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Abstract

We argue that the continuous limit order book is a flawed market design and propose
that financial exchanges instead use frequent batch auctions: uniform-price sealed-bid double
auctions conducted at frequent but discrete time intervals, e.g., every 1 second. Our argument
has four parts. First, we use millisecond-level direct-feed data from exchanges to show that
the continuous limit order book market design does not really “work” in continuous time:
market correlations completely break down at high-frequency time horizons. Second, we show
that this correlation breakdown creates frequent technical arbitrage opportunities, available
to whomever is fastest, which in turn creates an arms race to exploit such opportunities.
Third, we develop a simple new theory model motivated by these empirical facts. The model
shows that the arms race is not only socially wasteful – a prisoner’s dilemma built directly
into the market design – but moreover that its cost is ultimately borne by investors via wider
spreads and thinner markets. Last, we show that frequent batch auctions eliminate the arms
race, both because they reduce the value of tiny speed advantages and because they transform
competition on speed into competition on price. Consequently, frequent batch auctions lead
to narrower spreads, deeper markets, and increased social welfare.
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1 Introduction

In 2010, Spread Networks completed construction of a new high-speed fiber optic cable connecting
financial markets in New York and Chicago. Whereas previous connections between the two
financial centers zigzagged along railroad tracks, around mountains, etc., Spread Networks’ cable
was dug in a nearly straight line. Construction costs were estimated at $300 million. The result
of this investment? Round-trip communication time between New York and Chicago was reduced
. . . from 16 milliseconds to 13 milliseconds. 3 milliseconds may not seem like much, especially
relative to the speed at which fundamental information about companies and the economy evolves.
(The blink of a human eye lasts 400 milliseconds; reading this parenthetical took roughly 3000
milliseconds.) But industry observers remarked that 3 milliseconds is an “eternity” to high-
frequency trading (HFT) firms, and that “anybody pinging both markets has to be on this line,
or they’re dead.” One observer joked at the time that the next innovation will be to dig a tunnel,
speeding up transmission time even further by “avoiding the planet’s pesky curvature.” Spread
Networks may not find this joke funny anymore, as its cable is already obsolete. Microwave
technology has further reduced round-trip transmission time, first to 10ms, then to 9ms, and most
recently to 8.5ms. There are reports of analogous speed races occurring at the level of microseconds
(millionths of a second) and even nanoseconds (billionths of a second).1

We argue that this high-frequency trading “arms race” is a manifestation of a basic flaw
in financial market design: financial markets operate continuously. That is, it is possible to
buy or sell stocks or other securities at literally any instant during the trading day. We argue
that the continuous limit order book market design that is currently predominant in financial
markets should be replaced by frequent batch auctions – uniform-price sealed-bid double auctions
conducted at frequent but discrete time intervals, e.g., every 1 second. Our argument against
continuous limit order books and in favor of frequent batch auctions has four parts.

The first part of our paper uses millisecond-level direct-feed data from exchanges to show that
the continuous limit order book market design does not really “work” in continuous time: market
correlations that function properly (i.e., obey standard asset pricing relationships) at human-
scale time horizons completely break down at high-frequency time horizons. Consider Figure 1.1.
The figure depicts the price paths of the two largest securities that track the S&P 500 index,
the iShares SPDR S&P 500 exchange traded fund (ticker SPY) and the E-mini Future (ticker
ES), on an ordinary trading day in 2011. In Panel A, we see that the two securities are nearly

1Sources for this paragraph: “Wall Street’s Speed War,” Forbes, Sept 27th 2010; “The Ultimate Trading
Weapon,” ZeroHedge.com, Sept 21st 2010; “Wall Street’s Need for Trading Speed: The Nanosecond Age,” Wall
Street Journal, June 2011; “Networks Built on Milliseconds,” Wall Street Journal, May 2012; “Raging Bulls: How
Wall Street Got Addicted to Light-Speed Trading,” Wired, Aug 2012; “CME, Nasdaq Plan High-Speed Network
Venture,” Wall Street Journal March 2013.
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perfectly correlated over the course of the trading day, as we would expect given the near-arbitrage
relationship between them. Similarly, the securities are nearly perfectly correlated over the course
of an hour (Panel B) or a minute (Panel C). However, when we zoom in to high-frequency time
scales, in Panel D, we see that the correlation breaks down. Over all trading days in 2011, the
median return correlation is just 0.1016 at 10 milliseconds and 0.0080 at 1 millisecond.2 Similarly,
we find that pairs of equity securities that are highly correlated at human time scales (e.g., the
home-improvement companies Home Depot and Lowe’s or the investment banks Goldman Sachs
and Morgan Stanley) have essentially zero correlation at high frequency.

This correlation breakdown may seem like just a theoretical curiosity, and it is entirely obvious
ex-post. There is nothing in current financial market architecture that would enable correlated
securities’ prices to move at exactly the same time, because each security trades on its own separate
continuous limit order book; in auction design terminology, financial markets are a collection of
separate single-product auctions, rather than a single combinatorial auction. Can correlation
breakdown be safely ignored, analogously to how the breakdown of Newtonian mechanics at the
quantum level can safely be ignored in most of day-to-day life?

The second part of our argument is that this correlation breakdown has real consequences: it
creates purely technical arbitrage opportunities, available to whomever is fastest, which in turn
create an arms race to exploit these arbitrage opportunities. Consider again Figure 1.1, Panel D,
at time 1:51:39.590 pm. At this moment, the price of ES has just jumped roughly 2.5 index points,
but the price in the SPY market has not yet reacted. This creates a temporary profit opportunity
– buy SPY and sell ES – available to whichever trader acts the fastest. We calculate that there are
on average about 800 such arbitrage opportunities per day in ES-SPY, worth on the order of $75
million per year. And, of course, ES-SPY is just the tip of the iceberg. While we hesitate to put
a precise estimate on the total prize at stake in the arms race, back-of-the-envelope extrapolation
from our ES-SPY estimates to the universe of trading opportunities very similar to ES-SPY – let
alone to trading opportunities that exploit more subtle pricing relationships – suggests that the
annual sums at stake are in the billions.

It is also instructive to examine how the ES-SPY arbitrage has evolved over time. Over the
time period of our data, 2005-2011, we find that the duration of ES-SPY arbitrage opportunities

2There are some subtleties involved in calculating the 1 millisecond correlation between ES and SPY, since
it takes light roughly 4 milliseconds to travel between Chicago (where ES trades) and New York (where SPY
trades), and this represents a lower bound on the amount of time it takes information to travel between the two
markets (Einstein, 1905). Whether we compute the correlation based on New York time (treating Chicago events
as occurring 4ms later in New York than they do in Chicago), based on Chicago time, or ignore the theory of special
relativity and use SPY prices in New York time and ES prices in Chicago time, the correlation remains essentially
zero. The 4ms correlation is also essentially zero, for all three of these methods of handling the speed-of-light issue.
See Section 4 for further details. We would also like to suggest that the fact that special relativity plays a role in
these calculations is support for frequent batch auctions.
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Figure 1.1: ES and SPY Time Series at Human-Scale and High-Frequency Time Horizons

Notes: This figure illustrates the time series of the E-mini S&P 500 future (ES) and SPDR S&P 500 ETF (SPY)
bid-ask midpoints over the course of an ordinary trading day (08/09/2011) at different time resolutions: the full
day (a), an hour (b), a minute (c), and 250 milliseconds (d). Midpoints for each security are constructed by taking
an equal-weighted average of the top-of-book bid and ask. SPY prices are multiplied by 10 to reflect that SPY
tracks 1

10 the S&P 500 Index. Note that there is a difference in levels between the two securities due to differences
in cost-of-carry, dividend exposure, and ETF tracking error; for details see footnote 14. For details regarding the
data, see Section 3.
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declines dramatically, from a median of 97ms in 2005 to a median of 7ms in 2011. This reflects the
substantial investments by HFT firms in speed during this time period. But we also find that the
profitability of ES-SPY arbitrage opportunities is remarkably constant throughout this period, at a
median of about 0.08 index points per unit traded. The frequency of arbitrage opportunities varies
considerably over time, but its variation is driven almost entirely by variation in market volatility,
which is intuitive given that it is changes in prices that create temporary relative mispricings.
These findings suggest that while there is an arms race in speed, the arms race does not actually
eliminate the arbitrage opportunities; rather, it just continually raises the bar for capturing them.
A complementary finding, in the correlation breakdown analysis, is that the number of milliseconds
necessary for economically meaningful correlations to emerge has been steadily decreasing over the
time period 2005-2011; but, in all years, market correlations are essentially zero at high-enough
frequency. Overall, our analysis suggests that the prize in the arms race should be thought of
more as a mechanical “constant” of the continuous limit order book market design, rather than as
an inefficiency that is competed away over time.

The third part of our paper develops a simple new theory model informed by these empirical
facts. The model serves two related purposes: it is a critique of the continuous limit order book
market design, and it identifies the economic implications of the HFT arms race. In the model,
there is a security, x, that trades on a continuous limit order book market, and a public signal of
x’s value, y. We make a purposefully strong assumption about the relationship between x and y:
the fundamental value of x is perfectly correlated to the public signal y. Moreover, we assume that
x can always be costlessly liquidated at its fundamental value. This setup can be interpreted as a
“best case” scenario for price discovery and liquidity provision in a continuous limit order book,
abstracting from issues such as asymmetric information, inventory costs, etc.

Given the model setup, one might expect that Bertrand competition among market makers
drives the bid-ask spread in the market for x to zero. But, consider what happens when the public
signal y jumps – the moment at which the correlation between x and y temporarily breaks down.
For instance, imagine that x represents SPY and y represents ES, and consider what happens at
1:51:39.590 pm in Figure 1.1 Panel D, when the price of ES has just jumped. At this moment,
market makers providing liquidity in the market for x (SPY) will send a message to the exchange
to adjust their quotes – withdraw their old quotes and replace them with new, higher, quotes based
on the new signal y (price of ES). At the exact same time, however, other market makers (i.e.,
other HFT firms) will try to “pick off” or “snipe” the old quotes – send a message to the exchange
attempting to buy x at the old ask price, before the liquidity providers can adjust. Hence, there
is a race. And, since each one liquidity provider is in a race against many stale-quote snipers –
and continuous limit order books process message requests in serial (i.e., one at a time), so only
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the first message to reach the exchange matters – liquidity providers usually lose the race. This is
the case even if liquidity providers can invest in speed technologies such as the Spread Networks
cable – which they do in equilibrium of our model – since snipers invest in speed as well. In a
competitive market, liquidity providers must incorporate the cost of getting sniped into the bid-
ask spread that they charge; this is a purely technical cost of liquidity provision caused by the
continuous limit order book market design.3

This same phenomenon – liquidity-providing HFTs getting picked off by other HFTs in the
race to respond to purely public information – also causes continuous limit order book markets
to be unnecessarily thin. That is, it is especially expensive for investors to trade large quantities
of stock. The reason is that picking-off costs scale linearly with the quantity liquidity providers
offer in the book – if quotes are stale, they will get picked off for the whole amount – whereas the
benefits of providing a deep book scale less than linearly with the quantity offered, since only some
investors wish to trade large amounts. Hence, not only is there a positive bid-ask spread even
without asymmetric information about fundamentals, but markets are unnecessarily thin, too.

In addition to showing that the arms race induced by the continuous limit order book harms
liquidity, our model also shows that the arms race is socially wasteful, and can be interpreted as a
prisoner’s dilemma. In fact, these two negative implications of the arms race – reduced liquidity
and socially wasteful investment – can be viewed as opposite sides of the same coin. In equilibrium
of our model, all of the money that market participants invest in the speed race comes out of the
pockets of investors, via wider bid-ask spreads and thinner markets.4 Moreover, these negative
implications of the arms race are not competed away over time – they depend neither on the
magnitude of potential speed improvements (be they milliseconds, microseconds, nanoseconds,
etc.), nor on the cost of cutting edge speed technology (if speed costs grow lower over time there
is simply more entry). These results tie in nicely with our empirical findings above which found

3Our model can be interpreted as providing a new source of bid-ask spreads, incremental to the explanations
of inventory costs (Roll, 1984), asymmetric information (Copeland and Galai, 1983; Glosten and Milgrom, 1985;
Kyle, 1985), and search costs (Duffie, Garleanu and Pedersen, 2005). Mechanically, our source of bid-ask spread is
most similar to that in Copeland and Galai (1983) and Glosten and Milgrom (1985), namely a liquidity provider
sometimes gets exploited by another trader who knows that the liquidity provider’s quotes are mispriced. There are
two key modeling differences. First, in our model the liquidity-providing HFT firm has exactly the same information
as the other HFT firms who are picking him off. There are no “informed traders” with asymmetric information.
Second, whereas our model uses the exact rules of the continuous limit order book, both Copeland and Galai
(1983) and Glosten and Milgrom (1985) use sequential-move modeling abstractions which preclude the possibility
of a race to respond to symmetrically observed public information. Another important difference between our
source of bid-ask spread and that in these prior works is that our source of spread can be eliminated with a change
to market design; under frequent batch auctions, Bertrand competition among market makers does in fact drive
the bid-ask spread to zero. See further discussion in Section 6.3.1.

4A point of clarification: our claim is not that markets are less liquid today than before the rise of electronic
trading and HFT; our claim is that markets are less liquid today than they would be under an alternative market
design which eliminated sniping costs. See Section 6.3.1 for discussion.
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that the prize in the arms race is essentially a constant.
The fourth and final part of our argument shows that frequent batch auctions are an attractive

market design response to the HFT arms race. Batching eliminates the arms race for two reasons.
First, and most centrally, batching substantially reduces the value of a tiny speed advantage. In
our model, if the batching interval is τ , then a δ speed advantage is only δ

τ
as valuable as it is under

continuous markets. So, for example, if the batching interval is 1 second, a 1 millisecond speed
advantage is only 1

1000 as valuable as it is in the continuous limit order book market design. Second,
and more subtly, batching changes the nature of competition among fast traders, encouraging
competition on price instead of speed. Intuitively, in the continuous limit order book market
design, it is possible to earn a rent based on a piece of information that many fast traders observe
at basically the same time – be it a mundane everyday event like a jump in the price of ES, or a
more dramatic event such as a Fed announcement – because continuous limit order books process
orders in serial, and somebody is always first.5 In the batch market, by contrast, if multiple traders
observe the same information at the same time, they are forced to compete on price instead of
speed.

For both of these reasons, frequent batch auctions eliminate the purely technical cost of liquidity
provision in continuous limit order book markets associated with stale quotes getting sniped.
Batching also resolves the prisoner’s dilemma associated with continuous limit order book markets,
and in a manner that allocates the welfare savings to investors. In equilibrium of the frequent
batch auction, relative to continuous limit order books, bid-ask spreads are narrower, markets are
deeper, and social welfare is greater.

Our theoretical argument for frequent batch auctions as a response to the HFT arms race
focuses on bid-ask spreads, market depth, and socially wasteful expenditure on speed. We also
suggest several reasons why switching from the continuous limit order book to frequent batch
auctions may have market stability benefits that are outside the model. First, frequent batch
auctions give exchange computers a discrete period of time to process current orders before the
next batch of orders needs to be dealt with. This simplifies the exchange’s computational task,
perhaps making markets less vulnerable to incidents like the August 2013 NASDAQ outage (Bunge,
Strasburg and Patterson, 2013), and also prevents order backlog and incorrect time stamps, issues
that were salient during the Facebook IPO and the Flash Crash (Strasburg and Bunge, 2013;
Nanex, 2011). In a sense, the continuous limit order book design implicitly assumes that exchange
computers are infinitely fast; computers are fast, but not infinitely so. Second, frequent batch
auctions give trading algorithms a discrete period of time to process recent prices and outcomes

5In fact, our model clarifies that fast traders can earn a rent even from information that they observe at exactly
the same time as other fast traders. This can be viewed as the logical extreme of what Hirshleifer (1971) called
“foreknowledge” rents, built directly into the continuous limit order book market design.
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before deciding on their next trades. While no market design can entirely prevent programming
errors (e.g., the Knight Capital incident, see Strasburg and Bunge (2012)), batching makes the
programming environment more natural, because algorithms can be written with certainty that
they will know time t prices in time to make time t+1 trading decisions. Batching also reduces the
incentive to trade off code robustness for speed; error checking takes time. Third, frequent batch
auctions produce a better paper trail for regulators, exchanges, market participants and investors:
all parties know exactly what occurred at time t, know exactly what occurred at time t+ 1, etc.,
which is not the case under the current equity market structure (cf. SEC and CFTC, 2010). Last,
the market thickness results from the theory model can also be interpreted as a stability benefit
of frequent batch auctions, since thin markets may be more vulnerable to what have come to be
known as “mini flash crashes”. While these arguments are necessarily less formal than the main
analysis, we include them due to the importance of market stability to current policy discussions
(e.g., SEC and CFTC (2010); Niederauer (2012)).

We wish to reiterate that we are proposing batch auctions conducted at very fast intervals, such
as once per second. The principle guiding this aspect of our proposal is that we seek a minimal
departure from current market design subject to realizing the benefits of batching relative to
continuous limit order books. There are two other recent papers, developed independently from
ours and coming from different methodological perspectives, that also make cases for frequent
batching: Farmer and Skouras (2012a) and Wah and Wellman (2013).6 There is also an older
literature arguing for batch auctions conducted at much lower frequency, such as just 3 times per
day (Cohen and Schwartz (1989); Economides and Schwartz (1995)), however, one might worry
that such a radical change would have unintended consequences; to give just one example, in the
functioning of derivatives markets. Running batch auctions once per second, on the other hand,
or even once per 100 milliseconds (respectively, 23,400 and 234,000 times per day per security)
is more of a backend, technocratic proposal than a radical redesign. Sophisticated algorithmic
trading firms would continue to play a critical role in financial markets. Ordinary investors might
not even notice the difference.

We also wish to emphasize that the market design perspective we take in this paper sidesteps
the “is HFT good or evil?” debate which seems to animate most of the current discussion of HFT

6Farmer and Skouras (2012a) is a policy paper commissioned by the UK Government’s Foresight report which
makes a case for frequent batch auctions based on ideas from complexity theory, market ecology, and econophysics.
Wah and Wellman (2013) uses a zero-intelligence agent-based simulation model to compare frequent batch auctions
to continuous limit order books and study issues of market fragmentation.
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among policy makers, the press, and market microstructure researchers.7,8 The market design
perspective assumes that market participants will optimize with respect to market rules as given,
but takes seriously the possibility that we have the wrong market rules in place. Our question is
not whether HFT firms perform a useful market function – our model takes as given that they do
– but whether, through changing financial market design from continuous to discrete, this same
function can be elicited more efficiently, by reducing the rent-seeking component of HFT.

The rest of the paper is organized as follows. Section 2 briefly reviews the rules of the continuous
limit order book. Section 3 describes our direct-feed data from NYSE and the CME. Section 4
presents the correlation breakdown results. Section 5 presents the technical arbitrage results.
Section 6 presents the model, and solves for and discusses the equilibrium of the continuous limit
order book. Section 7 proposes frequent batch auctions, shows why they eliminate the arms
race, and discusses their equilibrium properties. Section 8 discusses market stability. Section 9
concludes. Proofs are contained in the Appendix.

2 Brief Description of Continuous Limit Order Books

In this section we summarize the rules of the continuous limit order book market design. Readers
familiar with these rules can skip this section. Readers interested in further details should consult
Harris (2002).

The basic building block of this market design is the limit order. A limit order specifies a price,
a quantity, and whether the order is to buy or to sell, e.g., “buy 100 shares of XYZ at $100.00”.
Traders may submit limit orders to the market at any time during the trading day, and they may
also fully or partially withdraw their outstanding limit orders at any time.

7Within the market design literature, some especially relevant papers include Roth and Xing (1994, 1997) on
serial versus batch processing and the importance of the timing of transactions, Roth and Ockenfels (2002) on bid
sniping, Klemperer (2004) for a variety of illustrative examples of failed real-world auction designs, and Bhave and
Budish (2013) for a case study on the use of market design to reduce rent seeking. See Roth (2002, 2008) and
Milgrom (2004, 2011) for surveys. See Jones (2013) for a recent survey of the burgeoning market microstructure
literature on HFT. This literature mostly focuses on the impact of high-frequency trading on market quality, taking
market design as exogenously fixed (e.g., Hendershott, Jones and Menkveld (2011); Brogaard, Hendershott and
Riordan (2012); Hasbrouck and Saar (2013); Weller (2013)). A notable exception is Biais, Foucault and Moinas
(2013), who study the equilibrium level of investment in speed technology, find that investment can be socially
excessive, and informally discuss policy responses; see further discussion in Section 6.3.4. See also O’Hara (2003);
Biais, Glosten and Spatt (2005); Vives (2010) for surveys of market microstructure more broadly.

8In policy discussions, frequent batch auctions have received some attention, but less so than other policy ideas
such as minimum resting times, excessive order fees, and transaction taxes (cf. Jones (2013)). Our sense is that
these latter ideas do not address the core problem, and seem to be motivated by the view that “HFT is evil and
must be stopped.” A notable exception is the policy paper by Farmer and Skouras (2012a) for the UK Government’s
Foresight report, mentioned in the previous footnote. Unfortunately, it was just one of 11 distinct policy papers
commissioned for the report, and the executive summary of the report dismissed frequent batching as “unrealistic
and draconian” without much explanation (The Government Office for Science (2012); pg. 14).
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The set of limit orders outstanding at any particular moment is known as the limit order book.
Outstanding orders to buy are called bids and outstanding orders to sell are called asks. The
difference between the best (highest) bid and the best (lowest) ask is known as the bid-ask spread.

Trade occurs whenever a new limit order is submitted that is either a buy order with a price
weakly greater than the current best ask or a sell order with a price weakly smaller than the current
best bid. In this case, the new limit order is interpreted as either fully or partially accepting one
or more outstanding asks. Orders are accepted in order of the attractiveness of their price, with
ties broken based on which order has been in the book the longest; this is known as price-time
priority. For example, if there are outstanding asks to sell 1000 shares at $100.01 and 1000 shares
at $100.02, a limit order to buy 1500 shares at $100.02 (or greater) would get filled by trading all
1000 shares at $100.01, and then by trading the 500 shares at $100.02 that have been in the book
the longest. A limit order to buy 1500 shares at $100.01 would get partially filled, by trading 1000
shares at $100.01, with the remainder of the order remaining outstanding in the limit order book
(500 shares at $100.01).

Observe that order submissions and order withdrawals are processed by the exchange in serial,
that is, one-at-a-time in order of their receipt. This serial-processing feature of the continuous
limit order book plays an important role in the theoretical analysis in Section 6.

In practice, there are many other order types that traders can use in addition to limit orders.
These include market orders, stop-loss orders, fill-or-kill, and dozens of others that are considerably
more obscure (e.g., Patterson and Strasburg, 2012; Nanex, 2012). These alternative order types
are ultimately just proxy instructions to the exchange for the generation of limit orders. For
instance, a market order is an instruction to the exchange to place a limit order whose price is
such that it executes immediately, given the state of the limit order book at the time the message
is processed.

3 Data

We use “direct-feed” data from the Chicago Mercantile Exchange (CME) and New York Stock
Exchange (NYSE). Direct-feed data record all activity that occurs in an exchange’s limit order
book, message by message, with millisecond resolution timestamps assigned to each message by
the exchange at the time the message is processed.9 Practitioners who demand the lowest latency
data (e.g. high-frequency traders) use this direct-feed data in real time to construct the limit order
book. From our perspective, the key advantage of direct-feed data is that the timestamps are as

9Prior to Nov 2008, the CME datafeed product did not populate the millisecond field for timestamps, so the
resolution was actually centisecond not millisecond. CME recently announced that the next iteration of its datafeed
product will be at microsecond resolution.
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accurate as possible.

The CME dataset is called CME Globex DataMine Market Depth. Our data cover all limit
order book activity for the E-mini S&P 500 Futures Contract (ticker ES) over the period of Jan 1,
2005 - Dec 31, 2011. The NYSE dataset is called TAQ NYSE ArcaBook. While this data covers
all US equities traded on NYSE, we focus most of our attention on the SPDR S&P 500 exchange
traded fund (ticker SPY). Our data cover the period of Jan 1, 2005 - Dec 31, 2011, with the
exception of a three-month gap from 5/30/2007-8/28/2007 resulting from data issues acknowledged
to us by the NYSE data team. We also drop, from both datasets, the Thursday and Friday from
the week prior to expiration for every ES expiration month (March, June, September, December)
due to the rolling over of the front month contract, half days (e.g., day after Thanksgiving), and
a small number of days in which either dataset’s zip file is either corrupted or truncated. We are
left with 1560 trading days in total.

Each message in direct-feed data represents a change in the order book at that moment in time.
It is the subscriber’s responsibility to construct the limit order book from this feed, maintain the
status of every order in the book, and update the internal limit order book based on incoming
messages. In order to interpret raw data messages reported from each feed, we write a feed handler
for each raw data format and update the state of the order book after every new message.10

We emphasize that direct feed data are distinct from the so-called “regulatory feeds” provided
by the exchanges to market regulators. In particular, the TAQ NYSE ArcaBook dataset is distinct
from the more familiar TAQ NYSE Daily dataset (sometimes simply referred to as TAQ), which is
an aggregation of orders and trades from all Consolidated Tape Association exchanges. The TAQ
data is comprehensive in regards to trades and quotes listed at all participant exchanges, which
includes the major electronic exchanges BATS, NASDAQ, and NYSE and also small exchanges
such as the Chicago Stock Exchange and the Philadelphia Stock Exchange. However, regulatory
feed data have time stamps that are based on the time at which the data are provided to market
regulators, and practitioners estimate that the TAQ’s timestamps are on the order of tens to
hundreds of milliseconds delayed relative to the direct-feed data that comes directly from the
exchanges (see Ding, Hanna and Hendershott (2013); our own informal comparisons confirm this
as well). One source of delay is that the TAQ’s timestamps do not come directly from the
exchanges’ order matching engines. A second source of delay is the aggregation of data from
several different exchanges, with the smaller exchanges considered especially likely to be a source
of delay. The key advantage of our direct-feed data is that the time stamps are as accurate as
possible. In particular, these are the same data that HFT firms use to make trading decisions.

10Our feed handlers will be made publicly available in the data appendix.
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4 Market Correlations Break Down at High-Enough Fre-
quency

In this section we report two sets of results. First, we show that market correlations completely
break down at high-enough frequency. That is, securities that are highly correlated at human
time scales have essentially zero correlation at high-frequency time scales. Second, we show that
the market has gotten faster over time in the sense that, in each year from 2005-2011, the number
of milliseconds necessary for economically meaningful correlations to emerge has been steadily
decreasing. Invariably, however, correlations break down at high-enough frequency.

Before proceeding, we emphasize that the first finding – which is an extreme version of a
phenomenon discovered by Epps (1979)11 – is obvious from introspection alone, at least ex-post.
There is nothing in current market architecture – in which each security trades in continuous time
on its own separate limit-order book, rather than in a single combinatorial auction market – that
would allow different securities’ prices to move at exactly the same time. We also emphasize that
the first finding is difficult to interpret in isolation. It is only in Section 5, when we show that
correlation breakdown is associated with frequent technical arbitrage opportunities, available to
whomever is fastest, that we can interpret correlation breakdown as a meaningful issue as opposed
to simply a theoretical curiosity.

4.1 Correlation Breakdown

4.1.1 ES and SPY

Figure 4.1 displays the median, min, and max daily return correlation between ES and SPY
for time intervals ranging from 1 millisecond to 60 seconds, for our 2011 data, under our main
specification for computing correlation. In this main specification, we compute the correlation of
percentage changes in the equal-weighted midpoint of the ES and SPY bid and ask, and ignore
speed-of-light issues. As can be seen from the figure, the correlation between ES and SPY is nearly
1 at long-enough intervals,12 but almost completely breaks down at high-frequency time intervals.
The 10 millisecond correlation is just 0.1016, and the 1 millisecond correlation is just 0.0080.

11Epps (1979) found that equity market correlations among stocks in the same industry (e.g., Ford-GM) were
much lower over short time intervals than over longer time intervals; in that era, “very short” meant ten minutes,
and long meant a few days.

12It may seem surprising at first that the ES-SPY correlation does not approach 1 even faster. An important issue
to keep in mind, however, is that ES and SPY trade on discrete price grids with different tick sizes: ES tick sizes are
0.25 index points, whereas SPY tick sizes are 0.10 index points. As a result, small changes in the fundamental value
of the S&P 500 index manifest differently in the two markets, due to what are essentially rounding issues. At long
time horizons these rounding issues are negligible relative to changes in fundamentals, but at shorter frequencies
these rounding issues are important, and keep correlations away from 1.
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Figure 4.1: ES and SPY Correlation by Return Interval: 2011

Notes: This figure depicts the correlation between the return of the E-mini S&P 500 future (ES) and the SPDR S&P
500 ETF (SPY) bid-ask midpoints as a function of the return time interval in 2011. The midpoints are constructed
using the equal-weighted average of the bid and ask in each security. The correlation is computed using simple
arithmetic returns over a range of time intervals, measured in milliseconds. The solid line is the median correlation
over all trading days in 2011 for that particular return time interval. The dotted lines represent the minimum and
maximum correlations over all trading days in 2011 for that particular return time interval. Panel (a) shows a
range of time intervals from 1 to 60,000 milliseconds (ms) or 60 seconds. Panel (b) shows that same picture but
zoomed in on the interval from 1 to 100 ms. For more details regarding the computation of correlations, see the
text of Section 4.1.1. For more details on the data, refer to Section 3.

(a) Correlations at Intervals up to 60 Seconds (b) Correlations at Intervals up to 100 Milliseconds
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We consider several other measures of the ES-SPY correlation, varying along three dimen-
sions. First, we consider both equal-weighted bid-ask midpoints and quantity-weighted bid-ask
midpoints. Whereas equal-weighted midpoints place weight of 1

2 on the bid and the ask, quantity-
weighted midpoints place weight ωbidt = Qask

t

Qask
t +Qbid

t
on the bid and weight ωaskt = 1 − ωbidt on the

ask, where Qbid
t denotes the quantity offered at the bid at time t and Qask

t denotes the quantity
offered at the ask. Second, we consider correlation measures based on both simple returns and
on average returns. Specifically, given a time interval τ and a time t, the simple return is the
percentage change in price from time t − τ to time t, and the average return is the percentage
change between the average price in the interval (t−2τ, t− τ ] and the average price in the interval
(t−τ, t]. Last, we consider three different ways to handle the concern that the speed-of-light travel
time between New York and Chicago is roughly 4 milliseconds, which, per the theory of special
relativity, represents a lower bound on the amount of time it takes information to travel between
the two locations. One approach is to compute correlations based on New York time, treating
Chicago events as occurring 4ms later in New York than they do in Chicago. That is, New York
time treats Chicago events with time stamp t as contemporaneous with New York events with time
stamp t + 4ms. A second approach is to compute correlations based on Chicago time, in which
case New York events with time stamp t are treated as contemporaneous with Chicago events with
time stamp t + 4ms. A last approach is to adjust neither dataset; this can be interpreted either
as ignoring speed-of-light concerns or as taking the vantage point of a trader equidistant between
Chicago and New York.

Table 1 displays the ES-SPY correlation for varying time intervals, averaged over all trading
days in 2011, over each of our 12(= 2×2×3) methods of computing the correlation. As can be seen
from the table the pattern depicted in Figure 4.1 is robust across these various specifications.13

4.1.2 Equities-Market Correlation Matrix

Table 2a displays the correlation at different time intervals between pairs of equity securities that
are highly correlated, for instance, the oil companies Exxon-Mobil (XOM) and Chevron (CVX).
Table 2b displays the correlation matrix amongst the 5 largest market capitalization US equities
at varying time horizons. We follow the main specification used in Section 4.1.1 and use equal-
weighted midpoints and simple returns. Note that the speed-of-light issue is not relevant for this
exercise, since all of these securities trade on the NYSE. As can be seen from the tables, the

13We also examined the correlogram of ES and SPY, for year 2011. The correlogram suggests that the correlation-
maximizing offset of the two datasets treats Chicago events as occurring roughly 8-9 milliseconds earlier than New
York events. At the correlation-maximizing offset, using simple returns and equal-weighted midpoints, the 1ms
correlation is 0.0447, the 10ms correlation is 0.2232, and the 100ms correlation is 0.4863. Without any offset, the
figures are 0.0080, 0.1016, and 0.4633.
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Table 1: Correlation Breakdown in ES & SPY

Notes: This table shows the correlation between the return of the E-mini S&P 500 future (ES) and SPDR S&P 500
ETF (SPY) bid-ask midpoints as a function of the return time interval, reported as a median over all trading days in
2011. We compute correlation several different ways. First, we use either equal-weighted or quantity-weighted mid-
points in computing returns. Quantity-weighted midpoints weight the bid and ask by ωbidt = Qaskt /

(
Qaskt +Qbidt

)
and ωaskt = 1− ωbidt , respectively, where Qaskt and Qbidt represent the quantity offered as the bid and ask. Second,
we use either simple or averaged returns. Simple returns use the conventional return formula and averaged returns
use the return of the average midpoint of two non-overlapping intervals. Third, we compute correlations from the
perspective of a trader in New York (Chicago events occurring at time t in Chicago are treated as contemporaneous
with New York events occurring at time t+ 4ms in New York), a trader in Chicago (New York events occurring at
time t in New York are treated as contemporaneous with Chicago events occurring at time t + 4ms in Chicago),
and a trader equidistant from the two locations (Mid). For more details on these correlation computations, See
Section 4.1.1. For more details on the data, refer to Section 3.

Panel A: Equal-Weighted Midpoint Correlations
Returns: Simple Average
Location: NY Mid Chi NY Mid Chi

1 ms 0.0209 0.0080 0.0023 0.0209 0.0080 0.0023
10 ms 0.1819 0.1016 0.0441 0.2444 0.1642 0.0877
100 ms 0.4779 0.4633 0.4462 0.5427 0.5380 0.5319
1 sec 0.6913 0.6893 0.6868 0.7515 0.7512 0.7508
10 sec 0.9079 0.9076 0.9073 0.9553 0.9553 0.9553
1 min 0.9799 0.9798 0.9798 0.9953 0.9953 0.9953
10 min 0.9975 0.9975 0.9975 0.9997 0.9997 0.9997

Panel B: Quantity-Weighted Midpoint Correlations
Returns: Simple Average
Location: NY Mid Chi NY Mid Chi

1 ms 0.0432 0.0211 0.0100 0.0432 0.0211 0.0100
10 ms 0.3888 0.2389 0.1314 0.5000 0.3627 0.2301
100 ms 0.7323 0.7166 0.6987 0.7822 0.7782 0.7717
1 sec 0.8680 0.8666 0.8647 0.8966 0.8968 0.8969
10 sec 0.9602 0.9601 0.9599 0.9768 0.9768 0.9769
1 min 0.9906 0.9906 0.9906 0.9965 0.9965 0.9965
10 min 0.9987 0.9987 0.9987 0.9998 0.9998 0.9998
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Table 2: Correlation Breakdown in Equities

Notes: This table shows the correlation between the returns of various equity pairs as a function of the return
time interval, reported as a median over all trading days in 2011. Correlations are computed using equal-weighted
midpoints and simple arithmetic returns. Speed-of-light considerations are not relevant for this exercise since all
of these securities trade at the same geographic location. For more details on the data, refer to Section 3.

(a) Pairs of Related Companies

1 ms 100 ms 1 sec 10 sec 1min 10 min 30 min
HD-LOW 0.008 0.101 0.192 0.434 0.612 0.689 0.704
GS-MS 0.005 0.094 0.188 0.405 0.561 0.663 0.693

CVX-XOM 0.023 0.284 0.460 0.654 0.745 0.772 0.802
AAPL-GOOG 0.001 0.061 0.140 0.303 0.437 0.547 0.650

(b) Largest Components of the S&P 500 Index

AAPL XOM GE JNJ IBM
1 ms

AAPL 1.000
XOM 0.005 1.000
GE 0.002 0.005 1.000
JNJ 0.003 0.010 0.004 1.000
IBM 0.002 0.005 0.002 0.004 1.000

30 Min
AAPL 1.000
XOM 0.495 1.000
GE 0.508 0.571 1.000
JNJ 0.349 0.412 0.440 1.000
IBM 0.554 0.512 0.535 0.464 1.000
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Figure 4.2: ES and SPY Correlation Breakdown Over Time: 2005-2011

Notes: This figure depicts the correlation between the return of the E-mini S&P 500 future (ES) and the SPDR
S&P 500 ETF (SPY) bid-ask midpoints as a function of the return time interval for every year from 2005 to 2011.
Correlations are computed using equal-weighted midpoints and simple arithmetic returns. Each line depicts the
median correlation over all trading days in a particular year, taken over each return time interval from 1 to 100ms.
For years 2005-2008 the CME data is only at 10ms resolution, so we compute the median correlation for each
multiple of 10ms and then fit a cubic spline. For more details regarding the computation of correlations, see the
text of Section 4.1.1. For more details on the data, refer to Section 3.

equities market correlation structure breaks down at high frequency. At human time scales such
as one minute there is economically meaningful correlation amongst these securities, but not at
high-frequency time scales such as 1ms or 100ms.

4.2 Correlation Breakdown Over Time

Figure 4.2 displays the ES-SPY correlation versus time interval curve that we depicted above as
Figure 4.1 Panel (b), but separately for each year in the time period 2005-2011 that is covered
in our data. As can be seen in the figure, the market has gotten faster over time in the sense
that economically meaningful market correlations emerge more quickly in the later years of our
data than in the early years. For instance, in 2011 the ES-SPY correlation reaches 0.50 at a 142
ms interval, whereas in 2005 the ES-SPY correlation only reaches 0.50 at a 2.6 second interval.
However, in all years correlations are essentially zero at high enough frequency.
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5 Correlation Breakdown Creates Technical Arbitrage Op-
portunities

In this section we show that the correlation breakdown phenomenon we documented in Section
4 is associated with frequent technical arbitrage opportunities, available to whichever trader acts
fastest. These are the kinds of profit opportunities that drive the arms race. We also explore how
the nature of this arbitrage opportunity has evolved over the time period of our data, 2005-2011.
The time series suggests that the prize in the speed race is more like a “constant” of continuous
limit order book markets rather than an inefficiency that is competed away over time.

5.1 Computing the ES-SPY Arbitrage

Figure 5.1 illustrates the exercise we conduct. The top portion depicts the midpoint prices of ES
and SPY over the course of a fairly typical 30-minute period of trading (Panel a) and a volatile
period of trading during the financial crisis (Panel b). Notice that, while there is a difference in
levels between the two securities,14 the two securities’ price paths are highly correlated at this
time resolution. The bottom portion depicts our estimate of the instantaneous profits (described
below) associated with simultaneously buying one security (at its ask) and selling the other (at its
bid). Most of the time these instantaneous profits are negative, reflecting the fact that buying one
security while selling the other entails paying half the bid-ask spread in each market, constituting
0.175 index points in total. However, every so often the instantaneous profits associated with
these trades turn positive. These are the moments where one security’s price has just jumped a
meaningful amount but the other security’s price has not yet changed – which we know is common
from the correlation breakdown analysis. At such moments, buying the cheaper security and
selling the more expensive security (with cheap and expensive defined relative to the difference in
levels between the two securities) is sufficiently profitable to overcome bid-ask spread costs. Our
exercise is to compute the frequency, duration, and profitability of such trading opportunities.
These trading opportunities represent the prize at stake in the high-frequency trading arms race,
for this particular trade in this particular market.

14There are three differences between ES and SPY that drive the difference in levels. First, ES is larger than
SPY by a term that represents the carrying cost of the S&P 500 index until the ES contract’s expiration date.
Second, SPY is larger than ES by a term that represents S&P 500 dividends, since SPY holders receive dividends
(which accumulate and then are distributed at the end of each quarter) and ES holders do not. Third, the basket
of stocks in the SPY creation-redemption basket typically differs slightly from the basket of stocks in the S&P 500
index; this is known as ETF tracking error.
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Figure 5.1: Technical Arbitrage Illustrated

Notes: This figure illustrates the technical arbitrage between ES and SPY on an ordinary trading day (5/3/2010)
in Panel (a) and a day during the financial crisis (9/22/2008) in Panel (b). In each panel, the top pair of lines
depict the equal-weighted midpoint prices of ES and SPY, with SPY prices multiplied by 10 to reflect the fact
that SPY tracks 1

10 the S&P 500 index. The bottom pair of lines depict our estimate of the instantaneous profits
associated with buying one security at its ask and selling the other security at its bid. These profits are measured
in S&P 500 index points per unit transacted. For details regarding the data, see Section 3. For details regarding
the computation of instantaneous arbitrage profits, see Section 5.1.
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To begin, define the instantaneous spread between ES and SPY at millisecond t as

St = Pmid
ES,t − 10Pmid

SPY,t, (5.1)

where Pmid
j,t denotes the midpoint between the bid and ask at millisecond t for security j ∈

{ES, SPY }, and the 10 reflects the fact that SPY tracks 1
10 the S&P 500 index. Define the

moving-average spread between ES and SPY at millisecond t as

S̄t = 1
τ ∗

t−1∑
i=t−τ∗

Si, (5.2)

where τ ∗ denotes the amount of time it takes, in milliseconds, for the ES-SPY averaged-return
correlation to reach 0.99, in the trailing month up to the date of time t. The high correlation of
ES and SPY at intervals of length τ ∗ implies that prices over this time horizon produce relatively
stable spreads.15 We define a trading rule based on the presumption that, at high-frequency time
horizons, deviations of St from S̄t are driven mostly by the correlation breakdown phenomenon we
documented in Section 4. For instance, if ES and SPY increase in price by the same amount, but
ES’s price increase occurs a few milliseconds before SPY’s price increase, then the instantaneous
spread will first increase (when the price of ES increases) and then decrease back to its initial level
(when the price of SPY increases), while S̄t will remain essentially unchanged.

We consider a deviation of St from S̄t as large enough to trigger an arbitrage opportunity if
it results in the instantaneous spread market “crossing” the moving-average spread. Specifically,
define the bid and ask in the implicit spread market according to Sbidt = P bid

ES,t − 10P ask
SPY,t and

Saskt = P ask
ES,t − 10P bid

SPY,t. Note that Sbidt < St < Saskt at all times t by the fact that the individual
markets cannot be crossed, and that typically we will also have Sbidt < S̄t < Saskt . If at some
time t there is a large enough jump in the price of ES or SPY such that the instantaneous spread
market crosses the moving-average spread, i.e., S̄t < Sbidt or Saskt < S̄t, then we say that an
arbitrage opportunity has started at time t, which we now denote as tstart. We treat the relevant
transactions cost of executing the arbitrage opportunity as the bid-ask spread costs associated
with buying one security at its ask while selling the other at its bid.16 Expected profits, on a

15Economically, spreads are stable at such time horizons because the three differences between ES and SPY
which drive the difference in levels – cost of carry until contract expiration, quarterly S&P 500 dividends, and
ETF tracking error (cf. footnote 14) – are approximately stationary at time horizons on the order of seconds or a
minute. Over longer time horizons, however, such as days or weeks, there is noticeable drift in the ES-SPY spread,
mostly due to the way the cost of carry difference between the two securities changes as the ES contract approaches
expiration.

16Our understanding is that this is the best simple estimate of transactions costs. A richer estimate of transactions
costs would account for the fact that the trader might not need to pay half the bid-ask spread in both ES and
SPY, which would lower costs, and would account for exchange fees, which would increase costs. As an example,
a high-frequency trader who detects a jump in the price of ES that makes the price of SPY stale might trade
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per-unit spread basis, are thus:

π =


S̄tstart − Sasktstart

if Sasktstart
< S̄tstart

Sbidtstart
− S̄tstart if Sbidtstart

> S̄tstart .
(5.3)

If our presumption is correct that the instantaneous market crossing the moving-average is
due to correlation breakdown, then in the data the instantaneous market will uncross reasonably
quickly. We define the ending time of the arbitrage, tend, as the first millisecond after tstart in which
the market uncrosses, the duration of the arbitrage as tend − tstart, and label the opportunity a
“good arb.” If the expected profitability of the arbitrage varies over the time interval [tstart, tend],
i.e., the instantaneous spread takes on multiple values before it uncrosses the moving average, then
we record the full time-path of expected profits and quantities and compute the quantity-weighted
average profits.17

In the event that the instantaneous market does not uncross the moving-average of the spread
after a modest amount of time (we use τ ∗) – e.g., what looked to us like a temporary arbitrage
opportunity was actually a permanent change in expected dividends or short-term interest rates
– then we declare the opportunity a “bad arb”.

If an arbitrage opportunity lasts fewer than 4ms, the one-way speed-of-light travel time between
New York and Chicago, it is not exploitable under any possible technological advances in speed
(other than by a god-like arbitrageur who is not bound by special relativity). Therefore, such
opportunities should not be counted as part of the prize that high-frequency trading firms are
competing for, and we drop them from the analysis.18

instantaneously in SPY, at the stale prices, paying half the bid-ask spread, but might seek to trade in ES at its
new price as a liquidity provider, potentially earning rather than paying half the bid-ask spread. Also complicating
matters are that high-frequency trading firms’ trading fees are often substantially offset by exchange rebates for
liquidity provision.

17Throughout the interval [tstart, tend] we compute both the actual empirical order book and a hypothetical order
book which accounts for our arbitrageur’s trade activity. The reason this matters is that it is common that the
trades in ES and SPY that our arbitrageur makes overlap with trades in ES and SPY that someone in the data
makes, and we need to account for this to avoid double counting. Here is an example to illustrate. Suppose that
at time tstart an arbitrage opportunity starts which involves buying all 10000 shares of SPY available in the NYSE
order book at the ask price of p. Suppose that the next message in the NYSE data feed, at time t′ < tend, reports
that there are 2000 shares of SPY available at price p – either a trader with 8000 shares offered at p just removed
his ask, or another trader just purchased 8000 shares at the ask. Our arbitrageur buys all 10000 shares available
at time tstart, but does not buy any additional shares at time t′. Even though the NYSE data feed reports that
there are 2000 shares of SPY at p at t′, our hypothetical order book regards there as being 0 shares of SPY left
at p at t′. If, on the other hand, the next message in the NYSE data feed at time t′ had reported that there are
12000 shares of SPY available at price p, then our arbitrageur would have purchased 10000 shares at time tstart,
and then an additional 2000 (=12000-10000) shares at time t′.

18Prior to Nov 24, 2008, when the CME data was only at the centisecond level but the NYSE data was at
the millisecond level, we filter out arbitrage opportunities that last fewer than 9ms, to account for the maximum
combined effect of the rounding of the CME data to centisecond level (up to 5ms) and the speed-of-light travel
time (4ms).
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Table 3: ES-SPY Arbitrage Summary Statistics, 2005-2011

Notes: This table shows the mean and various percentiles of arbitrage variables from the mechanical trading
strategy between the E-mini S&P 500 future (ES) and the SPDR S&P 500 ETF (SPY) described in Section 5.1.
The data, described in Section 3, cover January 2005 to December 2011. # of Arbs/Day indicates the number of
arbitrage opportunities for each trading day. Qty denotes the size of each arbitrage opportunity, measured in the
number of ES lots traded. Per-Arb Profits are computed in index points as described in the text and in dollars by
multiplying index points times quantity in ES lots times 50, because each ES contract has notional value of 50 times
the S&P 500 index. Total Daily Profits - NYSE Data indicates the total profits from all arbitrage opportunities
over the course of a trading day, based on the depth we observe in our NYSE data. Total Daily Profits - All
Exchanges indicates the total profits from all arbitrage opportunities over the course of a trading day, under the
assumption that including the depth from other equities exchanges multiplies the quantity available to trade by a
factor of (1 / NYSE market share in SPY), as discussed in the text. % ES initiated indicates the percentage of
arbitrage opportunities that are initiated by a change in the price of ES, with the remainder initiated by a change
in the price of SPY. % Good Arbs indicates the percentage of arbitrage opportunities where the market uncrosses
within a τ∗ time interval, as described in the text, with the remainder being bad arbs. % Buy vs. Sell indicates
the percentage of arbitrage opportunities in which the arbitrage involves buying spread, defined as buying ES and
selling SPY, with the remainder being opportunities in which the arb involves selling spread.

Percentile
Mean 1 5 25 50 75 95 99

# of Arbs/Day 801 118 173 285 439 876 2498 5353
Qty (ES Lots) 13.83 0.20 0.20 1.25 4.20 11.99 52.00 145.00
Per-Arb Profits (Index Pts) 0.09 0.05 0.05 0.06 0.08 0.11 0.15 0.22
Per-Arb Profits ($) $98.02 $0.59 $1.08 $5.34 $17.05 $50.37 $258.07 $927.07
Total Daily Profits - NYSE Data ($) $79k $5k $9k $18k $33k $57k $204k $554k
Total Daily Profits - All Exchanges ($) $306k $27k $39k $75k $128k $218k $756k $2,333k

% ES Initiated 88.56%
% Good Arbs 99.99%
% Buy vs. Sell 49.77%

5.2 Results on ES-SPY Arbitrage

5.2.1 Summary Statistics

Table 3 reports summary statistics on the ES-SPY arbitrage opportunity over our full dataset,
2005-2011. Throughout this section, we drop arbitrage opportunities with per-unit profitability π
of strictly less than 0.05 index points, or one-half of one penny in the market for SPY.

An average day in our dataset has about 800 arbitrage opportunities, while an average arbitrage
opportunity has quantity of 14 ES lots (7,000 SPY shares) and profitability of 0.09 in index points
(per-unit traded) and $98.02 in dollars. The 99th percentile of arbitrage opportunities has a
quantity of 145 ES lots (72,500 SPY shares) and profitability of 0.22 in index points and $927.07
in dollars.

Total daily profits in our data are on average $79k per day, with profits on a 99th percentile
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day of $554k. Since our SPY data come from just one of the major equities exchanges, and depth
in the SPY book is the limiting factor in terms of quantity traded for a given arbitrage in nearly
all instances (typically the depths differ by an order of magnitude), we also include an estimate of
what total ES-SPY profits would be if we had SPY data from all exchanges and not just NYSE.
We do this by multiplying each day’s total profits based on our NYSE data by a factor of (1 /
NYSE’s market share in SPY), with daily market share data sourced from Bloomberg.19 This
yields average profits of $306k per day, or roughly $75mm per year. We discuss the total size of
the arbitrage opportunity in more detail below in Section 5.3.

88.56% of the arbitrage opportunities in our dataset are initiated by a price change in ES, with
the remaining 11.44% initiated by a price change in SPY. That the large majority of arbitrage
opportunities are initiated by ES is consistent with the practitioner perception that the ES market
is the center for price discovery in the S&P 500 index, as well as with our finding in Section 4.1.1
that correlations are higher when we treat the New York market as lagging Chicago than when
we treat the Chicago market as lagging New York. Note, though, that the equities underlying
the S&P 500 index trade in New York, so innovations in the index that are driven by news for
particular stocks may be incorporated into SPY before ES. This may partly explain why 11% of
the arbitrage opportunities are initiated by SPY rather than ES.

99.99% of the arbitrage opportunities we identify are “good arbs,” meaning that large de-
viations of the instantaneous ES-SPY spread St from its moving-average level S̄t nearly always
reverse within a modest amount of time. This is one indication that our method of computing the
ES-SPY arbitrage opportunity is sensible.

5.2.2 Evolution Over Time: 2005-2011

In this sub-section we explore how the ES-SPY arbitrage opportunity has evolved over time.
Figure 5.2 explores the duration of ES-SPY arbitrage opportunities over the time of our data

set, covering 2005-2011. As can be seen in Figure 5.2a, the median duration of arbitrage opportu-
nities has declined dramatically over this time period, from a median of 97 ms in 2005 to a median
of 7 ms in 2011. Figure 5.2b plots the distribution of arbitrage durations over time, asking what
proportion of arbitrage opportunities last at least a certain amount of time, for each year in our
data. The figure conveys how the speed race has steadily raised the bar for how fast one must be
to capture arbitrage opportunities. For instance, in 2005 nearly all arbitrage opportunities lasted
at least 10ms and most lasted at least 50ms, whereas by 2011 essentially none lasted 50ms and
very few lasted even 10ms.

19NYSE’s daily market share in SPY has a mean of 25.9% over the time period of our data, with mean daily
market share highest in 2007 (33.0%) and lowest in 2011 (20.4%). Most of the remainder of the volume is split
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Figure 5.2: Duration of ES & SPY Arbitrage Opportunities Over Time: 2005-2011

Notes: Panel (a) shows the median duration of arbitrage opportunities between the E-mini S&P 500 future (ES)
and the SPDR S&P 500 ETF (SPY) from January 2005 to December 2011. Each point represents the median
duration of that day’s arbitrage opportunities. Panel (b) plots arbitrage duration against the proportion of arbitrage
opportunities lasting at least that duration, for each year in our dataset. Panel (b) restricts attention to arbitrage
opportunities with per-unit profits of at least 0.10 index points. The discontinuity in the time series (5/30/2007-
8/28/2007) arises from omitted data resulting from data issues acknowledged by the NYSE. We drop arbitrage
opportunities that last fewer than 4ms, which is the one-way speed-of-light travel time between New York and
Chicago. Prior to Nov 24, 2008, we drop arbitrage opportunities that last fewer than 9ms, which is the maximum
combined effect of the speed-of-light travel time and the rounding of the CME data to centiseconds. See Section
5.1 for further details regarding the ES-SPY arbitrage. See Section 3 for details regarding the data.

(a) Median Arb Durations Over Time (b) Distribution of Arb Durations Over Time
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Figure 5.3: Profitability of ES & SPY Arbitrage Opportunities Over Time: 2005-2011

Notes: Panel (a) shows the median profitability of arbitrage opportunities (per unit traded) between the E-mini
S&P 500 future (ES) and the SPDR S&P 500 ETF (SPY) from January 2005 to December 2011. Each point
represents the median profitability per unit traded of that day’s arbitrage opportunities. Panel (b) plots the kernel
density of per-arbitrage profits for each year in our dataset. The discontinuity in the time series (5/30/2007-
8/28/2007) arises from omitted data resulting from data issues acknowledged by the NYSE. See Section 5.1 for
details regarding the ES-SPY arbitrage. See Section 3 for details regarding the data.

(a) Median Per-Arb Profits Over Time (b) Distribution of Per-Arb Profits Over Time

Figure 5.3 explores the per-arbitrage profitability of ES-SPY arbitrage opportunities over the
time of our data set. In contrast to arbitrage durations, arbitrage profits have remained remarkably
constant over time. Figure 5.3a shows that the median profits per contract traded have remained
steady at around 0.08 index points, with the exception of the 2008 financial crisis when they
were a bit larger. Figure 5.3b shows that the distribution of profits has also remained relatively
stable over time, again with the exception of the 2008 financial crisis where the right-tail of profit
opportunities is noticeably larger.

Figure 5.4 explores the frequency of ES-SPY arbitrage opportunities over the time of our data
set. Unlike per-arb profitability, the frequency of arbitrage opportunities varies considerably over
time. Figure 5.4a shows that the median arbitrage frequency seems to track the overall volatility
of the market, with frequency especially high during the financial crisis in 2008, the Flash Crash on
5/6/2010, and the European crisis in summer 2011. This makes intuitive sense in light of Figure
5.1 above: when the market is more volatile, there are more arbitrage opportunities because there
are more jumps in one market that leave prices temporarily stale in the other market. Figure
5.4, Panel (b) documents this observation rigorously. The figure plots the number of arbitrage
opportunities on a given trading day against a measure we call distance traveled, defined as the sum

between the other three largest exchanges, NASDAQ, BATS and DirectEdge.
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Figure 5.4: Frequency of ES & SPY Arbitrage Opportunities Over Time: 2005-2011

Notes: Panel (a) shows the time series of the total number of arbitrage opportunities between the E-mini S&P 500
future (ES) and the SPDR S&P 500 ETF (SPY), for each trading day in our data. Panel (b) depicts a scatter plot
of the total number of arbitrage opportunities in a trading day against that day’s ES distance traveled. Distance
traveled is defined as the sum of the absolute-value of changes in the ES midpoint price over the course of the
trading day. The solid line represents the fitted values from a linear regression of arbitrage frequency on distance
traveled. For more details on the trading strategy, see Section 5.1. The discontinuity in the time series (5/30/2007-
8/28/2007) arises from omitted data resulting from data issues acknowledged by the NYSE. See Section 5.1 for
details regarding the ES-SPY arbitrage. See Section 3 for details regarding the data.

(a) Frequency of Arbitrage Opportunities (b) Frequency vs. Distance Traveled

of the absolute-value of changes in the ES midpoint price over the course of the trading day. This
one simple statistic explains nearly all of the variation in the number of arbitrage opportunities
per day: the R2 of the regression of daily arbitrage frequency on daily distance traveled is 0.87.

Together, the results depicted in Figures 5.2, 5.3 and 5.4 suggest that the ES-SPY arbitrage
opportunity should be thought of more as a mechanical “constant” of the continuous limit order
book market design than as a profit opportunity that is competed away over time. Competition
has clearly reduced the amount of time that arbitrage opportunities last (Figure 5.2), but the size
of arbitrage opportunities has remained remarkably constant (Figure 5.3), and the frequency of
arbitrage opportunities seems to be driven mostly by market volatility (Figure 5.4). These facts
both inform and are explained by our model in Section 6.

5.3 Discussion

We have shown that the continuous limit order book market design leads to frequent technical
arbitrage opportunities, available to whomever is fastest, which in turn induces an arms race in
speed. Moreover, the arms race does not actually compete away the prize, but rather just raises
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the bar for capturing it. In this section, we briefly discuss the magnitude of the prize. We make
two sets of remarks.

First, we suspect that our estimate of the annual value of the ES-SPY arbitrage opportunity–
an average of around $75mm per year, fluctuating as high as $151mm in 2008 (the highest volatility
year in our data) and as low as $35mm in 2005 (the lowest volatility year in our data) – is an
underestimate, for at least three reasons. One, our trading strategy is extremely simplistic. This
simplicity is useful for transparency of the exercise and for consistency when we examine how the
arbitrage opportunity has evolved over time, but it is likely that there are more optimized and/or
complicated trading strategies that produce higher profits. Two, our trading strategy involves
transacting at market in both ES and SPY, which means paying half the bid-ask spread in both
markets. An alternative approach which economizes on transactions costs is to transact at market
only in the security that lags – e.g., if ES jumps, transact at market in SPY but not in ES.
Since 89% of our arbitrage opportunities are initiated by a jump in ES, and the minimum ES
bid-ask spread is substantially larger than the minimum SPY bid-ask spread (0.25 index points
versus 0.10 index points), the transactions cost savings from this approach can be meaningful.
Three, our CME data consist of all of the order book messages that are transmitted publicly
to CME data feed subscribers, but we do not have access to the trade notifications that are
transmitted privately only to the parties involved in a particular trade. It has recently been
reported (Patterson, Strasburg and Pleven, 2013) that order-book updates lag trade notifications
by an average of several milliseconds, due to the way that the CME’s servers report message
notifications. This lag could cause us to miss profitable trading opportunities; in particular, we
worry that we are especially likely to miss some of the largest trading opportunities, since large
jumps in ES triggered by large orders in ES also will trigger the most trade notifications, and
hence the most lag.

Second, and more importantly, ES-SPY is just the tip of the iceberg in the race for speed. We
are aware of at least four categories of speed races analogous to ES-SPY. One, there are hundreds
of trades substantially similar to ES-SPY, consisting of securities that are highly correlated and
with sufficient liquidity to yield meaningful profits from simple mechanical arbitrage strategies.
Figure 5.5 provides an illustrative partial list.20 Two, because equity markets are fragmented –
the same security trades on multiple exchanges – there are trades even simpler than ES-SPY. For
instance, one can arbitrage SPY on NYSE against SPY on NASDAQ (or BATS, DirectEdge, etc.).

20In equities data downloaded from Yahoo! finance, we found 391 pairs of equity securities with daily returns
correlation of at least 0.90 and average daily trading volume of at least $100mm per security (calendar year 2011).
Unfortunately, it has not yet been possible to perform a similar screen on the universe of all securities, including,
e.g., index futures, commodities, bonds, currencies, etc., due to data limitations. Instead, we include illustrative
examples across all security types in Figure 5.5.
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Figure 5.5: Illustrative List of Highly Correlated Securities

E-mini S&P 500 Futures (ES) vs. SPDR S&P 500 ETF (SPY) 
E-mini S&P 500 Futures (ES) vs. iShares S&P 500 ETF (IVV) 
E-mini S&P 500 Futures (ES) vs. Vanguard S&P 500 ETF (VOO) 
E-mini S&P 500 Futures (ES) vs. ProShares Ultra (2x) S&P 500 ETF (SSO) 
E-mini S&P 500 Futures (ES) vs. ProShares UltraPro (3x) S&P 500 ETF (UPRO) 
E-mini S&P 500 Futures (ES) vs. ProShares Short S&P 500 ETF (SH) 
E-mini S&P 500 Futures (ES) vs. ProShares Ultra (2x) Short S&P 500 ETF (SDS) 
E-mini S&P 500 Futures (ES) vs. ProShares UltraPro (3x) Short S&P 500 ETF (SPXU) 
E-mini S&P 500 Futures (ES) vs. 9 Select Sector SPDR ETFs 
E-mini S&P 500 Futures (ES) vs. E-mini Dow Futures (YM) 
E-mini S&P 500 Futures (ES) vs. E-mini Nasdaq 100 Futures (NQ) 
E-mini S&P 500 Futures (ES) vs. E-mini S&P MidCap 400 Futures (EMD) 
E-mini S&P 500 Futures (ES) vs. Russell 2000 Index Mini Futures (TF) 
E-mini Dow Futures (YM) vs. SPDR Dow Jones Industrial Average ETF (DIA) 
E-mini Dow Futures (YM) vs. ProShares Ultra (2x) Dow 30 ETF (DDM) 
E-mini Dow Futures (YM) vs. ProShares UltraPro (3x) Dow 30 ETF (UDOW) 
E-mini Dow Futures (YM) vs. ProShares Short Dow 30 ETF (DOG) 
E-mini Dow Futures (YM) vs. ProShares Ultra (2x) Short Dow 30 ETF (DXD) 
E-mini Dow Futures (YM) vs. ProShares UltraPro (3x) Short Dow 30 ETF (SDOW) 
E-mini Nasdaq 100 Futures (NQ) vs. ProShares QQQ Trust ETF (QQQ) 
E-mini Nasdaq 100 Futures (NQ) vs. Technology Select Sector SPDR (XLK) 
Russell 2000 Index Mini Futures (TF) vs. iShares Russell 2000 ETF (IWM) 
Euro Stoxx 50 Futures (FESX) vs. Xetra DAX Futures (FDAX) 
Euro Stoxx 50 Futures (FESX) vs. CAC 40 Futures (FCE) 
Euro Stoxx 50 Futures (FESX) vs. iShares MSCI EAFE Index Fund (EFA) 
Nikkei 225 Futures (NIY) vs. MSCI Japan Index Fund (EWJ) 
Financial Sector SPDR (XLF) vs. Direxion Daily Financial Bull 3x (FAS) 
Euro Futures (6E) vs. Spot EURUSD 
Euro Futures (6E) vs. E-mini Euro Futures (E7) 
Euro Futures (6E) vs. E-micro EUR/USD Futures (M6E) 
E-mini Euro Futures (E7) vs. Spot EURUSD 
E-mini Euro Futures (E7) vs. E-micro EUR/USD Futures (M6E) 
E-micro EUR/USD Futures (M6E) vs. Spot EURUSD 
Japanese Yen Futures (6J) vs. Spot USDJPY 
Japanese Yen Futures (6J) vs. E-mini Japanese Yen Futures (J7) 
E-mini Japanese Yen Futures (J7) vs. Spot USDJPY 
British Pound Futures (6B) vs. Spot GBPUSD 
Australian Dollar Futures (6B) vs. Spot AUDUSD 
Swiss Franc Futures (6S) vs. Spot USDCHF 
Canadian Dollar Futures (6C) vs. Spot USDCAD 
New Zealand Dollar Futures (6N) vs. Spot NZDUSD 
Mexican Peso Futures (6M) vs. Spot USDMXN 
Gold Futures (GC) vs. miNY Gold Futures (QO) 
Gold Futures (GC) vs. Spot Gold (XAUUSD) 

Gold Futures (GC) vs. E-micro Gold Futures (MGC) 
Gold Futures (GC) vs. SPDR Gold Trust (GLD) 
Gold Futures (GC) vs. iShares Gold Trust (IAU) 
miNY Gold Futures (QO) vs. E-micro Gold Futures (MGC) 
miNY Gold Futures (QO) vs. Spot Gold (XAUUSD) 
miNY Gold Futures (QO) vs. SPDR Gold Trust (GLD) 
miNY Gold Futures (QO) vs. iShares Gold Trust (IAU) 
E-micro Gold Futures (MGC) vs. SPDR Gold Trust (GLD) 
E-micro Gold Futures (MGC) vs. iShares Gold Trust (IAU) 
E-micro Gold Futures (MGC) vs. Spot Gold (XAUUSD) 
Market Vectors Gold Miners (GDX) vs. Direxion Daily Gold Miners Bull 3x (NUGT) 
Silver Futures (SI) vs. miNY Silver Futures (QI) 
Silver Futures (SI) vs. iShares Silver Trust (SLV) 
Silver Futures (SI) vs. Spot Silver (XAGUSD) 
miNY Silver Futures (QI) vs. iShares Silver Trust (SLV) 
miNY Silver Futures (QI) vs. Spot Silver (XAGUSD) 
Platinum Futures (PL) vs. Spot Platinum (XPTUSD) 
Palladium Futures (PA) vs. Spot Palladium (XPDUSD) 
Eurodollar Futures Front Month (ED)  vs. (12 back month contracts) 
10 Yr Treasury Note Futures (ZN) vs. 5 Yr Treasury Note Futures (ZF) 
10 Yr Treasury Note Futures (ZN) vs. 30 Yr Treasury Bond Futures (ZB) 
10 Yr Treasury Note Futures (ZN) vs. 7-10 Yr Treasury Note 
2 Yr Treasury Note Futures (ZT) vs. 1-2 Yr Treasury Note 
2 Yr Treasury Note Futures (ZT) vs. iShares Barclays 1-3 Yr Treasury Fund (SHY) 
5 Yr Treasury Note Futures (ZF) vs. 4-5 Yr Treasury Note 
30 Yr Treasury Bond Futures (ZB) vs. iShares Barclays 20 Yr Treasury Fund (TLT) 
30 Yr Treasury Bond Futures (ZB) vs. ProShares UltraShort 20 Yr Treasury Fund (TBT) 
30 Yr Treasury Bond Futures (ZB) vs. ProShares Short 20 Year Treasury Fund (TBF) 
30 Yr Treasury Bond Futures (ZB) vs. 15+ Yr Treasury Bond 
Crude Oil Futures Front Month (CL) vs. (6 back month contracts) 
Crude Oil Futures (CL) vs. ICE Brent Crude (B) 
Crude Oil Futures (CL) vs. E-mini Crude Oil Futures (QM) 
Crude Oil Futures (CL) vs. United States Oil Fund (USO) 
Crude Oil Futures (CL) vs. ProShares Ultra DJ-UBS Crude Oil (UCO) 
Crude Oil Futures (CL) vs. iPath S&P Crude Oil Index (OIL) 
ICE Brent Crude Front Month (B) vs. (6 back month contracts) 
ICE Brent Crude Front Month (B) vs. E-mini Crude Oil Futures (QM) 
ICE Brent Crude (B) vs. United States Oil Fund (USO) 
ICE Brent Crude (B) vs. ProShares Ultra DJ-UBS Crude Oil (UCO) 
ICE Brent Crude (B) vs. iPath S&P Crude Oil Index (OIL) 
E-mini Crude Oil Futures (QM) vs. United States Oil Fund (USO) 
E-mini Crude Oil Futures (QM) vs. ProShares Ultra DJ-UBS Crude Oil (UCO) 
E-mini Crude Oil Futures (QM) vs. iPath S&P Crude Oil Index (OIL) 
Natural Gas (Henry Hub) Futures (NG) vs. United States Nat Gas Fund (UNG) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28

We are unable to detect such trades because the latency between equities exchanges – all of whose
servers are located in server farms in New Jersey – is measured in microseconds, which is finer than
the current resolution of researcher-available exchange data. However, some indirect evidence for
the importance and harmfulness of this type of arbitrage is that an entire new exchange, IEX,
is being launched devoted to mitigating just this one aspect of the arms race (Patterson, 2013).
Three, securities that are meaningfully correlated, but with correlation far from one, can also be
traded in a manner analogous to ES-SPY. For instance, even though the GS-MS correlation is
far from one, a large jump in GS may be sufficiently informative about the price of MS that it
induces a race to react in the market for MS. As we showed in Section 4.1.2, the equities market
correlation matrix breaks down at high frequency, suggesting that such trading opportunities –
whether they involve pairs of stocks or statistical relationships among sets of stocks – may be
important. Four, in addition to the race to snipe stale quotes, there is also a race among liquidity
providers to the top of the book (cf. Farmer and Skouras (2012b)). This last race is an artifact of
the minimum tick increment imposed by regulators and/or exchanges.

While we hesitate, in the context of the present paper, to put a precise estimate on the total
prize at stake in the arms race, back-of-the-envelope extrapolation from our ES-SPY estimates
suggests that the annual sums are in the billions.

6 Model: Economic Implications of the Arms Race

We have established three empirical facts about continuous limit order book markets. First,
market correlations completely break down at high-enough frequency, even for securities that are
nearly perfectly correlated at longer frequencies, such as SPY and ES. Second, this correlation
breakdown is associated with frequent technical arbitrage opportunities, available to whomever
wins the race to exploit them. Third, the prize in the arms race seems to be more like a “constant”
than something that is competed away over time.

We now develop a purposefully simple model that is informed by the first two facts and seeks
to make sense of the third. The model ultimately serves two related purposes: it is a critique of
the continuous limit order book market design, and it identifies the economic implications of the
HFT arms race.

6.1 Preliminaries

Security x with perfect public signal y There is a security x that trades on a continuous limit
order book market, the rules of which are described in Section 2. There is a publicly observable
signal y of the value of security x. We make the following purposefully strong assumption: the
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fundamental value of x is perfectly correlated to the public signal y, and, moreover, x can always
be costlessly liquidated at this fundamental value. This is a “best case” scenario for price discovery
and liquidity provision in a continuous limit order book.

We think of x and y as a metaphor for pairs or sets of securities that are highly correlated.
In our leading example, x is SPY and y is ES. Numerous other examples are discussed in Section
5.3. An alternative interpretation of y is as publicly observable news about the fundamental value
of x. For example, y could correspond to public news coming from Fed announcements, earnings
announcements, consumer confidence reports, etc.

The signal y, and hence the fundamental value of security x, evolves as a compound Poisson
jump process with arrival rate λjump and jump distribution Fjump. The jump distribution has
finite (i.e., discrete) bounded support and is symmetric with mean zero. Let J denote the random
variable formed by drawing randomly according to Fjump, and then taking the absolute value; we
will refer to J as the jump size distribution. To fix ideas, a simple example of a jump distribution
is where the support is {−1,+1} and positive and negative jumps are equally likely; in this case,
all jumps have jump size equal to 1. Referring back to the S&P 500 arbitrage example, a jump
in y can be interpreted as a discrete change in the price level of the S&P 500 futures contract in
Chicago. Such jumps naturally have discrete support because futures contracts trade in units of
0.25 index points.

Players: Investors and Market Makers There are two types of players, investors and market
makers. Both types of players are risk neutral and there is no discounting.

The players we call investors we think of as the end users of financial markets: mutual funds,
pension funds, hedge funds, individuals, etc. Since there is no asymmetric information about
fundamentals in our model, our investors could equivalently be called “liquidity traders” as in
Glosten and Milgrom (1985) or “noise traders” as in Kyle (1985). Investors arrive stochastically
to the market with an inelastic need to either buy or sell a unit of x. The arrival process is Poisson
with rate λinvest, and, conditional on arrival, it is equal probability that the investor needs to buy
as opposed to sell. Payoffs for investors are defined as follows. If an investor arrives to market
at time t needing to buy one unit, and then buys a unit at time t′ ≥ t for price p, her payoff is
(yt′ − p) − fdelaycost(t′ − t), where yt′ is the fundamental value of x at the time she trades, and
the function fdelaycost : R+ → R+ gives the cost to the investor of waiting t′ − t units of time to
execute her trade. If the investor arrives to market at time t needing to sell one unit, and then
sells a unit at time t′ ≥ t for price p, her payoff is (p − yt′) − fdelaycost(t′ − t). We assume that
the cost of delay function satisfies fdelaycost(0) = 0, and is strictly increasing and continuous. In
words, all else equal, investors prefer to transact sooner rather than later. In the equilibrium we
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derive below in Section 6.2, investors choose to transact immediately. In the equilibria of frequent
batch auctions, studied in Section 7, investors will choose to transact at the next available batch
auction. Once an investor transacts, they exit the game.

The players we call market makers we think of as representing HFTs and other trading firms.
Market makers have no intrinsic demand to buy or sell x. Their goal in trading is simply to buy
x at prices lower than y, and to sell x at prices higher than y. If a market maker buys a share of
x at price p at time t, they earn profits from that trade of yt − p; similarly, if they sell a share of
x at price p at time t they earn profits from that trade of p − yt. Their objective is to maximize
profits per unit time, or equivalently, total profits over the course of the trading day. The number
of market makers, N , will be governed by an equilibrium zero-profit condition.

We assume that investors act only as “takers” of liquidity, whereas market makers act as both
“makers” and “takers” of liquidity. More concretely, we assume that investors only use marketable
limit orders, which are limit orders with a bid amount weakly greater than the best outstanding
ask (if buying) or an ask amount weakly lower than the best outstanding bid (if selling), whereas
market makers may use both marketable and non-marketable limit orders.21

Signal Latency and Speed Technology The public signal y of security x’s value is observable
by investors and market makers with a small time delay (“signal latency”). This time delay can
be interpreted as the time it takes information to travel, be processed, etc. We assume that all
players can observe the signal y costlessly at delay δslow > 0, meaning that the value of signal y
at time t is observed at time t+ δslow. In addition, all players can invest in technology that allows
them to observe the signal faster. We model this in a simple way: players can pay nothing and
observe the signal y with delay δslow, or they can pay a cost cspeed, interpreted as a rental cost per
unit time, and observe the signal y with delay of δfast < δslow. The cost cspeed is a metaphor for
the cost of access to high-speed fiber optic cables (such as the Spread Networks cable described
in the introduction), the cost of cutting-edge computers, the cost of the relevant human capital,
etc. We assume that investment in speed is publicly observable.

Define δ = δslow − δfast as the speed difference between fast and slow players. For ease of
exposition we normalize δfast = 0, so δ = δslow.

We assume that all players in the market for x can submit orders and other types of messages
instantaneously. That is, if any player decides to submit a message at time t, it reaches the market

21The assumption that investors (equivalently, liquidity traders or noise traders) are liquidity takers is standard
in the market microstructure literature. Our treatment of market makers as both makers and takers of liquidity
is slightly non-standard. This is because our market makers will play a role that combines aspects of what the
traditional market microstructure literature calls a market maker (who provides liquidity) and what the traditional
literature calls an informed trader (who takes liquidity). This will become more clear when we describe the role
market makers play in equilibrium below in Section 6.2.2.
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at exactly time t. If multiple messages reach the market at the same time, they are processed
in serial in a random order. This random tie-breaking can be interpreted as messages being
transmitted with small random latency, and then processed serially in the order received.22

6.2 Equilibrium

We construct a Nash equilibrium as follows.

6.2.1 Investors

Investors trade immediately when their demand arises, buying or selling at the best available ask
or bid, respectively. As we will see below, the bid-ask spread is stationary in equilibrium, so
investors have no incentive to delay trade. Investors do not choose to pay the cost cspeed to be
fast.23

6.2.2 Market Makers

Market maker entry is governed by a zero-profit condition. In equilibrium, N market makers enter
and pay the cost cspeed to be fast, and zero market makers enter but do not pay the cost. For
simplicity, we allow N to take on any real value greater than or equal to 1, rather than require that
N be an integer; alternatively we could require that N is integer and require that market-maker
profits are weakly positive with N entrants and strictly negative with N + 1 entrants.

Of the N market makers, 1 plays a role we call “liquidity provider” and N − 1 play a role
we call “stale-quote sniper”.24 Market makers will be indifferent between these two roles in equi-
librium. For simplicity, we assume that they sort themselves into the two roles in a coordinated
manner, specifically, player 1 always plays the role of liquidity provider. In practice, this sorting
is stochastic, and many HFT firms perform both roles over time.25

22Exchanges offer a service called colocation to HFT firms, whereby HFTs pay for the right to place their
computers in the same location as the exchange’s computers. The exchanges are careful to ensure that each
colocated computer is the same physical distance, measured by cord length, from the exchange computers. Hence,
if multiple HFT’s send the same order to the exchange at the same time, it really is random which will be processed
first. See Rogow (2012) for more details on colocation.

23There is nothing in our setup that prevents an investor from paying the cost cspeed and behaving as a market
maker as described below, but there is also no particular reason for them to do so. That is, an investor who pays the
cost cspeed and acts like a market maker can be conceptualized as two distinct entities; there is no complementarity
between the two activities in our equilibrium.

24The term “sniper” originated in the context of eBay auctions; see Roth and Ockenfels (2002). Snipers in eBay
auctions attempt to bid as late as possible before the auction closes. Snipers here will attempt to bid as soon as
possible after an exploitable jump in yt, as we will see below.

25In practice tick sizes are discrete (penny increments), whereas we allow for bids and asks to be any real value.
If we used discrete ticks, then the role of liquidity provider would be strictly preferred to the role of stale-quote
sniper at the equilibrium bid-ask spread. In this case, the N market makers would race to play the role of liquidity
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Liquidity Provider The liquidity provider behaves as follows. When the trading day opens
at time 0, the liquidity provider submits two limit orders, the first to buy 1 unit of x at price
y0 − s

2 , the other to sell 1 unit of x at price y0 + s
2 . These quotes will be the opening bid and ask,

respectively, and s ≥ 0 is the bid-ask spread. We will derive the equilibrium value of s below. For
simplicity, we allow s to be real-valued rather than discrete, just as we did for N . The bid-ask
spread will be stationary throughout the trading day.

If the signal y jumps at time t, from yt− to yt (we use the notation yt− = limt′→t− yt′), per
the Poisson arrival process described above, the liquidity provider immediately adjusts her quotes.
Specifically, at time t she submits a message to the exchange to remove her previous quotes, of
yt− − s

2 and yt− + s
2 , and also submits a message to the exchange with a new bid and ask of yt− s

2

and yt + s
2 .

If an investor arrives to the market at time t, per the Poisson arrival process described above,
and buys at the current ask of yt + s

2 , the liquidity provider immediately replaces the accepted
ask with a new ask at this same value of yt + s

2 . Similarly, if an investor arrives at time t and
sells at the current bid of yt− s

2 , the liquidity provider immediately replaces the accepted bid with
a new bid at this same value of yt − s

2 . In either case, the liquidity provider books profits of s
2 .

Note that the liquidity provider does not directly observe that his trading partner is an investor
as opposed to another market maker, though he can infer this in equilibrium from the fact that
trade has occurred at a time t when there is not a jump in the signal y.

If in some time interval there is neither a jump in the signal y, nor the arrival of a new investor,
the liquidity provider does not take any action. Thus, at all times t, there is a single unit offered
at both the bid and the ask.

Stale-Quote Snipers The N − 1 stale-quote snipers behave as follows. Suppose that at time t
the signal y jumps from yt− to yt. If yt > yt− + s

2 , the snipers immediately submit a limit order
to buy a single unit at price yt− + s

2 , the ask price of the liquidity provider who, at the same
time, submits a message to the exchange to remove this ask. Each sniper’s bid is successful with
probability 1

N
: there are N − 1 snipers attempting to buy at this ask price, 1 liquidity provider

attempting to remove this ask price, and the order in which the exchange processes these N
messages is random.26 If the sniper’s bid is successful she books profits of yt − yt− − s

2 . If the

provider, and then the N − 1 losers of the race would play the role of stale-quote sniper.
26In our model, all fast market makers are equally fast, so their messages reach the exchange at the exact same

time, and then the exchange breaks the tie randomly. A more realistic model would add a small random latency to
each market maker’s message transmission – e.g., a uniform-random draw from [0, ε] – and then whichever market
maker had the smallest draw from [0, ε] would win the race. This would yield exactly the same probability of
winning the race of 1

N . See also footnote 22.
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sniper’s bid is unsuccessful, she immediately withdraws her bid.27

Symmetrically, if yt < yt−− s
2 the snipers immediately submit a limit order to sell a single unit

at price yt− − s
2 , the bid price of the market-maker who, at the same time, submits a message to

the exchange to remove this bid. If the sniper’s ask is successful, which occurs in equilibrium with
probability 1

N
, then she books profits of yt− − yt − s

2 . Else, she immediately withdraws her ask.
If yt− − s

2 < yt < yt− + s
2 , then the sniper does nothing. Last, if in some time interval there is

no jump in the signal y, the sniper does nothing.

6.2.3 Equilibrium Bid-Ask Spread s

In equilibrium, the bid-ask spread s balances off two forces.
If, as occurs at arrival rate λinvest, an investor arrives to market, the liquidity provider will

earn profits of s
2 , or half the bid-ask spread. The benefits of providing liquidity are thus λinvest · s2

per unit time.
If, as occurs at arrival rate λjump, the signal y jumps, the liquidity provider will attempt to

instantaneously adjust her stale quotes. However, if the jump is larger in size than s
2 , the snipers

simultaneously attempt to pick off her stale quotes. The liquidity provider loses this race with
probability N−1

N
. In the event she loses the race, her expected loss is E(J − s

2 |J >
s
2), that is, the

conditional expectation of the jump size less half the bid-ask spread. Thus, the costs of providing
liquidity, per unit time, are λjump · Pr(J > s

2) · E(J − s
2 |J >

s
2) · N−1

N
.

The zero-profit condition is satisfied for the liquidity provider when benefits less costs equal
the rental cost of the speed technology:

λinvest ·
s

2 − λjump · Pr(J > s

2) · E(J − s

2 |J >
s

2) · N − 1
N

= cspeed (6.1)

6.2.4 Equilibrium Entry Quantity N

The equilibrium number of stale-quote snipers, N − 1, can be determined as follows.
Stale-quote snipers earn profits when they successfully exploit a stale quote after a jump larger

in size than half the bid-ask spread. When such a jump occurs, each sniper wins the race to
exploit with probability 1

N
. Hence per-person expected profits, per unit time, are λjump · Pr(J >

s
2) · E(J − s

2 |J > s
2) · 1

N
. Notice that, summed over all N − 1 snipers, this equals the liquidity

provider’s cost of providing liquidity; this captures that trade amongst market makers is zero sum.
27By “immediately withdraws her bid” we mean the following. As soon as the sniper receives confirmation from

the exchange that her bid was unsuccessful, she sends a message to the exchange to remove the bid. In our model,
both the confirmation that the initial bid is unsuccessful, and the message to remove the bid, occur instantaneously.
Thus, for any time t′ > t, the unsuccessful sniper’s bid is removed by the market by t′. In practice, exchanges
automate this type of behavior with an order type called “immediate or cancel”.
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The zero-profit condition for stale quote snipers is satisfied when the benefits of sniping equal
the rental cost of the speed technology:

λjump · Pr(J > s

2) · E(J − s

2 |J >
s

2) · 1
N

= cspeed (6.2)

6.2.5 Solving for s and N

Equations (6.1) and (6.2) together constitute two equations in two unknowns, N and s. Adding
(6.1) and N − 1 times (6.2) yields

λinvest ·
s

2 = Ncspeed (6.3)

Equation (6.3) has a natural economic interpretation. The right-hand side is the total expen-
diture by market makers on speed. The left-hand side is the total revenue earned by the liquidity
provider from providing liquidity to investors. Since stale-quote sniping is a zero-sum activity
amongst market makers, this in turn is equal to the total profits earned by market makers as a
whole from providing liquidity to investors. The equation thus tells us that all of the expenditure
by market makers on speed technology ultimately is borne by investors, via the bid-ask spread.

If we multiply (6.2) by N and substitute in (6.3) we obtain a single equation with a single
unknown, s:

λjump · Pr(J > s

2) · E(J − s

2 |J >
s

2) = λinvest ·
s

2 (6.4)

The left-hand side of (6.4) is strictly positive when s is zero, and then is strictly decreasing in s
until its value is zero when s

2 is equal to the upper bound of the jump size distribution (i.e., when
s
2 = max J). The right-hand side of (6.4) has value zero at s = 0 and then is strictly increasing in
s. Hence, (6.4) has a unique solution. Plugging this unique solution for s into (6.3) then gives a
unique solution for N .28

We summarize with the following proposition.

Proposition 1 (Equilibrium). There is a Nash equilibrium of the continuous limit order book
market design with investor play as described in Section 6.2.1 and market maker play as described
in Section 6.2.2. The equilibrium quantity of market maker entry N∗ and the equilibrium bid-ask
spread s∗ are uniquely determined by the market maker zero profit conditions (6.1) and (6.2). The

28While s and N are uniquely characterized, the sorting of market makers into roles is not. In particular, there
are equilibria in which (i) it is deterministic which market maker serves as liquidity provider and which serve as
stale-quote snipers; (ii) market makers stochastically sort into the two roles, e.g., by racing to perform the role of
liquidity provider, with losers of the race performing the role of stale-quote sniper; (iii) market makers rotate who
performs the role liquidity provider; and (iv) versions of the deterministic, stochastic, and rotation equilibria in
which the liquidity provider role is split into two sub-roles, one of which provides liquidity at the bid and the other
of which provides liquidity at the ask.
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sorting of market makers into the roles of 1 liquidity provider and N∗ − 1 stale-quote snipers is
not unique.

Per (6.3)-(6.4), the following three quantities are equivalent in equilibrium:

1. The total prize at stake in the arms race, λjump ·Pr(J > s∗

2 ) ·E(J − s∗

2 |J >
s∗

2 ). That is, the
sum of the value of all arbitrage opportunities that the snipers are racing to capture.

2. The total equilibrium expenditure by market makers on speed technology, N∗cspeed.

3. The total revenue the liquidity provider earns from investors via the bid-ask spread, λinvest · s
∗

2 .

See Appendix A.1 for further details about this equilibrium, such as behavior off the equilibrium
path, which complete the proof of Proposition 1.

6.3 Discussion of the Equilibrium

6.3.1 Why is there a Positive Bid-Ask Spread?

Given the setup of our model, one might have guessed that Bertrand competition among market
makers drives the bid-ask spread to zero. There is not an asymmetrically informed trader as in
the models of Copeland and Galai (1983), Glosten and Milgrom (1985) or Kyle (1985); instead,
all market makers observe innovations in the signal y at exactly the same time, and this signal y
is perfectly informative about the fundamental value of x. There are no inventory costs as in Roll
(1984) or search costs as in Duffie, Garleanu and Pedersen (2005); instead, the security x can at
all times be costlessly liquidated at its fundamental value y. Yet, the equilibrium bid-ask spread
s∗ is strictly positive.

Our model highlights that the continuous limit order book market design creates an additional,
purely technical cost of liquidity provision – the cost of getting sniped, i.e., of getting picked off
in the race to react to symmetrically observed public news. Since the continuous limit order book
processes message requests in serial (i.e., one at a time), a liquidity provider’s quotes are vulnerable
to being picked off if they become stale, even if the liquidity provider learns at exactly the same
time as other market participants that his quotes are now stale. All the liquidity provider can do is
send a message to the exchange to remove his stale quotes, knowing full well that at the same time
other market makers are sending messages to the exchange attempting to exploit his stale quotes.
It is random which of this barrage of messages will get processed first, and with probability N∗−1

N∗
,

it will not be the liquidity provider’s message that is first, and he will get sniped.
Mechanically, our source of bid-ask spread is most similar to that in Copeland and Galai

(1983) and Glosten and Milgrom (1985), namely, a liquidity provider sometimes gets exploited by
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another player who knows that the liquidity provider’s quote is mispriced. The key conceptual
difference is that in Copeland and Galai (1983) and Glosten and Milgrom (1985) there is asym-
metric information between the liquidity provider and this other player, whom both papers call
an “informed trader,” whereas in our model the liquidity provider and these other players, the
stale-quote snipers, are symmetrically informed. Both the liquidity provider and the stale-quote
snipers observe the innovation in y at exactly the same time, but, because the continuous limit
order book processes message requests in serial, the liquidity provider’s request to withdraw his
quote may get processed after some stale-quote sniper’s request to accept his quote. There is also
a subtle difference in how these papers model the continuous limit order book. Our model uses
the actual rules of the continuous limit order book (cf. Section 2) in which the market runs in
continuous time and players can submit orders whenever they like. Copeland and Galai (1983)
and Glosten and Milgrom (1985) use abstractions of the continuous limit order book in which play
occurs in discrete time and players can only act when it is their exogenously specified turn to do
so.29 This abstraction is innocuous in the context of their analyses, but it precludes the possibility
of a race to respond to symmetrically observed public information as in our analysis.

A potentially useful way to summarize the relationship is that our model shows that the
adverse selection in Copeland and Galai (1983) and Glosten and Milgrom (1985) is “built in” to
the continuous limit order book market design, even in the absence of asymmetric information.
We describe this source of bid-ask spread as technical as opposed to fundamental since it is caused
by the market design and can be eliminated by modifying the market design.

The difference between our source of bid-ask spread and that in Copeland and Galai (1983)
and Glosten and Milgrom (1985) is further reinforced by considering the limiting cases of δ → 0+

or cspeed → 0+.30 In our model, there is zero asymmetric information among the N market makers
who pay the cost cspeed to be fast, and among players more widely the only source of asymmetric
information is that some players observe the signal yt with tiny delay δ. In the limit as δ → 0+, all
players observe the signal yt at the same time and hence all players are symmetrically informed.
In the limit as cspeed → 0+, the equilibrium quantity of fast market makers goes to infinity, and
hence so too does the number of market makers who are symmetrically informed. Yet, there is
nevertheless a strictly positive bid-ask spread in equilibrium of our model even in these limiting
cases of δ → 0+ or cspeed → 0+, due to sniping costs.

29In Copeland and Galai (1983), the following events occur in a repeating sequence: (i) a market maker posts
quotes based on the current public information; (ii) either an informed or an uninformed trader arrives to market
and trades at the posted quotes; (iii) all information becomes public and the process repeats. In Glosten and
Milgrom (1985), the following events occur in a repeating sequence: (i) a market maker posts quotes based on his
current beliefs; (ii) either an informed or an uninformed trader arrives to market and trades at the posted quotes;
(iii) the market maker updates his beliefs and the process repeats.

30We thank Pete Kyle for this observation.
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We summarize this discussion as follows.

Proposition 2 (Positive Bid-Ask Spread). In our model there are no inventory costs (Roll, 1984),
search costs (Duffie, Garleanu and Pedersen, 2005), or information asymmetries (Copeland and
Galai, 1983; Glosten and Milgrom, 1985; Kyle, 1985) between liquidity providers and stale-quote
snipers. Nevertheless, the equilibrium bid-ask spread s∗ is strictly positive. The bid-ask spread is
strictly positive even in the limiting cases of δ → 0+ (speed advantages are arbitrarily small) and
cspeed → 0+ (speed costs are arbitrarily small).

We wish to clarify the relationship between our result and the clear empirical evidence that
bid-ask spreads are narrower today than in the pre-HFT era. The rise of HFT over the last fifteen
years or so conflates two distinct phenomena: the increased role of information technology (IT)
in financial markets (e.g., algorithmic trading), and the speed race. Our interpretation of the
empirical record is that there is considerable evidence that IT has improved bid-ask spreads –
see especially Hendershott, Jones and Menkveld (2011) and the discussion in Section 4 of Jones
(2013)) – which makes intuitive economic sense, as IT has lowered costs in numerous sectors
throughout the economy. However, there is little support for the proposition that the speed race
per se has improved bid-ask spreads, and some recent evidence that suggests that the speed race
and associated sniping widens the bid-ask spread (Foucault, Kozhan and Tham, 2013), which is
consistent with our result. Our result does not imply that bid-ask spreads should be wider today
than in the pre-HFT era (we are not Luddites nostalgic for 1990s information technology or market
structure). Our result says that bid-ask spreads are unnecessarily wide today, i.e., they could be
narrower under an alternate market design.

6.3.2 Comparative Statics of the Bid-Ask Spread

Equation (6.4) yields the following comparative statics for our source of bid-ask spread:

Proposition 3 (Comparative Statics of the Bid-Ask Spread). The equilibrium bid-ask spread s∗

has the following comparative statics:

1. s∗ is strictly decreasing in the frequency of investor demand, λinvest

2. s∗ is strictly increasing in the frequency of jumps, λjump

3. If jump distribution F ′jump is a mean-preserving spread of Fjump, then s∗ is strictly larger
under F ′jump than F jump.

Heuristically, s∗ is widest for securities that are thinly traded (low λinvest) and that are cor-
related to statistics that have frequent and large jumps (high λjump and high-variance Fjump).
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Examples include thinly traded small-cap stocks that are highly correlated to a small-cap stock
index such as the Russell 2000, and entrant ETFs that are thinly traded and highly correlated to
an incumbent ETF.31

In light of the results below in Section 7, a policy implication of Proposition 3 is that the
benefits of batching are especially large for such securities.

6.3.3 The Bid-Ask Spread and Arms-Race Prize Does Not Depend on cspeed and δ

It is also interesting to observe some parameters that the equilibrium bid-ask spread s∗ does not
depend on, namely, cspeed and δ (cf. equation (6.4)). This can be interpreted as follows. Suppose
that speed technology improves each year, and we reinterpret the model so that cspeed is the cost
of being at the cutting edge of speed technology in the current time period, and δ is the speed
advantage versus other traders in the current time period. Then, each year high-frequency traders
get faster, but the bid-ask spread stays the same, as does the total prize associated with the arms
race, λjump · Pr(J > s∗

2 ) · E(J − s∗

2 |J >
s∗

2 ).32

This discussion helps make sense of our findings in Section 5.2.1 on the time series evolution of
the ES-SPY technical arbitrage opportunity. We found that the duration of arbitrage opportunities
declined steadily from 2005-2011, but that the total pie that high frequency traders compete for
has been roughly constant, fluctuating with market volatility but not exhibiting a time trend per
se.

Proposition 4 (Arms Race Prize is a Constant). The equilibrium bid-ask spread, s∗, and the total
prize associated with the arms race, λjump · Pr(J > s∗

2 ) · E(J − s∗

2 |J > s∗

2 ), are invariant to both
the cost of speed, cspeed, and the magnitude of speed differences, δ (= δslow − δfast).

Together, Proposition 4 and the empirical evidence in Section 5.2.1 suggest that the arms race
is best understood as a “constant” of the continuous limit order book market design rather than
as an inefficiency that is competed away over time.

6.3.4 Welfare Costs of the Arms Race: a Prisoner’s Dilemma amongst Market Mak-
ers

In the equilibrium derived above market makers earn zero profits, as they simply cover their costs
of speed technology. All of these expenditures on speed technology are in turn borne by investors,

31For example, Vanguard ETFs initially had bid-ask spreads that were noticeably wider than incumbent ETFs
for similar indices.

32Per (6.2), this total prize is equivalent to N∗cspeed, but it nevertheless is still invariant to cspeed: if cspeed is
low, then N∗ is commensurately high, and vice versa, so that in equilibrium N∗cspeed does not vary with cspeed
(nor with δ of course).
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via the bid-ask spread (cf. (6.3)). It is easy to see that this arrangement is socially inefficient –
even if investors are extremely impatient.

Formally, suppose that we hold fixed the number of market makers at the equilibrium level
of N∗, but eliminate the opportunity to invest in speed technology. Given this setup, there is an
equilibrium that is essentially identical to that described above. The bid-ask spread is s∗, just as
before, and the N∗ market makers sort into 1 liquidity-provider and N∗ − 1 stale-quote snipers,
just as before. The only difference is that now all market makers – both the liquidity provider
and the snipers – respond to changes in y with delay of δ. In this equilibrium, investors still get
to trade immediately, and still pay the same bid-ask spread cost of s

2 . So, the welfare of investors
is unchanged. The welfare of the N∗ market makers is strictly greater though, by cspeed per unit
time.

Hence, the decision by market makers to invest in speed can be interpreted as a prisoner’s
dilemma.33 The N∗ market makers would each be better off if they could collectively commit not
to invest in speed. But, each individual market maker has incentive to deviate and invest in speed,
which ultimately results in each of them earning zero profits in equilibrium.

Proposition 5 (Prisoner’s Dilemma). Social welfare would be higher by N∗ · cspeed if the market
makers could commit not to invest in speed technology, with these gains shared equally among the
N∗ market makers. But, each individual market maker has a dominant strategy incentive to invest
in speed, so this is not an equilibrium. The situation constitutes a prisoner’s dilemma with social
costs equal to the total expenditure on speed.

As we will see below, frequent batch auctions resolve this prisoner’s dilemma, and in a manner
that allocates the welfare savings to investors instead of market makers.

6.3.5 Relationship to the Efficient Markets Hypothesis

It is interesting to interpret the equilibrium derived above as it relates to the efficient markets
hypothesis.

33Biais, Foucault and Moinas (2013) make a conceptually similar point in the context of an abstract rational
expectations model in the style of Grossman and Stiglitz (1980). In their model, there is a single asset whose
common value component has a mean of µ and an idiosyncratic shock of either +ε or −ε, with equal probability;
there is also a private value component, which creates a reason to trade. Investors can pay a cost C to learn
the idiosyncratic shock before they engage in a single period of trading. Paying the cost also gives the investor
a higher probability of finding a trading opportunity in this single period of trading. Biais, Foucault and Moinas
(2013)’s key observation is that one investor’s paying the cost C generates negative externalities for other investors,
due to adverse selection, which can in turn create a reason for the other investors to also pay the cost C. This
can lead to inefficient overinvestment. Biais, Foucault and Moinas (2013) interpret this finding as equilibrium
overinvestment in speed, though one could interpret the result more broadly as equilibrium overinvestment in any
source of informational advantage.
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On the one hand, the market is highly efficient in the sense of instantaneously incorporating
news about the value of x into prices. Formally, the measure of times t ∈ [0, T ] where the bid-ask
spread for x does not contain the fundamental value y is zero.

On the other hand, a non-zero volume of trade is conducted at stale prices. Specifically, the
proportion of trade that is conducted at quotes that do not contain the fundamental value y is

λjump·Pr(J> s∗
2 )·N

∗−1
N∗

λjump·Pr(J> s∗
2 )·N∗−1

N∗ +λinvest
.

Hence, the market is highly efficient in time space but less so in volume space: a lot of volume
gets transacted at incorrect prices. This volume is in turn associated with rents from public
information about other securities’ prices, in violation of the weak-form efficient markets hypothesis
(cf. Fama, 1970).34 That said, while the weak-form EMH is violated in our model, there still is no
free lunch. Since the arbitrage profits induce costly entry, in equilibrium, fast traders’ economic
profits are zero.

Proposition 6 (Market Efficiency in Time Space but not Volume Space). In equilibrium, the
midpoint of the bid-ask spread is equal to the fundamental value yt with probability one. Neverthe-
less, a strictly positive proportion of trade, λjump·Pr(J> s∗

2 )·N
∗−1

N∗

λjump·Pr(J> s∗
2 )·N∗−1

N∗ +λinvest
, is conducted at quotes that

do not contain the fundamental value yt between the bid and the ask.

6.4 Market Thinness

Consider the model of Section 6.1 but modified so that investors sometimes need to buy or sell
more than 1 unit. Specifically, investors arrive to market at rate λinvest as before, but now they
need to transact a quantity q ∈ {1, . . . , q̄}, with p1 > 0 the probability that they need to transact
1 unit, p2 > 0 the probability that they need to transact two units, . . . , pq̄ > 0 the probability
that they need to transact q̄ units. As before, investors are equally divided between those needing
to buy or sell, and this is orthogonal to the quantity required.

Above, we assumed that investors transact only in market orders (more precisely, marketable
limit orders). Here, we make a stronger assumption, which is that investors transact in a single
market order, i.e., an investor who needs to transact k units does so in a single market order with
quantity k. We emphasize that such behavior is not optimal under the continuous limit order
book market: an investor with multi-unit demand will prefer to split his order into several smaller
orders (analogously to Kyle (1985); Vayanos (1999)). Instead, we view this assumption as allowing
us to illustrate a mechanical point about continuous limit order book markets, which is that it is
costly to provide a deep book.

34The citation for the 2013 Nobel Prize in economics asserted that asset prices are predictable in the long run
but “next to impossible to predict in the short run” (Committee, 2013). Our empirical and theoretical results show
that, in fact, prices are extremely easy to predict in the extremely short run.
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There is an equilibrium of this model similar to that in Section 6.2, in which the market makers
serve as both liquidity providers and stale-quote snipers, and are indifferent between the two roles
in equilibrium. As above, we can assign the roles among the market makers in an arbitrary
fashion. For expositional simplicity, we adopt the convention that market maker 1 serves as the
lone liquidity provider, providing all q̄ units of depth on each side of the market, with the other
market makers serving as stale-quote snipers. However we note that a more realistic approach
would be to have each market maker serve partly as liquidity provider and partly as stale-quote
sniper: since there are now 2q̄ limit orders present in the book at any given instance, there is
plenty of room for several market makers to split up the role of liquidity provider. Each such
market maker will want to snipe any stale quotes that are not his own.

In equilibrium, the liquidity provider does not offer all q̄ units of liquidity at the same bid-ask
spread, but instead offers a first unit of liquidity at a spread s1, a second unit of liquidity with
a strictly wider spread s2 > s1, a third unit of liquidity with a wider spread still of s3 > s2, etc.
The spread for the kth unit of liquidity, sk, is governed by indifference between liquidity provision
(LHS) and stale-quote sniping (RHS) at the kth level of the book:

λinvest ·
q̄∑
i=k

pi ·
sk
2 − λjump · Pr(J > sk

2 ) · E(J − sk
2 |J >

sk
2 ) · N − 1

N
(6.5)

= λjump · Pr(J > sk
2 ) · E(J − sk

2 |J >
sk
2 ) · 1

N

The LHS of (6.5) represents the benefits less costs of liquidity provision in the kth level of the
book. Notice that the second term on the LHS of (6.5), which describes the costs of getting sniped,
is exactly the same as the second term on the LHS of (6.1). This is because, if a quote becomes
stale, stale-quote snipers will attempt to pick off the liquidity provider for as much quantity as is
available at an advantageous price. Similarly, the RHS of (6.5), which represents the benefits of
sniping the kth level of the book, is exactly the same as the LHS of (6.2).

By contrast, except for the case of k = 1, the first term on the LHS of (6.5), which describes
the benefits of providing liquidity, is strictly smaller than the first term on the LHS of (6.5). This
is because only proportion ∑q̄

i=k pi of investors trade the kth level of the order book.
Intuitively, the benefits of providing liquidity scale sub-linearly with the quantity offered (only

some investors require a large quantity), whereas the costs of providing liquidity scale linearly
with the quantity offered (snipers will exploit stale quotes in the full quantity offered).35

The result is that the equilibrium bid-ask spread is wider for the second unit than for the
35A similar intuition is present in Glosten (1994), which derives bid-ask spreads that increase with quantity in a

model with asymmetric information. Our market thinness result is to Glosten (1994) as our bid-ask spread result
is to Glosten and Milgrom (1985).
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first unit, wider for the third unit than the second unit, etc. That is, the market is “thin” for
large-quantity trades.

Proposition 7 (Market Thinness). There exists a Nash equilibrium of the multi-unit demand
model analogous to the Nash equilibrium of the single-unit demand model. In this equilibrium, the
liquidity provider offers a single unit at bid-ask spread s∗1, a single unit at bid-ask spread s∗2, . . . , a
single unit at bid-ask spread s∗q̄, with spreads uniquely characterized by (6.5). Spreads are strictly
increasing,

s∗1 < s∗2 < · · · < s∗q̄

Hence, investors’ per-unit cost of trading is strictly increasing in order size.
The other comparative statics on bid-ask spreads are as follows. As in Proposition 3, bid-ask

spreads are wider, at all levels of the book, for securities with low λinvest and high λjump, and under
mean-preserving spreads of Fjump. Additionally, bid-ask spreads are wider at the kth level of the
book the rarer are orders of at least size k, that is, the lower is ∑q̄

k pk. As in Section 6.3.3, bid-ask
spreads do not depend on cspeed or δ.

Thus, not only is there a positive bid-ask spread in our model – even in the absence of asym-
metric information, inventory costs, etc. – but markets are unnecessarily thin too.

7 Frequent Batch Auctions as a Market Design Response

We propose frequent batch auctions as a market design alternative to continuous limit order books.
Section 7.1 defines frequent batch auctions. Section 7.2 shows why batching eliminates the HFT
arms race. Section 7.3 studies the equilibria of frequent batch auctions, and shows that batching
leads to narrower spreads, deeper markets and increased social welfare. Section 7.4 makes several
remarks concerning the equilibrium analysis.

7.1 Frequent Batch Auctions: Definition

Informally, frequent batch auctions are uniform-price sealed-bid double auctions conducted at
frequent but discrete time intervals, e.g., every 1 second. In this section we define frequent batch
auctions formally.

The trading day is divided into equal-length discrete intervals, each of length τ > 0. We will
refer to the parameter τ as the batch length and to the intervals as batch intervals. We refer
to a generic batch interval either using the interval, generically [0, τ ], or using the ending time,
generically t.
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At any moment in time during a batch interval, traders may submit offers to buy and sell
shares of stock in the form of limit orders and market orders. Just as in the continuous limit order
book, a limit order is simply a price-quantity pair, expressing an offer to buy or sell a specific
quantity at a specific price, and a market order specifies a quantity but not a price. Market
orders are interpreted as limit orders with the maximum allowable bid or minimum allowable ask,
both of which are assumed to be finite. In practice, price circuit breakers would determine what
constitutes these maximum and minimum amounts (e.g., the price in the previous batch auction
plus or minus some specified percentage). A single trader may submit multiple orders, which can
be interpreted as submitting a demand function or a supply function (or both). Traders may
withdraw or adjust their orders at any time during the batch interval. Orders are not visible to
other market participants during the batch interval, i.e., the auction is “sealed bid,” as described
below. Instead, orders are announced publicly after the auction is conducted.

At the conclusion of each batch interval, the exchange collates all of the received orders (i.e., it
“batches” the received orders), and computes the aggregate demand and supply functions out of all
bids and asks, respectively. The market clears where supply equals demand, with all transactions
occurring at the same price (i.e., at a “uniform price”).36 There are three possible cases to consider
for market clearing. In Case 1, supply and demand intersect horizontally or at a point, which pins
down a unique price p∗ and a maximum possible quantity q∗. In this case, offers to buy with bids
strictly greater than p∗ and offers to sell with asks strictly less than p∗ transact their full quantity,
at price p∗, whereas for bids and asks of exactly p∗ it may be necessary to ration one side of the
market to enable market clearing (see Figure 7.1 for an illustration).37,38 In Case 2, supply and
demand intersect vertically, pinning down a unique quantity q∗ and an interval of market-clearing
prices, [p∗L, p∗H ]. In this case, all offers to buy with bids weakly greater than p∗H and all offers to
sell with asks weakly lower than p∗L transact their full quantity, and the price is p∗L+p∗H

2 . Finally, in
Case 3, supply and demand do not intersect and the outcome is no trade.

As noted above, orders are not visible to other market participants during the batch interval.
This is important to prevent gaming.39 Instead, the exchange announces the aggregate supply and

36Uniform-price auctions were originally proposed by Milton Friedman in the 1960s, for the sale of US Treasury
bonds (Friedman, 1960).

37A simple rationing rule for use in practice would be to fill orders at price p∗ from earlier batch intervals first
and then ration pro-rata within the last batch interval filled. This encourages traders to let orders stand for longer
periods, improving market depth, but without introducing a speed race. Time priority is only relevant across batch
intervals, not within a batch interval.

38A reason to favor fine rather than coarse tick sizes is to reduce the likelihood of ties and hence the amount of
rationing. Fine tick sizes also allow for more accurate preference expression. However, a tick size that is too small
may result in needless gaming and computation to improve bids and asks by economically negligible amounts, just
as in the continuous market.

39For instance, a fast trader could place a large order to buy early in the batch interval, to create the impression
that there is a lot of demand to buy, only to withdraw the buy order right at the end of the batch interval and
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Figure 7.1: Illustration of Batch Auctions

Notes: This figure illustrates batch auctions. Individual bids and asks are batched at the end of the batching interval
to induce aggregate demand and supply curves. The aggregate demand and supply curves are step functions because
bids and asks are for a discrete quantity at a discrete price. The market then clears where supply equals demand.
If supply and demand do not intersect (the lowest ask is greater than the highest bid) then there is no trade. The
example in the figure depicts illustrative supply and demand curves based on one second of order book activity
in the market for ES, 9:59:28.000 to 9:59:28.999 on 2/4/2009. In the example depicted in the figure, the market
clearing price is 1315.75 and the market clearing quantity is 1338 contracts. It is possible to satisfy all demand
with bids weakly greater than 1315.75 and all supply with asks strictly less than 1315.75. Asks of exactly 1315.75
are rationed. This corresponds to Case 1 as described in Section 7.1; for more details, see the text.
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demand functions at the conclusion of each batch interval. We view this information disclosure
policy as analogous to current practice under the continuous limit order book market design, under
which new bids, asks, adjustments, withdrawals, etc., first are processed by the exchange, and then
the updated state of the limit order book is announced publicly.

7.2 Why and How Frequent Batch Auctions Eliminate the Arms Race

There are two reasons why frequent batch auctions eliminate (or at least substantially reduce) the
high-frequency trading arms race.

First, and most centrally, frequent batch auctions reduce the value of a tiny speed advantage.
Consider a situation with two market makers, one of whom is slow and observes yt with lag δslow,
and one of whom is fast and observes yt with lag δfast. Suppose the slow market maker attempts
to provide liquidity to investors, that is, to serve a role analogous to the liquidity provider in
Section 6.2. A slow market maker acting as liquidity provider is vulnerable to being sniped by the
fast trader if his quotes become stale. But, whereas in the continuous limit order book market
he would be vulnerable to being sniped by the fast trader for all jumps in y, here he is only
vulnerable to being sniped for jumps in y that occur at a very specific time in the batch interval.
The only circumstance under which there is a jump in y that the fast trader observes but that
the slow trader does not observe in time for the next batch auction is if the jump occurs in a
window of time of length δ = δslow − δfast, taking place from (τ − δslow, τ − δfast]. Any jumps in
y that occur during the window [0, τ − δslow] are observed by both the slow and the fast trader
before they must finalize their bids for the next batch auction. Similarly, any jumps in y that
occur during the window (τ − δfast, τ ] are observed by neither the fast nor the slow trader in time
for the auction at τ (both will have this information for the next auction). It is only jumps in
the window (τ − δslow, τ − δfast] that create asymmetric information, where the fast trader knows
something about y that the slow trader does not. Hence, the proportion of the trading day during
which jumps in y leave a slow liquidity provider vulnerable to being sniped is δ

τ
, which goes to

zero as τ grows large. See Figure 7.2 for an illustration. By similar reasoning, the proportion of
the trading day during which jumps in y leave a fast liquidity provider vulnerable to being sniped
is zero in our model.40

instead place a large order to sell.
40That fast traders are never sniped is an artifact of our stylized latency model. But, consider as well the

following more realistic latency model, which will lead to a substantively similar conclusion. Fast traders observe
each innovation in y with latency of δfast plus a uniform-random draw from [0, ε], where ε > 0 represents the
maximum difference in latency among fast traders in response to any particular signal. Now, a fast trader is
vulnerable to being sniped if (i) a jump in y occurs during the interval (τ − δfast − ε, τ − δfast), and (ii) this jump
occurs later than the fast trader’s random draw from [0, ε]. The proportion of a given batch interval during which
(i) and (ii) obtain is ε

2τ . Whereas δ, the difference in speed between a fast and a slow trader in practice would
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Figure 7.2: Illustration of How Batching Reduces the Value of Tiny Speed Advantages

Notes: τ denotes the length of the batch interval, δslow denotes the latency with which slow traders observe
information, and δfast denotes the latency with which fast traders observe information. Any events that occur
between time 0 and time τ − δslow are observed by both slow and fast traders in time for the next batch auction.
Any events that occur between τ − δfast and τ are observed by neither slow nor fast traders in time for the next
batch auction. It is only events that occur between τ − δslow and τ − δfast that create an asymmetry between slow
and fast traders, because fast traders observe them in time for the next batch auction but slow traders do not.
This critical interval constitutes proportion δ

τ of the trading day, where δ ≡ δslow − δfast. For more details see the
text of Section 7.2.

Second, and more subtly, frequent batch auctions change the nature of competition when there
are multiple fast traders: market makers compete on price not speed. To illustrate, suppose as
in the previous paragraph that there is one slow trader trying to provide liquidity to investors,
but that now there are N ≥ 2 fast traders interested in exploiting the liquidity provider’s stale
quotes. Suppose that there is a jump in yt during the critical interval (τ − δslow, τ − δfast] where
the fast traders see the jump but the slow traders do not. Concretely, suppose that the jump is
from y to y′, with y′ > y + s

2 , where s is the liquidity provider’s hypothetical bid-ask spread for
a unit of x. The slow trader’s quote for x is now stale: his ask price of y + s

2 is strictly lower
than the new value y′. But, consider what happens when multiple fast traders attempt to exploit
this stale quote. In the continuous limit order book market, when multiple fast traders attempt
to exploit a stale quote, the exchange processes whichever trader’s order happens to reach the
exchange first. (In our model in Section 6, all orders reach the exchange at exactly the same time,
and then the exchange processes them in a random order.) In the batch auction, so long as all
of the orders reach the exchange by the end of the batch interval, the market processes all of the
orders simultaneously – in batch, not serial – in its determination of the market-clearing price.
But, this means that competition among fast traders drives the price of x up to the new correct
level of y′. At any hypothetical market-clearing price p < y′, each fast trader strictly prefers to
deviate and bid a tiny amount more, so the only Nash equilibrium is for the fast traders to all bid
y′. In the continuous limit order book, competition drives fast traders to be ever so slightly faster
than the competition, so that they can be first to accept the stale quote at y + s

2 . In the batch
auction, competition simply drives the price up to to the correct level of y′.

be measured in milliseconds (e.g., 3 milliseconds in the Spread Networks example mentioned in the introduction),
the parameter ε would in practice be measured in microseconds (millionths of a second). Hence, even for short
batch intervals, the proportion ε

2τ is very small. For example, if ε is 100 microseconds and τ is 1 second, then
ε

2τ = 0.00005.
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Another way to put this second point about the nature of competition under batch auctions is
as follows. In the continuous limit order book market, fast traders can earn a rent for information
that is widely available to other market participants – e.g., changes in the price of ES which affect
the value of SPY – so long as they observe and act on the information ever so slightly faster than
the other fast traders (cf. Hirshleifer, 1971). In the continuous market, someone is always first.
In the batch auction, traders can only earn a rent from information that only they have access
to – more precisely, information that they develop in time for the end of the batch interval, and
that no other traders have by the end of the batch interval. With batch intervals of, say, 1 second,
there is still plenty of scope for market participants to develop genuinely asymmetric information
about security values, for which they will earn a rent. But, batching eliminates paying a rent for
trivial information that many market participants observe at basically the same time.41

We summarize this discussion as follows:

Proposition 8 (Batching Eliminates Sniping). Consider a frequent batch auction set in the model
of Section 6.1.

1. The proportion of the trading day during which jumps in y leave a slow liquidity provider
vulnerable to being sniped by a fast trader is δ

τ
.

2. The proportion of the trading day during which jumps in y leave a fast liquidity provider
vulnerable to being sniped is 0.

3. If there are N ≥ 2 fast traders exogenously in the market, and there is a slow liquidity
provider with a vulnerable stale quote – i.e., there is a jump in y during (yτ−δslow

, yτ−δfast
]

such that yτ−δfast
is either greater than the slow liquidity provider’s ask or less than the bid

– then Bertrand competition among the fast traders drives the batch auction price of x to
yτ−δfast

. As a result, the liquidity provider does not lose money from the stale quote.

By contrast, in the continuous limit order book:

1. The proportion of the trading day during which jumps in y leave a slow liquidity provider
vulnerable to being sniped by a fast trader is 1.

41This discussion relates to several recent controversies regarding the timed release of market-moving data (e.g.,
Fed announcements, consumer confidence reports, jobs reports, etc.). To illustrate, consider the Federal Reserve
FOMC’s “no taper” announcement issued on 9/18/2013 at 2:00:00.000pm. The public debate in the aftermath
of this announcement concerned whether the reaction by trading algorithms to this announcement was as fast as
legally possible or faster than legally possible – since the news originated in DC, and it takes information around
5 milliseconds to travel from DC to Chicago, there should not have been a reaction to the news in Chicago until
2:00:00.005pm, but there was picking-off activity sooner than that (Nanex, 2013a). Our point is that, whether or not
the reaction was legal, this kind of public information, observable to many market participants at exactly the same
time, should not earn a rent. If the next trading opportunity were a batch auction conducted at 2:00:01.000pm,
the auction would have discovered a price that reflected the public “no taper” information, without any picking-off
rents.
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2. A fast liquidity provider is sniped for proportion N−1
N

of sufficiently large jumps in y, where
N is the number of fast traders present in the market. This is the case even though he
observes jumps in y at exactly the same time as the other N − 1 fast traders.

3. If there are N ≥ 2 fast traders present in the market, and there is a slow liquidity provider
with a vulnerable stale quote – i.e., there is a jump in y at time t such that yt is either
greater than the slow liquidity provider’s ask or less than the bid – then whichever of the
N fast traders’ orders is processed by the exchange first transacts at the stale quote. The
liquidity provider loses money from the stale quote.

7.3 Equilibrium of Frequent Batch Auctions

The discussion in Section 7.2 showed that frequent batch auctions eliminate (or at least substan-
tially reduce) the HFT arms race, both by reducing the value of tiny speed advantages and by
transforming competition on speed into competition on price. In this section we study how this in
turn translates into equilibrium effects on bid-ask spreads, market depth, and social welfare. We
study the equilibria of frequent batch auctions for three cases. In the first case, the number of fast
market makers is exogenous. In the second case, entry is endogenous and the batching interval
is short enough that equilibrium still involves a fast liquidity provider. In the third case, entry
is endogenous and the batching interval is long enough that liquidity is provided by slow market
makers. We discuss the relationship among these equilibria and make some clarifying remarks in
Section 7.4.

7.3.1 Model

We study the equilibria of frequent batch auctions using the model of Section 6.1 that we used
to study the continuous limit order book, with one modification. In the model of Section 6.1,
investors arrive according to a Poisson process with arrival rate λinvest. In the context of the
continuous limit order book market, the Poisson process makes an implicit finiteness assumption,
because the probability that more than one investor arrives at any instant is zero. Here, we need
to make an explicit finiteness assumption. Specifically, we assume that investors continue to arrive
according to a Poisson process, and continue to be equally likely to need to buy or sell a unit, but
we assume that the net demand of investors in any batch interval – number who need to buy less
number who need to sell – is bounded. Formally, let A(τ) denote the random variable describing
the number of investors who arrive in a τ batch interval, and let D(τ) denote the random variable
describing their net demand. We assume that there exists a Q̄ <∞ such that the support of D(τ)
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is bounded by Q̄− 1. We view this assumption as innocuous so long as Q̄ is large relative to the
standard deviation of the Poisson arrival process,

√
τλinvest.

7.3.2 Exogenous Number of Fast Market Makers

We begin by considering the case where the number of fast market makers is exogenously fixed at
N ≥ 2. More precisely, there are N ≥ 2 market makers who are exogenously constrained to pay
the cost cspeed, and hence regard the cost as sunk. An interpretation is that this case represents
the transition from continuous limit order books to frequent batch auctions – the N fast market
makers are those who have invested in speed under the continuous limit order book design.

As discussed in Section 7.2, fast market makers are invulnerable to sniping in our model
(cf. footnote 40). Hence, their variable cost of providing liquidity is zero, and there exists an
equilibrium in which each fast market maker offers the maximum necessary depth, Q̄, at zero
bid-ask spread.

Proposition 9 (Equilibrium of Frequent Batch Auctions with Exogenous Number of Market
Makers). Suppose that there are N ≥ 2 fast market makers exogenously present in the market.
Then there exists a Nash equilibrium in which each fast market maker acts as a liquidity provider,
offering depth of Q̄ at zero bid-ask spread. As compared to the equilibrium of the continuous limit
order book market, the effects of batching in this equilibrium are as follows:

1. The bid-ask spread for the first-quoted unit is narrower: it is 0 instead of N∗·cspeed

λinvest
.

2. The market is deeper: the order book has depth of Q̄ at zero spread, whereas in the baseline
model of the continuous limit order book just a single unit is offered in the order book, and in
the extended model considered in Section 6.4 the bid-ask spread grows wider with the quantity
traded.

Notice that in this equilibrium fast market makers do not recoup cspeed. This suggests that
there will be only 0 or 1 fast market makers once we allow for endogenous entry.

7.3.3 Endogenous Entry: Short Batch Intervals

We now consider endogenous entry into speed. In this section we seek an equilibrium in which
there is one fast market maker who serves as liquidity provider and zero other fast market makers.
We will show that such an equilibrium exists provided that the batch interval τ is small.

In this equilibrium, a single market maker pays cspeed and serves as a liquidity provider to
investors. His role is analogous to that in the equilibrium of Section 6.2, with two key differences.
First, he no longer has to worry about getting sniped. Second, while in Section 6.2 the liquidity
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provider could service all investor demand by maintaining a limit order book of depth one –
whenever an investor arrived to market and accepted the bid or the ask, the liquidity provider
immediately replenished the bid or the ask – here he will have to provide a deeper book in order
to service all investor demand. Specifically, let s1 represent the bid-ask spread charged if the
absolute value of net demand, |D|, is equal to 1; this corresponds to an ask for a single unit at
price yτ−δfast

+ s1
2 and a bid for a single unit at a price yτ−δfast

− s1
2 , where yτ−δfast

is the value of
the signal y as perceived by the fast trader as of the end of the batching interval τ . Let s2 ≥ s1

represent the bid-ask spread charged if |D| = 2, which corresponds to an ask for a single unit at
price yτ−δfast

+ s2
2 and a bid for a single unit at a price yτ−δfast

− s2
2 ; this way, if net demand from

investors is |D| = 2, it is either yτ−δfast
+ s2

2 or yτ−δfast
− s2

2 that clears the market. Similarly, for
s3, s4, . . . . The liquidity provider’s benefits from providing liquidity, on a per-batch period basis,
are

Q̄∑
d=1

Pr(|D| = d) · d · sd2

The liquidity provider’s cost of providing liquidity, on a per-batch period basis, is τcspeed. We
construct an equilibrium in which the liquidity provider recovers his costs and a strictly positive
but arbitrarily small profit of ε > 0 per unit time, i.e.,

Q̄∑
d=1

Pr(|D| = d) · d · sd2 = τ(cspeed + ε) (7.1)

If we consider the limit as τ → 0+ and ε→ 0+, then we can obtain an instructive closed-form
solution to (7.1). For τ short, the probability that there is 1 investor can be approximated as
Pr(|D| = 1) = τλinvest, and hence the benefits from providing the first unit of liquidity can be
approximated as τλinvest · s1

2 . Hence, in the limit as τ → 0+ and ε→ 0+, any solution to (7.1) has
a bid-ask spread for the first unit of

s1

2 = cspeed
λinvest

. (7.2)

In particular, a constant spread of sd

2 = cspeed

λinvest
for all d is a solution to (7.1) in the limit.

Comparing the bid-ask spread under fast batching (7.2) to the bid-ask spread under continuous
limit order books (6.1), we see that batching reduces the bid-ask spread by a term, λjump ·Pr(J >
s
2)·E(J− s

2 |J >
s
2)· N−1

N
, that represents the cost to the liquidity provider in continuous limit order

books associated with being sniped by other fast traders. Alternatively, comparison to (6.3) shows
that batching reduces the spread by (N−1)cspeed

λinvest
, which represents the welfare gain from reduced

expenditure on cspeed as it manifests in the bid-ask spread.
In Appendix A.10 we show that a single fast liquidity provider offering spreads consistent with

7.1 constitutes a Nash equilibrium for τ sufficiently small. There are two key observations in the
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proof. First, for τ sufficiently small, it will not be profitable for a slow market maker to enter the
market and undercut the spread offered by the fast market maker. Intuitively, for τ sufficiently
small, the slow market maker is nearly as vulnerable to getting sniped by the fast trader as in the
continuous limit order book case, but his benefits from undercutting the fast trader are smaller
than in the continuous limit order book case, since the fast trader offers a narrower bid-ask spread.
Second, the fast liquidity provider will be tempted to deviate and charge a larger bid-ask spread
than is prescribed by (7.1), but we can discipline against this using the off-path play of a potential
entrant. The role of the strictly positive profits ε in (7.1) is to ensure that the incumbent finds it
optimal not to provoke entry.42

We summarize this equilibrium as follows.

Proposition 10 (Equilibrium of Batch Auctions with Short Batch Intervals). If the batching
interval τ is sufficiently small, then there exists a Nash equilibrium of the frequent batch auction
market in which there is one fast market maker who serves as liquidity provider, offering bid-ask
spreads consistent with (7.1), and zero other fast market makers. As compared to the equilibrium
of the continuous limit order book market, the effects of batching are as follows:

1. The bid-ask spread for the first-quoted unit is narrower: in the limit as τ → 0+ and ε→ 0+,
the bid-ask spread is cspeed

λinvest
instead of N∗·cspeed

λinvest
.

2. The market is deeper: in the limit, there exists an equilibrium in which the order book has
depth of Q̄ at spread cspeed

λinvest
, whereas in the baseline model of the continuous limit order book

just a single unit is offered in the order book, and in the extended model considered in Section
6.4 the bid-ask spread grows wider with the quantity traded.

3. Social welfare

(a) benefit: expenditure on speed is reduced by (N∗− 1) · cspeed per unit time, independently
of τ .

(b) cost: investors pay expected delay costs of 1
τ

´ τ
0 fdelaycost(x)λinvestdx per unit time. As τ

grows small, these costs go to zero per unit time.

42This contestability aspect of our equilibrium has the following practical interpretation. In practice, with short
batch intervals, we would expect there to be multiple fast market makers, each specializing in liquidity provision in
many different markets. Entry into market making involves both the costs of speed and the costs of understanding
each particular market that one enters (in our model this second cost is moot since y is a perfect signal of x’s
value). If observed bid-ask spreads in any one market are abnormally large, that will attract attention from HFT
firms not currently specializing in that market, who then would invest in understanding that market.
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7.3.4 Endogenous Entry: Long Batch Intervals

In this section we show that if the batch interval τ is sufficiently large, there is an equilibrium
with zero entry by fast traders. Liquidity is provided to investors entirely by slow market makers
(i.e., market makers who do not pay cspeed), at zero bid-ask spread.

Suppose that slow market makers in aggregate provide Q̄ of depth for x at zero bid-ask spread.
More precisely, Q̄ slow market makers enter, and each offers a bid and an ask for a single unit at
yτ−δslow

, where τ represents the end time of a generic batch interval, and yτ−δslow
represents the

best available information for a slow trader about the value of security x.
A potential entrant considers whether to invest cspeed to be fast, with the aim of picking off this

Q̄ of depth in the event that there is a jump in y in the time interval (τ − δslow, τ − δfast], which
the fast trader will get to observe while the slow traders will not. If there are Q̄ units of depth in
the limit order book, and there is, say, a positive jump, the fast trader will wish to buy all Q̄ units
at the stale ask prices. If the imbalance D of investors – number of orders to buy minus orders
to sell – is positive, then the amount that the fast trader can transact will be smaller than Q̄ by
the amount D, because the investors will outbid him for D of the Q̄ units. On the other hand,
if the imbalance D is negative, the fast trader can transact not just the Q̄ units offered by the
slow market makers, but can also satisfy the imbalance. He can achieve this by submitting a large
limit order to buy at a price slightly larger than yτ−δslow

, so that he purchases all Q̄ units at the
ask of yτ−δslow

as well as satisfies the D net market orders to sell. Hence, the fast trader transacts
an expected quantity of Q̄ units in any batch interval where there is an exploitable jump.

Let pjump denote the probability that there are one or more jumps in y in the δ interval, and
let J ′ denote the random variable describing the total jump amount in a δ interval, conditional
on there being at least one jump. Since the probability of multiple jumps in a δ interval is small,
pjump ≈ δλjump and E(J ′) ≈ E(J). The fast trader’s expected profits from exploiting the liquidity
provider, on a per-unit time basis, are thus pjump

τ
E(J ′) · Q̄ ≈ δ

τ
· λjumpE(J) · Q̄. Note that a

difference versus the analogous expression in (6.2) is that the bid-ask spread is now zero, so any
jump can be profitably exploited, in the full jump size amount. The fast trader’s costs per unit
time are cspeed. Hence, the fast trader will find it optimal not to enter provided that, using the
approximations above,

δ

τ
· λjump · E(J) · Q̄ < cspeed (7.3)

The fraction δ
τ
is the proportion of time that the fast trader sees jumps in y that the slow

traders do not see in time (see Figure 7.2), and these jumps occur at rate λjump. The LHS of
(7.3) is thus increasing in δ, the fast trader’s speed advantage, but decreasing in τ , the batch
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interval. Intuitively, in a long batch interval, most jumps occur at times where both the fast and
slow traders are able to react in time.

For any finite Q̄, equation (7.3) is satisfied for sufficiently large τ . Hence, any desired market
depth can be provided by slow traders at zero cost if the batch interval τ is sufficiently large.
Moreover, the maximum depth Q̄ consistent with (7.3) grows linearly with τ , whereas the expected
imbalance of investor demand in a batch interval grows at rate

√
τ .

We summarize the derived equilibrium as follows.

Proposition 11 (Equilibrium of Batch Auctions with Long Batch Intervals). If the batching
interval τ is sufficiently large, then there exists a Nash equilibrium of the frequent batch auction
market in which slow market-makers offer depth Q̄ at zero bid-ask spread. As compared to the
equilibrium of the continuous limit order book market, the effects of batching are as follows:

1. The bid-ask spread for the first-quoted unit is narrower: it is 0 instead of N∗·cspeed

λinvest
.

2. The market is deeper: the order book has depth of Q̄ at zero bid-ask spread, whereas in the
baseline model of the continuous limit order book just a single unit is offered in the order
book, and in the extended model considered in Section 6.4 the bid-ask spread grows wider
with the quantity traded.

3. Social welfare

(a) benefit: expenditure on speed is eliminated entirely, for a welfare savings of N∗ · cspeed
per unit time.

(b) cost: investors pay expected delay costs of 1
τ

´ τ
0 fdelaycost(x)λinvestdx per unit time.

7.4 Discussion of the Equilibria

In this section we make four remarks concerning the equilibria of frequent batch auctions.
First, it is instructive to compare the equilibrium under short batch intervals (Section 7.3.3)

to the equilibrium both under continuous limit order book markets (Section 6.2) and to the
equilibrium under longer batch intervals (Section 7.3.4). The first comparison indicates that
moving from continuous limit order book markets to frequent batch auctions with short batch
intervals has several important benefits and negligible costs. The benefits are that spreads are
narrower, markets are deeper, and expenditure on speed is substantially reduced. The cost is that
investors must wait a strictly positive amount of time to transact, but with short batch intervals
this cost intuitively seems small. The second comparison indicates that increasing the duration of
the batch interval has additional benefits – spreads are even narrower, and expenditure on speed is
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eliminated altogether – but also real costs, as now investors must wait a non-negligible amount of
time to transact. While stylized, we think that this analysis captures the relevant market design
tradeoffs. The first comparison suggests that moving from continuous limit order books to frequent
batch auctions with short τ is clearly beneficial for social welfare. The second comparison suggests
that determining just how long to make τ is a more difficult market design decision, as increasing
τ has real benefits but also real costs. Studying the optimal τ is an important direction for future
research, and would benefit from a model tailored to study of this issue.43

Second, the case we studied in Section 7.3.2, in which the number of fast traders is exogenously
fixed, is instructive for thinking about the potential transition from continuous limit order books
to frequent batch auctions. This case suggests that transitioning to frequent batch auctions will
narrow spreads and improve depth for investors immediately, even if there are a large number
of market making firms with substantial sunk cost investments in speed technology operating in
the market. Under the continuous market, competition among fast market makers manifests in a
race to snipe each other, which increases the cost of providing liquidity and ultimately the bid-ask
spread. Under the batched market, at least in this simple model, competition among fast market
makers manifests in a race towards narrower spreads and deeper markets for investors.

Third, we emphasize that the conclusion in Propositions 9 and 11 that bid-ask spreads are zero
should not be taken literally. In particular, the reader should keep in mind that in the model of
Section 6 we make several strong assumptions – no asymmetric information about fundamentals,
no inventory or search costs – under which economic logic suggests that the market really should
be able to provide effectively infinite depth at zero cost. In practice, of course, we would not expect
frequent batch auctions to yield zero bid-ask spreads, in particular due to asymmetric information
about fundamentals. But we would expect that spreads are narrower than under the continuous
limit order book case, because we have eliminated the purely technical cost of providing liquidity
associated with stale quotes getting sniped.

Last, the conclusion in Proposition 10 that there is exactly one fast trader also should not

43There are at least two other potential welfare benefits of batching that are outside our model. Wah and
Wellman (2013) use a zero-intelligence agent-based simulation model to argue that frequent batching may lead
to a more efficient match between supply and demand, if traders’ valuations are heterogeneous. Considering a
supply-demand diagram such as Figure 7.1, the intuition in their simulation is that batching makes it more likely
that trade occurs at prices at or close to p∗, and hence that only buyers with values larger than p∗ and sellers with
costs less than p∗ get to trade. Fuchs and Skrzypacz (2013) study a dynamic market with asymmetric information
about fundamentals, and show that continuous trading can exacerbate the lemons problem. In their model, if there
is asymmetric information at time 0 that will be resolved at time T , it can be socially efficient to restrict trading to
occur only at times {0, T} rather than to allow continuous trading throughout the interval [0, T ]. If we interpret T
as the duration of the information asymmetries that are exploitable by high-frequency trading firms, the Fuchs and
Skrzypacz (2013) result can be interpreted as support for frequent batching. There also may be costs of batching
that are outside our model. As discussed in the introduction, an important reason for keeping the batch interval
short is to reduce the scope for such costs to arise.
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be interpreted literally. Rather, we view the fact that the number of fast traders decreases from
N∗ to 1 as a metaphor for reduced expenditure on speed under batching (cf. footnote 42). Put
differently, we encourage the reader to focus not on the reduction in the number of fast market
makers from N∗ to 1, but instead on the reduction in total expenditure on speed from N∗ · cspeed
to cspeed.

8 Frequent Batch Auctions and Market Stability

Our theoretical argument for batching as a response to the HFT arms race focuses on bid-ask
spreads, market depth, and socially wasteful expenditure on speed. Practitioners and policy
makers have argued that another important cost of the HFT arms race is that it is destabilizing
for financial markets, making the market more vulnerable to extreme events such as the Flash
Crash.44 In this section we outline several reasons why frequent batch auctions may enhance
market stability relative to the continuous limit order book market design. These arguments are
necessarily informal, but we include them due to the importance of the subject. As we note in the
conclusion, we believe that market stability is an important topic for further research.

First, frequent batch auctions are computationally simple for the exchanges. Uniform-price
auctions are fast to compute,45 and exchange computers can be allocated a discrete block of time
during which to perform this computation.46 By contrast, in the continuous limit order book
market design, exchange computers are not allocated a block of time during which to perform
order processing, but instead process orders and other messages in serial order of their arrival.
While processing any single order is computationally trivial, even a trivial operation takes non-
zero computational time, which implies that during surges of activity there will be backlog and
processing delay. This backlog can lead to confusion for trading algorithms, which are temporarily
left uncertain about the state of their own orders and the state of the limit order book. Moreover,
backlog is most severe at times of especially high market activity, when reliance on low-latency

44Duncan Niederauer, CEO of NYSE Euronext, testified to Congress in June 2012 that “there is reason for
Congress and the SEC to be concerned that without action, we leave ourselves open to a greater loss of investor
confidence and market stability. To solve the problem, policymakers should focus on establishing fairer and more
transparent equity markets, as well as a more level playing field among trading centers and investors.” (Niederauer,
2012) See also the report on the regulatory response to the Flash Crash prepared by the Joint CFTC-SEC Advisory
Committee on Emerging Regulatory Issues (SEC and CFTC, 2010).

45Formally, the processing time of the uniform-price auction is O(n logn), where n is the number of orders.
Sorting bids and asks to compute the demand and supply curve is O(n logn) (Cormen et al., 2009), and then
walking down the demand curve and up the supply curve to compute the market clearing price is O(n). We also
ran some simple computational simulations of uniform-price auctions, using randomly generated bids and asks, on
a laptop using C++. We found that a uniform-price auction with 250,000 orders – the rate of messages per second
during the flash crash according to a Nanex analysis (2011) – clears in about 10ms.

46For instance, with a 1 second batch interval, the first 100ms of each batch interval could be allocated to the
exchange computers for computing and reporting outcomes from the previous batch interval.
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information is also at its highest; Facebook’s initial public offering on NASDAQ and the Flash
Crash are salient examples (Strasburg and Bunge, 2013; Nanex, 2011; Jones, 2013).

A second benefit of frequent batching is that it gives algorithmic traders a discrete period
of time to process recent prices and outcomes before deciding on their next trades. That is,
algorithms can observe all of the relevant information from the time t batch auction, process it,
and then decide on their actions in the time t+ 1 batch auction. By contrast, in the continuous-
time market, trading algorithms cannot be sure what information they will have at each decision
point, because of the small and somewhat random latencies involved in receiving price and trade
updates from the exchanges. Additionally, in the continuous-time market, algorithmic traders are
incentivized to trade off code robustness for speed, because error-checking takes time and even
tiny speed advantages can matter.47 While batching certainly cannot prevent trading firms from
making programming errors (e.g., the Knight Capital incident of August 2012, see Strasburg and
Bunge (2012)), it does reduce the incentive to sacrifice robustness for speed, and it makes the
programming environment more natural, since code can be written with certainty about when
information will arrive and by when decisions must be made.

Third, frequent batch auctions improve the paper trail for regulators and other market ob-
servers. The regulatory authorities can observe exactly what happened at time t, at time t + 1,
etc. In a continuous-time market the paper trail can be much less clear, because the relationship
between the time an order is submitted and the time it is processed by the relevant exchange is
stochastic, due to backlog, and because the sequence of time stamps across exchanges may not
reflect the actual sequence of events, due to varying processing delays across exchanges. It took
months of analysis for regulators to understand the basic sequence of events that caused the Flash
Crash (SEC and CFTC, 2010), and even today our understanding of that day’s events remains
incomplete.

Last, the theoretical results that show that batching leads to thicker markets (cf. Propositions
7, 9, 10 and 11) can also be interpreted as suggesting that batching enhances market stability, since
thin markets may be more vulnerable to what have come to be known as “mini flash crashes”.48

In a sense, continuous markets implicitly assume that computers and communications are
47An interesting and analogous example is the use of microwave connections between New York and Chicago

instead of high-speed fiber optic cable, as mentioned in the introduction. Microwaves are faster, shaving round-trip
data transmission time from 13ms to 8.5ms, but they are less reliable, especially during adverse weather conditions
(Adler, 2012).

48An example of what the press refers to as a mini flash crash occurred in the shares of Google on 4/22/2013.
Google shares fell from $796 to $775 in roughly 0.75 seconds and then recovered to $793 within another second
(Russolillo, 2013). Similar incidents occurred in the shares of Symantec on 4/30/2013 (Vlastelica, 2013) and in the
shares of Anadarko on 5/17/2013 (Nanex, 2013b). A reporter for CNNMoney wrote in March 2013 “There may
not have been any major market malfunctions recently, but mini flash crashes still happen nearly every day. Stock
exchanges don’t publicly release data about these mini crashes – when a stock rapidly plunges then rebounds – but
most active traders say there are at least a dozen a day.” (Farrell, 2013)



57

infinitely fast. Computers are fast but not infinitely so. The arms race for speed has made
continuous markets vulnerable to instabilities that arise from the limitations of computing speed.
Frequent batching in contrast respects the limits of computers.

9 Conclusion

This paper argues that the continuous limit order book is a flawed market design and proposes that
financial exchanges instead use discrete-time frequent batch auctions – uniform-price sealed-bid
double auctions conducted e.g. every 1 second. To recap, our basic argument is as follows. First,
we show empirically that continuous limit order book markets do not really “work” in continuous
time: market correlations completely break down at high-frequency time scales. Second, we show
that this correlation breakdown creates technical arbitrage opportunities, available to whomever
is fastest, which in turn incentivizes HFT firms to spend large sums of money on seemingly tiny
speed advantages. Our empirical evidence suggests that the arms race profits should be thought
of more as a constant of the continuous limit order book market design, rather than as a prize
that is competed away over time. Third, we build a simple theoretical model guided by these
empirical facts. We show that the arms race not only is intrinsically wasteful (like all arms races),
but moreover that it leads to wider bid-ask spreads and thinner markets. Last, we show that
discretizing the market eliminates the arms race, which in turn narrows spreads, enhances market
depth and improves social welfare. Batching makes tiny speed advantages much less valuable. For
example, if the batching interval is 1 second then a speed advantage of 1 millisecond is only 1

1000 as
useful as in the continuous market. Batching also changes the nature of competition, encouraging
competition on price instead of on speed. Under the batched market, it no longer is possible to
earn a rent from information that everyone in the market observes at basically the same time – a
rent that ultimately comes out of the pockets of investors.

We leave open for future research several questions that relate to the practical implementation
of frequent batch auctions. Most centrally, we do not attempt in this paper to calibrate the optimal
batch interval. Other important practical implementation questions include the determination of
optimal tick sizes, whether and in what form to include circuit breakers, and information policy.
Other things equal, we think that a useful principle to follow for practical implementation is to
minimize departure from current practice, subject to realizing the benefits of batching relative to
continuous limit order books.

A second important question for future research concerns the nature of competition among
exchanges. Suppose that some exchanges switch to frequent batch auctions while other exchanges
continue to use continuous limit order books: what is the equilibrium? We note that this question
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may be related to the question of the optimal batch interval; in particular, the potential threat
of competition from other exchanges may be a force that suggests that batch intervals should be
kept relatively short. This question may also have implications for regulatory policy.

A third important topic is to better understand issues of market stability. We discussed several
reasons in Section 8 why frequent batching may enhance market stability relative to continuous
limit order books; in particular, discretization respects the limits of computers and communications
technology whereas continuous-time limit order books are computationally unrealistic. However,
our arguments in Section 8 were speculative and informal in nature. Further research is needed,
especially given the emphasis that practitioners and policy makers place on market stability.
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A Appendix: Proofs

A.1 Proof of Proposition 1

To complete the argument that the behavior described in Section 6.2 and Proposition 1 constitutes
a Nash equilibrium, we make the following observations.

First, investors are optimizing given market-maker behavior. Investors have no benefit to
delaying trade, since the bid-ask spread s∗ is stationary, y is a martingale, they are risk neutral, and
their costs of delay are strictly increasing. Hence, it is optimal for investors to trade immediately.
Also, it is optimal for investors not to pay the cost cspeed to be fast. Suppose the investor arrives
in the market at time t. Even though her own information about y is slightly stale – she knows
yt−δslow

but does not know yt – the liquidity provider’s information is not stale, and the liquidity
provider’s quotes are based on yt not yt−δslow

(recall that we normalized δfast = 0, so yt−δfast
= yt).

Furthermore, the liquidity provider’s bid-ask spread is stationary as well.49 Hence, the investor
derives no benefit from paying the cost cspeed.

Second, let us confirm that the liquidity-provider’s behavior is optimal given the behavior of
investors and the stale-quote snipers. If the liquidity provider does not pay cspeed but otherwise
acts as above, then his benefits from providing liquidity remain λinvest · s

∗

2 , but his costs increase
to λjump ·Pr(J > s∗

2 ) ·E(J − s∗

2 |J >
s∗

2 ), because instead of getting sniped with probability N−1
N

he
is sniped with probability 1. Put differently, his costs increase by λjump ·Pr(J > s∗

2 ) ·E(J− s∗

2 ) · 1
N
.

Inspection of equation (6.2) reveals that this increase in costs of getting sniped is exactly offset
by the liquidity-provider’s savings from not paying cspeed, hence the liquidity provider does not
benefit from deviating to not pay cspeed. If at any moment in time the liquidity provider offers a
wider bid-ask spread, s′ > s∗, then one of the other market makers will want to offer a spread
s′′ that satisfies s′ > s′′ > s∗: the analysis above confirms that this would yield strictly positive
profits. If the liquidity provider offers a narrower bid-ask spread, s′ < s∗, then her profits are
strictly lower than they are with a spread of s∗, so this is not an attractive deviation either. Last,
if the liquidity provider offers more than a single unit of quantity at the bid or ask, her benefits
of providing liquidity stay the same (as it is, she satisfies all investor demand) but her costs of
getting sniped will strictly increase, since she would get sniped for the full quantity. (See further
discussion of this point in Section 6.4, when we generalize the model to include investors who
demand multiple units).

Third, let us confirm that each stale-quote sniper’s behavior is optimal given the behavior of
the investors, the liquidity-provider, and the other stale-quote snipers. If a sniper does not pay
cspeed then he will never successfully snipe, so sniping without being fast has zero benefits and
zero costs. Hence, this is not an attractive deviation. Offering quotes narrower than the liquidity
provider’s quotes is not an attractive deviation, since such a deviation would yield negative profits
per the analysis above. Offering quotes that are wider is not an attractive deviation, since such
quotes have costs (of getting sniped) but no benefits. Last, offering quotes that are the same
as the liquidity provider’s is not an attractive deviation. More specifically, if the sniper’s quotes
reach the order book first (i.e., he wins the random tie-breaking against the liquidity provider’s

49One might expect that the liquidity provider will attempt to exploit an investor who happens to arrive to
market in the interval between a change in the value of y and the time when this change is observable to investors.
For instance, if y just jumped down in value, the liquidity provider might hope to sell to an investor at the old value
of y (plus s

2 ). This is not possible in equilibrium, however, because then other market makers would no longer be
indifferent between sniping and liquidity provision. They would prefer to offer more attractive quotes to investors.
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quotes) then he is simply playing the role of the liquidity provider (the original liquidity provider,
off path, will remove his quotes and become a sniper), and equations (6.1) and (6.2) establish that
this is not strictly preferred to the original strategy. If the sniper’s quotes reach the order book
second, then such quotes derive less benefit than the quotes that are first – quotes that are second
in time priority only get to transact if there are multiple investor arrivals before the next jump in
y – but have the same sniping costs as the quotes that are first in time priority. So, this is not a
profitable deviation either.

Last, we need to confirm that non-entrants cannot enter the market in a way that is profitable.
If an entrant pays the cost cspeed to be fast and then enters the market as a stale-quote sniper,
he will not recover his costs. If an entrant pays the cost cspeed to be fast and enters as a liquidity
provider offering the same quotes as the original liquidity provider, then his quotes will reach the
order book first only half the time, so he will not earn enough profits from trading with investors
to recover his capital costs. The arguments above establish that he will not want to enter with a
narrower or wider bid-ask spread than s∗. Last, if he enters as a market maker but does not pay
cspeed, then sniping has both zero benefits and zero costs, and liquidity provision at any spread,
given that there is already a liquidity provider offering s∗, has larger costs than benefits.

A.2 Proof of Proposition 2

The proposition follows immediately from (6.4), which characterizes s∗ and does not depend on δ
or cspeed. See also the text of Section 6.3.1.

A.3 Proof of Proposition 3

The proposition follows immediately from (6.4), noting that Pr(J > s
2) ·E(J − s

2 |J >
s
2) is strictly

decreasing in s and is strictly increasing in mean-preserving spreads of Fjump (recall that J is the
distribution of the absolute value of Fjump, and that Fjump is symmetric about zero).

A.4 Proof of Proposition 4

The claim that s∗ is invariant to δ or cspeed follows immediately from (6.4). The claim that the
total prize in the arms race is invariant to δ or cspeed follows from the preceding claim regarding s∗
and the observation that, but for s∗, the other parameters in λjump ·Pr(J > s∗

2 ) ·E(J − s∗

2 |J >
s∗

2 )
are exogenous.

A.5 Proof of Proposition 5

Formally, there are N∗ market makers, each of whom must choose the action fast or slow. If all
N∗ market makers choose slow, they each earn profits of cspeed, as described in the text of Section
6.2. If all N∗ market makers choose fast, they each earn profits of zero, as described in Section
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6.2. To show that fast is a dominant strategy, we make the following observations. If the number
of market makers who choose fast is satisfies 1 < N < N∗, then there is an equilibrium in which
the N fast market makers play exactly as in Section 6.2, because indifference among the fast
market makers between liquidity provision and stale-quote sniping (i.e., LHS of 6.1 equals LHS
of 6.2) is still characterized by equation (6.4). The only difference is that each fast market maker
earns larger profits than when all N∗ enter, since they split the revenues from investors of λinvest s

∗

2
among N instead of splitting it among N∗. If the number of market makers who choose fast is 1,
then there is an equilibrium in which the one fast market maker charges the maximum allowable
bid-ask spread and is never sniped; these profits are larger than if all market makers are slow.
Hence, for any number of fast market makers 0 ≤ N < N∗, any slow market maker strictly prefers
to be fast than slow. Hence, fast is a dominant strategy, and we have a prisoner’s dilemma.

A.6 Proof of Proposition 6

The observation that the midpoint of the bid-ask spread is equal to the fundamental value yt for
proportion one of the trading day follows from the equilibrium behavior of the liquidity provider
as described in Section 6.2.2.

The proportion of trade conducted at quotes that do not contain the fundamental value is
computed by observing that the rate at which trade occurs between the liquidity provider and a
sniper is λjump · Pr(J > s∗

2 ) · N∗−1
N∗

, whereas the rate at which trade occurs between the liquidity
provider and an investor is λinvest. In equilibrium, the former trades occur at quotes that are stale,
i.e., where the quotes do not contain the fundamental value yt which has just jumped, whereas the
latter trades occur at quotes that are not stale (but for the probability zero event that an investor
arrival and a jump occur at the exact same time). Hence, trade at stale quotes as a proportion of
all trade is λjump·Pr(J> s∗

2 )·N
∗−1

N∗

λjump·Pr(J> s∗
2 )·N∗−1

N∗ +λinvest
.

The trades conducted at quotes that do not contain the fundamental value generate arbitrage
profits of J− s∗

2 for whichever stale-quote sniper’s order was successful. Nevertheless in equilibrium
all market makers, including stale-quote snipers, earn zero profits as per (6.1)-(6.2).

A.7 Proof of Proposition 7

Equation (6.5) represents indifference between liquidity provision and stale quote sniping at
the kth level of the book, for k = 1, . . . , q̄. The zero-profit condition for stale-quote snipers is

q̄∑
k=1

λjump · Pr(J > sk
2 ) · E(J − sk

2 |J >
sk
2 ) · 1

N
= cspeed (A.1)

Notice that (A.1) sums the sniper’s expected profits over all q̄ units of the book, and asks that
these total benefits equal the costs cspeed. Together, (6.5) and (A.1) represent q̄ + 1 equations in
the q̄ + 1 unknowns, the q̄ bid-ask spread terms and the level of entry.

To solve this system of equations, we can first use (6.5) to characterize each bid-ask spread.
For the kth level of the book, the equilibrium bid-ask spread s∗k is the unique solution to the
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following rearrangement of (6.5):

λinvest ·
q̄∑
i=k

pi ·
sk
2 = λjump · Pr(J > sk

2 ) · E(J − sk
2 |J >

sk
2 ) (A.2)

The solution to (A.2) is unique because the LHS is strictly increasing in sk (and is equal to
zero at sk = 0) whereas the RHS is strictly positive for sk = 0 and then is strictly decreasing in sk
until it reaches its minimum of zero at sk equal to the upper bound of the jump size distribution.
We can then plug the equilibrium bid-ask spreads s∗1, . . . , s∗q̄ into (A.1) to obtain the equilibrium
entry quantity N∗. Given s∗1, . . . , s

∗
q̄ and N∗, the rest of the argument for equilibrium proceeds

identically to that in the proof of Proposition 1.
The fact that s∗1 < s∗2 < · · · < s∗q̄ follows from (A.2), because the probability that an investor

wants to trade k units, ∑q̄
i=k pi, is strictly decreasing in k. The comparative statics in each s∗k also

follow directly from (A.2), analogously to Proposition 3.

A.8 Proof of Proposition 8

The three claims for frequent batch auctions are established in the text of Section 7.2. The first
claim for continuous limit order book markets is definitional. The latter two claims for continuous
limit order book markets follow from the description of equilibrium in Section 6.2 and Proposition
1.

A.9 Proof of Proposition 9

First, notice that it is not profitable for any player to offer liquidity at a bid-ask spread greater
than zero. This follows from the fact that there are N ≥ 2 fast market makers each already
offering depth of Q̄ at zero bid-ask spread. Any player who offers liquidity at a larger spread will
never trade.

Second, as described in Section 7.2, fast market makers are not vulnerable to sniping in the
batch auction. So, it is not profitable to enter as a fast market maker with the intent of sniping,
nor is it profitable for any of the N fast market makers exogenously present in the market to
attempt to snipe the other liquidity providers.

Last, by assumption the N ≥ 2 fast market makers are exogenously present in the market,
each exogenously paying cspeed, so exit is not an option. If exit were an option this would be a
profitable deviation, since the fast market makers are not recovering cspeed.

A.10 Proof of Proposition 10

We will show that a single fast liquidity provider offering spreads consistent with 7.1 constitutes
a Nash equilibrium of the frequent batch auction for τ and ε sufficiently small. To do this we need
to show four things.

First, we need to confirm that there is not a profitable deviation in which a slow trader enters
the market with a positive bid-ask spread s′ that is lower than the liquidity provider’s spread sd
for some d, in an effort to profitably provide the dth unit of liquidity to investors. As τ → 0+ and
ε→ 0+, we have that (i) the spread s1 implied by the zero-profit condition is converging to (7.2)
and (ii) the likelihood that the absolute value of net demand |D| ≤ 1 is converging to one. Hence,
for τ and ε sufficiently small, the benefits from providing liquidity as a slow entrant are strictly
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smaller than the benefits such an entrant would have enjoyed as an entrant in the equilibrium of
Section 6.2. Additionally, as τ → 0+, the costs to a slow entrant from getting sniped converge to
the same costs such an entrant would have faced in Section 6.2.50 In the equilibrium of Section
6.2 a slow entrant was indifferent between entering and not at the equilibrium spread derived in
Section 6.2.5. Hence, in the batch market, with a narrower spread, a slow entrant strictly prefers
not to enter.

Second, we need to confirm that the fast trader who acts as liquidity provider does not wish
to deviate by charging a higher bid-ask spread in some batch interval. This can be enforced by
off-equilibrium-path play of a potential entrant. If the incumbent fast trader raises his spread in
some batch interval, then the potential entrant enters beginning with the next batch interval, pays
cspeed, and, acts as the incumbent was supposed to in equilibrium. On this path, the incumbent
who deviated then exits the market, and no longer pays cspeed. If the incumbent does not exit,
then the incumbent and the entrant engage in Bertrand competition which drives the bid-ask
spread to zero, so on this path the incumbent strictly prefers to exit once he has deviated.51 The
maximum deviation payoff is finite, and there is no discounting, so we can choose τ and ε such
that the incumbent prefers not to deviate and to instead earn ε > 0 in perpetuity.

Third, we need to confirm that there is not a profitable deviation in which another fast trader
enters the market, if he is not provoked by a deviation by the incumbent. This can be enforced
off-path by assuming that the incumbent and the entrant engage in Bertrand competition in the
event of such an entry, which drives the bid-ask spread to zero. Hence, the entrant cannot recover
his costs of speed.

Last, we need to confirm that the fast trader does not wish to deviate by not paying the cost
cspeed and instead providing liquidity as a slow trader. If he does so and offers a spread that is
weakly less than the spread in the equilibrium of Section 6.2, then, for τ sufficiently small, another
market maker profits by entering as a fast trader just to pick off his stale quotes. If he does so
and offers a spread that is wider than the spread in the equilibrium of Section 6.2, then, for τ
sufficiently small, another market maker profits by entering as a fast trader who both (i) acts as
the fast trader is supposed to in this equilibrium (i.e., according to 7.1), and (ii) picks off the slow
trader who is offering a wider spread.

A.11 Proof of Proposition 11

To complete the argument that the behavior described in Section 7.3.4 and Proposition 11
constitutes a Nash equilibrium, we make the following two observations.

First, we established in the text that it is not profitable to enter as a fast market maker. Picking
off stale quotes is not sufficiently profitable, as shown by (7.3) and the surrounding discussion.
Additionally, it is not profitable to enter as a fast market maker in an effort to provide liquidity,
because slow market makers are already providing the maximum necessary liquidity, Q̄, at zero
bid-ask spread. One last thing to point out is that the discussion in the text already covers the
possibility of providing liquidity in the event that there is a jump between times τ − δslow and
τ − δfast; the fast market maker’s activity in such event both exploits the stale quotes of the slow

50That is, to enforce this equilibrium, the fast liquidity-provider threatens to pick off a slow entrant, in the
off-path event that one should enter.

51Intuitively, there is a “token” that indicates who gets to play the role of liquidity provider, and in this equilibrium
it is understood that if the current liquidity provider deviates from his prescribed play, the token is automatically
passed to another player. Any player not holding the token chooses not to pay cspeed. See footnote 42 in the main
text for a discussion of the practical interpretation of this equilibrium.
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market makers and provides liquidity to the net demand of investors, yielding Q̄ of total volume
in expectation. As discussed, this is not sufficiently profitable to induce the fast trader to enter.

Second, each individual slow market maker has no incentive to deviate. In order to earn strictly
positive profits, a slow market maker would have to charge a strictly positive bid-ask spread. But,
since there are Q̄ slow market makers in total, and the support of D(τ), the net demand of
investors, is bounded by Q̄− 1, any individual slow market maker who deviates will never get to
trade. Additionally, our discussion above shows that it is not profitable for a slow market maker
to pay the cost cspeed and play instead as a fast market maker. Hence, there is no deviation that
yields strictly positive profits.


	Introduction
	Brief Description of Continuous Limit Order Books
	Data
	Market Correlations Break Down at High-Enough Frequency
	Correlation Breakdown
	ES and SPY
	Equities-Market Correlation Matrix

	Correlation Breakdown Over Time

	Correlation Breakdown Creates Technical Arbitrage Opportunities
	Computing the ES-SPY Arbitrage
	Results on ES-SPY Arbitrage
	Summary Statistics
	Evolution Over Time: 2005-2011

	Discussion

	Model: Economic Implications of the Arms Race
	Preliminaries
	Equilibrium
	Investors
	Market Makers
	Equilibrium Bid-Ask Spread s
	Equilibrium Entry Quantity N
	Solving for s and N

	Discussion of the Equilibrium
	Why is there a Positive Bid-Ask Spread?
	Comparative Statics of the Bid-Ask Spread
	The Bid-Ask Spread and Arms-Race Prize Does Not Depend on cspeed and  
	Welfare Costs of the Arms Race: a Prisoner's Dilemma amongst Market Makers
	Relationship to the Efficient Markets Hypothesis

	Market Thinness

	Frequent Batch Auctions as a Market Design Response
	Frequent Batch Auctions: Definition
	Why and How Frequent Batch Auctions Eliminate the Arms Race
	Equilibrium of Frequent Batch Auctions
	Model
	Exogenous Number of Fast Market Makers
	Endogenous Entry: Short Batch Intervals
	Endogenous Entry: Long Batch Intervals

	Discussion of the Equilibria

	Frequent Batch Auctions and Market Stability
	Conclusion
	Appendix: Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11


