�M;T
�

AT +
�M;T
�

BT

where AT ) N (0; 1); lim supT!1E(B2T ) < � and lim supT!1 j�2M;T � �2j < �. Thus, by Slutzky�s
Theorem, as � ! 0; the desired convergence in distribution follows. But � was arbitrary, which

proves the Theorem.

8.6 Autocovariances for the bcd-model

As described in the text, equation (18) is the local-to-zero spectrum of the process xt = e1t +

(bT d)�1zt where (1 � �TL)dzt = e2t with �T = 1 � c=T and e1t and e2t mutually uncorrelated

white noise processes with common variance �2. The autocovariances for the process are the sum

of the autocovariances for its two components. The autocovariances for the second component can

be computed as follows. Suppressing the dependence of � on T , the spectrum for z is

R(�) =
�2

2�
(1 + �2 � 2� cos(�))�d

and the k�th autocovariance is therefore

k =

Z �

0
cos(k�)R(�)d�
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=
�2

2�

Z �

0
cos(k�)(1 + �2 � 2� cos(�))�dd�

=
�2

2�

�
�

(1 + �)2

�k
(1 + �)�2d

�
�(d+ k)

�(d)�(1 + k)

�
2F1

�
0:5 + k; d+ k; 1 + 2k;

4�

(1 + �)2

�
where 2F1(a; b; c; z) is the hypergeometric function.

From Luke (1975, page 271 equation (7)):

2F1(a; b; 2a; z) =

�
2

1 + y

�2b
2F1

 
b; b+ 0:5� a; a+ 0:5;

�
1� y
1 + y

�2!
; where y = (1� z)1=2.

Thus, the expression for k simpli�es:

k =
�2

2�

�
�

(1 + �)2

�k
(1 + �)2(d+k)(1 + �)�2d

�
�(d+ k)

�(d)�(1 + k)

�
2F1 (d+ k; d; 1 + k; �)

=
�2

2�
�k
�

�(d+ k)

�(d)�(1 + k)

�
2F1

�
d+ k; d; 1 + k; �2

�
:

58



Additional Figures 
A.1 Growth rate of real per-capita GDP  

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 1.9 

sLR 5.1 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 
Notes: The cosine transformations shown in (ii) are the standardized values, . The low-frequency I(d) likelihood is computed using and its asymptotic 

distribution given in the text; values are relative to the I(0) model. The low-frequency components in (iv) are the projection of the series onto cos[(t−0.5)πj/T] for 
j = 0, … , 12.  The predictions sets in panels (v) and (vi) are ABayes (thick line), AMN (thin line), and AI(0) (dashed line), and are computed separately for each 
horizon, so coverage levels hold pointwise, not jointly across horizons. 
  



A.2 Growth rate of real per-capita consumption expenditures  

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 2.1 

sLR 4.7 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 



A.3 Growth rate of total factor productivity  

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 1.3 

sLR 4.0 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 

 



A.4 Growth rate of labor productivity  

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 2.2 

sLR 3.7 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 

 

 



A.5 Growth rate of population  

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 1.2 

sLR 1.5 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% 

Prediction sets 
 

(vi) 90% Prediction sets 

 

 

See notes to A.1. 

 

 



A.6 Inflation (PCE) 

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 3.3 

sLR 9.0 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 

 

 



A.7 Inflation (CPI)  

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 3.6 

sLR 10.4 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 

 

 



A.8 Inflation (CPI, Japan)  

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 3.2 

sLR 15.0 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 

 

 



A.9 Stock Returns 

(i) Summary Statistics 
 

Sample period 1947:Q2-2012:Q1 
 6.7 

sLR 30.1 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets

 
 

(vi) 90% Prediction sets 

 

 

See notes to A.1. 

 

 



A.10 Growth rate of real per-capita GDP (annual data) 

(i) Summary Statistics 
 

Sample period 1901-2011 
 1.9 

sLR 6.0 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequenc

y 
components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 

 

See notes to A.1. 

 

 



A.11 Growth rate of real per-capita consumption expenditures (annual data) 

(i) Summary Statistics 
 

Sample period 1901-2011 
 1.7 

sLR 3.4 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-freque

ncy components 
 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 

 

See notes to A.1. 

 

 



A.12 Growth rate of population (annual data) 

(i) Summary Statistics 
 

Sample period 1901-2011 
 1.3 

sLR 1.1 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 

 

 



A.13 Inflation (CPI, annual data) 

(i) Summary Statistics 
 

Sample period 1914-2011 
 3.2 

sLR 8.6 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets 

 

(vi) 90% Prediction sets 

 
 

See notes to A.1. 

 



A.14 Stock Returns 

(i) Summary Statistics 
 

Sample period 1926:Q2-2012:Q1 
 6.4 

sLR 29.3 
 
 

(ii) Cosine Transformations 

 

(iii) Low-frequency I(d) log likelihood 

 
(iv) Data and low-frequency components 

 

(v) 67% Prediction sets

 
 

(vi) 90% Prediction sets 

 

 

See notes to A.1. 

 

  


