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A b s t r a c t  

Airline capacity utilization, or load factors, increased dramatically between 1993 
and 2007, after staying fairly stable for the first 15 years following deregulation. While 
improvements in demand forecasting, capacity management, and revenue management 
are all potential explanations, most of these operational changes were made in the 
1980’s, significantly before the increase in load factors. We argue that consumers’ 
adoption of the Internet, and their use of the Internet to investigate and purchase 
airline tickets, can explain recent increases in airlines’ load factors. Using metropolitan 
area measures of Internet penetration, we find strong evidence that differences in the 
rate of change of Internet penetration explain differences in the rate of change of airline 
airport-pair load factors. We argue that these increases, and a significant part of the 
associated $3 billion reduction in airlines’ annual costs, represent a previously 
unmeasured social welfare benefit of the Internet. 
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1. Introduction 

US airline industry domestic passenger capacity utilization, or load factors, , have 

increased from 62% in 1993 to 80% in 2007 after ranging from 57% to 63% in the years since 

deregulation. One potential explanation for this dramatic increase is the airlines’ use of 

sophisticated revenue management systems. These systems help airlines to forecast demand, 

more efficiently utilize their aircraft and personnel resources, and create incentives for 

consumers to choose alternatives to purchasing seats on flights with scarce capacity, even 

when that capacity was not expected to be scarce. However, revenue management systems 

were widely adopted in the 1980’s, and, therefore, can not explain dramatic increases in 

load factors in the late 1990’s. 

In this paper, we argue that the main force responsible for much of the increase in load 

factors is the rapid increase in consumer Internet penetration, and the associated increase in the 

use of the Internet as the primary method for investigating and booking airline reservations in 

the late 1990’s and early 2000’s. . The Internet has given consumers more information about 

available products including alternative departure times, alternative carriers, alternative 

airports, alternative legroom, and alternative in-flight durations (the number of stops), which 

makes it more likely that consumers will take advantage of incentives to travel on flights with 

excess capacity and more likely that airlines will find it profitable to offer those 

incentives. The Internet has also increased price competition among airlines which 

reduces airlines incentives to hold excess capacity. Consistent with this explanation, we 

find that changes in US metropolitan area Internet penetration rates explain changes in 

airlines’ airport-pair load factors, dramatically reducing airlines’ costs.  

Until now, research on the economic impact of the Internet has primarily focused on 

the impact of lower search costs on the level and dispersion of firms’ prices. An obvious 

implication of lower search costs is increased price competition. While the impact on price 

levels can be dramatic (see, for example, Brynjolfsson and Smith, 2000), the calculated 

increases in social welfare associated with price decreases are small. We look at the effect of 

the Internet on a more direct type of allocative efficiency: the improved utilization of 
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existing goods and services as measured by airline load factors. We find that the elasticity of 

capacity utilization with respect to Internet penetration is .102 and that the increase in 

Internet penetration from 1997 to 2003 resulted in an estimated 7.2% increase in load 

factors or almost $3 billion in cost savings each year. We argue that at least half of this 

savings represents a social welfare gain. 

Any attempt to measure the impact of the Internet on capacity utilization must 

address why capacity isn’t being fully utilized in the first place. Most economic models 

assume either spot market pricing, or forward contracts, and conclude that excess capacity 

arises only when shadow cost of capacity is zero. However, this does not appear to be the main 

explanation for excess capacity in the airline industry. 

Some models in the economics literature, and most in the operations literature, 

predict capacity may not be fully utilized by introducing price rigidities. Indeed, casual 

observation suggests airlines typically do not adjust their prices significantly as a departure time 

approaches and certainly do not set market clearing prices ex post. Instead they set prices in 

advance and then use sophisticated software to manage the inventory available at each 

price. Setting prices in advance when demand is unknown can clearly result in allocative 

inefficiencies and lead to the underutilization of capacity. 

We begin by presenting a simple stochastic peak-load pricing model based on Dana 

(1999a)1. In the model, airlines set prices prior to knowing the distribution of demand 

across flights. As in Dana (1999a) airlines offer multiple prices, which induce some 

consumers to shift their purchases to the off-peak flight even when the firm cannot 

anticipate which flight is off peak. We then generalize the model by assuming that some 

customers are fully informed while others observe only the prices for their preferred 

departure time. We then show that as the fraction of informed consumers increases, 

airlines’ equilibrium capacity falls and airlines’ load factors increase. This holds in both 

competitive and monopoly markets, but effect is strongest when the market is competitive. 

                                                             
1 Other papers that examine stochastic peak-load pricing are Carlton (1977) and Brown and Johnson (1969), 
but these papers consider a social planner who is restricted to uniform prices. Dana (1999a) shows that the 
competitive equilibrium prices in these models are generally non-uniform. 
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The model predicts that a decrease in market frictions leads to an increase in load factors, an 

associated decline in capacity utilization, and an unambiguous increase in social welfare. 

To test model predictions, we estimate reduced-form regressions of airline direc-

tional airport-pair load factors on metropolitan area Internet penetration. Airline load 

factors are available from the Bureau of Transportation Statistics, and data on annual 

Internet penetration for 1997 to 2003 come from the Computer Use and Ownership 

Supplement to the Consumer Population Survey. Additionally, we use the Department of 

Transportation’s Origin and Destination Survey to derive average fares and construct 

weights. The next section of the paper discusses the related literature in airline pricing and 

the economics of the Internet. Section 3 presents the theoretical model. Section 4 describes 

our data. Section 5 describes the estimation, and Section 6 concludes. 
 

2. The Related Literature  

The theoretical literature on capacity decisions and demand uncertainty with price 

rigidities is extensive. The first set of papers in this category is the stochastic peak-load 

pricing literature (Brown and Johnson, 1969 and Carlton, 1977). In these models, firms 

choose capacity and set prices for multiple flights before learning demand. After demand is 

realized, consumers purchase their preferred product subject to availability. Stochastic peak 

load pricing predicts that capacity will be underutilization at off-peak times because prices 

are set before demand is realized.  

Note that there is less incentive for consumers to switch from a peak flight to an off-

peak flight when firms use uniform prices. By using price dispersion, firms can increase 

demand-shifting. The earliest paper on price dispersion as a response to demand uncertainty 

is Prescott (1975) who considered a simple competitive model with a single good. Several 

papers in the industrial organization literature have built on Prescott’s work, including Dana 

(1998, 1999a, and 1999b), and Deneckere, Marvel, and Peck (1997).2 In particular, Dana 

(1999a) shows that price dispersion increases demand shifting and in so doing increases 
                                                             
2 The Prescott model has also been widely applied in monetary economics (see Eden, 1990 and 1994, and 
Lucas and Woodford, 1993) and labor economics (see Weitzman, 1989). 
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social welfare by improving the allocation of consumers to available capacity. 

Few papers have tried to empirically test the Prescott model. One exception is 

Escobari and Gan (2007) who directly test the hypothesis that price dispersion is induced 

by demand uncertainty. They also show that airline price dispersion increases with 

competition as implied by Dana (1999a and 1999b). 

Another exception is Puller, Sengupta, and Wiggins (2007). They have detailed data 

on airline tickets purchased through a single computer reservation system which allows them to 

ask what portion of fare differences is associated with restrictions and what portion 

represents pure dispersion of the type predicted by Dana (1999b). They find modest support 

for Dana (1999b) and strong support for models based on second-degree price 

discrimination. 

While our paper does not directly test the Prescott model, we test an important 

implication of the theory. Namely, we test the prediction that capacity utilization increases 

when consumers are better informed about the available products and their prices.  

The empirical literature on the impact of the Internet is extensive. Many papers have 

compared online markets to traditional markets, and in particularly, focused on price levels 

and price dispersion (see Ellison and Ellison, 2006). Brynjolfsson and Smith (2000) report that 

compact disk and book prices are 9 to 16% lower in online markets and that price 

dispersion is slightly smaller. It is not immediately apparent whether price differences 

reflect differences in costs, or differences in margins, but Brynjolfsson and Smith conclude 

that the significant sources of heterogeneity, such as brand and reputation, are not 

diminished by Internet competition. Other papers (for example,  Clay, Krishnan,  and 

Wolf, 2001, and Baye, Morgan, and Scholten, 2004) have found less evidence of price 

declines, but all of these papers find consistent evidence that online price dispersion is quite 

large, even compared to traditional markets. 

A handful of papers have considered the impact of the Internet on prices in the 

airline industry. Clemons, Hann, and Hitt (2002) and Chen (2002) find that prices 

available from online travel agents are just as dispersed as those available from traditional 
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offline travel agents. Using national data on Internet use, Verlinda and Lane (2004) find 

that increased Internet usage is associated with greater differences between restricted and 

unrestricted fares. Using a cross section of airline tickets purchased both online and 

offline, Sengupta and Wiggins (2007) find that tickets sold online have lower average 

prices and that increases in the share of tickets purchased online implies lower offline fares 

and lower price dispersion. Finally, using metropolitan area Internet access and a differences-

in-differences estimation strategy similar to ours, Orlov (2007) examines the impact of 

Internet access on prices and price dispersion in the airline industry. He finds that 

increases in Internet access are associated with decreases in airport-pair prices. He also 

finds that increases in Internet access have led to a decrease in interfirm fare dispersion, but an 

increase in intrafirm fare dispersion. 

Several papers have tried to measure other ways in which the Internet increases 

consumer surplus. Brynjolfsson, Hu, and Smith (2003) show that the Internet enables 

consumers to obtain hard-to-find books. Ghose, Telang, and Krishnan (2005) argue that the 

Internet increases the resale value of new products, and Ghose, Smith, and Telang (2006) 

show that the Internet facilitates the market for used books. Other papers have emphasized 

that the Internet reduces consumers’ offline transportation costs. For example, Forman, 

Ghose, Goldfarb (2007) conclude that the Internet reduces consumer travel and transporta-

tion costs in the market for books. 

Undoubtedly, the Internet has also directly impacted firms’ costs. For example, the 

Internet probably helps firms improve their demand forecasts, reduce their communications 

costs, and more efficiently monitor their workers and suppliers. However, to our knowledge 

this is the first paper to show that increasing consumer access to the Internet can lower firms’ 

costs.  

Our paper is also related to empirical work on inventory management. Gaur et. al. 

(2005) finds that inventory turns (the cost of goods sold to inventory ratio) are negatively 

correlated with margins and capital intensity, and positively correlated with unexpected 

demand (see also Roumiantsev and Netessine, 2006). Gao and Hitt (2007) consider the 
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impact of information technology on operation decisions, however their focus is on 

product variety and not on inventory or capacity utilization. Olivares and Cachon (2007) 

show that competition increases service levels, and hence inventory ratios, in automobile 

dealerships. Rajagopalan and Malhotraw (2001) document trends in inventory levels and 

show that finished goods inventories, materials, and work-in-progress ratios have declined in 

most manufacturing industries, but they do not find the evidence of greater improvements 

post-1980 as compared to pre-1980. Finally, in the macroeconomics literature Kahn, 

McConnell, and Perez-Quiros (2002) use firm level data to test the impact of information 

technology on the volatility of inventories. They find that information technology has led 

to a reduction in aggregate output and inflation volatility. However they do not directly 

address a question of how information technology lowers inventory costs. 
 

3. Theory  

In this section we present a generalization of the model of stochastic peak load pricing 

described in Dana (1999a). Dana (1999a) is an attractive starting point because of its simplicity, 

and because, like other models of stochastic peak load pricing, it predicts that firms will not 

always fully utilize their capacity in equilibrium. The model also allows us to easily 

characterize the role of market power on the way in which airline seats are allocated.  

Suppose there are two possible departure times, A and B, and that a finite measure 

N of consumers have heterogeneous departure time preferences and heterogeneous willingness 

to pay for their preferred departure time. Suppose consumers’ valuations for their preferred 

departure time, V, are identical, but the disutility from traveling at their least preferred 

time, w, is distributed with cumulative distribution function F(w) and probability density 

function f(w) satisfying the monotone hazard rate condition (i.e., F(w)/f(w) is strictly 

increasing in w). Consumers’ departure time preferences and the strength of their 

preferences, w, are assumed to be independently distributed. 

 Departure time preferences are correlated across consumers and which of the two 

departure times, A or B, will be most popular is unknown to the firm. We assume either 

time is equally likely to be the peak and that the number of consumers who prefer the peak 
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time is N1, which is greater than the number who prefer the off-peak time, that is N1 = N − N2 

> N2. 

The cost of making a single seat available for a single departure is k whether or not the 

seat is filled and the marginal cost of carrying a single passenger, conditional on having an 

available seat, is assumed to be 0. 

Below we separately consider pricing in competitive and monopoly environments. 

 

3.1 Competitive Pricing 

The timing is as follows. First, the firms set their capacity. Second, firms set their 

prices for their capacity at time A, and their prices for their capacity at time B. Third, the 

state is realized and consumers learn their departure time preferences and w. Fourth, a fraction 

α of consumers observe all prices and a fraction 1-α of consumers observe only the prices for 

their preferred departure time. Finally, in random order consumers make their purchase 

decisions maximizing consumer surplus subject to availability (and assuming they cannot 

purchase a product they don’t observe).3 

Following Dana (1999a), in a perfectly competitive market, there are two equilibrium 

prices, pL = k and pH = 2k, and the number of seats sold at both departure times at the 

low price is given by4 

)()( 12 kFQNNQ LL !"+=  

and the number of high-priced seats available at both departure times, but which sell only 

at the more popular departure time, is given by  

( ))(1)( 1 kFQNQ LH !""= . 

It follows that 

                                                             
3 As in Dana (1999a) we use random, or proportional, rationing which seems to be more intuitive for the 
airline industry application than efficient, or parallel, rationing. 
4 There are exactly two prices in equilibrium because there are just two demand states in this simple stylized 
model; one can think of the market as supplying two products, seats that are used when demand is either low 
or high and seats that are used only when demand is high (see Dana, 1999a for a proof that there are only 
two equilibrium prices). 
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We can write the expression for load factor as 
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is a measure of the propensity of consumers to switch products that depends on Internet 

penetration, α, costs, k, and the distribution of waiting costs, w. Equations (2) and (3) imply 

the following: 

 

Proposition 1. In a competitive market, the equilibrium load factor is decreasing 

in the level of market frictions, i.e., increasing in α, and the equilibrium capacity is 

increasing in the level of market frictions, i.e., decreasing in α. 
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Notice that social welfare increases as α increases. Some consumers are clearly 

better off because an increase in α makes them aware of additional products and hence 

increases their choice set. Also, since in equilibrium more consumers choose to purchase off 

peak, more of the firm’s capacity is filled whether or not the flight is peak, so in equilibrium more 

low priced seats are available, which implies that when consumers make their purchase decisions 

more consumers have the option to purchase low priced seats. So an increase in α makes 

consumers better off whether or not they are one of the consumers who acquires more product 

information. Since consumers are strictly better off, and since firms continue to earn zero 

profits, social welfare increases. 

Also, notice that an increase in α decreases airlines’ capacity and, as a result, airlines’ 

costs. In a competitive equilibrium, airlines still earn zero profits, so these cost savings are 

passed on to consumers. As α increases, the proportion of consumers who pay 2k falls and the 

proportion who pay k increases.  

 

Corollary. A lower bound on the social welfare gains from an increase in α is one 

half of the cost savings associated with the decrease in equilibrium capacity. 

 

Proof. Increasing α increases the number of consumers who switch from their preferred 

flight to an alternate flight. Social welfare increases, because for every additional 

consumer who switches, costs fall by 2k. The switchers save k themselves, because they pay k 

instead of 2k. While these consumers also bear a cost, because they switch voluntarily, it 

follows that w < k. Also for every consumer who switches, one consumer who does not 

switch pays a lower price, k, instead of 2k. So under random rationing, welfare increases by 

2k − E[w|w < k] > k. The welfare increase (per switcher) is strictly greater than one half the 

cost savings (per switcher).                 □ 

 

3.2 Monopoly Pricing 
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Now consider the monopolist’s pricing problem. Following Dana (1999a), the 

monopolist offers at most two prices, pH and pL.  Clearly pH = V, so the monopolist’s 

problem is to choose pL, or equivalently the discount d = V − pL, to maximize its profits 

where  
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As in (2), we can write the monopolist’s load factor as 
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however, unlike (2), Am now depends on d, the monopolist’s pricing decision.  

The monopolist maximizes  

( )( ) ( )( )kVdQkdVdQ HL
d

22max !+!! . 

The first-order condition is 

( )
( )
( )

( )( )

( )( )
( ) 0

1

2
1

2
2

21

212
=!

+

!
+""

#

$
%%
&

'
+

!+! dk
dF

NNdf

dF

dF
NNN

(
(

(
(  

or 

( ) ( )( )
( )
( )

( )( ) 01
21212

=!!+""
#

$
%%
&

'
+!+! dkNN

df

dF
dFNNN ( .                     (4) 



12 
 

When d = k the left-hand side of the first-order condition is negative, so clearly 

d < k and Am < A. That is, at the monopoly prices, fewer customers shift their 

purchases from the peak to the off-peak flight than in a competitive market. This implies  

 

Proposition 2. All else equal, load factors are lower in a monopoly market than in 

a competitive market.  

 

However, just as in the case of competitive markets, the monopolist’s load factor rises 

and capacity falls as α rises. Holding d fixed, it is clear from the definitions of QL and QH 

that this is true, and (4) implies that 0>
!d

dd  so increasing α induces even more 

switching. Thus, we have: 

 

Proposition 3. In a monopoly market, the equilibrium load factor is decreasing in 

the level of market frictions, i.e., increasing in α, and the equilibrium capacity is 

increasing in the level of market frictions, i.e., decreasing in α. 

 

3.3 Discussion 

The competitive model depicts load factor as depending on two characteristics of a 

route: the variation in demand, and the propensity of consumers to switch from the peak to 

the off-peak departure. While we describe the propensity of consumers to switch as a single 

characteristic, it is a function of the information available to consumers, α, the strength of 

their preferences (the distribution of w), and the costs, k. Load factors are higher when the 

cost of an empty seat is higher (longer flights), consumers waiting costs are lower (more 

leisure travelers), and consumers have more information. 

Variation in demand is the most important driver of load factors. We cannot 

observe demand uncertainty directly, but obvious source of variation in aggregate demand 

uncertainty is size of the market (i.e., the number of passengers). In a simple environment in 

which the aggregate demand distribution is the sum of independent binomial decisions, it is 
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well known that the aggregate demand will be approximately normally distributed with a 

mean proportional to the number of consumers and a standard deviation proportional to the 

square root of the number of consumers. So, as the number of consumers grows, the average 

load factor for an airline that sets its capacity equal to a fixed multiple of mean demand is 

clearly increasing. Even when it chooses its capacity optimally, the ratio of expected sales 

to capacity will grow with the size of the market.  

An important empirical question is whether the appropriate measure of size is a 

market measure or a firm measure. If products are perfect substitutes (as in the model 

above) market size might be more appropriate measure. However, when airlines’ products 

are differentiated, firm size may be a more appropriate control. 

A comparison of the monopoly model and the competitive model suggests that 

market structure is also an important determinant of load factor. In addition, when firms 

have market power, the equilibrium prices and load factors will also depend on 

characteristics of consumer demand. 

Finally, our model is quite stylized and does not capture important sources of 

variation in the airline industry that affect equilibrium capacity utilization. For example, 

the hub and spoke system is likely to increase load factors. By increasing density on its 

spokes, airlines are able to increase frequency and take advantage of size to reduce the demand 

uncertainty. Other complex network scheduling decisions will also impact an airline’s capacity 

utilization. For example, an airline may schedule one of its larger planes to fly late in the 

evening (typically off-peak), so that it is available at its hub in the morning (typically peak). 

These network scheduling problems are even more complex then it first appears because of 

legal and union constraints on flight crews’ daily flying hours. 

 With these caveats in mind we now bring the model predictions to the data. 

 

4. Data 

We use three different data sets. First, we use the T100 (Form 41) database from the 

Bureau of Transportation Statistics. This dataset reports the monthly capacity and 
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passenger traffic by airline, by directional airport-pair segment, and by aircraft type, for all 

the domestic passenger flights in the US. A directional airport-pair flight is a single take-off 

and landing by a single airplane traveling from one airport to another. The airport-pair-airline 

unit sales in the T100 database are used to calculate each airlines’ market share in each 

directional airport-pair segment. The capacity and passenger data are also used to calculate 

the average load factor for each airline in each airport-pair segment. We aggregate the data 

to the quarterly level. 

Second, we use the Computer Use and Ownership Supplement to the Consumer 

Population Survey (CPS) to measure Internet penetration for every major metropolitan 

statistical area (MSA). The survey asks about Internet access at home, school, and business. For 

each metropolitan area we compute the fraction of respondents answering yes to any of these 

Internet access questions using sample weights provided by the CPS. The data are available 

for the years 1997, 1998, 2000, 2001, and 2003, and we interpolate the penetration for years 

1999 and 2002. Table 1 provides descriptive statistics for this variable. 

Finally, we use the Origin and Destination Survey (DB1B) database. This is a 10% 

sample of all passenger domestic itineraries purchased in each quarter for each year in our 

sample (1997 to 2003) and includes the airline, the quarter in which the ticket was used, the 

itinerary origin, destination and stop-over airports, the fare, and the number of passengers 

paying the fare.  The DB1B database includes two entries for each roundtrip ticket and 

just one entry for each one-way ticket. That is, a market is defined by the passenger’s 

origin and destination. Importantly, the database identifies which entries are the outbound 

and return portions of round-trip tickets, so the database also allows us to identify the 

ticket origin, that is, where passengers start their travel when they fly round-trip. 5 

For simplicity we restrict the DB1B database to itineraries with at most one stop on 

each directional market. We also dropped itineraries where one of the carriers on any segment 

was unknown, itineraries with “top-coded” fares, and itineraries with fares below $25 in 

2000 dollars. We also dropped very short trips, with travel distance less than 50 miles. 
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We use the DB1B dataset for several purposes. First, we calculate the average fare for 

each directional airline-airport-pair segment. To do this, we divide the fare paid for each 

itinerary among the itinerary’s segments in proportion to the distance flown, and then we 

average fares across passengers who flew that airline-airport-pair segment. Note that 

because the fare is allocated by distance flown, this is an imperfect measure of the actual 

incremental cost to consumers of flying on the segment. 

Second, we use the DB1B dataset to match Internet penetration to individual 

passengers flying on each airline-airport-pair segment. Clearly, passengers on a particular 

flight do not necessarily purchase their tickets in the city that is the flight’s point of origin. 

Most notably, many passengers are returning home on the return portion of a round-trip 

ticket, so passengers are just as likely to have purchased the ticket in the city that is the 

flight’s destination. Still other passengers will be flying on connecting flights from an 

origination airport that was different than the airport where the airplane originated and/or 

to a final destination that is different than the airport where the plane lands. The distinction 

is important, because our hypothesis is that the level of Internet access where passengers book 

their tickets, not where the plane originates, is what affects how much information 

passengers have. 

For this reason, we use the DB1B database to identify the true point of origin for 

each passenger on each airline-airport-pair segment, i.e., the airport at which their itinerary 

originated. Then using the Internet penetration at each airport’s MSA, we obtain a measure 

of Internet penetration for each passenger. Finally, averaging this measure across passengers 

(or equivalently, averaging across points of origin using the number of passengers from each 

point of origin as weights) gives us a measure of Internet penetration which is customized to 

each airline-airport-pair segment. 

For example, consider airline X’s flight from airport A to airport B. Assume that 40 

percent of the passengers on the flight are flying round trip from A to B, so they are on the 

outbound leg of their journey; another 35 percent of the passengers on this flight are flying 
                                                                                                                                                                                       
5 Note that before 1999, Southwest Airlines reported all of its roundtrip ticket sales as two one-way tickets, so 
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round trip from B to A, so they are on the return leg of their journey; another 15 percent of 

the passengers on this flight are flying round trip from airport F to airport B (with a stop 

each way in airport A), so this is the second segment in the outbound portion of their 

journey; finally, assume that the remaining 10 percent are flying round trip from airport A 

to airport G (with a stop each way in airport B), so they are on the first segment of the 

outbound portion of their journey. Then the weighted average Internet penetration for 

passengers on this particular segment is equal to 0.5 IA + 0.35 IB + 0.15 IF, where IX is 

Internet penetration at airport X’s MSA. 

To control for demographic and economic environment at passengers’ MSAs that may 

be spuriously correlated with Internet penetration, we follow a similar procedure to construct 

weighted average measures of employment, population and income per capita. These 

variables at the MSA level are available from the Bureau of Economic Analysis. 

After matching these datasets, we further limit our sample to traffic on the 20 

largest airlines and between the 75 largest airports in the US. These 20 airlines are listed 

in Table 2. We exclude Southwest Airlines because of the reporting issues noted above 

(see footnote 5). We also removed the 3rd and 4th quarters of 2001 from our sample 

because of the terrorist attacks on 9/11/2001 which severely disrupted service and air travel 

in that quarter. This leaves us with 87,192 quarterly observations. Table 3 lists descriptive 

statistics for each of the variables we use in our analysis. 

 
5. Estimation 

To test the theory empirically, we estimate a linearized version of equation (4). That 

is, we estimate a reduced form regression of capacity utilization on metropolitan area Internet 

penetration and other metropolitan area and quarter-airline-segment characteristics. However, 

we have limited data on the volatility of demand, costs, and consumer waiting costs, so in 

addition we control for these omitted exogenous variables with directional airline-segment 

and airline-quarter fixed effects. The airline-segment fixed effects control for non time-

                                                                                                                                                                                       
one cannot identify the ticket origin for Southwest passengers in the DB1B market database. 
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varying airline, segment, metropolitan area, and airport characteristics, as well as airline-

airport characteristics such as the presence of a hub or local brand loyalty. The airline-quarter 

fixed effects control for time-varying airline-specific characteristics, such as brand loyalty. 

Table 4 contains our first set of regressions. We regress the log of the quarterly, 

airline, directional, airport-pair (segment) load factor on the log of Internet access and our 

control demographic and economic variables. As discussed above, the measure of Internet 

access is specific to each directional segment and each quarter (the weights change 

quarterly, although Internet changes annually). We use a log-log specification in part because 

we believe that the impact of an increase in Internet penetration is greatest when the level of 

Internet penetration is small. That is, the early adopters of the Internet are more likely to be 

air travelers than the late adopters. 

Also, while our unit of observation is an airline, directional, airport-pair quarter, the 

economic unit of observation that is of interest is capacity. Particularly for making welfare 

calculations, we would like to put more weight on airport-pairs with more flights and more 

available seats. For this reason, our regressions are weighted by the number of available 

seats. 

Before interpreting our results, it is useful to begin by asking what are the un-

observed sources of variation that we may not be controlling for with our fixed effects? The 

most obvious are segment specific variation in cost and variation in demand. The latter 

includes variation in the size of market demand as well as variation in the elasticity of 

demand and extent of demand uncertainty. Other potential sources of variation are changes 

over time in market structure, as well as changes in the degree of firm rivalry and the threat of 

entry. 

The results in Column 1 indicate a large and significant effect of the Internet on load 

factors. In Column 2 we introduce average fare on airline-airport-pair segment as an 

additional control. We find that higher fares lead to lower load factors, which is consistent 

with the intuition that holding costs fixed, airlines with higher fares are more willing to hold 

speculative capacity. While it is clear that the biggest source of variation in fare levels is 
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likely to be costs, these results are not surprising since the variation in fares over time is less 

likely to be due to route-specific shifts in costs, and is more likely to be because of segment-

specific changes in demand, rival behavior, or the threat of entry.  

Adding the fare as a control variable reduces the coefficient on Internet penetration 

from .102 to .072, and the coefficient is statistically significant. There are two reasons to think 

that Internet penetration should be correlated with fares and that controlling for fare would 

reduce the impact due to increased price competition.  First, if the only impact of the Internet 

is to increase price competition and if the lower prices cause airlines to reduce their excess 

capacity (as would be predicted in a simple inventory model), then controlling for fare 

should eliminate the impact of the Internet.  Second, if the Internet directly increases capacity 

utilization as suggested by the theory above, then airlines’ costs will fall, which will cause 

fares to fall.  The fact that controlling for fares, we still find large positive and significant 

effect of the Internet on capacity utilization, suggests that in addition to indirect effect on 

load factors, via increased price competition, Internet penetration also has directly impacted 

load factors.  

We are also interested in whether the impact on the Internet on load factors is a 

consequence of increased competition or better allocation at existing prices. Note, that 

market structure defined on a segment may not be fully capturing market power because 

airport-pairs that are served by a single non-stop carrier will face significant competition 

from airlines offering connecting service. For this reason, instead of defining market 

structure variables that reflect market conditions on each particular segment, we choose to 

construct, for each airline airport-pair segment, the fraction of passengers that travel on a 

monopoly route, the fraction of passengers that travel on a duopoly route, and the fraction of 

passengers that travel on a competitive route. We use the DB1B dataset to calculate these 

variables. A monopoly route is defined as a route on which the largest firm’s market share 

(share of passengers) exceeds 90%. A duopoly route is defined as a non-monopoly route 

on which the largest two firms’ combined share exceeds 90% or the two largest firms’ 

combined market share exceeds 80% and the third largest firm’s share is less than 10%. All 
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other routes are considered to be competitive routes. 

While our measures of market competition are limited and endogenous, in Column 

3 of Table 4 we estimate a reduced form regression including market structure and market 

share. The results indicate that load factors are lower in more concentrated markets. Firms 

with market power are likely to have higher margins, which increases the incentive to 

hold speculative capacity. While market structure is endogenous, it is likely that much of 

the variation in market structure over time will be driven by financial conditions of 

airlines and demand changes in other markets. However, clearly these coefficients must be 

interpreted cautiously. 

We find that load factors are higher for firms with a larger market share within 

each segment. This is consistent with the intuition that the variance of demand uncertainty 

falls relative to the mean as the market size grows, so the incentive to hold speculative 

capacity falls with size. Or more simply put, it is easier to match the number of planes to 

the size of the market when the market is larger.  

In Column 4, we introduce both the average fare on a segment and market structure 

variables. The results do not change substantially from previous specifications. Finally, 

Column 5 presents estimates of a regression that includes average fare, market structure, 

market share, and available seats (capacity) as control variables. While these variables are all 

endogenous, they are likely to be correlated with other unobserved exogenous variables. 

Seeing that our results are robust to the inclusion of these endogenous variables makes us more 

confident that our results are not a consequence of correlation between Internet use and other 

time-varying market characteristics. 

However, we find that load factors are lower for firms with more available seats. We 

expected the opposite result. Variation in demand or costs (that we don’t observe but firms do 

observe) should move capacity and load factors in the same direction. Instead, we are seeing 

the effect we would expect to see if seats were exogenous: exogenous increases in capacity 

reduce load factors. The simplest interpretation of these results is that airlines are slow to 

adjust capacity in response to shifts in demand. However, while the number of seats is 
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clearly a measure of market size, it is an airline specific measure. It is likely that these shifts 

in demand are due to capacity adjustments by rivals. 

In the last two columns of Table 4 we interact Internet penetration variables with the 

percentage of passengers on a segment who travel on monopoly, duopoly and competitive 

routes. The results show that increases in Internet penetration have a positive effect on 

load factors on all segments, irrespective of market structure on routes where passengers 

travel. More importantly, the order of the effects is consistent with the theory predictions: 

the effect is the smallest on segments on which higher fraction of passengers travel on 

monopoly routes, followed by segments on which higher fraction of passengers travel on 

duopoly routes, and then followed by segments on which higher fraction of passengers travel 

on competitive routes. 

In Table 5, we report our second set of regressions. If the markets demand is the sum 

of identically and independently distributed individual consumer demands, then it will be 

normally distributed with a variance proportional to the square root of the market size. This 

implies that the ratio of the variance to the expected demand is also decreasing in market 

size and in equilibrium the ratio of capacity to expected demand will be decreasing in 

market size. But if capacity utilization is higher on larger routes, it follows that increases 

in Internet penetration should have less impact on load factors. We test this by interacting 

Internet penetration with available seats. We find, as expected, that Internet penetration 

has a larger effect on smaller markets. 

 

6. Social Welfare 

We find that Internet penetration has a positive and statistically significant effect on 

load factors. Using the results in Column 5 of Table 4, the elasticity of Internet penetration 

on load factor is 0.102. That is, each percentage point increase in Internet penetration increases 

load factors by .102%, and a doubling in Internet penetration increases load factors by 7.2% 

(i.e., 2.102 − 1). From a starting point of 69%, this implies load factors would increase to 

74.3%. In our sample period, Internet access more than doubled in many cities while load 
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factors have increased from about 69% to 73%. So the increase in Internet penetration appears 

to explain all of the increase in airline load factors during our sample period.  

US airline industry passenger flying operations and maintenance costs were $40 

billion in 2000, so an increase of 7.2% in load factor represents approximately a 7.2% 

decrease in these costs or almost $3 billion in cost savings every year. 

Because our Internet variable is a noisy measure of how many consumers are using the 

Internet to choose flights and/or purchase their tickets, our estimates are likely to 

understate the total cost savings associated with the Internet. In particular, since we 

cannot identify perfectly where consumers purchase their tickets, we aren’t measuring the 

impact of the Internet on those passengers who purchase their tickets elsewhere. So it is 

possible that the cost savings could be even larger. On the other hand, it remains possible 

that the results in Table 4 are the result of an omitted variable bias. Also, since we are 

attributing almost all of the growth in load factors to the Internet, it is unlikely the Internet 

had much more impact. 

Another serious concern is that this cost savings need not all represent a welfare gain. 

Some of these cost savings may have been offset by decreases in consumer surplus as 

consumers elect to travel at less convenient times. Without estimates of the demand 

function, we cannot measure the lost in consumer surplus associated with consumers 

switching departure times. However, we argued in our model (see Section 3 above) that the 

social welfare gains are at least one half of the cost savings. And, if the inconvenience of flying 

off-peak, w, is small, the gains could be significantly higher. 

However, the model may overstate the welfare gains. First, in a competitive model 

with no aggregate uncertainty or with market clearing spot prices, the impact of a reduction 

in market frictions would also be to shift demand, but the impact on welfare would be 

smaller. For example, in a competitive peak-load pricing model that exhibits some under-

utilization of capacity, the off-peak price will be c and the peak-price will be 2k + c. So the 

welfare gain for each switcher is 2k − E[w|w < 2k] which is strictly positive, but 

significantly smaller than 2k − E[w|w < k]. However, this is not consistent with casual 
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evidence. Airline fares for ex post off-peak flights do not generally equal marginal cost but 

instead are significantly higher. 

Second, increasing load factors also increases congestion on airplanes, which may 

reduce the quality of consumers’ travel experience. On the other hand, if airlines fly fewer 

planes airports may be less congested, on-time performance may increase, and the quality of 

consumers’s travel experience may rise.  We are unable to measure either of these effects. 

Finally, we have considered a simple model in which seats are not rationed. In a more 

general model in which there was some limit on market prices or in which demand is lumpy, 

a reduction in market frictions could theoretically lead to an increase in rationing. With 

rationing, it no longer follows that the disutility of consumers who switch must be 

bounded by the difference in fares.6 

With these caveats in mind, our estimates imply an ongoing social welfare gain of at 

least $1.5 billion every year is the result of the increase in Internet penetration that occurred 

during just the 1997 to 2003 period. 

 

7. Conclusion 

The Internet has clearly made it easier for consumers to become informed about 

alternatives to their preferred time of departure, carrier, or destination. A customer buying a 

ticket on an airline’s web site, such as United.com, or on a third party travel services web site, 

such as Expedia.com, selects their itinerary from a much larger set of options than those that 

are available to a customer making a reservation on the telephone. The increase in 

consumers’ information has helped airlines to reduce their capacity costs, and airlines appear 

to be well aware of this. On United Airlines’ web site even after choosing their itinerary from 

the wide selection available, a customer is shown yet another set of lower fare options 

before making their final purchase decision. No doubt United is able to capture some of 

the surplus created when it induces consumers to switch flights, so it is interesting to note 

                                                             
6 By rationing, we mean that no seat is available at any fare and in any face class. So while coach seats are 
sometimes rationed, business and first class seats are almost always available because airlines typically can use 
unsold seats in these classes as reward or upgrades at the last minute for their frequent fliers. 
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that it is United, not Expedia, which offers this feature.  

We used differences in Internet penetration across time and metropolitan areas to 

identify the impact of reductions in market frictions on differences in airlines’ capacity 

utilization rates, or load factors, across time and airport-pair segments. We found that an 

increase in Internet access in metropolitan areas leads to an increase in load factors on flights 

flown by passengers whose travel begins in that metropolitan area. That is, a flight’s load 

factor increase faster when passengers traveling on the flight come from cities in which 

Internet use is increasing faster. 

While increases in Internet access have lead to increases in airlines’ load factors and a 

decrease in airlines’ costs of almost $1 billion each year, we believe that much of this cost 

savings has been passed on to consumers through lower prices. This is consistent with the 

fact that airlines did not see dramatic increases in profits during this period. It is also 

consistent with the empirical literature (particularly Orlov, 2007, and Sengupta and 

Wiggins, 2007) which has found that the Internet has significantly reduced average airline 

prices. However, whether or not the cost savings is passed on to consumers, we have argued that 

much of this costs savings represents an increase in social welfare. 
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Table 1. Internet Penetration across Metropolitan Statistical Areas (N=243) 
 

Year Mean Std. Dev. Min Max 
     

1997 0.194 0.074 0.043 0.489 
1998 0.413 0.114 0.103 0.699 
1999 0.482 0.098 0.210 0.764 
2000 0.551 0.106 0.218 0.829 
2001 0.652 0.103 0.222 0.911 
2002 0.672 0.091 0.277 0.892 
2003 0.692 0.099 0.332 0.913 

     
Source: Computer Use and Ownership Supplement to the Consumer Population Survey. 
Note:    Data for 1999 and 2002 are interpolated. 



28 
 

Table 2. Differences Across Airlines. 
 

 
 

Avg. Fare Avg. 
Load Factor 

Avg. Segment 
Market Share 

    
Air Wisconsin Airlines 77.20 0.681 0.436 
AirTran 89.68 0.674 0.263 
Alaska Airlines 124.36 0.677 0.629 
America West 107.93 0.689 0.492 
American Airlines 180.38 0.692 0.627 
American Eagle 92.40 0.644 0.444 
ATA Airlines 122.67 0.727 0.752 
Atlantic Southeast Airlines 96.34 0.674 0.168 
Comair 110.28 0.663 0.509 
Continental Airlines 173.45 0.712 0.789 
Delta Airlines 142.14 0.702 0.727 
Frontier Airlines 131.51 0.613 0.214 
Horizon Air 79.90 0.660 0.565 
JetBlue 120.76 0.823 0.738 
Mesaba Airlines 125.73 0.568 0.309 
Northwest 162.75 0.692 0.822 
Spirit Airlines 113.28 0.764 0.262 
Trans World Airlines 138.25 0.684 0.763 
United Airlines 180.23 0.702 0.633 
US Airways 145.31 0.668 0.837 
    

Notes:   Each cell contains (weighted by number of seats) average values over each airline’s 
routes in the sample over 18 quarters. Fares are in 2000 dollars and are reported as 
half of the round-trip fare. Airlines’ market share is measured in number of 
passengers. 
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Table 3: Descriptive Statistics (87,192 observations) 

 

Variable Mean Std. Dev. Min Max 

     
Load Factor 0.673 0.163 0.003 1.000 
Market Share 0.584 0.371 0.000 1.000 
Percent of Passengers on     

Monopoly Routes 0.102 0.171 0.000 1.000 
Duopoly Routes 0.453 0.324 0.000 1.000 

Competitive Routes 0.445 0.319 0.000 1.000 
Weighted Internet 0.537 0.170 0.053 0.854 
Segment Fare ($) 151.81 78.21 4.83 1389.24 
Seats 42167 42880 30 419644 
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Table 4. Regression Results 
With Airline-Segment and Airline-Quarter Fixed Effects 

 
 

Dependent Variable: LOG (Load Factor) 
     

 (1) (2) (3) (4) (5) (6) (7) 
LOG (WEIGHTED INTERNET) .102*** .072*** .100*** .067*** .069***   
 (.021) (.018) (.021) (.018) (.018)   
EMPLOYMENT (%) .399** .457*** .408** .456*** .533*** .401** .524*** 
 (.186) (.168) (.185) (.167) (.167) (.185) (.167) 
LOG (INCOME PER CAPITA) .566*** .677*** .547*** .665*** .722*** .571*** .735*** 
 (.066) (.062) (.066) (.062) (.063) (.067) (.063) 
LOG (POPULATION) .007 .002 .009 .004 .008 .007 .007 
 (.014) (.013) (.014) (.013) (.013) (.014) (.013) 
LOG (WEIGHTED INTERNET)         
* % PASS. ON MONOP. ROUTES      .084*** .056*** 
      (.023) (.020) 
* % PASS. ON DUOP. ROUTES      .099*** .066*** 
      (.021) (.018) 
* % PASS. ON COMP. ROUTES      .107*** .074*** 
      (.021) (.018) 
LOG (FARE)  -.267***  -.277*** -.307***  -.308*** 
  (.010)  (.011) (.011)  (.011) 
% PASS. ON MONOP. ROUTES   -.038*** -.018* -.019**   
   (.010) (.009) (.009)   
% PASS. ON DUOP. ROUTES   -.015*** -.010** -.007   
   (.005) (.005) (.004)   
MktSHARE   .112*** .146*** .232***  .221*** 
   (.013) (.011) (.013)  (.013) 
LOG (SEATS)     -.086***  -.086*** 
     (.005)  (.005) 
Observations 87192 87192 87192 87192 87192 87192 87192 
        

Notes: Standard errors are in parentheses. Stars denote the significance level of coefficients: *** - 1 
percent, ** - 5 percent, * - 10 percent. The sample includes flights on segments between top 75 
airports and operated by top 20 airlines. Weighted Internet penetration by quarter, directional 
segment, carrier, is calculated as a weighted (by the number of passengers) measure of Internet 
penetration in the originating airport for all passengers on the carrier’s flights on a directional 
segment. FARE is the average fare on a corresponding segment, calculated from the O&D 
market-level data proportionally to the distance of the segment in total itinerary. Southwest 
Airlines is excluded because they report round-trip tickets as two one-way tickets, which 
precludes the calculation of our weighted Internet penetration variable. 
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Table 5. Regression Results 
With Airline-Segment and Airline-Quarter Fixed Effects 

 
 

Dependent Variable LOG (Load Factor) 
   
 (1) (2) 

LOG (WEIGHTED INTERNET)   
* I (SEATS IN 1ST QUARTILE) .065*** .124*** 
 (.019) (.019) 
* I (SEATS IN 2ND QUARTILE) .060*** .075*** 
 (.018) (.018) 
* I (SEATS IN 3RD QUARTILE) .064*** .061*** 
 (.018) (.018) 
* I (SEATS IN 4TH QUARTILE) .081*** .069*** 

 (.018) (.018) 
EMPLOYMENT (%) .483*** .536*** 
 (.167) (.167) 
LOG (INCOME PER CAPITA) .671*** .722*** 
 (.062) (.063) 
LOG (POPULATION) .002 .008 
 (.013) (.013) 
LOG (FARE) -.270*** -.309*** 
 (.010) (.011) 
% PASS. ON MONOP. ROUTES  -.020** 
  (.009) 
% PASS. ON DUOP. ROUTES  -.008* 
  (.004) 
MktSHARE  .233*** 
  (.013) 
LOG (SEATS)  -.094*** 
  (.005) 
Observations 87192 87192 
   

Notes: Standard errors are in parentheses. Stars denote the significance level of coefficients: 
*** - 1 percent, ** - 5 percent, * - 10 percent. The sample includes flights on 
segments between top 75 airports and operated by top 20 airlines. Weighted Internet 
penetration by quarter, directional segment, carrier, is calculated as a weighted (by 
the number of passengers) measure of Internet penetration in the originating airport 
for all passengers on the carrier’s flights on a directional segment. FARE is the 
average fare on a corresponding segment, calculated from the O&D market-level 
data proportionally to the distance of the segment in total itinerary. Southwest 
Airlines is excluded because they report round-trip tickets as two one-way tickets, 
which precludes the calculation of our weighted Internet penetration variable. 

 
 

 


