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Abstract

We develop and analyze a labor market model in which heterogeneous

firms operate under decreasing returns and compete for labor by posting

long-term contracts. Firms achieve faster growth by offering higher life-

time wages, which allows them to fill vacancies with higher probability,

consistent with recent empirical findings. The model also captures several

other regularities about firm size, job flows and pay, and generates slug-

gish aggregate dynamics of labor market variables. In contrast to existing

bargaining models, efficiency obtains on all margins of job creation and

destruction, and the model allows a tractable characterization over the

business cycle.
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1 Introduction

Search models of the labor market following the Diamond-Mortensen-Pissarides

framework have traditionally abstracted from the role of firms, concentrating on

the concepts of jobs and vacancies (see, e.g., Rogerson et al. (2005)). While

a recent wave of contributions include firm size through decreasing returns in

production, they rely on the standard assumption that vacancies are filled at

a common matching rate which depends on aggregate market conditions but is

independent of the characteristics of the firm that posts the job. In this paper we

propose an alternative theory in which heterogeneous firms compete for workers

through their wage announcements, which naturally implicates differential job-

filling rates across firms. This theory predicts several relations for the cross-

section of firms and for the time-variation over the business cycle that seem

to match with recent empirical findings. It leads to a very different view of the

efficiency of the labor market compared to the previous literature, while retaining

a high level of tractability even in the presence of aggregate shocks.

Recent empirical evidence highlights that the probability of filling jobs depends on

the characteristics of the firm. In the cross-section, Davis et al. (2013) show that

firms expand faster not only by posting more vacancies, but especially by filling

these vacancies at higher rates; for example, the job-filling rate almost doubles

as monthly employment growth increases from 10% to 20%. Across time, they

back out an aggregate measure of “recruiting intensity” that moves pro-cyclically,

leading to a lower level of matching efficiency for a given labor market tightness

in downturns.

Our theory models firms through decreasing returns to labor as in Hopenhayn and

Rogerson (1993). In the labor market, we follow the competitive search literature

(e.g. Moen (1997)) where employers can publicly post long-term wage contracts to

attract unemployed workers. When a firm attracts more workers to its vacancies,
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the matching rate increases. In our setting with large firms, we allow the firms

to choose the number of vacancies alongside the posted wage contracts, and it is

in fact optimal for them to use both margins. Therefore, matching rates are not

an aggregate object but are firm-specific. Growing firms decide to offer better

contracts if it is increasingly costly to hire additional workers, which arises, for

example, when recruitment takes up time of the existing workers (Shimer (2010)),

so that firms expand their workforce slowly over time. We argue that this feature

not only generates varying job-filling rates at the micro level, but also gives rise to

sensible aggregate dynamics. Particularly, important labor market variables, such

as the job-finding rate, react with delay to aggregate shocks. While such sluggish

adjustment is consistent with the evidence from vector autoregressions (e.g. Fujita

and Ramey (2007)), it is hard to reconcile with the textbook search and matching

model (Shimer (2005)). In a quantitative assessment, our model tracks well both

the cross-sectional variation as well as the business-cycle variation of recruiting

intensity described by Davis et al. (2013). It also leads to slow adjustment of the

aggregate job-finding rate and other desirable business-cycle properties.

Our view that firms can attract workers to their vacancies is aimed to capture

the features mentioned above and to provide a framework to think about job

creation and job destruction of heterogeneous firms in frictional labor markets.

It formulates an alternative that contrasts with the prevailing workhorse model

based on random search and bilateral bargaining pioneered by Stole and Zwiebel

(1996) and Smith (1999).1 One obvious difference between the models is the rate

at which firms fill their jobs. In the existing contributions, this is governed by the

aggregate matching function, so that firms can only hire more if they post more

1Subsequent work adopts this approach to study, for example, unemployment and efficiency
(Bertola and Caballero (1994), Acemoglu and Hawkins (2013)), labor and product market
regulation (Koeniger and Prat (2007), Ebell and Haefke (2009)), business cycles (e.g., Elsby
and Michaels (2013), Fujita and Nakajima (2013)), and international trade and its labor market
implications (Helpman and Itskhoki (2010)).

2



vacancies, which conflicts with the evidence cited above. Our model naturally

focuses on both recruiting margins, the number of vacancies and their filling

rate. Competition for workers on the second margin also leads to very different

normative implications. In the bargaining frameworks, firms hire excessively in

order to depress the wages of all their workers, yielding a within-firm externality

(see e.g. Smith (1999)).2 In our setting, contracts are long-term, eliminating

the inefficiency within the firm, and we show that across firms the wage posting

leads to a modified Hosios (1990) condition which ensures that the decentralized

economy creates and destroys jobs efficiently both on the extensive margins of firm

entry/exit and on the intensive margins of firm expansion/contraction. While the

Hosios condition is at the heart of many efficiency arguments in the competitive

search literature, the subtle nature of search markets does not always render it

sufficient to induce constrained efficiency, especially when choices along different

margins interact.3 We are not aware of a formal efficiency result for large firms

operating under decreasing returns.4 Finally, we establish that our environment is

particularly tractable, even outside of steady state. While one could possibly add

recruiting intensity to existing bargaining models, the complications arising from

such settings, especially in the presence of aggregate shocks, make this difficult.

Tractability in our model arises from free entry of firms and competitive search.

When a firm decides whether to hire and what contracts to offer, it needs to know

2In contrast to one-worker bargaining models, the inefficiency cannot be corrected by an
appropriate level of the bargaining power parameter. Even with wage commitments, the ran-
domness of the search process generates an across-firm externality that impedes efficiency (see
Hawkins (2010)).

3Galenianos and Kircher (2009) study a setting where firms commit to wages but efficiency
fails because of an intensive margin (search intensity) on the workers’ side. Guerrieri (2008)
introduces an intensive margin through moral hazard and finds efficiency in steady state but
not out of steady state. These subtleties indicate a lack of an easily applicable general proof
on which we could draw to establish efficiency in our context.

4Hawkins (2013) suggests such an outcome on the basis of a static model, but his results are
complicated by the stochastic nature of the hiring process and they do not extend to dynamic
settings with shocks. Menzio and Moen (2010) do not obtain efficiency because they focus on
lack of commitment, and Garibaldi and Moen (2010) abstract from decreasing returns.
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the workers’ utility value of unemployment, as this defines the relevant outside

option. This utility value generally depends on the distribution of other firms in

the market, which is an infinite-dimensional object. In our setting, since workers

can choose where to search for a job, they are indifferent between existing firms

and new entrants, and the latter number adjusts to equate the marginal benefit

to the entry costs, independent of the existing firms. This implies that only the

current aggregate productivity enters the workers’ utility value and hence the

firms’ optimization problem, eliminating the need for approximation techniques

like those of Krusell and Smith (1998) that are usually necessary to study busi-

ness cycles with heterogeneous firms (e.g. Elsby and Michaels (2013), Fujita and

Nakajima (2013)). The fact that individual firms’ policy functions jump with

business cycle shocks does not imply, however, that important aggregate vari-

ables, such as the workers’ job-finding rate, jump as well. To the contrary, the

distribution of firms evolves slowly and many job openings are not governed by

free entry. Hence, the aggregate job-finding rate and the vacancy-unemployment

ratio feature a slow response to business-cycle shocks, as documented by Fujita

and Ramey (2007) and Fujita (2011), as well as an imperfect correlation with

aggregate productivity (Shimer (2005)).

The idea that policy functions are jump variables also feature in Pissarides (2000)

for random search and in Shi (2009) and Menzio and Shi (2010, 2011) in com-

petitive search, but in those settings there is entry at all wage contracts and the

job-finding rate is a jump variable, perfectly correlated with aggregate produc-

tivity.5 Since the link between firm-level dynamics and aggregate dynamics is

important, we explore this feature in more detail in the quantitative section of

this paper. Indeed we demonstrate that the calibrated model generates aggregate

5In Shi (2009) and Menzio and Shi (2010, 2011), firms are indifferent between all contracts
and there is free entry at every contract. In our setting, the workers are indifferent between all
wage contracts, but there is still free entry on the firms’ side. This additional feature brings
about the difference in some results, while retaining tractability.

4



labor market dynamics that are largely in line with the U.S. business cycle. In

particular, aggregate measures of the vacancy yield and of the recruiting intensity

show similar cyclicality and volatility as found by Davis et al. (2013).

Our work describes the recruitment behavior of firms competing for unemployed

workers. One could envision additionally competition for employed workers. Bur-

dett and Mortensen (1998), Postel-Vinay and Robin (2002) and Moscarini and

Postel-Vinay (2013) explore this in random search environments, but the com-

plexity of these models makes it difficult to study firm dynamics, as firms are

usually assumed to face neither idiosyncratic nor aggregate shocks.6 In the

competitive-search literature, job-to-job mobility has been considered by Shi

(2009), Menzio and Shi (2010, 2011), Garibaldi and Moen (2010) and recently

Schaal (2010). Except for the last contribution, firm size in these models is not

restricted by the operated technology, circumventing considerations induced by

the difference between average and marginal product. Schaal (2010) differs from

ours by assuming linear recruitment costs, which imply that firms immediately

jump to their desired sizes, they are indifferent between all contracts and hence

face identical job-filling rates, and there is no aggregate sluggishness.

To build intuition for our model and to highlight its features, we first outline

a model without productivity shocks. In that setting we derive cross-sectional

implications relating firm size and growth to pay and job-filling rates. Tractability

and efficiency in the presence of shocks is established in Section 3, before we

move to the quantitative analysis in Section 4. All proofs and some extensions

are relegated to the Appendix.

6Moscarini and Postel-Vinay (2013) do allow for aggregate shocks, but their requirement of
rank-preserving hiring prevents the study of firm entry and firm-specific shocks. To our knowl-
edge, the only model that explicitly focuses on firm dynamics is Lentz and Mortensen (2010),
which combines decreasing returns with on-the-job search, but again it has no idiosyncratic or
aggregate shocks.
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2 A Stationary Model of Firm Growth

2.1 The Environment

The model is set in discrete time and we consider a stationary environment. That

is, there are neither idiosyncratic nor aggregate shocks in this section. The labor

market within a given period operates in three stages. First, new firms enter

and draw their productivity. Second, production and search activities take place.

Third, vacancies and unemployed workers are matched, and a fraction of workers

leave their firms. Afterwards some firms exit, and the next period starts. The

following explains each part in turn.

The economy consists of a continuum of workers and firms. The mass of workers

is normalized to one. Each worker is infinitely-lived, risk-neutral, and discounts

future income with factor β < 1. A worker supplies one unit of labor per period

when employed and receives income b ≥ 0 when unemployed. Only unemployed

workers search for employment, so there are no job-to-job transitions. On the

other side of the labor market is an endogenous mass of firms. Firms are large

relative to workers, in the sense that each active firm employs a continuum of

workers. Firms are also risk neutral and have the same discount factor β.

An entrant firm pays setup cost K > 0 to start production. At this point it

draws productivity x with probability π0(x) from the finite set x ∈ X . In each

period, a firm produces output xF (L) with L ≥ 0 workers, where F is a twice

differentiable, strictly increasing and strictly concave function satisfying F ′(0) =

∞ and F ′(∞) = 0. Firms die with exogenous probability δ > 0, in which case

all workers are laid off into unemployment. Furthermore, each employed worker

separates from the firm with exogenous probability s ≥ 0. Thus, in this section, a

firm’s productivity stays constant throughout its life, and any worker’s retention

probability is exogenous at ϕ ≡ (1− δ)(1− s).
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Search for new hires is a costly activity. A firm with workforce L and productivity

x that posts V vacancies incurs recruitment costs C(V, L, x). Apart from twice

differentiability, we assume that a firm’s output net of recruitment costs is strictly

increasing in (L, x) and strictly concave in (V, L). In particular, this requires that

C is strictly convex in V . Popular functional form are

C(V, L, x) = xF (L)− xF (L− hV ) + k(V ) or C(V, L, x) =
c

1 + γ

(
V

L

)γ

V .

(1)

In the first specification, k(V ) captures some convex monetary costs (see e.g.

Cooper et al. (2007)) and hV captures labor input in recruitment (see e.g. Shimer

(2010)). Even in the absence of monetary costs and despite linearity of the labor

input, this leads to convex costs because of decreasing returns in production.7 The

second, constant-returns specification, which is borrowed from Merz and Yashiv

(2007), assumes that the average cost per vacancy increases in the vacancy rate

(i.e. vacancies divided by employment) and it also allows larger firms to hire a

given number of workers at lower costs.8 In either setting, firms cannot instan-

taneously grow large simply by posting enough vacancies at constant marginal

cost. For some proofs of cross-sectional relationships derived below (Proposition

1 and subsequent corollaries), we focus on cost functions such as those in (1)

7Clearly no more workers can be engaged in hiring than are present at the firm. To get
the hiring process started for entrant firms, we need to assume that a new firm is endowed
with initial labor input of the entrepreneur Le so that the actual labor input is L̃ = Le + L.
Recruitment activities are then constrained by hV ≤ L+Le, and Inada conditions on F ensure
that this constraint never binds. A similar adjustment is needed for the second specification in
(1) to avoid division by zero at entrant firms (see Section 4).

8To be precise, Merz and Yashiv (2007) specify and estimate convex adjustment costs (at
the aggregate level) that depend on hires rather than vacancies. Relatedly, Blatter et al. (2012)
estimate hiring costs on Swiss firm-level data and also find evidence for convexity. Costs that
depend on hires better reflect training costs and could additionally be introduced into our
framework. Costs that depend on the number of job openings rather capture recruiting costs
and are more common in the search and matching literature.
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which satisfy the following properties on cross-derivatives:

(C) C12 ≤ 0 , C13 ≥ 0 , and C12C13 + C11[F
′ − C23] ≥ 0 .

In order to attract workers, a recruiting firm announces a flat flow wage income

w to be paid to its new hires for the duration of the employment relation. The

assumption that the firm offers the same wage to all its new hires turns out not

to entail a restriction; see the discussion following equation (6) below. Further,

because of risk neutrality, only the net present value that a firm promises to the

worker matters. Flat wages are one way of delivering these promises.9

Unemployed workers direct their job search towards the most attractive offers:

they can observe all wage offers and choose for which wage to search. At any

wage, job seekers and vacancies are matched according to a matching function. In

particular, a firm fills its vacancies with probability m only if it offers a wage that

attracts λ(m) unemployed job seekers per vacancy.10 Standard assumptions on

the matching function guarantee that this function is twice differentiable, strictly

increasing and strictly convex in m, with λ(0) = 0, λ′(0) ≥ 1 and λ′(1) = ∞.11

It is increasing since firms achieve a higher matching probability only if more

workers are searching for their vacancies. It is convex since it becomes increas-

ingly difficult to improve matching prospects any further when more workers are

9This is a theory of the present value of offered wages. Constant wages can be viewed as the
limiting case of risk-neutral firms and risk-averse workers, as risk aversion vanishes. But other
payment patterns are conceivable; for further discussion about this issue, see Section 3.4.

10Note that we adopt the standard assumption in the literature on large firms in search
models that each job has its own matching probability, i.e., applicants from one job cannot
be hired at another job in the same firm, which arises, for example, if different jobs require
different qualifications. Only few papers explore the idea that workers are literally identical and
can be hired for another job than the one they applied for (see Burdett et al. (2001), Hawkins
(2013) and Lester (2010)).

11Function λ is simply the inverse of the standard reduced-form matching function m̃ :
[0,∞) → [0, 1) that maps the realized unemployed-vacancy ratio λ̃ into the hiring probability.
Typically, m̃ is assumed to be strictly increasing and strictly concave, and m̃(λ̃) ≤ min(1, λ̃)
guarantees that m̃′(0) ≤ 1. Therefore, we can define λ(m) = m̃−1(m), and the properties in
the text follow.
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attracted to the job. The workers’ matching probability is m/λ(m), which is

strictly decreasing.

To understand what wage w(m) a firm has to offer in order to achieve matching

probability m, note that in a stationary environment an unemployed worker who

is seeking for a particular wage in one period is willing to search for that wage in

every period. Let U denote the discounted present value from such job search.

It is given by the following asset value equation:12

(1− β)U = b+
m

λ(m)
β(1− δ)

w(m)− (1− β)U
1− βϕ

︸ ︷︷ ︸

≡ρ

. (2)

It states that the flow value of unemployment equals the current period unem-

ployment income b together with an option value from searching, denoted by ρ.

The search value is the probability of finding a job multiplied with the worker’s

discounted job surplus. Since workers have a choice where to search for a job, their

flow value from unemployment must be equal in all markets that attract workers.

Therefore, ρ is a global value that is common to all markets, which means that a

firm has to offer the following wage to achieve matching rate m > 0:

w(m) ≡ b+ ρ+
1− βϕ

β(1− δ)

λ(m)

m
ρ . (3)

This relation says that a firm can only recruit workers when its wage offer matches

the workers’ unemployment value (1−β)U = b+ρ plus a premium which is needed

to attract workers to jobs with filling rate m. This premium is increasing in m,

which is a crucial insight. The relationship between job-filling rates and wage

offers is standard in the competitive search literature.

12Bellman equations for employed and unemployed workers are E = w + β[ϕE + (1 − ϕ)U ]
and U = b+β[mλ(m)−1(1−δ)E+(1−mλ(m)−1(1−δ))U ]. Equation (2) follows by substituting
the first into the second.
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2.2 The Firms’ Recruitment Policies

Consider the problem of a firm that takes the search value of unemployed workers

and the associated relationship (3) as given. Later, the search value will be

determined as an equilibrium object that depends on the number of firms and

their wage offers.

Let Jx(L,W ) be the profit value of a firm that has productivity x, employs L

workers and is committed to a wage bill of W . An entrant firm’s profit value

is then Jx(0, 0). The firm’s recruitment choice involves deciding the number of

posted vacancies V as well as the job-filling probability m, which requires a wage

offer of w(m). Its recursive profit maximization problem is expressed as

Jx(L,W ) = max
(m,V )∈[0,1]×R+

xF (L)−W − C(V, L, x) + β(1− δ)Jx(L+,W+) ,

s.t. L+ = L(1 − s) +mV , W+ =W (1− s) +mw(m)V . (4)

The first line reflects the value of output net of wage and recruitment costs, plus

the discounted value of continuation with an adjusted workforce and its associated

wage commitment. The second line says that employment next period consists

of the retained workers and the new hires. For the wages, since separations

are random they reduce the wage bill proportionally, and new commitments are

added for the new hires.

This problem can be simplified by noting that wages are commitments that have

to be fulfilled as long as the worker does not separate, irrespective of future

recruitment decisions. This has the implication that Jx(L,W ) = Jx(L, 0) −

W/(1−βϕ), which eliminates the wage bill as a state variable, so that (4) readily

yields
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Jx(L, 0) = max
(m,V )∈[0,1]×R+

xF (L)− C(V, L, x)−D(m)V + β(1− δ)Jx(L+, 0) ,

s.t. L+ = L(1− s) +mV , (5)

where D(m) ≡ mw(m)β(1 − δ)/(1 − βϕ) captures the cost of increasing the

matching probability by raising wage costs. Note that D is increasing and strictly

convex since the matching function λ(m) has these properties. Problem (5) makes

it readily apparent that a firm has two channels to hire workers in a given period.

It can increase the number of vacancies and associated costs C, or it can increase

the filling rate of each job and associated costs D. The optimality conditions for

the control variables in (5) are derived rigorously in the Appendix, but we provide

some intuition here for the main trade-offs. The optimal choices for the number

of vacancies and their matching probability are governed by one intratemporal

and one intertemporal optimality condition.

Regarding the intratemporal optimality condition, consider a firm that aims to

hire H workers in this period. It faces the problem of choosing the number

of vacancies and the job-filling probability to minimize costs C(V, .) + D(m)V

subject to H = mV . The first-order condition for this problem is

C1(V, L, x) = D′(m)m−D(m) = ρ[mλ′(m)− λ(m)] . (6)

This links the marginal recruitment costs to the marginal increase in wage costs

associated with increasing the job-filling probability.

Relationship (6) offers a number of insights. It defines the optimal policy for

vacancy postings V = V x(m,L) as a function of the job-filling rate and firm

size. Because of convex recruitment costs, this policy function is increasing in m;

thus, vacancy postings and job-filling rates are complementary tools in the firm’s

recruitment strategy. This captures the basic stylized fact highlighted by Davis

et al. (2013) that firms use both more vacancies as well as higher job-filling rates
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to achieve faster growth.13 In contrast, under constant marginal recruitment

costs (C1(V, L, x) = c), as assumed in much of the literature, the job-filling rate

would be constant and independent of firm characteristics, while all employment

adjustment is instantaneous and is achieved through the number of vacancies.

Finally, note that equation (6) balances the wage costs for new hires against

recruitment costs at a unique point, which shows why a firm would not want to

offer different wages at a given point in time even if this were permissable.

The firm also decides how to structure hiring over time. This is governed by an

intertemporal optimality condition which reads

xF ′(L+)− C2(V+, L+, x)− b− ρ =
ρ

β(1− δ)

[

λ′(m)− βϕλ′(m+)
]

. (7)

Here L+, V+, and m+ are employment, vacancy postings and the job-filling rate

in the next period. The left-hand side of (7) gives the marginal benefit of a higher

workforce in the next period. If this is high, then the firm rather hires more now

than to wait and hire next period, as expressed by the right-hand side which is

increasing in the current job-filling rate m and decreasing in m+. In particular, a

more productive firm wants to achieve fast growth by offering a more attractive

contract now rather than later, thus raising the current job-filling rate. Equation

(7) implicitly defines the optimal job-filling policy mx(L). Starting from L = 0,

this determines the firm’s growth path through L+ = L(1− s) +mx(L)V , where

V = V x(mx(L), L) comes from the static optimality condition (6).

An illustration how a firm grows over time is provided in Figure 1 which shows

the phase diagram in (L,m) space for the firm’s problem with recruitment costs

C(V, L, x) = xF (L)−xF (L−hV )+cV for which the optimality conditions become

13The first equation in (6) suggests that this argument holds in a broader class of models
in which firms can influence job-filling rates. In our model, job-filling rates are increased via
higher wage offers which reflects the allocative role of wages in the labor market.
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especially tractable.14 Initially the firm is small and the optimal job-filling rate

exceeds the long-run rate m∗. This rate is the firm’s policy after it converges

to its long-run optimal size L∗ > 0 where it only conducts replacement hiring.

The downward-sloping saddle path depicts the firm’s policy function mx(L) and

describes the adjustment process to the long-run optimal size, along which the

firm spreads recruitment costs over time. This is in contrast to a model with

linear recruitment costs in which firms would jump directly to (L∗, m∗). In terms

of comparative statics, this example also shows that the stationary firm size and

the job-filling rates along the transition depend positively on x: a more productive

firm grows larger and offers higher lifetime wages on its transition to the long-run

employment level. The following proposition and its corollaries provide broader

L

m

m
x

(0)

m
*

L
*

L = L
t t+1

m m
t t
= +1

0

Figure 1: The firm’s optimal recruitment policy follows the declining saddle path.

14In Lemma 3 of the Appendix we show that equations (6) and (7) simplify to only one
equation linking mt and mt+1 which is independent of Lt. This equation has a unique long-run
job-filling probability m∗ > 0 if h is low enough, and mt converges to m

∗ from any initial value
m0 > 0. Employment adjusts according to Lt+1 = Lt(1 − s) +mtV

x(mt, Lt). Using (6), it is
easy to see that the curve Lt+1 = Lt is downward-sloping in (L,m) space, so that the saddle
path lies above this curve when Lt < L∗.
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comparative statics results. The job-filling rate is linked via (3) to the wage offer,

so that the findings carry over to the net present value of wages to new hires.15

Proposition 1: Consider recruitment cost functions satisfying property (C).

The firm’s value function Jx(L,W ) is strictly increasing and strictly concave

in its workforce L, strictly increasing in productivity x, strictly supermodular in

(x, L) and decreasing in the worker’s search value ρ. The job-filling rate mx(L)

is strictly increasing in productivity x and strictly decreasing in the workforce

L. Posted vacancies V x(m,L) are increasing in L and strictly increasing in the

desired job-filling rate m.

Since these results hold for any search value ρ, they also apply when this value

is determined in general equilibrium. These results imply relationships between

size, productivity, pay, and hiring:

Corollary 1: Consider recruitment cost functions satisfying property (C). Condi-

tional on size, more productive firms pay higher lifetime wages and have a higher

job-filling rate. Conditional on productivity, younger/smaller firms pay higher

lifetime wages and have a higher job-filling rate.

In the Appendix we also prove the following connection to firm growth rates.

Corollary 2: If recruitment costs are given by either specification in (1) with

parameter h sufficiently small, more productive firms have a higher growth rate,

conditional on size; and larger/older firms have a lower growth rate, conditional

on productivity.

While it already follows from (6) that vacancy postings and job-filling rates are

positively related, the two corollaries link these policies to the firm’s growth

rate. They point out that job-filling rates and firm growth rates are positively

correlated, depending positively on x and negatively on L. This cross-sectional

15These characterization results depend crucially on the supermodularity of the value func-
tion, which renders this proof non-trivial. While standard techniques (Amir (1996)) can be
applied when the cost function is independent of firm size and productivity, this is not true in
general, as we discuss in the Appendix.
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relationship has been highlighted recently by Davis et al. (2013), and we further

explore in Section 4 how well our model captures this quantitatively. Further-

more, since higher job-filling rates are directly associated with higher earnings for

new hires, the two corollaries also imply that faster-growing firms offer higher life-

time wages. Belzil (2000) documents such patterns after controlling for size and

worker characteristics; he shows that wages, particularly those of new hires, are

positively related to a firm’s job creation. Our findings that younger firms grow

faster (conditional on survival) and pay higher wages (to workers with the same

characteristics) are consistent with the evidence (see Haltiwanger et al. (2013),

Brown and Medoff (2003) and Schmieder (2013)). Moreover, a positive wage-size

relation emerges in our model if the dispersion in productivity is large enough.16

2.3 Firm Entry, General Equilibrium, and Efficiency

Free entry of firms implies that no entrant makes a positive profit, that is,

∑

x∈X

π(x)Jx(0, 0) ≤ K , (8)

with equality if entry is positive. This condition implicitly pins down the work-

ers’ job surplus ρ and therefore the relationship between wages and job-filling

rates. In a stationary equilibrium, a constant mass of N0 firms enter the market

in every period, so that there are Na = N0(1 − δ)a firms of age a in any period.

Let (Lx
a, m

x
a, V

x
a , w

x
a)a≥0 be the employment/recruitment path for a firm with pro-

ductivity x. Then, a firm of age a has Lx
a employed workers, and λ(mx

a)V
x
a unem-

ployed workers are searching for jobs with offered wage wx
a . Therefore, the mass

of entrant firms N0 is uniquely pinned down from aggregate resource feasibility:

16We note that enough productivity dispersion is also required in models with intra-firm
bargaining, and even more so because wages of all workers decline in a growing firm.
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1 =
∑

a≥0

N0(1− δ)a
∑

x∈X

π(x)[Lx
a + λ(mx

a)V
x
a ] . (9)

This equation says that the unit mass of workers is either employed or unem-

ployed. We now define a stationary equilibrium.

Definition: A stationary competitive search equilibrium is a list
(

ρ,N0, (L
x
a, m

x
a, V

x
a , w

x
a)x∈X,a≥0

)

with the following properties. Unemployed work-

ers’ job search strategies maximize utility: (3) holds for all (wx
a , m

x
a). Firms’ re-

cruitment policies are optimal: (Lx
a, m

x
a, V

x
a )a≥0 solve (5) for all x ∈ X. There is

free entry of firms: (8) and N0 ≥ 0 hold with complementary slackness. Aggregate

resource feasibility (9) holds.

Since the firms’ behavior has already been characterized, it remains to explore

equilibrium existence and uniqueness.

Proposition 2: A stationary competitive search equilibrium exists and is unique.

There is strictly positive firm entry provided that K is sufficiently small.

The previous section already outlined that this model generates sensible rela-

tionships between productivity, size, growth, and job-filling rates. It is relevant

to understand whether these patterns are actually socially efficient, especially

since existing models with intra-firm bargaining always entail inefficiencies, as

discussed in the introduction. To this end, consider a social planner who decides

at each point in time about firm entry, vacancy postings and job-filling rates for

all firms. The planner takes as given the numbers of firms that entered in some

earlier period, as well as the employment stocks of all these firms. Formally, the

planner’s state vector is σ = (Na, L
x
a)a≥1,x∈X where Na is the mass of firms of

age a ≥ 1, and Lx
a is employment of a firm with productivity x and age a. The

planner maximizes the present value of output net of opportunity costs of em-

ployment and net of the costs of entry and recruitment, subject to the economy’s

resource constraint. With σ+ = (Na,+, L
x
a,+)a≥1,x∈X denoting the state vector in
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the next period, the recursive formulation of the social planning problem is

S(σ) = max
N0,(V x

a ,mx
a)a≥0

{
∑

a≥0

Na

∑

x∈X

π(x)
[

xF (Lx
a)− bLx

a − C(V x
a , L

x
a, x)

]
}

−KN0 + βS(σ+) (10)

s.t. Lx
0 = 0, Lx

a+1,+ = (1− s)Lx
a +mx

aV
x
a , a ≥ 0, x ∈ X ,

Na+1,+ = (1− δ)Na , a ≥ 0 ,
∑

a≥0

Na

∑

x∈X

π(x)
(

Lx
a + λ(mx

a)V
x
a

)

≤ 1 .

We say that a solution to problem (10) is socially optimal.

Proposition 3: The stationary competitive search equilibrium is socially optimal.

The efficiency of equilibrium can be linked to a variant of the well-known Hosios

(1990) condition.17 It says that efficient job creation requires that the firm’s

surplus share for the marginal vacancy is related to the elasticity of the matching

function. Write the workers’ search value ρ = m
λ(m)

Sw as the product between

the match probability and the worker’s job surplus Sw. Then, equation (6) can

be rewritten as

C1(V, L, x) =
1− εm,λ
εm,λ

mSw ,

where εm,λ = λ(m)
λ′(m)m

∈ [0, 1] is the matching-function elasticity.

3 Productivity Shocks and Firm Dynamics

In this section we show that our framework can be extended to include much richer

dynamics, both at the firm level and in the aggregate, while retaining tractability

and efficiency. We include both firm-specific and aggregate productivity shocks

to explore not only two margins of job creation (firm entry and firm growth),

17See also the Hosios condition in a large-firm model with intra-firm bargaining in Hawkins
(2010).
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but also the two margins of job destruction (endogeneous firm exit and firm

contraction). This extension allows us to study in the next section to which

extent the model can quantitatively account for the micro-level heterogeneity in

the firms’ recruitment behavior and how it performs over the business cycle.

Assume now that output of a firm with L workers is xzF (L) where x ∈ X

is idiosyncratic productivity and z ∈ Z is aggregate productivity. Both x and z

follow Markov processes on finite state spaces X and Z with respective transition

probabilities π(x+|x) and ψ(z+|z). An entrant firm pays fixed cost K(z), possibly

dependent on the aggregate state, and draws an initial productivity level x0 ∈ X

with probability π0(x0). For a firm of age a ≥ 0, let xa = (x0, . . . , xa) ∈ Xa+1

denote the history of idiosyncratic productivity, and let zt = (z0, . . . , zt) be the

history of aggregate states at time t with corresponding probability ψ(zt).

We assume that an active firm incurs a fixed operating cost f ≥ 0 per period,

which is required to obtain a non-trivial exit margin. In this section we are as

agnostic as possible about the recruitment cost function; we only assume that

C(V, L, xz) is strictly increasing and convex in posted vacancies. Firms exit with

exogenous probability δ0 ≥ 0 which is a lower bound for the actual exit rates

δ ≥ δ0. Similarly, workers quit a job with exogenous rate s0 ≥ 0 which provides

a lower bound for the actual separation rates s ≥ s0.

The timing within each period is analogous to the previous section. First, aggre-

gate and idiosyncratic productivities are revealed and new firms enter. Second,

firms produce and they decide about hires, layoffs, and possibly about exiting at

the end of the period. And third, workers and firms are matched. We start to

describe and characterize the planning problem before we show its equivalence to

a competitive search equilibrium.
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3.1 The Planning Problem

The planner decides at each point in time about firm entry and exit, layoffs and

hires (i.e. vacancy postings and matching probabilities) for all firm types, knowing

that matching probability m requires λ(m) unemployed workers per vacancy. In

a given aggregate history zt, we denote by N(xa, zt) the mass of firms of age a

with idiosyncratic history xa. L(xa, zt) is the employment stock of any of these

firms. At every history node zt and for every firm type xa, the planner decides an

exit probability δ(xa, zt) ≥ δ0, a separation rate s(xa, zt) ≥ s0, vacancy postings

V (xa, zt) ≥ 0, and a matching probability m(xa, zt).18 The numbers of firm types

change between periods t and t+ 1 according to

N(xa+1, zt+1) = [1− δ(xa, zt)]π(xa+1|xa)ψ(zt+1|zt)N(xa, zt) , (11)

and the workforce at any of these firms adjusts to

L(xa+1, zt+1) = [1− s(xa, zt)]L(xa, zt) +m(xa, zt)V (xa, zt) . (12)

At time t = 0, the planner takes as given the numbers of firms that entered

the economy in some earlier period, as well as the employment stock of each of

these firms. Hence, the state vector at date 0 is summarized by the initial firm

distribution (N(xa, z0), L(xa, z0))a≥1,xa∈Xa+1. In a given history zt, the planner

also decides the mass of new entrants N0(z
t) ≥ 0, so that

N(x0, z
t) = π0(x0)N0(z

t) and L(x0, z
t) = 0 . (13)

18 To save on notation, we do not allow the planner to discriminate between workers with
different firm tenure. Given that there is no learning-on-the-job, there is clearly no reason for
the planner to do so. Nonetheless, the competitive search equilibrium considered in Section 3.4
allows firms to treat workers in different cohorts differently, which is necessary because firms
offer contracts sequentially and are committed to these contracts. See the proof of Proposition
5 for further elaboration of this issue.

19



The sequential planning problem is

max
δ,s,V,m,N0

∑

t≥0,zt

βtψ(zt)

{

−K(zt)N0(z
t) +

∑

a≥0,xa

N(xa, zt)
[

xaztF (L(x
a, zt))

−bL(xa, zt)− f − C(V (xa, zt), L(xa, zt), xazt)
]
}

, (14)

subject to the dynamic equations for N and L, namely (11), (12) and (13), and

subject to the resource constraints, for all zt ∈ Zt+1,

∑

a≥0,xa

N(xa, zt)
[

L(xa, zt) + λ(m(xa, zt))V (xa, zt)
]

≤ 1 . (15)

This constraint says that the labor force (employment plus unemployment) can-

not exceed the given unit mass of workers. We summarize a solution to the

planning problem by a vector (N,L,V,m, s, δ), with N = (N(xa, zt))a,t≥0 and

similar notation for the other variables.

3.2 Characterization of the Planning Solutions

We show that there is a convenient characterization of a planning solution which

says that hiring, layoff and exit decisions follow a recursive equation at the level of

the individual firm. Specifically, for any existing firm, the planner maximizes the

social value of the firm, taking into account the social value of each worker tied

to the firm. This social worker value is given by the multiplier on the resource

constraint (15) which we denote by µ(zt) and which generally depends on the

initial firm distribution and on the full state history zt.

A particularly powerful characterization can be obtained under the provision

that firm entry is positive in all states of the planning solution. When this is the

case, the social value of a worker (and thus firm-level value and policy functions)
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depend only on the current aggregate state but are independent of the state

history and of the firm distribution.

To gain intuition for the independence from the distribution of existing firms,

envision any period in which the planner can assign unemployed workers either

to existing firms or to new firms. If there are many existing firms, there are

fewer workers left to be assigned to new firms. Nevertheless, the social value

of any worker that is assigned to a new firm does not change: Each new firm

has an optimal hiring policy, and if less workers are assigned to new firms, then

proportionally less new firms will be created, leaving the marginal value of each

worker unchanged. Therefore, efficient hiring by existing firms requires their

marginal social benefit of hiring to be equal to the social benefit at the new firms

which depends on the aggregate state alone.

To see the independence of value functions from the firm distribution formally,

suppose there are n aggregate states z ∈ Z = {z1, . . . , zn}, and let µi be the

social value of a worker in state zi. Write M = (µ1, . . . , µn) for the vector of

social values. Let G(L, x, i;M) be the social value of a firm with employment

stock L, idiosyncratic productivity x and aggregate productivity zi, satisfying the

Bellman equations

G(L, x, i;M) = max
δ,s,V,m

xziF (L)− bL− f − µi[L+ λ(m)V ]− C(V, L, xzi)

+β(1− δ)Ex,iG(L+, x+, i+;M) , (16)

where maximization is subject to L+ = (1−s)L+mV , δ ∈ [δ0, 1], s ∈ [s0, 1], m ∈

[0, 1] and V ≥ 0. The interpretation of this equation is rather straightforward.

A firm’s social value encompasses flow output net of the opportunity cost of

employment, net of fixed costs and recruitment costs, and net of the social cost

of workers tied to the firm in this period; these workers include the current

workforce L and also λ(m)V unemployed workers who are assigned to this firm.
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Positive entry in all aggregate states requires that the expected social value of a

new firm is equal to the entry cost,

∑

x∈X

π0(x)G(0, x, i;M) = K(zi) . (17)

This characterization of planning solutions by (G,M) is particularly helpful for

numerical applications. Despite considerable firm heterogeneity, the model can

be solved by a recursive problem on a low-dimensional state space (16) and the

(simultaneous) solution of a finite-dimensional fixed-point problem (17). Im-

portantly, the distribution of firms is irrelevant for this computation. After the

corresponding policy functions have been calculated, firm entry follows as a resid-

ual of the economy’s resource constraint and does depend on the distribution of

existing firms: in every period with aggregate state i, each existing firm with pro-

ductivity x and size L attracts V (L, x, i)λ(m(L, x, i)) job seekers according to the

policy functions, while a number N0(z
t) of new firms enter to absorb the remain-

ing job seekers. Since job-finding prospects differ between firms, the aggregate

job-finding rate therefore also depends on the firm-size distribution, as does the

evolution of aggregate employment, output and job flows. As we see in the next

section, these aggregate variables in fact adjust with delay to aggregate shocks.

Because of the dependence of N0 on the distribution of employment among ex-

isting firms, it cannot generally be guaranteed that the planning solution has

positive entry in all state histories. Therefore, this property can only be checked

ex-post in simulations of the model. Analytically, we prove that any solution of

(16)–(17) which gives rise to positive entry in all state histories describes indeed

a solution to the planner’s problem. We also find that a unique solution of these

equations exists for small aggregate shocks:
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Proposition 4:

(a) Suppose that a solution of (16) and (17) exists with associated allocation

A = (N,L,V,m, s, δ) satisfying N(zt) > 0 for all zt. Then A is a solution

of the sequential planning problem (14).

(b) If K(z), f , and b are sufficiently small and if z1 = . . . = zn = z, equations

(16) and (17) have a unique solution (G,M). Moreover, if the transition

matrix ψ(zj|zi) is strictly diagonally dominant and if |zi − z| is sufficiently

small for all i, equations (16) and (17) have a unique solution.

3.3 Recruitment and Layoff Strategies

The reduction of the planning problem to (16) permits a straightforward char-

acterization of the optimal layoff and hiring strategies. For a growing firm, it

follows from the first-order conditions for m and V , similar to equation (6), that

C1(V, L, xzi) = µi[mλ
′(m)− λ(m)] . (18)

As in the previous section, this equation implies an increasing relation between

matching probabilities and the number of posted vacancies at the firm. With

higher m, the planner is willing to post more vacancies at higher marginal re-

cruiting cost. Denote the solution to equation (18) by V = V (m,L, x, i), which

is positive for m > m(L, x, i). The planner’s optimal choice of m for firm (L, x)

in aggregate state i satisfies19

β(1− δ0)Ex,i
dG
dL

(L+, x+, i+;M) = µiλ
′(m) ,

with L+ = L(1 − s0) +mV (m,L, x, i). Therefore, the firm hires if and only if

19Note that δ = δ0 and s = s0 if the firm hires workers.
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β(1− δ0)Ex,i
dG
dL

(L(1− s0), x+, i+;M) > µiλ
′(m(L, x, i)) . (19)

Conversely, the planner wants the firm to lay off workers if

Ex,i
dG
dL

(L(1− s0), x+, i+;M) < 0 . (20)

The two conditions (19) and (20) show how the firm’s strategy depends on its

characteristics. Small and productive firms recruit workers and grow, whereas

large and unproductive firms dismiss workers and shrink. There is also an open

set of characteristics where firms do not adjust their workforce (cf. Bentolila and

Bertola (1990) and Elsby and Michaels (2013)).

3.4 Decentralization

As in Section 2, a competitive search equilibrium gives rise to the same alloca-

tion as the planning solution. Consider firms that offer workers a sequence of

state-contingent wages, to be paid for the duration of the match. They also com-

mit to cohort-specific and state-contingent retention probabilities. Contracts are

contingent on the idiosyncratic productivity history of the firm at age k, xk, and

on the aggregate state history zt at time t. Formally, a contract offered by a firm

of age a at time T takes the form

Ca =
(

wa(x
k, zt), ϕa(x

k, zt)
)

k>a,t=T+k−a
,

where wa(x
k, zt) is the wage paid to the worker in history (xk, zt), conditional on

the worker being still employed by the firm in that instant. ϕa(x
k, zt), for k > a,

is the probability of retaining the worker at the end of the period, so 1−ϕa(x
k, zt)

is the separation probability.

In Appendix B, we describe the workers’ and the firms’ search problems and we
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define a competitive search equilibrium, analogously to the stationary model. We

also prove the following welfare theorem, extending Proposition 3.

Proposition 5: A competitive search equilibrium is socially optimal.

It is not hard to see that a wage commitment is sufficient for a firm to imple-

ment its desired policy, even if it cannot commit to retention rates. Given risk

neutrality, the firm can set the wages following any future history exactly equal

to the reservation wage (i.e. the flow value of unemployment) which is the sum of

unemployment income and the worker’s shadow value, b + µ(zt). It can achieve

any initial transfer to attract workers through a hiring bonus. In this decen-

tralization, the costs of an existing worker are always equal to his social value

in the alternative: unemployment and search for another job. Since the flow

surplus for any retained worker equals his shadow value, the firm’s problem in

this case coincides with the planner’s problem, so that firing and exiting will be

exactly up to the socially optimal level even though the firm does not commit to

retention rates. Workers do not have any incentive to quit the job unilaterally,

either, because they are exactly compensated for their social shadow value from

searching. If the workers also cannot commit to stay, this is the unique wage

policy that overcomes the commitment problem on both sides of the market and

implements the socially efficient outcome. Alternatively, even a slight degree of

risk aversion on the workers’ side would give rise to flat wage profiles to offer

insurance. This clarifies that the current model determines surplus sharing only,

whereas the time path of payments depends on additional details, like the ability

to commit to specific actions (see Schaal (2010) for a related point).

4 Quantitative Exploration

The previous sections outlined that this model can capture important features

at the micro level (e.g. varying job-filling rates) and it is tractable for study-
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ing business cycle dynamics with potentially sluggish adjustment of aggregate

variables. In this section we calibrate our model to the U.S. labor market in

order to investigate the how well it is able to account for the main features in

the data quantitatively. We first explore the model’s cross-sectional properties,

showing among other results how it generates differential job-filling rates as in

Davis et al. (2013). We then show that the same parameterizations give rise to

aggregate sluggishness and other business cycle features.

We briefly sketch the model calibration, referring to Appendix C for details and

for the parameter values. We calibrate the model at weekly frequency and choose

the firm-specific productivities to match firm and employment shares in the three

size classes 1 − 49, 50 − 499, and ≥ 500.20 For the recruitment technology, we

choose the employment-scaled form21 c(V ) = c
1+γ

(V
L
)γV . In our benchmark cali-

bration we take a cubic function (γ = 2). While this relates to Merz and Yashiv

(2007) who estimate a similar cubic hiring technology,22 we take an agnostic view

about this parameter value. Therefore, we compare the benchmark results with

those obtained with a nearly linear recruitment technology (γ = 0.1) and with

a much higher elasticity (γ = 8). In all versions, the scale parameter c is recali-

brated to match our target for the weekly job-filling rate. Unemployment income

b is set at the same value (relative to earnings) as in Hagedorn and Manovskii

(2008) to ensure that reasonably small productivity shocks have quantitatively

significant labor market responses. Robustness regarding this parameter, as well

as regarding the returns-to-scale parameter, is explored in Appendix D.

We first simulate the model for a stationary cross-section of firms. Besides match-

20We calibrate the model to match the size distribution of firms (rather than establishments)
in the Business Employment Dynamics program of the Bureau of Labor Statistics (BLS). We
note that those results relating to establishment-level statistics (e.g. Figure 2) are robust when
we restrict the model sample to the first two size classes (less than 500 employees) which largely
represent one-establishment businesses.

21To avoid division by zero at entrant firms, we assume that actual labor input L̃ = 1+L is
the sum of the labor inputs of the (single) owner and of the employed workers.

22As mentioned before (footnote 8), their estimation results are not applicable to our model.
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ing the calibration targets, our model generates negative relationships between

firm size and quarterly job creation and job destruction rates in different size

classes (see Table 1). This is despite the fact that we do not calibrate idiosyn-

cratic productivity processes separately for each size class. A similar negative

relationship between firm size and job flows obtains at entrant and exiting firms.

Our model also performs reasonably well in matching the cross-sectional disper-

sion of quarterly employment growth rates across firms (see Table 2).

Table 1: Firm size, employment shares and quarterly job flows

Data Model (γ = 2)
Size class 1–49 50–499 ≥ 500 1–49 50–499 ≥ 500
Firm shares 94.9 4.6 0.4 95.1 4.5 0.4
Employment shares 29.9 25.9 44.1 31.5 26.0 42.5
Job creation 10.6 5.7 3.1 9.2 6.1 5.4
Job destruction 10.4 5.4 2.9 9.3 6.1 5.4
Job creation (openings) 3.0 0.27 0.02 1.9 0.15 0.04
Job destruction (closings) 2.9 0.32 0.04 2.9 0.31 0.1

Notes: The first two rows report firm and employment shares in the three size classes 1-49,

50-499, and ≥ 500 (calibrated). The last four rows are quarterly job creation and destruction

rates in the three size classes, expressed as shares of employment. Data statistics are from the

Business Employment Dynamics (1992-2011) of the BLS.

One dimension of particular interest is the relationship between employment

growth, the vacancy rate and the vacancy yield, which are positively related

for growing firms in the Job Openings and Labor Turnover Survey (JOLTS), see

Davis et al. (2013). This indicates that the matching rate varies across firms, a

feature that is not present in most standard models. To see whether our model

can trace this relationship quantitatively, we calculate monthly model statistics

for hires, vacancies, layoffs and employment growth rates.23 Figure 2 shows the

23When Lt−1 and Vt−1 denotes employment and vacancies at the end of month t− 1 and Ht

are hires during month t, the hires rate is ht = Ht/Lt−1, the vacancy rate is vrt−1 = Vt−1/Lt−1

and the vacancy yield is vyt = Ht/Vt−1, so that ht = vrt−1v
y
t . We use this definition, which is
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Table 2: Distribution of employment growth

Growth rate interval Data Model (γ = 2)
-2 (exit) 0.7 0.5
(−2,−0.2] 7.5 11.7

(−0.2,−0.05] 16.5 12.7
(−0.05,−0.02] 9.6 9.1
(−0.02, 0.02) 30.9 32.9
[0.02, 0.05) 9.9 6.3
[0.05, 0.2) 16.7 14.6
[0.2, 2) 7.5 11.9
2 (entry) 0.7 0.4

Notes: The table reports employment shares for intervals of quarterly employment growth

rates. The empirical distribution is taken from Table 2 of Davis et al. (2010). Model statistics

are calculated for the benchmark calibration from a cross-section of 4.7 · 106 firms.

cross-sectional relationships from the data and for the three parameterizations

of our model.24 In the data, firms grow larger both by posting more vacancies

and by filling vacancies faster, with the vacancy yield accounting for most of the

variation. The benchmark calibration with a cubic recruitment cost function can

account for around two thirds of the observed variation in vacancy yields (see

the blue (solid) curve in the upper right graph). Employers that expand more

rapidly offer more attractive contracts and fill these vacancies faster. There can

be many different reasons why vacancy yields are higher in faster-growing firms.

For example, strongly expanding firms may search more intensively or they may

use alternative recruitment channels. Time aggregation can also account for part

of this variation; see Davis et al. (2013) for a discussion. Our benchmark re-

sults suggest that competitive search can be one important, but perhaps not the

only mechanism responsible for the observed heterogeneity in vacancy yields and

slightly different from Davis et al. (2013), for the model and data statistics. We are grateful to
Jason Faberman for providing these data.

24To smooth the relationships, all figures in the graphs are calculated as five-bin centered
moving averages, as in Davis et al. (2013).
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vacancy rates.

Figure 2: Cross-sectional relationships between monthly employment growth and
the vacancy rate, the vacancy yield, the hires rate and the layoff rate. The dashed
curves (in the first three graphs) are from the data used in Davis et al. (2013),
the blue (solid) curves are for the model with cubic recruitment costs (γ = 2),
the green (dotted) curves are for γ = 0.1 and the red (closely dashed) curves are
for γ = 8. Model statistics are calculated from a cross-section of 4.7 · 106 firms.

Figure 2 further shows the results for the nearly linear recruitment technology

(γ = 0.1) and for the one with higher curvature (γ = 8). With linear vacancy

costs, weekly vacancy yields m are constant and hence do not vary with employ-

ment growth. Variations in the monthly vacancy yield are solely explained by

time aggregation. The green (dotted) curve in the upper right graph of Figure 2

shows that the vacancy yield is indeed nearly flat for employment growth below

10 percent. Time aggregation (i.e., firms post and fill unrecorded vacancies dur-
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ing the month) accounts for the variation in vacancy yields beyond that point.

On the other hand, as indicated by the red (closely dashed) curves in the figure,

our model can principally account for the full variation in vacancy yields and

vacancy rates if the curvature of the recruitment technology is sufficiently large.

On a related note, Davis et al. (2013) show that vacancy yields (and vacancy

rates) vary substantially by industry and employer size groups. While we have

not introduced industry-specific parameters into our model, we can study the

effect of size and find that smaller employers indeed have higher vacancy yields,

albeit the variation is smaller than in the data. Specifically, in our benchmark

calibration the vacancy yield at firms with less than 50 workers exceeds the one at

firms with more than 500 workers by 10 percent, while in the data the difference

is almost a factor of two.25

The bottom graphs in Figure 2 show that our model largely accounts for the

relationships between employment growth, hires rates and layoff rates, both for

growing and for shrinking firms, and regardless of the curvature parameter in the

recruitment technology.26

To explore the impact of aggregate shocks, we first consider the model response

to a permanent increase in the aggregate productivity parameter by one percent.

In response to the shock, we let entry costs increase by the same factor.27 The

25We expect that more flexible forms of the recruitment technology should give larger varia-
tion by employer size: for instance, if C had decreasing returns in (V, L), vacancy postings in
larger firms would be less costly so that these firms prefer to recruit less intensively, reducing
job-filling rates further.

26For the empirical relationship between employment growth and layoffs, see Davis et al.
(2010) who find that layoffs dominate quits for large employment contractions. In our model,
the quit rate is exogenous at s0 so that variations in layoffs necessarily capture all variations
in separations.

27Without the proportional increase in entry costs, firm entry would exhibit an implausible
spike at the time of the shock. There are many reasons why entry costs vary with the business
cycle, e.g. procyclical rental rates, capital prices, or outside opportunities of entrepreneurs.
Regarding the latter, endogenous entrepreneurship could be easily introduced in our framework
when unemployed workers have the option to either search for jobs or to start a business. We
expect that efficiency and tractability would be preserved.
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new steady-state equilibrium features more firms and higher aggregate output.

Since firms are on average smaller, labor productivity increases by 1.1 percent,

output increases by 1.8 percent and unemployment falls by 8 percent. In Figure 3,

we compare impulse responses for the three calibrations with different curvature

parameters. Relative to the model with nearly linear recruitment costs, convex

costs generate a pronounced labor market propagation, featuring sluggish adjust-

ments of the job–finding rate and of the vacancy–unemployment ratio, which are

similar to the responses of these variables to a permanent productivity shock in

vector autoregressions (see Appendix E for details). Fujita and Ramey (2007) and

Shimer (2005) argue that standard search and matching models cannot generate

such patterns because market tightness and the job-finding rate are jump vari-

ables which correlate perfectly with aggregate productivity. The bottom graphs

in Figure 3 show that this is also true in our model when vacancy costs are

linear,28 but not when they are convex in which case both variables lag behind

aggregate productivity by 2-3 quarters.

We emphasize that the sluggish model dynamics come about for the same pa-

rameterizations of the recruitment technology which also give rise to plausible

variations of vacancy yields across firms. Micro-level features are thus directly

linked to the dynamics at the aggregate level. Lagged responses to productiv-

ity shocks are neither picked up by most random search models, nor by existing

models with directed search, such as Shi (2009), Menzio and Shi (2010, 2011),

and Schaal (2010). In our model, convexity of recruitment technologies in combi-

nation with the entry of new firms contribute to the delayed response of the labor

market: the positive shock triggers a surge of entrant firms who create only few

jobs when they are small but more as they grow larger. With linear recruitment

costs, all firms (young and old) would directly jump to their optimal sizes.

28Equation (18) implies that m is a function of the aggregate state µi alone if marginal
vacancy costs are constant.
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Figure 3: Impulse response to a permanent 1% increase in aggregate productivity.
The dashed curves are responses from a VAR for U.S. data (see Appendix E for
details), the blue (solid) curves are for the model with cubic recruitment costs
(γ = 2), the green (dotted) curves are for γ = 0.1 and the red (closely dashed)
curves are for γ = 8.

To study business cycle properties, we solve the model as outlined in Section 3.2.

The aggregate productivity parameter attains five equally distant values in the

interval [zmin, 2−zmin], and the Markov process for z is a mean–reverting process

with transition probability ψ, as described in Appendix C of Shimer (2005). The

two parameters (zmin, ψ) = (0.95, 0.015) are set to match a quarterly standard

deviation and autocorrelation of labor productivity around trend of 0.013 and

0.76. As before, we allow the entry cost K to vary with the aggregate state, so

as to target the volatility of job creation at opening firms.29 Table 3 shows the

29Specifically, we let K vary between 199.75 in the lowest productivity state and 209.67 in
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outcome of this experiment for volatility and comovement with aggregate output.

The key labor market variables are amplified almost as much as in the data, which

is not too surprising given that we calibrate the opportunity cost of work rather

close to marginal labor productivity. Relative to a model with homogeneous firms

(Hagedorn and Manovskii (2008)), firm heterogeneity and decreasing returns add

no more amplification.30 Besides amplification, our model generates correlation

patterns with aggregate output which are consistent with the data. Particularly,

it captures procyclical job-finding rates and countercyclical separation rates. We

also note that the correlation between labor productivity and the job-finding rate

is positive though not perfect, in contrast to Shimer’s (2005) calibration of the

search and matching model with homogeneous firms.

The last two rows of Table 3 show that our business cycle model roughly captures

the volatility and comovement of the aggregate vacancy yield and of the recruiting

intensity as calculated by Davis et al. (2013) for JOLTS data, 2001-2011. In

particular, we can decompose the aggregate vacancy yield as

H
V = m(λ)

∑

i

mi

m(λ)
Vi
V ≡ m(λ)r , (21)

where H , V are aggregate hires and vacancies, λ is the aggregate unemployment-

vacancy ratio, and (mi, Vi) are recruitment policies of firm i. Since λ is counter-

cyclical, so is the aggregate vacancy yield, although less than a standard aggregate

matching function would predict. The term r in equation (21) is a measure of

the (vacancy-weighted) “recruiting intensity” which turns out to be procyclical,

both in the data and in the model with γ = 2.31 The reason why r is procyclical

the highest state for γ = 2.
30This is consistent with Krause and Lubik (2007), Faccini and Ortigueira (2010) and Hawkins

(2011) who obtain little amplification of technology shocks in labor market models with intra-
firm bargaining.

31Our measure of the recruiting intensity corresponds to the variable q1−α
t in equation (9) of

Davis et al. (2013). We set α = 0.5 as in their paper to calculate the moments in Table 3.
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Table 3: Business cycle statistics

Data Model (γ = 2)

Relative Correlation Relative Correlation
volatility with output volatility with output

Productivity 0.79 0.659 0.45 0.872
Unemployment 7.87 -0.853 7.00 -0.921

Vacancies 8.34 0.428 5.00 0.504
Job–finding rate 4.73 0.829 4.22 0.929
Separation rate 3.28 -0.576 3.66 -0.752
Vacancy yield 7.20 -0.803 5.58 -0.940

Recruting intensity 1.22 0.852 1.56 0.861

Notes: All variables are logged and HP filtered with parameter 1600. Relative volatility

measures the standard deviation of a variable divided by the standard deviation of output.

Data are for the U.S. labor market (1950-2011), except the job–finding rate and separation

rate series (1951-2007) which were constructed by Robert Shimer (see Shimer (2012) and his

webpage http://sites.google.com/site/robertshimer/research/flows) and the vacancy yields and

recruiting intensity series (2001-2011) which were constructed by Davis et al. (2013). Monthly

series are converted in quarterly series by time averaging. The model statistics are obtained

from a simulation of 2 · 105 firms over a period of 26000 weeks. Weekly series are converted

into quarterly series by time averaging.

in our model is that m is concave and that the cross-sectional dispersion of λi

(mi) is countercyclical.
32

Finally we briefly report the cyclicality of wages. Although our theory speci-

fies present values rather than the time profiles of wages, we consider flat wage

contracts as an empirically relevant special case. With this specification, we find

that aggregate wages are procyclical and rigid, while wages for new hires are more

volatile. In particular, the elasticity of wages for all workers (new hires) with re-

spect to productivity is 0.13 (0.64), which compares with the estimates of Haefke

et al. (2013) who report elasticities in the range 0.1-0.3 (0.6-1). Other implemen-

tations are clearly conceivable that would give rise to greater wage cyclicality,

32This seems consistent with the observation of Davis et al. (2012) that the cross-industry
dispersion of job-filling rates increased during the Great Recession. We note that the procycli-
cality of r vanishes in our model with nearly linear recruitment costs (γ = 0.1) because all firms
fill vacancies at the same matching rate.
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but it is good to know that our model can account for substantial wage rigidity.

5 Conclusions

This paper investigates job reallocation in a model where firms actively compete

for workers in a frictional labor market. Meaningful dynamics arise when firms

cannot instantly post vacancies at constant marginal costs - for example because

existing workers are required for recruitment. Firms that want to expand quickly

are willing to pay higher salaries to attract more workers and hence fill vacancies

faster. Matching rates are therefore not an aggregate object, as in most of the

search literature, but are firm-specific as recently documented by Davis et al.

(2013). Calibrated versions of the model show that it can account for this varia-

tion in vacancy yields, alongside other cross-sectional features. The same reasons

that let firms vary their vacancy yields also induce delayed aggregate responses

of key labor market variables to productivity shocks.

Apart from this contribution, this paper lays out a competitive search model with

heterogeneous firms facing convex recruitment costs. This model provides an al-

ternative to the current workhorse models for large firms in search markets which

are based on random search and bargaining. We establish substantial differ-

ences between these environments: Competition for workers induces firm-specific

matching rates, while they are identical in random-search models. Multi-worker

firms in that environment always engage in inefficient hiring, whereas we show

that our environment retains the efficiency properties known from competition

in economies with single-worker firms. Finally, our model remains tractable both

in and out of steady state, which makes it useful for applied purposes.

We conclude by noting that this framework is flexible for extensions. It is straight-

forward to allow for variable capital investment or for worker heterogeneity, as

long as the firm-level production functions retain decreasing returns in variable
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inputs. A further extension is to introduce risk aversion. In constant-returns

environments with exogenous separation rates, Acemoglu and Shimer (1999) and

Rudanko (2011) introduce long-term contracting and analyze the implications for

risk sharing, unemployment insurance and labor market dynamics. Our model

could also be augmented along these lines. But different from our results, equilib-

rium would cease to be socially efficient, provided that the planner is allowed to

redistribute income to the unemployed. Lack of unemployment insurance induces

workers to search too much for low-paying but easy-to-get jobs (as in Acemoglu

and Shimer (1999)), and should lead to excess employment in low-productivity

firms and therefore to a misallocation of labor between heterogeneous firms.

Such extensions would also make policy analysis more relevant. Already in the

current setup, we conduct a preliminary policy experiment. Since our model

generates aggregate dynamics which are largely in line with the U.S. business

cycle, we use it to investigate the impact of hiring credits on stabilization. Some-

what surprisingly, we find that these subsidies, especially when implemented in

a counter-cyclical manner, have a destabilizing effect on the labor market since

they foster more labor reallocation during recessions (see Appendix F for details).
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Appendix A: Proofs

Proof of Proposition 1:

Rewrite problem (5) to express the dependence of the value function on x and on the
workers’ search value ρ as the solution to the dynamic programming problem

G(L, x; ρ) = max
(m,V )≥0

xF (L)− C(V,L, x)−D(m; ρ)V + β(1 − δ)G(L+, x; ρ)

s.t. L+ = L(1− s) +mV , (22)

where function D(m; ρ) is defined in the text. It is increasing, strictly convex in m
and increasing in ρ. This problem is equivalently defined on a compact state space
L ∈ [0, L] where L is so large that it never binds. This is possible because of the Inada
condition limL→∞ F ′(L) = 0. The RHS in problem (22) defines an operator T which
maps a continuous function G0(L, x; ρ), defined on S = [0, L] × [0, x] × [0, ρ] into a
continuous function G1(L, x; ρ) = T (G0)(L, x; ρ) defined on the same domain. Here x
and ρ are arbitrary upper bounds on x and ρ. Operator T is a contraction, therefore
there exists a unique fixed point G∗ which is a continuous function and which is the
limit of any sequence Gn defined by Gn = T (Gn−1).
Starting from a continuous G0 that is differentiable and weakly increasing in L and
x and weakly decreasing in ρ, successive application of T yields a sequence Gn where
each element shares these properties. Since the subset of continuous functions on S
that are weakly increasing in L and x and weakly decreasing in ρ is closed under the
sup norm, the limit G∗ of sequence Gn is in this set. Because xF (L) − C(V,L, x) is
strictly increasing in (L, x) and since D(m; ρ) is strictly decreasing in ρ, the limit G is
strictly increasing in x and L and strictly decreasing in ρ.
We show in subsequent Lemmata 1 and 2 that T maps functions that are differentiable
and concave in L and supermodular in L and x into functions with the same properties.
Since the subset of concave and supermodular functions is closed, the same arguments
as above imply that the unique fixed point G∗ is concave in L and supermodular in
(L, x). Since function xF (L) − C(V,L, x) is strictly concave in L, G∗ is also strictly
concave in L. Concavity in L and differentiability of xF (L)−C(V,L, x) together with
the theorem of Benveniste and Scheinkman establishes differentiability of G∗ in L.
Before we establish the remaining results, rewrite (22) in terms of hirings H = mV .
Dropping argument ρ from G, we can equivalently write (22) as

G(L, x) = max
H

xF (L)− C(H,L, x) + β(1− δ)G(L(1 − s) +H,x) (23)

where

C(H,L, x) ≡ min
m

C
(
H
m,L, x

)

+D(m)
H

m
. (24)

The right hand side of (23) is an equivalent expression of the fixed-point operator T.
As will become clear, the per period return xF (L) − C(H,L, x) is supermodular in
(L,H), but when C13 > 0 (which arises in first specification in (1) for h > 0) the
per period return is strictly submodular in (H,x) and in (L+, x) when one writes
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H = L+− (1− s)L, which renders standard tools to prove supermodularity (e.g., Amir
(1996)) inapplicable. To proceed, the optimality condition for problem (24) is

C1

(
H
m,L, x

)

= D′(m)m−D(m) . (25)

Differentiate this equation to obtain

dm
dH

= C11

C11
H

m
+D′′(m)m2

> 0 , (26)

dm
dL

= C12m

C11
H

m
+D′′(m)m2

= C12m
C11

dm
dH

≤ 0 , (27)

dm
dx

= C13m

C11
H

m
+D′′(m)m2

= C13m
C11

dm
dH

≥ 0 . (28)

Therefore, we can express the derivatives of cost function C as

C1 = D′(m) > 0 ,

C2 = C2 ,

C11 = D′′(m)dm
dH

> 0 , (29)

C12 = D′′(m)dm
dL

≤ 0 , (30)

C22 = C22 − C12
H
m2

dm
dL

, (31)

C13 = D′′(m)dm
dx

≥ 0 , (32)

C23 = C23 − C12
H
m2

dm
dx

. (33)

Lemma 1: Suppose that G is twice differentiable and concave in L. Then T (G) is
twice differentiable and

(a) concave in L if the following condition holds:

C2
12 + C11[xF

′′ − C22] ≤ 0 . (34)

(b) concave in L and supermodular in (L, x) if G is supermodular in (L, x) and if (34)
and the following condition hold:

C12C13 + C11[F
′ − C23] ≥ 0 . (35)

Lemma 2:

(a) Condition (34) holds under the following condition on the original cost function
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C:
C2
12 + C11[xF

′′ − C22] ≤ 0 . (36)

(b) Condition (35) holds under the following condition on the original cost function C:

C12C13 + C11[F
′ − C23] ≥ 0 . (37)

Proof of Lemma 1: Consider T (G) defined by the RHS of (23).
Part (a). Since G is a concave and twice differentiable function of L, T (G) is also twice
differentiable, and a policy function exists and is differentiable. Differentiate T (G)
twice with respect to L to obtain

d2(TG)

dL2 = xF ′′ − C22 + βϕ(1− s)G11 +
[

− C12 + βϕG11

]
dH
dL

. (38)

Differentiate the FOC C1 = β(1− δ)G1 with respect to L to obtain

dH
dL =

βϕG11 − C12
C11 − β(1 − δ)G11

. (39)

Substitute this into (38) to obtain

d2(TG)

dL2 = xF ′′ − C22 +
βϕ(1 − s)G11C11 + C2

12 − 2βϕG11C12
C11 − β(1− δ)G11

.

In the last term, the denominator is positive and larger than C11. In the numerator,
all terms involving G11 are negative (due to (29) and (30)); hence the numerator is
smaller than C2

12. Therefore,

d2(TG)

dL2 ≤ xF ′′ − C22 +
C2
12

C11
,

which is non-positive under (34). Hence, T maps a concave and twice differentiable
function into a function with the same properties.
Part (b). Since G is a concave, supermodular and twice differentiable function of (L, x),
T (G) is twice differentiable and a differentiable policy function exists. Differentiate
T (G) twice with respect to L and x to obtain

d2(TG)
dLdx

= F ′ − C23 + βϕG12 +
[

− C12 + βϕG11

]
dH
dx

. (40)

Differentiate the FOC C1 = β(1− δ)G1 with respect to x to obtain

dH
dx

=
β(1− δ)G12 − C13
C11 − β(1 − δ)G11

. (41)
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Substitute this into (40) to obtain

d2(TG)
dLdx

= F ′ − C23 +
βϕG12C11 + C12C13 − β(1− δ)G12C12 − βϕG11C13

C11 − β(1− δ)G11
.

In the last term, the denominator is positive and larger than C11. In the numerator, all
terms involving G11 and G12 are non-negative (due to (29), (30) and (32)); hence the
numerator is greater than C12C13 ≤ 0. Therefore,

d2(TG)
dLdx ≥ F ′ − C23 +

C12C13
C11

,

which is non-negative under (35). Hence, T (G) is supermodular. 2

Proof of Lemma 2: From (27), (28), (29), (30) and (32) follows that

C12 = C11C12m
C11

, (42)

C13 = C11C13m
C11

. (43)

Furthermore, substituting (30) into (27), and substituting (32) into (28) to eliminate
D′′(m) imply that

C22 = C22 −
C2
12

C11
+ mC12

C11
C12 , (44)

C23 = C23 −
C12
C11

[

C13 −mC13

]

. (45)

Part (a): Rewrite (34) using (42) and (44) to obtain the equivalent condition

xF ′′ − C22 +
C2
12

C11
≤ 0 .

Because of C11 > 0, this condition is equivalent to (36).
Part (b): Rewrite (35) using (42), (43) and (45) to obtain the equivalent condition

F ′ − C23 +
C12C13
C11

≥ 0 .

Because of C11 > 0, this condition is equivalent to (37). 2

It follows from Lemma 1 and 2 that the value function G(L, x) is concave in L and
supermodular in (L, x) because property (C) together with the assumption that xF (.)−
C(.) is concave in (L, V ) guarantee both (36) and (37).
Because of strict concavity of problem (22), policy functions mx(L) and V x(mx(L), L)
exist. To derive first-order conditions (6) and (7) is straightforward: The first condition
directly follows from (25); the second follows from the intertemporal optimality condi-
tion C1(H,L, x) = β(1 − δ)G1(L(1 − s) +H,x) and from using the envelope theorem
and (6).
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The properties of V x stated in Proposition 1 were already established in the main text.
To see how mx(L) depends on L, use (27) and (39) to get

dmx(L)
dL =

dm(H,L, x)
dL +

dm(H,L, x)
dH

dH
dL = dm

dH

[
C12m
C11

+
βϕG11 − C12

C11 − β(1− δ)G11

]

.

Because of
C12m
C11

= C12
C11

≤ C12
C11 − β(1− δ)G11

,

the term in [.] is negative, and so is dmx/(dL).
To verify that m is increasing in x, use (28) and (41) to get

dmx(L)
dx

=
dm(H,L, x)

dx
+
dm(H,L, x)

dH
dH
dx

= dm
dH

[
C13m
C11

+
β(1− δ)G12 − C13
C11 − β(1− δ)G11

]

.

Because of
C13m
C11

= C13
C11

≥ C13
C11 − β(1− δ)G11

,

the term in [.] is positive, and so is dmx/(dx). 2

Proof of Corollary 2: Because of exogenous separations, the growth rate of a firm,
[mV − sL]/L is perfectly correlated with the job-creation rate,

JCR(x,L) = mx(L)
V x(mx(L), L)

L .

Differentiation of the job-creation rate with respect to x implies

dJCR
dx

= dmx

dx
V x

L + mx

L
dV x

dx
+ mx

L
dV x

dm
dmx

dx
.

In this expression, the first and the third term are strictly positive. Under the second
cost function in (1), the second term is zero. Under the first cost function in (1), the
second term is zero when h = 0, and negative but small if h is small. Thus, dJCR/(dx)
is positive if h is sufficiently small.
Differentiation of the job-creation rate with respect to L implies

dJCR
dL

= dmx

dL
V x

L + mx

L
dV x

dL
+ mx

L
dV x

dm
dmx

dL
−mV x

L2 .

In this expression, the first, the third and the fourth term are strictly negative. Under

the second cost function in (1), dV
x

dL
= V x

L , and the second and forth terms cancel out.

Under the first cost function in (1), the second term is zero when h = 0, and positive
but small if h is small. Thus, dJCR/(dL) is negative if h is sufficiently small. 2

Lemma 3: In the model of Section 2 with recruitment cost C(V,L, x) = xF (L) −
xF (L − hV ) + cV , job-filling rates in the optimal firm’s problem follow the dynamic
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equation

ρ
[

mt+1λ
′(mt+1)− λ(mt+1)

]

− (b+ ρ)h− c =
ρh

β(1− δ)

[

λ′(mt)− βϕλ′(mt+1)
]

. (46)

It has a unique steady state solution m∗ > 0 if, and only if,

h <
β(1− δ)m
1− βϕ

, (47)

with m ≡ limm→1m−
λ(m)
λ′(m)

> 0. Under this condition, any sequence mt > 0 satisfying

this dynamic equation converges to m∗.

Proof of Lemma 3: It is straightforward to derive (46) by substitution of (6) into
(7). A steady state m∗ must satisfy the condition

ρ
[

m−
λ(m)
λ′(m)

]

=
ρh(1 − βϕ)
β(1− δ)

+
(b+ ρ)h+ c

λ′(m)
. (48)

The LHS is strictly increasing and goes from 0 to ρm as m goes from 0 to 1. The RHS
is decreasing in m with limit ρh(1− βϕ)/[β(1− δ)] for m→ 1. Hence, a unique steady
state m∗ exists iff (47) holds.33 Furthermore, differentiation of (46) at m∗ implies that

dmt+1
dmt

∣
∣
∣
m∗

= h
β(1− δ)m∗ + hβϕ

,

which is positive and smaller than one iff

h <
β(1− δ)m∗

1− βϕ .

But this inequality must be true because (48) implies

h =
ρ[m∗λ′(m∗)− λ(m∗)]− c

ρ[1−βϕ]
β(1−δ)

λ′(m∗)+b+ρ
<
β(1 − δ)m∗

1− βϕ .

Therefore, the steady statem∗ is locally stable. Moreover, the dynamic equation defines
a continuous, increasing relation between mt+1 and mt which has only one intersection
with the 45-degree line. Hence, mt+1 > mt for any mt < m∗ and mt+1 < mt for any
mt > m∗, which implies that mt converges to m

∗ from any initial value m0 > 0. 2

Proof of Proposition 2:

It remains to prove existence and uniqueness. From Proposition 1 follows that the
entrant’s value function Jx(0, 0) is decreasing and continuous in ρ. Hence the expected
profit prior to entry,

Π∗(ρ) ≡
∑

x∈X

π(x)Jx(0, 0)

33If this condition fails, firms cannot profitably recruit workers.
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is a decreasing and continuous function of ρ. Moreover, the function is strictly de-
creasing in ρ whenever it is positive. This also follows from the proof of Proposition
1 which shows that G(0, x; ρ) is strictly decreasing in ρ when the new firm x recruits
workers (V x(mx(0), 0) > 0). If no new firm recruits workers, expected profit of an
entrant cannot be positive. Hence, equation (8) can have at most one solution for any
K > 0. This implies uniqueness, with entry of firms if (8) can be fulfilled or without
entry of firms otherwise. A solution to (8) exists provided that K is sufficiently small.
To see this, Π∗(0) is strictly positive because of F ′(0) = ∞: some entrants will recruit
workers since the marginal product G1(mV, x; ρ) is sufficiently large relative to the cost
of recruitment and relative to the wage cost which are, for ρ = 0, equal to mV b (see
equation (22)). But when Π∗(0) > 0, a sufficiently small value of K guarantees that
(8) has a solution since limρ→∞Π∗(ρ) = 0. 2

Proof of Proposition 3:

We will show that the first-order conditions that uniquely characterize the decentralized
allocation are also first order conditions to the planner’s problem. The same auxiliary
problem that we employ in the proof of Lemma 4 part (b) (see the proof of Proposition
4) then establishes that the planner cannot improve upon this allocation. We denote
by SN,a the derivative of S with respect to Na and by SL,a,x the derivative of S with
respect to Lx

a. The multiplier on the resource constraint is µ ≥ 0. First-order conditions
with respect to N0, V

x
a , and m

x
a, a ≥ 0, are

∑

x∈X

π(x)
[

xF (0) − C(V x
0 , 0, x)

]

−K + β(1− δ)SN,1 − µ
∑

x∈X

π(x)λ(mx
0)V

x
0 = 0 , (49)

−Naπ(x)
[

C1(V
x
a , L

x
a, x) + µλ(mx

a)
]

+ βSL,a+1,xm
x
a ≤ 0 , V x

a ≥ 0 , (50)

βSL,a+1,x − µNaπ(x)λ
′(mx

a) = 0 . (51)

Here condition (50) holds with complementary slackness. The envelope conditions are,
for a ≥ 1 and x ∈ X,

SL,a,x = Naπ(x)
[

xF ′(Lx
a)−C ′

2(V
x
a , L

x
a, x)− b− µ

]

+ β(1− s)SL,a+1,x , (52)

SN,a =
∑

x∈X

π(x)
[

xF (Lx
a)−C(V x

a , L
x
a, x)−bL

x
a

]

−µ
∑

x∈X

π(x)
(

Lx
a+λ(m

x
a)V

x
a

)

+β(1−δ)SN,a+1 .

(53)
Use (51) to substitute SL,a,x into (52) to obtain

xF ′(Lx
a+1)− C2(V

x
a+1, L

x
a+1, x)− b− µ =

µ
β(1− δ)

[λ′(mx
a)− βϕλ′(mx

a+1)] .

This equation is the planner’s intertemporal optimality condition; it coincides with
equation (7) for µ = ρ. This is intuitive: when the social value of an unemployed
worker µ coincides with the surplus value that an unemployed worker obtains in search
equilibrium, the firm’s recruitment policy is efficient. Next substitute (51) into (50) to
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obtain, for a ≥ 0 and x ∈ X,

C1(V
x
a , L

x
a, x) ≥ µ[mx

aλ
′(mx

a)− λ(mx
a)] , V

x
a ≥ 0 . (54)

Again for µ = ρ, this condition coincides with the firm’s intratemporal optimality
condition in competitive search equilibrium, equation (6). Lastly, it remains to verify
that entry is socially efficient when the value of a jobless worker is µ = ρ. The plan-
ner’s choice of firm entry, condition (49), together with the recursive equation for the
marginal firm surplus SN,a, equation (53), shows that

K =
∑

a≥0

[β(1− δ)]a
∑

x∈X

π(x)
[

xF (Lx
a)− bL

x
a−C(V x

a , L
x
a, x)−µ(L

x
a+λ(m

x
a)V

x
a )

]

. (55)

On the other hand, the expected profit value of a new firm is

∑

x∈X

π(x)Jx(0, 0) =
∑

a≥0

[β(1 − δ)]a
∑

x∈X

π(x)
[

xF (Lx
a)−W x

a − C(V x
a , L

x
a, x)

]

.

Hence, the free-entry condition in search equilibrium, equation (8), coincides with con-
dition (55) for µ = ρ if, for all x ∈ X,

∑

a≥0

[β(1 − δ)]a
[

(b+ µ)Lx
a + µλ(mx

a)V
x
a −W x

a

]

= 0 . (56)

Now after substitution of

Lx
a =

a−1∑

k=0

(1− s)a−1−kmx
kV

x
k , and

W x
a =

a−1∑

k=0

(1− s)a−1−kV x
k

[
ρλ(mx

k)(1− βϕ)
β(1 − δ)

+mx
k(b+ ρ)

]

into (56), it is straightforward to see that the equation is satisfied for µ = ρ. 2

Proof of Proposition 4:

Part (a):
Let βtψ(zt)µ(zt) ≥ 0 be the multiplier on the resource constraint (15) in history node
zt. That is, µ(zt) is the social value of a worker in history zt. Write µ = (µ(zt)) for the
vector of multipliers. Let Gt(L, x, z

t) denote the social value of an existing firm with
employment stock L, idiosyncratic productivity x and aggregate productivity history
zt. The sequence Gt obeys the recursive equations

Gt(L, x, z
t) = max

δ,s,V,m
xztF (L)− bL− µ(zt)[L+ λ(m)V ]− C(V,L, xzt)− f (57)

+β(1− δ)Ex,ztGt+1(L+, x+, z
t+1)
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s.t. L+ = (1− s)L+mV ,

δ ∈ [δ0, 1], s ∈ [s0, 1], m ∈ [0, 1], V ≥ 0 .

We first prove the equivalence between problem (57) and the planner’s problem (14)
(Lemma 4). Then we show that the reduced problem (16) solves (57) if entry is positive
in all states.

Lemma 4:

(a) For given multipliers µ(zt), there exist value functions Gt : IR+×X × Zt+1 → IR,
t ≥ 0, satisfying the system of recursive equations (57).

(b) If X = (N,L,V,m, s, δ) is a solution of the planning problem (14) with multipliers
µ = (µ(zt)), then the corresponding firm policies also solve problem (57) and the
complementary-slackness condition

∑

x∈X

π0(x)Gt(0, x, z
t) ≤ K(zt) , N0(z

t) ≥ 0 , (58)

is satisfied for all zt. Conversely, if X solves for every firm problem (57) with
multipliers µ, and if condition (58) and the resource constraint (15) hold for all
zt, then X is a solution of the planning problem (14).

Proof of Lemma 4:

Part (a): The RHS in the system of equations in (57) defines an operator T which maps
a sequence of bounded functions G = (Gt)t≥0, with Gt : [0, L] × X × Zt → IR such
that ‖G‖ ≡ supt ‖Gt‖ < ∞, into another sequence of bounded functions G̃ = (G̃t)t≥0

with ‖G̃‖ = supt ‖G̃t‖ < ∞. Here L is sufficiently large such that the bound L+ ≤ L
does not bind for any L ∈ [0, L]. The existence of L follows from the Inada condition
for F : the marginal product of an additional worker xzF ′(L+) − b must be negative
for any x ∈ X, z ∈ Z, for all L+ ≥ L with sufficiently large L; hence no hiring will
occur beyond L. Because the operator satisfies Blackwell’s sufficient conditions, it is a
contraction in the space of bounded function sequences G. Hence, the operator T has
a unique fixed point which is a sequence of bounded functions.
Part (b): Take first a solution X of the planning problem, and write βtψ(zt)µ(zt) ≥ 0
for the multipliers on constraints (15). Then X maximizes the Lagrange function

L = max
∑

t≥0,zt

βtψ(zt)

{

−K(zt)N0(z
t) +

∑

a≥0,xa

N(xa, zt)

[

xaztF (L(x
a, zt))− bL(xa, zt)

−f − C(V (xa, zt), L(xa, zt), xazt)− µ(zt)
[

L(xa, zt) + λ(m(xa, zt))V (xa, zt)
]
]}

For each individual firm, this problem is the sequential formulation of the recursive
problem (57) with multipliers µ(zt). Hence, firm policies also solve the recursive prob-
lem; furthermore, the maximum of the Lagrange function is the same as the sum of
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the social values of entrant firms plus the social values of firms which already exist at
t = 0, namely,

L = max
N0(.)

∑

t,zt

βtψ(zt)N0(z
t)
[

−K(zt) +
∑

x

π0(x)Gt(0, x, z
t)
]

+
∑

z∈Z

ψ(z0)
∑

a≥1,xa

N(xa, z0)G0(L(x
a, z0), xa, z

0) .

This also proves that the complementary-slackness condition (58) describes optimal
entry.
To prove the converse, suppose that X solves for every firm the recursive problem
(57) with given multipliers µ(zt), and that (58) and the resource constraints (15) are
satisfied. Define an auxiliary problem (AP) as an extension of the original planning
problem (14) which allows the planner to rent additional workers (or to rent out existing
workers) at rental rate µ(zt) in period t. Formally, the (AP) differs from the original
problem in that the resource constraint (15) is replaced by

∑

a≥0,xa

N(xa, zt)
[

L(xa, zt) + λ(m(xa, zt))V (xa, zt)
]

≤ M(zt) , (59)

with M(zt) − 1 > 0 workers hired or M(zt) − 1 < 0 workers hired out. Further, the
rental cost (rental income) term −µ(zt)[M(zt) − 1] is added into the braces in the
objective function (14). Then it follows immediately that the multiplier on constraint
(59) is equal to µ(zt). We further claim that allocation X solves problem (AP), and
hence also solves the original planning problem. To see this, suppose that there is an
allocation (X′,M) which is feasible for problem (AP) and which strictly dominates X.
Write

O(xa, zt) ≡ xaztF (L(x
a, zt))− bL(xa, zt)− f − C(V (xa, zt), L(xa, zt), xazt)

for the net output created by firm (xa, zt) in allocation X and write O′(xa, zt) for the
same object in allocation X′. Further, write S for the total surplus value in allocation
(X,1) and write S′ > S for the surplus value in allocation (X′,M). Then

S′ =
∑

t≥0,zt

βtψ(zt)

{

−K(zt)N
′
0(z

t) +
∑

a≥0,xa

N ′(xa, zt)O′(xa, zt)− µ(zt)[M(zt)− 1]

}

≤
∑

t≥0,zt

βtψ(zt)

{

−K(zt)N
′
0(z

t) + µ(zt)

+
∑

a≥0,xa

N ′(xa, zt)
[

O′(xa, zt)− µ(zt)
(

L′(xa, zt) + λ(m′(xa, zt))V ′(xa, zt)
)]

}

≤
∑

t≥0,zt

βtψ(zt)N ′
0(z

t)
[

−K(zt) +
∑

x

π0(x)Gt(0, x, z
t)
]
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+
∑

z∈Z

ψ(z0)
∑

a≥1,xa

N(xa, z0)G0(L(x
a, z0), xa, z

0) +
∑

t,zt

βtψ(zt)µ(zt)

≤
∑

t≥0,zt

βtψ(zt)N0(z
t)
[

−K(zt) +
∑

x

π0(x)Gt(0, x, z
t)
]

+
∑

z∈Z

ψ(z0)
∑

a≥1,xa

N(xa, z0)G0(L(x
a, z0), xa, z

0) +
∑

t,zt

βtψ(zt)µ(zt) = S .

Here the first inequality follows from resource constraint (59). The second inequality
follows since the discounted sum of surplus values for an individual firm which is of age
a at time t, namely

∑

τ≥t

βτ−t
∑

xa+τ−tzτ

ψ(zτ |zt)π(xa+τ−t|xa)
τ−1∏

k=t

[1− δ(xa+k−t, zk)]

[

O′(xa+τ−t, zτ )− µ(zτ )[L′(xa+τ−t, zτ ) + λ(m′(xa+τ−t, zτ ))V ′(xa+τ−t, zτ )]
]

,

is bounded above Gt(0, x0, zt) (for new firms, a = 0) or by G0(L(x
a, z0), xa, z

0) (for
firms of age a > 0 existing at t = 0) by definition of Gt. The third inequality
follows from the complementary-slackness condition (58): either the term −K(zt) +
∑

x π0(x)Gt(0, x, z
t) is zero in which case the first summand is zero on both sides of

the inequality; or it is strictly negative in which case N0(z
t) = 0 and N ′

0(z
t) ≥ 0. The

last equality follows from the definition of surplus value S and the assumption that al-
location X solves problem (57) at the level of each individual firm. This proves S′ ≤ S
and hence contradicts the hypothesis S′ > S. This completes the proof of Lemma 4.2

To complete the proof of Prop. 4, part (a), let µi be the multiplier in aggregate state zi,
defined by (16) and (17), and write M = (µ1, . . . , µn). With µ(zt) ≡ µi for zt = zi, the
unique solution of (57) coincides with the one of (16), i.e. Gt(L, x, z

t) = G(L, x, i;M)
for zt = zi, and also the firm-level policies coincide. If they give rise to an allocation
X with positive entry in all aggregate states zt, (17) implies that (58) holds for all zt.
Hence Lemma 4(b) implies that X is a solution of the planning problem.
Part (b): Solving (16) in the stationary case z = z involves to find a single value
function G(L, x;M). Application of the contraction mapping theorem implies that
such a solution exists, is unique, and is continuous and non-increasing in µ ∈ IR and
strictly decreasing in µ when G(.) > 0.
Therefore, the function Γ(µ) ≡

∑

x π0(x)G(0, x;µ) ≥ 0 is continuous, strictly decreas-
ing when positive, and zero for large enough µ. Furthermore, when f and b are suffi-
ciently small, Γ(0) > 0; hence when K > 0 is sufficiently small, there exists a unique
µ ≥ 0 satisfying equation (17).
In the stochastic case z ∈ {z1, . . . , zn} and for any given vectorM = (µ1, . . . , µn) ∈ Rn

+,
the system of recursive equations (16) has a unique solution G(.;M). Again this follows
from the application of the contraction-mapping theorem. Furthermore, G is differen-
tiable inM , and all elements of the Jacobian (dG(L, x, i;M)/(dµj ))i,j are non-positive.
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The RHS of (16) defines an operator mapping a function G(L, x, i;M) with a strictly
diagonally dominant Jacobian matrix (dG(L, x, i;M)/(dµj ))i,j into another function
G̃ whose Jacobian matrix (dG̃(L, x, i;M)/(dµj ))i,j is diagonally dominant. This fol-
lows since the transition matrix ψ(zj |zi) is strictly diagonally dominant and since all
elements of (dG̃(L, x, i;M)/(dµj )) have the same (non-positive) sign. Therefore, the
unique fixed point has a strictly diagonally dominant Jacobian. Now suppose that
(z1, . . . , zn) is close to (z, . . . , z) and consider the solution µ1 = . . . = µn = µ of the
stationary problem. Since the Jacobian matrix (dG(0, x, i;M)/(dµj ))i,j is strictly di-
agonally dominant, it is invertible. By the implicit function theorem, a unique solution
M to equation (17) exits. 2

For the proof of Proposition 5, see Appendix B.
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Appendix B: Decentralization

The Workers’ Search Problem

Let U(zt) be the utility value of an unemployed worker in history zt, and letW (Ca, x
k, zt)

be the utility value of a worker hired by a firm of age a in contract Ca who is currently
employed at that firm in history xk, with k > a. The latter satisfies the recursive
equation

W (Ca, x
k, zt) = wa(x

k, zt) + β
{

(1− ϕa(x
k, zt))EztU(zt+1) (60)

+ϕa(x
k, zt)Exk ,ztW (Ca, x

k+1, zt+1)
}

.

An unemployed worker searches for contracts which promise the highest expected util-
ity, considering that more attractive contracts are less likely to sign. The worker ob-
serves all contracts Ca and he knows that the probability to sign a contract is m/λ(m)
when m is the firm’s matching probability at the offered contract. That is, potential
contracts are parameterized by the tuple (m, Ca). Unemployed workers apply for those
contracts where expected surplus is maximized:

ρ(zt) = max
(m,Ca)

m
λ(m)

(1− δ(xa, zt))βExa,zt

[

W (Ca, x
a+1, zt+1)− U(zt+1)

]

. (61)

The Bellman equation for an unemployed worker reads as

U(zt) = b+ ρ(zt) + βEztU(zt+1) . (62)

The Firms’ Problem

A firm of age a in history (xa, zt) takes as given the employment stocks of workers hired
in some earlier period, (Lτ )

a−1
τ=0, as well as the contracts signed with these workers,

(Cτ )
a−1
τ=0. For the contracts to be consistent with the firm’s constraints on exit and

separations, the retention probabilities must satisfy ϕτ (x
a, zt) ≤ (1− s0)(1 − δ0). The

firm chooses an actual exit probability δ ≥ δ0 and cohort-specific layoff probabilities
sτ . For these probabilities to be consistent with separation probabilities specified in
existing contracts, it must hold that δ ≤ 1 − ϕτ (x

a, zt) for all τ ≤ a − 1, and sτ =
1 − ϕτ (x

a, zt)/(1 − δ) when δ < 1, with arbitrary choice of sτ when δ = 1. The
firm also decides new contracts Ca to be posted in V vacancies with desired matching
probability m. It is no restriction to presuppose that the firm offers only one type of
contract. When Ja is the value function of a firm of age a, the firm’s problem is written
as

Ja

[

(Cτ )
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

= max
(δ,m,V,Ca)

xaztF (L)−W − C(V,L, xazt) (63)

−f + β(1− δ)Exa,ztJa+1

[

(Cτ )
a
τ=0, (Lτ+)

a
τ=0, x

a+1, zt+1
]

s.t. La+ = mV, m ∈ [0, 1], V ≥ 0, Lτ+ = Lτ
ϕτ (x

a, zt)
1− δ

, τ ≤ a− 1 , (64)
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δ ∈ [δ0, min
0≤τ≤a−1

1− ϕτ (x
a, zt)], s0 ≤ 1− ϕτ (x

a, zt)/(1 − δ) , (65)

W =

a−1∑

τ=0

wτ (x
a, zt)Lτ , L =

a−1∑

τ=0

Lτ , (66)

ρ(zt) = m
λ(m)

(1− δ)βExa,zt

[

W (Ca, x
a+1, zt+1)− U(zt+1)

]

if m > 0 . (67)

The last condition is the workers’ participation constraint; it specifies the minimum
expected utility that contract Ca must promise in order to attract a worker queue of
length λ(m) per vacancy.

Definition: A competitive search equilibrium is a list

[

U(zt), ρ(zt), Ca(x
a, zt),m(xa, zt), V (xa, zt), δ(xa, zt), Ja(.), Lτ (x

a, zt), N(xa, zt), N0(z
t)

]

,

for all t ≥ 0, a ≥ 0, xa ∈ Xa+1, zt ∈ Zt+1, 0 ≤ τ ≤ a, and for a given initial firm
distribution, such that

(a) Firms’ exit, hiring and layoff strategies are optimal. That is, Ja is the value func-
tion and Ca(.), δ(.), m(.), and V (.) are the policy functions for problem (63)-(67).

(b) Employment evolves according to

Lτ (x
a, zt) = Lτ (x

a−1, zt−1)
ϕτ (x

a, zt)
1− δ(xa, zt)

, 0 ≤ τ ≤ a− 1 ,

La(x
a, zt) = m(xa, zt)V (xa, zt) , a ≥ 0 .

(c) Firm entry is optimal. That is, the complementary slackness condition

∑

x

π0(x)J0(x, z
t) ≤ K(zt) , N0(z

t) ≥ 0 , (68)

holds for all zt, and the number of firms evolves according to (11) and (13).

(d) Workers’ search strategies are optimal, i.e. (ρ, U) satisfy equations (61) and (62).

(e) Aggregate resource feasibility; for all zt,

∑

a≥0,xa

N(xa, zt)
[

λ(m(xa, zt))V (xa, zt) +

a−1∑

τ=0

Lτ (x
a, zt)

]

= 1 . (69)

Proposition 5: A competitive search equilibrium is socially optimal.
Proof: The proof proceeds in two steps. First, substitute the participation constraint
(67) into the firm’s problem and make use of the contracts’ recursive equations (60) to
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show that the firms’ recursive profit maximization problem is identical to the maximiza-
tion of the social surplus of a firm. Second, show that a competitive search equilibrium
is socially optimal.
First, define the social surplus of a firm with history (xa, zt) and with predetermined
contracts and employment levels as follows:

Ga

[

(Cτ )
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

≡ Ja

[

(Cτ )
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

+

a−1∑

τ=0

Lτ

[

W (Cτ , x
a, zt)−U(zt)

]

.

(70)
Using (60) and (62), the worker surplus satisfies

W (Cτ , x
a, zt)−U(zt) = wτ (x

a, zt)−b−ρ(zt)+βϕτ (x
a, zt)Exa,zt

[

W (Cτ , x
a+1, zt+1)−U(zt+1)

]

.

Now substitute this equation and (63) into (70), and write

σ ≡
[

(Cτ )
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

and σ+ ≡
[

(Cτ )
a
τ=0, (Lτ+)

a
τ=0, x

a+1, zt+1
]

,

with Lτ+ as defined in (64) and L =
∑a−1

τ=0 Lτ , to obtain

Ga(σ) = max
δ,m,V,Ca

{

xaztF (L)− C(V,L, xazt)− f −
a−1∑

τ=0

Lτwτ (x
a, zt) (71)

+β(1− δ)Exa,ztJa+1(σ+)

}

+

a−1∑

τ=0

Lτ

[

wτ (x
a, zt)− b− ρ(zt)

+βϕτ (x
a, zt)Exa,zt

[

W (Cτ , x
a+1, zt+1)− U(zt+1)

]
]

= max
δ,m,V,Ca

{

xaztF (L)− [b+ ρ(zt)]L− f − C(V,L, xazt) + β(1− δ)Exa,ztJa+1(σ+)

+β

a−1∑

τ=0

Lτϕτ (x
a, zt)Exa,zt

[

W (Cτ , x
a+1, zt+1)− U(zt+1)

]
}

= max
δ,m,V,Ca

{

xaztF (L)− bL− ρ(zt)[L+ λ(m)V ]− f − C(V,L, xazt)

+β(1− δ)Exa,ztJa+1(σ+)

+β(1− δ)

a∑

τ=0

Lτ+Exa,zt

[

W (Cτ , x
a+1, zt+1)− U(zt+1)

]
}

= max
δ,m,V,Ca

{

xaztF (L)− bL− ρ(zt)[L+ λ(m)V ]− f
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−C(V,L, xazt) + β(1− δ)Exa,ztGa+1(σ+)

}

.

Here maximization is always subject to (64) and (65), the third equation makes use of

(1− δ)Lτ+ = ϕτ (x
a, zt)Lτ ,

for τ ≤ a− 1, and

ρ(zt)λ(m)V = β(1− δ)La+Exa,zt

[

W (Ca, x
a+1, zt+1)− U(zt+1)

]

,

and the last equation makes use of (70) for Ga+1. This shows that the firm solves a sur-
plus maximization problem which is identical to the one of the planner specified in (57)
provided that ρ(zt) = µ(zt) holds for all zt, where µ is the social value of an unemployed
worker as defined in the proof of Proposition 4. The only difference between the two
problems is that the firm commits to cohort-specific separation probabilities, whereas
the planner chooses in every period an identical separation probability for all workers
(and he clearly has no reason to do otherwise). Nonetheless, both problems have the
same solution: they are dynamic optimization problems of a single decision maker in
which payoff functions are the same and the decision sets are the same. Further, time
inconsistency is not an issue since there is no strategic interaction and since discounting
is exponential. Hence solutions to the two problems, with respect to firm exit, layoffs
and hiring strategies, are identical. In both problems the decision maker could discrim-
inate between different cohorts in principal. Because such differential treatment does
not raise social firm value, there is also no reason for competitive search to produce
such an outcome. Nonetheless, there can be equilibrium allocations where different co-
horts have different separation probabilities, but these equilibria must also be socially
optimal because they maximize social firm value.
It remains to verify that competitive search gives indeed rise to socially efficient firm
entry. When µ(zt) = ρ(zt), G0(x, z

t) = J0(x, z
t) as defined in (70) coincides with

G0(0, x, z
t), as defined in (57). Hence, the free-entry condition (68) coincides with the

condition for socially optimal firm entry (58). Because of aggregate resource feasibility
(69), the planner’s resource constraint (15) is also satisfied. Since the allocation of
a competitive search equilibrium satisfies all the requirements of Lemma 4(b), it is
socially optimal. 2
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Appendix C: Calibration details

We choose the period length to be one week and set β = 0.999 so that the annual interest
rate is about 5 percent. We assume a CES matching function m(λ) = (1 + kλ−r)−1/r

(i.e. the inverse of the function λ(m) used in the main text) and set the two parameters k
and r to target a weekly job-finding rate of 0.129 and an elasticity of the job-finding rate
with respect to the vacancy-unemployment ratio of 0.28 (Shimer (2005)).34 Below we
also target the (average) weekly job-filling rate at 0.3, which corresponds to a monthly
vacancy yield of 1.3 (Davis et al. (2013)). Since in steady state the unemployment-
vacancy ratio equals the ratio between the job-filling rate and the job-finding rate, we
calculate the parameters k and r to attain the two targets at λ = 0.3/0.129 = 2.326.
The production technology is Cobb-Douglas with xLα where the firm’s idiosyncratic
productivity x = x0x1 contains a time-invariant component x0 and a transitory compo-
nent x1 (cf. Elsby and Michaels (2013)). The time-invariant component is drawn upon
firm entry from one of three values xi0, i = 1, 2, 3, with entry shares σi where (xi0, σ

i)
are chosen to match the firm and employment shares within the three size classes 1-49,
50-499 and ≥ 500. The transitory component x1 is drawn from one of five equidistant
values in the range [1 − x, 1 + x] and is redrawn every period with probability π. Pa-
rameters π and x are chosen to match a monthly separation rate of 4.2 percent and the
observation that about two thirds of employment is at firms with monthly employment
growth rates in the range [−0.02, 0.02] (see Davis et al. (2010)). Firm exit is exogenous;
that is, we set the operating cost to f = 0 and choose exit probabilities specific for the
three firm types δi, i = 1, 2, 3, to match job losses at closing firms for the three size
classes. Parameter α is set to 0.7 which gives rise to a labor share of roughly 2/3.35

We choose unemployment income b at 97.7 percent of mean wage earnings. This value
corresponds to the parameter value chosen by Hagedorn and Manovskii (2008) which
ensures that reasonably small aggregate productivity shocks have quantitatively sig-
nificant labor market responses. This value of b corresponds to 68 percent of labor
productivity and to 96.8 percent of the average (employment-weighted) marginal prod-
uct. We explore robustness to a much lower value of b in Appendix D. The exogenous
quit rate is set at s0 = 0.0048 to match a monthly quit rate of 2 percent. The entry
cost parameter K can be normalized arbitrarily since all firm value functions (and thus
the free-entry condition) are linearly homogeneous in the vector (x, b, c,K).
As mentioned in the main text, the recruitment technology has the form c(V ) =
c

1+γ (
V
L )

γV , where we take a cubic function (γ = 2) for the benchmark calibration.
When we compare the benchmark results with those for γ = 0.1 and for γ = 8, we
recalibrate parameters c and b (or K) to target the average unemployment-vacancy
ratio λ = 2.326 which gives rise to an average weekly job-filling rate of 0.3 and the

34Note that there is no third parameter in the CES matching function since we require that
limλ→∞m(λ) = 1.

35Given that all capital is fixed at the level of a firm, this calculation of factor shares ignores
capital income accruing from variable capital investment which would suggest a higher value
of α. For a robustness analysis, see Appendix D.

57



same b/w ratio as in the benchmark.36 We note that recruitment costs per hire are
reasonably low for all three parameterizations (below 1% of quarterly earnings). Table
4 summarizes the parameter choices for the benchmark calibration.

Table 4: Parameter choices in the benchmark calibration (γ = 2).

Parameter Value Description Explanation

β 0.999 Discount factor Annual interest rate 5%
k 6.276 Matching fct. scale weekly job-finding rate 0.129
r 1.057 Matching fct. elasticity 0.28 (Shimer (2005))
α 0.7 Prod. fct. elasticity Labor share
c 0.409 Vacancy cost parameter weekly job-filling rate 0.3

(xi0) (.274, .621, 1.488) permanent productivity employment shares (3 size classes)
(σi) (99.2, .765, .035)% share at entry firm shares (3 size classes)
(δi) (2.24, .25, .03)� exit rates job losses at exiting firms
x 0.11 Productivity range monthly separation rate 4.2%
π 0.06 Adjustment prob. 2/3 of employment in firms with

employment growth in [-0.02,0.02]
b 0.1 unemployment income 97.7% of wage income
K 205.0 Entry cost Arbitrary normalization
s0 0.48% Quit rate Monthly quit rate 2%

36Deviating from Table 4, we set c = 0.00295, K = 208.64 for γ = 0.1 and c = 1.84 · 107,
K = 186.92 for γ = 8 (fixing b = 0.1 throughout).
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Appendix D: Robustness

We explore the robustness of the calibration exercise regarding different parameter
choices for unemployment income b and for the returns-to-scale parameter α. Departing
from the benchmark calibration with cubic vacancy costs we consider two variations.
First, we consider the alternative of setting unemployment income to 70 percent of
average wages (46% of labor productivity), instead of 97.7 percent as in the benchmark.
Second, relative to the benchmark with α = 0.7 which gives rise to a plausible labor
share (with fixed capital at any individual firm) we consider the alternative of α = 0.95
which is more in line with a model where capital can be adjusted at the firm level. In
both variations, parameters c, x and (xi0) are readjusted so that the model hits the
same calibration targets as in the benchmark calibration.
Figure 4 shows that the cross-sectional behavior of vacancy rates, vacancy yields, hires
rates and layoff rates is almost unchanged relative to the benchmark calibration. That
is, irrespective of the parameter values for b and α, the model with cubic vacancy
costs explains more than half of the cross-sectional variation in vacancy yields for firm
growth rates below 20 percent, although the curves flatten out at firm growth above
20 percent relative to the benchmark calibration (blue/solid curve).
Figure 5 shows the impulse responses to a one-percent increase in aggregate produc-
tivity. Here the two variations exhibit markedly different patterns, but this is little
surprising. First, the model with a lower value of unemployment income clearly gener-
ates less amplification (red/dashed curves), which is in line with the well-known finding
of Shimer (2005) that search and matching models with high match surplus generate
too little labor market volatility. The propagation of the shock is similar to the bench-
mark, however. In the model with a higher returns-to-scale parameter (green/dotted
curves), the productivity increase generates larger (and hump-shaped) responses of the
job-finding rate and of the vacancy-unemployment ratio, although this does not imply
that the model exhibits more labor market amplification since the output response is
stronger as well.
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Figure 4: Cross-sectional relationships between monthly employment growth and
the vacancy rate, the vacancy yield, the hires rate and the layoff rate. The dashed
curves (in the first three graphs) are from the data used in Davis et al. (2013),
the blue (solid) curves are for the benchmark parameterization (b/w ≈ 0.977,
α = 0.7), the red (closely dashed) curves are for the calibration with b/w ≈ 0.7
and the green (dotted) curves are for α = 0.95.
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Figure 5: Impulse response to a permanent 1% increase in aggregate productivity.
The blue (solid) curves are for the benchmark parameterization, the red (closely
dashed) curves are for b/w = 0.7 and the green (dotted) curves are for α = 0.95.
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Appendix E: Impulse response in a VAR model

We borrow the methodology for constructing the impulse responses in Figure 3 straight
from Fujita and Ramey (2007) - except for the details discussed below.37 We use data
from 1951:Q1 to 2011:Q4. The data is real quarterly GDP from FRED; the number
of vacancies is from the Help Wanted Index from Barnichon’s Composite Help-Wanted
Index series;38 the number of unemployed is from the CPS; employment is from the
BLS total payroll employment; and population is from the BLS. The job-finding rate
is then calculated in the same way as in Elsby, Michaels, Solon (2009).39 All data
other than GDP are averaged over their monthly (seasonally adjusted) observations to
obtain quarterly series. They are then logged and detrended by regressing each on a
cubic polynomial in time.
To generate impulse responses of output, employment, labor market tightness and
the job-finding rate to a permanent rise in productivity, we first identify exogenous
productivity deviations in the data series and look at how the variables of interest
respond to these. Let

pt ≡ observed (detrended) output per worker ,

θt ≡ observed (detrended) vacancy-unemployment ratio ,

et ≡ observed (detrended) employment-population ratio ,

φt ≡ observed (detrended) job-finding rate ,

and let zt be the unobserved exogenous productivity deviation. To identify zt, we first
estimate (by OLS) the following system:

ln pt =
[
ln pt ln θt ln et lnφt

]







A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43











L
L2

L3



+ εpt

=
[
ln pt ln θt ln et lnφt

]
A (L) + εpt ,

where L is the lag operator. Given this estimation,
{

Âij

}

, we follow Fujita and Ramey

(2007) by assuming that the exogenous productivity deviations, ln zt, can be identified
by

ln pt<0 = ln θt<0 = ln et<0 = lnφt<0 = ln zt<0 = 0 ,

ε̂pt = ln pt −
[
ln pt ln θt ln et lnφt

]
Â (L) ,

ln zt = Â11 ln zt−1 + Â12 ln zt−2 + Â13 ln zt−3 + ε̂pt .

37We are grateful to David Ratner for providing an initial code.
38R. Barnichon, “Building a Composite Help-Wanted Index”, Economics Letters, Vol. 109,

175–178, 2010.
39M. Elsby, R. Michaels and G. Solon, “The Ins and Outs of Cyclical Unemployment”,

American Economic Journal: Macroeconomics, Vol. 1, 84–110, 2009.
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Once a series for ln zt has been identified from the data in this way, an AR (3) process
for ln zt can be estimated,

ln zt = C01 ln zt−1 + C02 ln zt−2 +C03 ln zt−3 + εzt

= C0 (L) ln zt + εzt ,

and the relationship between the endogenous variables ln et, ln θt, lnφt and the ex-
ogenous process ln zt can be calculated by estimating the following relationships (by
OLS):

ln et =
[
ln et ln θt lnφt

]





B111 B112 B113

B121 B122 B123

B131 B132 B133









L
L2

L3



+C1 (L) ln zt +D1ε̂
p
t + εet

=
[
ln et ln θt lnφt

]
B1 (L) + C1 (L) ln zt +D1ε̂

p
t + εet ,

ln θt =
[
ln et ln θt lnφt

]
B2 (L) +C2 (L) ln zt +D2ε̂

p
t + εθt ,

lnφt =
[
ln et ln θt lnφt

]
B3 (L) +C3 (L) ln zt +D3ε̂

p
t + εφt .

The impulse-response functions to a permanent increase in exogenous productivity of
1% are then constructed by simulating these estimated relationships forward:

ln zt<0 = ln et<0 = ln θt<0 = lnφt<0 = 0 ,

ln zt≥0 = 0.01 ,

ε̂pt≥0 = ε̂zt≥0 = ln zt≥0 − Ĉ0 (L) ln zt≥0 ,

ε̂et = ε̂θt = ε̂φt = 0 ,

ln et =
[
ln et ln θt lnφt

]
B̂1 (L) + Ĉ1 (L) ln zt + D̂1ε̂

p
t ,

ln θt =
[
ln et ln θt lnφt

]
B̂2 (L) + Ĉ2 (L) ln zt + D̂2ε̂

p
t ,

lnφt =
[
ln et ln θt lnφt

]
B̂3 (L) + Ĉ3 (L) ln zt +D3ε̂

p
t ,

ln pt =
[
ln pt ln θt ln et lnφt

]
Â (L) + ε̂pt .

Our construction differs from Fujita and Ramey (2007) only in that their estimations
are based on data to 2005, they use three variables (pt, θt, et) for the VAR, and they
show impulse responses for a one-time rather than a permanent shock. We replicated
their settings and find their results, and we checked that adding the fourth variable does
not qualitatively change the outcome for the three initial variables in their methodology.
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Appendix F: Policy application

In this appendix we provide some first exploration of the positive implications of policy
interventions in our environment. We focus on hiring subsidies (hiring credits), as
these have been extensively deployed to stimulate job growth in past recessions and
have received renewed attention during the Great Recession.40 Indeed, it is conceivable
that they succeed in stabilizing business cycle fluctuations, especially when they are
used in a counter-cyclical way. However, we find that the contrary is the case. We
compare time-invariant and counter-cyclical subsidies, financed by lump-sum taxes.
We solve the model as the solution to a quasi-planner’s problem who maximizes social
welfare subject to given government policy.41 We set the subsidy per hire to 0.03
which corresponds to 8% of a monthly wage so that government expenditures on hiring
subsidies are 0.3 percent of GDP. With a counter-cyclical policy, hiring firms receive
the subsidy only when the aggregate productivity state is below its mean. Table 5
shows the outcome of this exercise. While both policies succeed in stabilizing the job-
finding rate to some extent, they dramatically increase the volatility of separations and
unemployment.42 Perhaps surprisingly, these destabilizing forces are stronger for the
counter-cyclical policy where low-productivity firms lay off even more workers during
recessions and fewer workers during booms. These findings suggest that hiring subsidies
are not particularly useful to stabilize the cycle, at least when they are not accompanied
by additional policies aiming to dampen separations during recessions. More work on
these issues will obviously be needed to explore the impact of such policies in broader
environments.

40The Hiring Incentives to Restore Employment Act (HIRE) of 2010 includes tax exemptions
from employer social security contributions and business income tax breaks for workers hired
from unemployment; hiring credits were also an element of the American Jobs Act proposed by
the Obama administration in 2011. For an overview, see D. Neumark, “Spurring Job Creation
in Response to Severe Recessions: Reconsidering Hiring Credits”, Journal of Policy Analysis
and Management, Vol. 32, 142–171, 2013.

41Cf. M. Veracierto, “Firing Costs and Business Cycle Fluctuations”, International Economic
Review, Vol. 49, 1–39, 2008.

42In steady state, both the separation and the hiring rate increase by 50 percent in response
to the (time-invariant) policy. This results in much more volatile firm dynamics with substan-
tially more worker reallocation between employment and unemployment, which ultimately also
increases the steady-state unemployment rate. We also find that the two hiring margins do not
react equally to the policy: firms hire more workers by using more vacancy postings, while the
aggregate vacancy yield increases only slightly.
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Table 5: Business cycle effects of hiring subsidies

Laissez Constant Cyclical
faire policy policy

Unemployment 10.3 17.7 20.8
Vacancies 7.9 4.0 12.6
Output 1.5 2.9 2.7

Job–finding rate 6.2 4.8 4.8
Separation rate 5.6 17.5 22.7

Notes: The table reports the standard deviations of logged and HP filtered (parameter 1600)

quarterly variables, where model statistics are obtained as in Table 3.
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