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Appendix to “Steering the Climate System”

The first section provides additional background on solving control problems with pure state
constraints. Section B contains proofs, derivations, and the analysis of the Hotelling-like
policy in the main text. Section C describes the numerical example’s calibration and solution.
Section D adapts the carbon dioxide (CO2) decay model of Golosov et al. (2014) to our
setting and demonstrates that the main text’s primary results still hold. Section E allows
business-as-usual emissions to evolve over time. Section F numerically explores different
degrees of inertia and the role of the discount rate in the base model. Section G provides a
phase portrait analysis of the efficient policy. Section H derives the least-cost trajectory for
a geoengineering control.

A Optimal control with pure state constraints

We solve our state-constrained control problem via a set of necessary conditions that will
look unfamiliar to many economists. The standard approach to solving constrained control
problems in economic applications is to embed the Hamiltonian inside of a Lagrangian and
apply complementary slackness conditions. This approach requires that a “rank constraint
qualification” hold: at any time t, the Jacobian of the binding constraints with respect to the
controls must have full rank when evaluated at the optimal control vector u(t) and optimal
state vector x(t).1 Intuitively, the first-order conditions for maximizing a Lagrangian require
that the regulator be able to choose its controls so as to have a first-order effect on each
binding constraint.

We study a case in which the control u(t) does not enter the constraint (i.e., we have
a “pure” state constraint), so that the rank constraint qualification fails to hold. Our time
t abatement control can affect a binding time t temperature constraint only by chang-
ing temperature at later times. Consider an interval over which a pure state constraint
h(t, x(t), u(t)) ≥ 0 binds. Assume one-dimensional controls and states, and note that being
a pure state constraint means ∂h(t, x(t), u(t))/∂u(t) = 0. To maintain the binding constraint
h(t, x(t), u(t)) = 0, it must be true that dh(t, x(t), u(t))/dt , h1(t, x(t), u(t)) = 0. Main-
taining the pure state constraint requires steering the system so that its total derivative
with respect to time is 0. If ∂h1(t, x(t), u(t))/∂u(t) = 0, then maintaining the constraint
h1(t, x(t), u(t)) = 0 requires that dh1(t, x(t), u(t))/dt , h2(t, x(t), u(t)) = 0. We continue
this process until finding the first constraint hρ(t, x(t), u(t)) that includes the control variable
u(t). The pure state constraint is then said to be of order ρ. In our setting, the temperature
constraint is of order 2 because its first time derivative depends on CO2 but not abatement,
and its second time derivative depends on abatement via the time derivative of CO2. The
policymaker’s choice of time t abatement can immediately affect only the time t acceleration

1See, for instance, Caputo (2005, Chapter 6).
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or deceleration of temperature, not the time t level or velocity of temperature.
Let the pure state constraint be of order ρ. The “indirect adjoining” approach used in our

analysis builds the Lagrangian as if hρ(t, x(t), u(t)) were the relevant constraint. The rank
constraint qualification would hold for a system constrained by hρ(t, x(t), u(t)) ≥ 0, but we
need to recognize that the true system must actually obey the constraint h(t, x(t), u(t)) ≥ 0
and, over an interval over which the constraint binds, also hk(t, x(t), u(t)) = 0 for k < ρ.
Complementary slackness applies to the original constraint h(t, x(t), u(t)), not to hρ(t, x(t), u(t)).
Critically, the costate variable on x(t) can jump at the time that the constraint begins
to bind.2 The jump in the costate variable depends on both the partial derivatives of
hk(t, x(t), u(t)) with respect to x(t) (for k < ρ) and on (the level and time derivatives
of) the constraint multiplier.3

The survey by Hartl et al. (1995) is the best reference we have found for necessary
conditions for control problems with pure state constraints. We adapt the necessary condi-
tions from their Section 6, which presents the indirect adjoining approach to higher-order
constraints.

B Formal analysis

This section contains proofs, an additional proposition, the derivation of equation (10), and
the analysis of a CO2 constraint in the main text’s setting.

B.1 Proof of Proposition 1

We begin with a lemma that draws on the main text’s analysis of the shadow cost of abate-
ment along a least-cost path.

2Technically, the costate variable can jump at both the first time that the constraint binds (the “entry
time”) and the last time that the constraint binds (the “exit time”). However, the values of the costate
variable and the constraint multiplier are not unique in that case, so we can normalize the costate variable
to jump at only one of the two times. We here choose to allow a jump at the entry time and to impose
continuity on the costate variable at the exit time.

3Imagine that ∂h(t, x(t), u(t))/∂x(t) ≥ 0. Then increasing the state variable helps satisfy the state
constraint. Prior to the constraint binding, the costate variable for x(t) includes the value induced by the
effect of marginally increasing x(t) on future times’ constraints. Intuitively, the costate variable jumps at the
time that the constraint begins to bind because the costate variable now includes only the marginal value of
the state in meeting hρ(t, x(t), u(t)) ≥ 0; the constraints hk(t, x(t), u(t)) = 0 for k < ρ now do not directly
affect the level of the control. In our setting, increasing either CO2 or (abstracting from a complication due
to inertia) temperature makes it more difficult to satisfy the constraint in the future. The shadow costs of
CO2 and temperature initially include these dynamic costs induced by the constraint. Once the constraint
begins to bind, the shadow costs of CO2 and temperature jump down because the temperature constraint
now enters the decision problem only as a constraint on the acceleration of temperature.
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Lemma B-1. Let τ indicate the first time t > t0 at which T (t) = T̄ . Along any least-cost
trajectory, τ is finite.

Proof. The assumption that E > δ
(
F−1(T̄ /s)−Mpre

)
implies that temperature along a

least-cost path must either reach T̄ in finite time or approach it asymptotically from below.
Assume that there is no finite time τ at which the system attains T̄ . Either the system reaches
M̄ at some finite time and then remains there, or the system approaches M̄ asymptotically.
Therefore, either abatement reaches E − δ

(
F−1(T̄ /s)−Mpre

)
at some finite time and then

remains there, or abatement approaches E − δ
(
F−1(T̄ /s)−Mpre

)
asymptotically. In either

case,
lim
t→∞

λM(t) = C ′
(
E − δ

(
F−1(T̄ /s)−Mpre

))
, lim

t→∞
λ̇M(t) = 0.

Using equation (5), we have

lim
t→∞

λ̇M(t) = (r + δ)C ′
(
E − δ

(
F−1(T̄ /s)−Mpre

))
− φ s λT (t0) e(r+φ)(t−t0) F ′(M(t)) = −∞.

But λ̇M(t) cannot approach both zero and negative infinity. We have a contradiction. The
time τ must be finite.

Now consider whether M(t) is greater or less than M̄ for t ∈ (τ − ε, τ), for some ε > 0.4 If
M(t) ≤ M̄ for all t ∈ (τ − ε, τ), then equation (2) and T (t) < T̄ imply that T (τ) = T̄ only as
τ goes to infinity.5 But Lemma B-1 showed that τ is finite. Therefore M(t) > M̄ for some
t ∈ (τ − ε, τ). Since this result holds for ε arbitrarily small, we then have that there exists
some ∆ > 0 such that M(t) > M̄ for all t ∈ (τ −∆, τ).

Once temperature attains T̄ , CO2 must remain no larger than M̄ in order to prevent tem-
perature from rising past the constraint. And the assumption that E > δ

(
F−1(T̄ /s)−Mpre

)
implies that, along a least-cost trajectory, CO2 must remain no less than M̄ once tempera-
ture has attained T̄ . Therefore CO2 must remain fixed at M̄ once temperature attains T̄ .
And because CO2 must be strictly above M̄ at some instant before temperature attains T̄ ,
there exists some time q such that Ṁ(t) ≤ 0 for all times t ≥ q and such that Ṁ(t) < 0 for
some time t ≥ q. This establishes the first part of the proposition.

The second part of the proposition follows immediately from observing that a policymaker
constrained to keep CO2 no greater than the steady-state level M̄ corresponding to T̄ never
lets temperature reach T̄ . Any path that satisfies the constrained CO2 problem therefore
also satisfies the corresponding constrained temperature problem. However, we have seen
that the least-cost CO2 trajectory must exceed M̄ in the constrained temperature problem.

4We thank Larry Karp for catching an error in an earlier version of the following proof.
5Within the class of trajectories for which M(t) ≤ M̄ for t ∈ (τ − ε, τ), the trajectory that attains T̄ at

the earliest time fixes M(t) = M̄ for all t ∈ (τ − ε, τ). In that case, equation (2) is an autonomous linear
equation, which approaches its steady state T̄ only asymptotically. Therefore, if M(t) ≤ M̄ for t ∈ (τ − ε, τ),
then τ must be infinite.
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The least-cost path that satisfies the temperature constraint therefore does not satisfy the
corresponding CO2 constraint. Constraining CO2 introduces an additional binding constraint
that strictly increases the cost of the least-cost policy pathway.

B.2 An additional proposition

Proposition B-2. Let τ be the first time at which T (t) = T̄ , and let x be the last time prior
to τ at which M(t) is nondecreasing. If Ṁ(t0) > 0, then x > t0, λ̇M(x) > 0, and there exists
a unique time y ∈ (x, τ) at which λM(t) reaches a maximum.

Proof. First consider the CO2 trajectory for times t ∈ [t0, τ ]. We know by Proposition 1
that it is nonincreasing after some time prior to τ . Combined with the assumption that
Ṁ(t0) > 0, we have that there exists a last time x ∈ (t0, τ) at which M(t) is nondecreasing.
At this interior maximum, it must be the case that Ṁ(x) = 0 and M̈(x) < 0. Differentiating
equation (1), we have

M̈(t) = −Ȧ(t)− δ Ṁ(t).

At a point where Ṁ(t) = 0, M̈(t) < 0 if and only if Ȧ(t) > 0. We know by equation (4) that
marginal abatement cost equals the shadow cost of CO2. This establishes that λ̇M(x) > 0.

At an interior maximum of λM(t) in [t0, τ ], it must be the case that λ̇M(t) = 0 and
λ̈M(t) ≤ 0. Differentiating equation (5), we have:

λ̈M(t) = (r + δ) λ̇M(t) +
[
−F ′′(M(t)) Ṁ(t)− (r + φ)F ′(M(t))

]
φ s λT (t).

At a point where λ̇M(t) = 0, λ̈M(t) ≤ 0 if and only if −Ṁ(t)F ′′(M(t))/F ′(M(t)) ≤ r + φ.
Recognizing that F ′′(M(t)) < 0, that F ′(M(t)) > 0, and that Ṁ(t) < 0 at all times t ∈ (x, τ),
we have that λ̈M(t) < 0 at any t ∈ (x, τ) for which λ̇M(t) = 0.

We have already seen that λ̇M(x) > 0. Now consider the first time τ when T (t) = T̄ .
The proof of Proposition 1 shows that CO2 must be strictly greater than M̄ in the instants
before τ : M(τ − ε) = M̄ + γ for ε sufficiently small and ε, γ > 0. In order to achieve the
temperature limit at τ , abatement must be such that [M(τ)−M(τ − ε)]/ε = −γ/ε. Letting
ε and γ jointly go to 0, this relation implies that:

Ṁ(τ − ε) = E − A(τ − ε)− δ(M̄ −Mpre + γ) = −γ
ε
,

which holds if and only if:

A(τ − ε) = E − δ
(
M̄ −Mpre

)
+
[γ
ε
− δ γ

]
.

As ε, γ jointly go to 0, the term in the brackets is strictly positive. To maintain temperature
at T̄ at time τ and beyond, abatement must satisfy A(τ) = E − δ

(
M̄ −Mpre

)
. Therefore

A-4



Lemoine and Rudik Appendix to “Steering the Climate System”, September 2017

abatement is greater in the instants before time τ . The main text shows that abatement is
continuous at τ . Therefore, λ̇M(τ−ε) < 0. By the Intermediate Value Theorem, there exists
some time y ∈ (x, τ − ε) such that λ̇M(y) = 0. We have already established that λ̈M(y) < 0
for all such y, so there is a unique maximum of λM(t) between times x and τ .

B.3 Derivation of equation (10)

Substitute λT (t) into equation (5):

(r + δ)λM(t)− λ̇M(t) = φ sF ′(M(t))λT (t0) e(r+φ)(t−t0).

Multiply by the integrating factor, integrate with respect to time, and rearrange:

(r + δ)e−(r+δ)(t−t0)λM(t)− e−(r+δ)(t−t0)λ̇M(t) = e−(r+δ)(t−t0)φ sF ′(M(t))λT (t0) e(r+φ)(t−t0)

⇔
∫ t

t0

[
−(r + δ)e−(r+δ)(i−t0)λM(i) + e−(r+δ)(i−t0)λ̇M(i)

]
di

=

∫ t

t0

−e−(r+δ)(i−t0)φ sF ′(M(i))λT (t0) e(r+φ)(i−t0) di

⇔e−(r+δ)(t−t0)λM(t)− λM(t0) = −φ s λT (t0)

∫ t

t0

e(φ−δ)(i−t0)F ′(M(i)) di.

Substitute in λT (t0) = e−(r+φ)(t−t0)λT (t) and rearrange:

λM(t0) = e−[r+δ](t−t0)λM(t) + e−[r+δ](t−t0)λT (t)

∫ t

t0

e−(φ−δ)(t−i)φ sF ′(M(i)) di.

B.4 Hotelling policy

Now consider the Hotelling-like policy in the main text’s setting. Recall that this policy
ignores the inertia in the climate system. It minimizes the cost of meeting the constraint
M(t) ≤ M̄ (while ignoring temperature), where M̄ is the unique steady-state CO2 concen-
tration implied by T̄ . The Hotelling trajectory solves:

min
A(·)

∫ ∞
t0

e−r(t−t0) C(A(t)) dt

subject to Ṁ(t) =E − A(t)− δ(M(t)−Mpre),

M(t) ≤M̄,

M(t0) given.
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We follow the main text in ignoring the nonnegativity constraint on abatement. Define:

g0(M(t), A(t)) =M̄ −M(t) ≥ 0,

g1(M(t), A(t)) =− Ṁ(t).

The state constraint is now of order one. As in other cases we have studied, there will be
a first time τ at which the state constraint binds, and the state constraint will then bind
forever after τ under a least-cost policy. The current-value Hamiltonian is

H(M(t),A(t), λM(t)) = C(A(t)) + λM(t) [E − A(t)− δ(M(t)−Mpre)] .

The current-value Lagrangian is

H[t] + ν(t) {−E + A(t) + δ(M(t)−Mpre)} .

The necessary conditions for a maximum are (Hartl et al., 1995):

C ′(A(t)) =λM(t)− ν(t), (B-1)

λ̇M(t) =[r + δ]λM(t)− ν(t) δ,

ν(t)[M̄ −M(t)] =0, ν(t) ≤ 0, ν̇(t) ≥ r ν(t),

λM(τ−) =λM(τ+)− er(τ−t0) ηM , (B-2)

H[τ−] =H[τ+],

ηM ≤0, ηM ≤ e−r(τ−t0) ν(τ+), (B-3)

along with the transition equation, the initial condition on M(t), and the state constraint.6

It is easy to see that we get the standard decay-adjusted Hotelling trajectory prior to
time τ . After τ , abatement must be chosen so as to hold Ṁ(t) = 0, as in the analysis
of a temperature constraint. We need to consider whether abatement jumps at τ . Use
equation (B-1) and substitute in from equation (B-2) to obtain:

C ′(A(τ+)) =C ′(A(τ−)) + er(τ−t0) ηM − ν(τ+).

The conditions in (B-3) then imply that abatement either jumps down at τ (if ηM <
e−r(τ−t0) ν(τ+)) or is continuous at τ (if ηM = e−r(τ−t0) ν(τ+)). Assume that abatement

6Formally, there are two more necessary conditions: that dH[t]/dt = dL[t]/dt, and that an omitted
multiplier on the instantaneous payoff function be weakly positive. The first condition is always satisfied
since at any time t either the constraints are binding or their Lagrange multipliers are zero. The second
condition cannot be satisfied with a multiplier of zero because abatement would then always be either at its
upper or lower bound (in order to maximize the Lagrangian), which cannot be optimal. Thus, as is typical
in economic analysis, the omitted multiplier must be strictly positive and therefore ignorable. For ease of
presentation, we ignore these two conditions here, in the main text, and in the remainder of the appendix.
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jumps down at τ . We then have:

Ṁ(τ−) =E − A(τ−)− δ(M(τ−)−Mpre)

<E − A(τ+)− δ(M(τ−)−Mpre)

=E − A(τ+)− δ(M(τ+)−Mpre)

=Ṁ(τ+)

=0.

Therefore, if abatement jumps down at τ , then Ṁ(τ−) < 0, which would imply that CO2 is
declining towards M̄ and thus that M(t) > M̄ for some time t < τ . But this would violate
the state constraint. We have a contradiction. As a result, abatement must be continuous
at τ and we must have ηM = e−r(τ−t0) ν(τ+).

C Numerical calibration and solution

We calibrate the example to DICE-2007 (Nordhaus, 2008), as implemented with an annual
timestep in Lemoine and Traeger (2014). All baseline runs use the 5.5% annual consumption
discount rate (r = 0.055) generally consistent with this model.7

The full DICE model includes three carbon reservoirs. Lemoine and Traeger (2014)
approximate DICE’s full carbon dynamics by making the decay rate of CO2 a function of
the atmospheric CO2 stock and time. Along the optimal path in DICE, the time-varying
decay rate for CO2 in excess of its pre-industrial level starts at 0.0141, declines to 0.0119
in 100 years, and declines to 0.0068 after 200 years. Using the average value over the first
100 years, we have δ = 0.0138. We calibrate business-as-usual CO2 emissions E to DICE’s
initial value. This yields E = 9.97 Gt C per year.

We follow much scientific literature in modeling forcing as F (M(t)) = α ln(M(t)/Mpre).
We take Mpre = 596.4 Gt C, and we follow Ramaswamy et al. (2001, Table 6.2) in using
α = 5.35 W m−2, which is approximately equivalent to the parameters used in DICE. The
full DICE model includes two temperature reservoirs. Lemoine and Traeger (2014) simplify
this setting by representing the deep ocean temperature as a function γT (T, t) of surface
temperature and time. In their discrete-time setting, the temperature transition becomes

Tt+1 − Tt = CT

[
Ft+1 −

α ln(2)

cs
Tt − [1− γT (Tt, t)]CO Tt

]
,

where we have used cs for climate sensitivity so as to avoid confusion with the present paper’s
notation. The present paper’s parameter s gives equilibrium warming per unit of forcing,

7Technically, this setting with stationary output should use a discount rate no greater than 1.5% to be
consistent with DICE-2007: consumption growth in the Ramsey equation is negative once we subtract the
cost of abatement.
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whereas DICE’s cs = 3 gives equilibrium warming from doubled CO2. Relating the two
parameters, we have:

s =
cs

α ln(2)
= 0.809 ◦C

[
W m−2

]−1
.

Using explicit Euler difference methods, we find:

φ =
CT

[
Ft+1 − α ln(2)

cs
Tt − [1− γT (Tt, t)]CO Tt

]
s Ft − Tt

.

Along DICE’s optimal trajectory, the inferred value of φ starts at 0.0129, falls to 0.0056 after
100 years, and falls to -0.0030 after 200 years (reflecting that the ocean begins transferring
heat to the atmosphere as the CO2 concentration declines). Using the average value over
the first 100 years, we have φ = 0.0091.

In DICE, the cost (as a fraction of time t output) of abating a fraction µt of business-as-
usual emissions is Ψtµ

a2
t , where a2 = 2.8 and

Ψt =
a0 σt
a2

(
1− 1− e(t−t0) gΨ

a1

)
, with σt = σ0 exp

[
gσ,0
δσ

(
1− e−(t−t0) δσ

)]
.

The parameters are a0 = 1.17, a1 = 2, gΨ = −0.005, σ0 = 0.13, gσ,0 = −0.0073, and δσ =
0.003. Initial output Y (without adjusting for climate damages) in DICE is approximately
85 trillion dollars. We represent the cost of abatement A(t) as

C (A(t)) = Ψt0

[
A(t)

E

]a2

Y. (C-4)

Finally, from DICE-2007, we have the initial CO2 stock as M0 = 808.9 Gt C, the initial
global mean surface temperature as T0 = 0.7307 ◦C (relative to 1900), and the initial time
as t0 = 2005.

To solve the four-dimensional system of differential equations defined in the main text,
we begin with a triplet (T (τ),M(τ), A(τ)) such that T (τ) = T̄ , M(τ) = M̄ , and A(τ) holds
Ṁ(τ) = 0. From the Maximum Principle, we have λM(τ−) = C ′(A(τ)). We then seek
the value of λT (τ−) consistent with these conditions and with the initial conditions. For a
given value of λT (τ−), we use Matlab’s ode23 solver with relative and absolute tolerances of
10−10 to solve the system of ordinary differential equations from τ but with time flowing in
reverse.8 In the resulting simulation, let x be the time t at which M(t) = M0. At a solution
to the system, it must also be the case that T (x) = T0. An optimization routine searches for

8In general, we cannot solve the model forward by searching for the initial shadow costs λM (t0) and λT (t0)
that lead the system to obey the terminal conditions because, as is typical of saddle-path stable systems,
values slightly off the desired trajectories lead the system to a wildly different outcome. Our solution method
is closely related to the “reverse shooting” technique described in Judd (1998).
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the value of λT (τ−) such that T (x) = T0. At a solution, the values λM(x) and λT (x) are the
efficient λM(t0) and λT (t0).9 Using these initial values, we then simulate the model forward
in actual time, setting λM(t) to hold M(t) constant at M(τ) for all times t > τ . We use the
trapezoidal method to approximate the integral of abatement cost over the mesh points.

D Extension to the decay model of Golosov et al. (2014)

Our main analysis assumes that the stock of CO2 decays exponentially. In reality, the
evolution of atmospheric CO2 is more complex. We here extend our setting to the more
realistic decay model of Golosov et al. (2014).

In Golosov et al. (2014), a fraction ψL of emissions remains forever, a fraction (1−ψ0)(1−
ψL) decays immediately, and a fraction ψ0(1 − ψL) decays geometrically at rate ψ. Their
carbon decay model reduces to the main text’s model when ψL = 0, ψ0 = 1, and ψ = δ. Let
M1(t) be the stock of CO2 that remains in the atmosphere forever and M2(t) be the stock
of CO2 that decays geometrically. We have the following equations of motion:

Ṁ1(t) =ψL[E − A(t)],

Ṁ2(t) =ψ0(1− ψL)[E − A(t)]− ψM2(t).

The total stock of CO2 is the sum of the CO2 in these two atmospheric reservoirs: M(t) =
M1(t) + M2(t). When we numerically implement this model, we follow their calibration in
using M1(t0) = 684 Gt C, M2(t0) = 118 Gt C, ψL = 0.2, ψ0 = 0.393, and ψ = 0.0228/10,
where the latter adjusts for measuring time in years rather than in decades.10

The next subsection analyzes the least-cost policy trajectory with this new decay model,
the subsequent subsection analyzes the least-cost Hotelling trajectory, and the third subsec-
tion reports numerical results.

D.1 Least-cost policy

We now consider least-cost policy. As in the main analysis, the CO2 stock must equal M̄
when the policymaker decides to finally let T (t) reach T̄ , because otherwise the constraint
T (t) ≤ T̄ either would be violated or would fail to bind in the following instant. As before, let
τ be the first time at which T (t) = T̄ . The efficient policy trajectory must keep M(t) = M̄
for all t ≥ τ .

9When solving for the Hotelling trajectory, we begin withM(τ) equal to M̄ and λM (τ−) equal to C ′(A(τ)).
No search is necessary, as temperature can be effectively removed from the policymaker’s problem.

10Golosov et al. (2014) abstract from inertia: they assume that temperature responds instantly to CO2.
They describe how to adjust their carbon decay model to mimic the combined effects of thermal inertia and
carbon decay in the DICE model. We do not use this adjustment because we model inertia explicitly and
we want to analyze robustness to their own carbon decay model.
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Let Mmin(t) be the minimum CO2 stock attainable at any time after t. If emissions
(net of abatement) are strictly positive, then the infinite persistence of a fraction ψL of CO2

means that Mmin(t) is increasing over time (E(t) − A(t) > 0 ⇔ Ṁmin(t) > 0). For any
finite time t, the efficient policy path requires that Mmin(t) < M̄ so that the temperature
constraint will not be violated at some later time. In order to preventMmin(t) from eventually
becoming larger than M̄ , the efficient policy must have A(t)→ E (at which point Ṁmin(t) =
0). We have thus seen that the policymaker must eventually eliminate all emissions. This
result contrasts with the main text’s setting with geometric decay, in which strictly positive
emissions are consistent with holding the CO2 stock fixed at M̄ for all times t ≥ τ .11

We can also see that the policymaker eliminates all emissions only asymptotically. Imag-
ine that the optimal path is such that A(t) = E for finite t. At that time, the total stock
of CO2 would be declining because of the geometric decay represented by ψ. But this de-
clining stock violates the condition that an efficient trajectory holds M(t) fixed at M̄ for
all times t ≥ τ . For t sufficiently large, the efficient trajectory must have A(t) → E only
asymptotically.

The least-cost abatement trajectory must solve:

min
A(·)

∫ ∞
t0

e−r(t−t0) C(A(t)) dt

subject to Ṁ1(t) =ψL[E − A(t)],

Ṁ2(t) =ψ0(1− ψL)[E − A(t)]− ψM2(t),

Ṫ (t) =φ [s F (M1(t) +M2(t))− T (t)] ,

A(t) ≤E,
T (t) ≤T̄ ,
M1(t0),M2(t0), T (t0) given.

In contrast to the main text, we explicitly represent the nonnegativity constraint on net
emissions E − A(t). We will see in the numerical analysis that the new decay model makes
this constraint relevant. Following the main text, define:

h0(T (t),M1(t),M2(t), A(t)) =T̄ − T (t) ≥ 0,

h1(T (t),M1(t),M2(t), A(t)) =− Ṫ = −φ [s F (M1(t) +M2(t))− T (t)] ,

h2(T (t),M1(t),M2(t), A(t)) =− T̈ = −φ
[
s F ′ (M1(t) +M2(t))

(
Ṁ1(t) + Ṁ2(t)

)
− Ṫ (t)

]
=− φsF ′(M1(t) +M2(t)) {[ψ0(1− ψL) + ψL][E − A(t)]− ψM2(t)}

+ φ2 [s F (M1(t) +M2(t))− T (t)] .

11Further, because a fraction of emissions persists forever, the temperature limit here fixes cumulative
emissions. In contrast, in the main text, we saw that recognizing inertia enabled the policymaker to increase
cumulative emissions.
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As in the main text, the state constraint is of order two. The current-value Hamiltonian is

H(M1(t),M2(t), T (t), A(t), λM1(t), λM2(t), λT (t))

=C(A(t)) + λM1(t)ψL[E − A(t)] + λM2(t) {ψ0[1− ψL][E − A(t)]− ψM2(t)}
+ λT (t)φ [s F (M1(t) +M2(t))− T (t)].

The current-value Lagrangian is

H[t] + µ(t) [A(t)− E]

+ ν(t)
{
− φsF ′(M1(t) +M2(t)) {[ψ0(1− ψL) + ψL][E − A(t)]− ψM2(t)}

+ φ2 [s F (M1(t) +M2(t))− T (t)]
}
.

The necessary conditions for a maximum are (Hartl et al., 1995):

C ′(A(t)) =λM1(t)ψL + λM2(t)ψ0[1− ψL]− µ(t)

− ν(t)φ sF ′(M1(t) +M2(t))[ψ0(1− ψL) + ψL], (D-5)

λ̇M1(t) =rλM1(t)− φ sF ′(M1(t) +M2(t))λT (t)

+ ν(t)φ sF ′′(M1(t) +M2(t)) {[ψ0 (1− ψL) + ψL][E − A(t)]− ψM2(t)}
− ν(t)φ2 s F ′(M1(t) +M2(t)),

λ̇M2(t) =[r + ψ]λM2(t)− φ sF ′(M1(t) +M2(t))λT (t)

+ ν(t)φ sF ′′(M1(t) +M2(t)) {[ψ0 (1− ψL) + ψL][E − A(t)]− ψM2(t)}
− ν(t) [φ+ ψ]φ sF ′(M1(t) +M2(t)),

λ̇T (t) =[r + φ]λT (t) + ν(t)φ2,

µ(t) ≥0, A(t)− E ≤ 0, µ(t) [A(t)− E] = 0,

ν(t)[T̄ − T (t)] = 0, ν(t) ≤ 0, ν̇(t) ≥ r ν(t), ν̈(t) ≤ 2 rν̇(t)− r2 ν(t),

λM1(τ−) =λM1(τ+)− er(τ−t0) η2
M1φ sF

′(M1(t) +M2(t)), (D-6)

λM2(τ−) =λM2(τ+)− er(τ−t0) η2
M2φ sF

′(M1(t) +M2(t)), (D-7)

λT (τ−) =λT (τ+)− er(τ−t0) η1
T + er(τ−t0) η2

Tφ,

H[τ−] =H[τ+],

η1
x, η

2
x ≤ 0, η1

x ≤− e−r(τ−t0) ν̇(τ+) + re−r(τ−t0)ν(τ+), η2
x = e−r(τ−t0) ν(τ+) for x ∈ {T,M1,M2},

(D-8)

along with the transition equations, the initial conditions on M1(t), M2(t), and T (t), and
the state constraint.
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For times t ≥ τ , abatement evolves so as to keep h1 = 0, which requires M1(t) +M2(t) =
M̄ . In order to maintain h2 = 0 (i.e., in order to stay at M̄), we need:

A(t) = E − ψ

ψL + ψ0(1− ψL)

[
M̄ −M1(t)

]
, (D-9)

for t ≥ τ . We therefore have:

A(τ) = E − ψ

ψL + ψ0(1− ψL)

[
M̄ −M1(τ)

]
, Ā(M1(τ)).

Differentiate equation (D-9) with respect to time:

Ȧ(t) =
ψ ψL

ψL + ψ0(1− ψL)
[E − A(t)] ≥ 0,

for t ≥ τ . Integrating from τ to t ≥ τ yields:

A(t− τ ;M1(τ)) = E − e−
ψ ψL

ψL+ψ0(1−ψL)
(t−τ)

[E − Ā(M1(τ))].

After temperature reaches T̄ , abatement rises from A(τ) = Ā(M1(τ)) towards E and attains
E only asymptotically, as argued above.

From equation (D-5), we have

C ′(A(τ−)) = λM1(τ−)ψL + λM2(τ−)ψ0[1− ψL]− µ(τ−),

and also that

C ′(A(τ+)) = λM1(τ+)ψL+λM2(τ+)ψ0[1−ψL]−µ(τ+)−ν(τ+)φ sF ′(M1(τ)+M2(τ))[ψ0(1−ψL)+ψL].

Equations (D-6) and (D-7) and the conditions in (D-8) then imply that A(τ−) = A(τ+).
Thus, as in the main text, abatement is continuous at time τ .

In the remainder of this section, we study least-cost policy before the constraint binds.
We have ν(t) = 0 over these times t ∈ [t0, τ). At these times, C ′(A(t)) = λM1(t)ψL +
λM2(t)ψ0[1− ψL]− µ(t). If µ(t) > 0, then A(t) = E and µ(t) picks up the gap between the
shadow cost of emissions and C ′(E) in equation (D-5).

Following the derivation for the main text, the costate equations on M1(t), M2(t), and
T (t) imply the following relationships:

λM1(t0) =e−r(t−t0) λM1(t) + e−r(t−t0) λT (t)

∫ t

t0

e−φ(t−i) φ sF ′(M(i)) di,

λM2(t0) =e−[r+ψ](t−t0) λM2(t) + e−[r+ψ](t−t0) λT (t)

∫ t

t0

e−(φ−ψ)(t−i) φ sF ′(M(i)) di.
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These equations are exactly the same as in the main text, except with M1(t) lacking a
geometric decay component. We therefore see that inertia enters λM1(t) and λM2(t) in the
same way as it entered λM(t) in the main text (modulo the geometric decay terms in the
exponents). Further, equation (D-5) shows that marginal abatement cost (which defines the
efficient emission tax) is linear in λM1(t) and λM2(t), just as it was linear in λM(t) in the
main text. The way that inertia affects the efficient tax on emissions is therefore qualitatively
unchanged by the extension to the more realistic decay model of Golosov et al. (2014).

Write the cost of the remaining policy program at τ as a function of τ and M1(τ):

W (τ,M1(τ)) =

∫ ∞
τ

e−r(i−τ)C(A(i− τ ;M1(τ))) di.

Along a least-cost path, the costate variables must be12

λM1(τ+) =
∂W (τ,M1(τ))

∂M1(τ)
=

ψ

ψL + ψ0(1− ψL)

∫ ∞
τ

e
−
(
r+

ψ ψL
ψL+ψ0(1−ψL)

)
(i−τ)

C ′(A(i−τ ;M1(τ))) di

and

λM2(τ+) =
∂W (τ,M1(τ))

∂M2(τ)
= 0.

From equations (D-6) and (D-7) and the conditions in (D-8), we then have:

λM1(τ−) =
ψ

ψL + ψ0(1− ψL)

∫ ∞
τ

e
−
(
r+

ψ ψL
ψL+ψ0(1−ψL)

)
(i−τ)

C ′(A(i− τ ;M1(τ))) di

− ν(τ+)φ sF ′(M̄), (D-10)

λM2(τ−) =− ν(τ+)φ sF ′(M̄). (D-11)

From equation (D-5), we then have:

C ′(Ā(M1(τ))) =ψL
ψ

ψL + ψ0(1− ψL)

∫ ∞
τ

e
−
(
r+

ψ ψL
ψL+ψ0(1−ψL)

)
(i−τ)

C ′(A(i− τ ;M1(τ))) di

− [ψL + ψ0[1− ψL]] ν(τ+)φ sF ′(M̄), (D-12)

where we recognize that the abatement nonnegativity constraint does not bind at τ . (Suppose
the constraint did bind at τ . We know that M2(τ) > 0, resulting in M1 + M2 < M̄ in the

12If we had instead defined Ā as a function of M2(τ) and left M1(τ) as the residual, then we would obtain
λM1(τ+) = 0 and λM2(τ+) < 0, with the difference between them being the exact same as in the given
analysis. We will see that it is the difference that matters, as ν(τ) will work to shift both multipliers’ right-
hand limits to match their left-hand limits. The results needed for the numerics will therefore be unchanged,
as the inferred value of ν(τ+) will simply reflect whichever choice we make. However, the given presentation
with both costate variables positive matches the reasonable assumption that the shadow costs should be
positive.
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next instant, but the efficient policy must maintain CO2 at M̄ . The abatement nonnegativity
constraint therefore cannot bind at τ .)

To numerically solve the model, we guess λT (τ−) and M1(τ). The guess for M1(τ) implies
A(τ), which in turn implies ν(τ+) from equation (D-12) and then λM1(τ−) and λM2(τ−) from
equations (D-10) and (D-11).13 We also know that T (τ) = T̄ and M2(τ) = M̄ −M1(τ). We
solve the system backwards in time, stopping when either M1(t) meets its initial condition
or A(t) = E. In the latter case, we then simulate the system backwards from this new
point, with µ(t) starting at zero (its value at the latest time that the constraint binds).14

The differential equation for µ(t) comes from fixing A(t) = E and then differentiating equa-
tion (D-5) with respect to time. We simulate the system backwards in time with A(t) = E
until we find a time at which µ(t) once again reaches zero, which is where the constraint that
E − A(t) ≥ 0 just started to bind. We then simulate the unconstrained system backwards
in time from there, stopping when M1(t) meets its initial condition. Once we have found
a time when M1(t) meets its initial condition, we check the initial conditions on M2(t) and
T (t). We iterate until we find values of λT (τ−) and M1(τ) that generate paths that satisfy
these initial conditions.

D.2 Hotelling policy

Now consider the Hotelling-like policy under the decay model of Golosov et al. (2014). Recall
that this policy ignores the inertia in the climate system. In the main analysis, it minimizes
the cost of meeting the constraint M(t) ≤ M̄ (while ignoring temperature), where M̄ is
the unique steady-state CO2 concentration implied by T̄ . Here, we study the problem of
constraining M1(t) + M2(t) ≤ M̄ , while ignoring temperature. The Hotelling trajectory
solves:

min
A(·)

∫ ∞
t0

e−r(t−t0) C(A(t)) dt

subject to Ṁ1(t) =ψL[E − A(t)],

Ṁ2(t) =ψ0(1− ψL)[E − A(t)]− ψM2(t),

A(t) ≤E,
M1(t) +M2(t) ≤M̄,

M1(t0),M2(t0) given.

13We approximate the integral in equation (D-12) by starting from near M1(t) = M̄ and M2(t) = 0,
simulating backwards until reaching M1(τ), and then using a Newton-Cotes formula to approximate the
integral.

14In general, µ(t) need be only piecewise continuous, but continuity of A(t) here ensures continuity of µ(t).
See Caputo (2005, Chapter 6).
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Define:

g0(M1(t),M2(t), A(t)) =M̄ −M1(t)−M2(t) ≥ 0,

g1(M1(t),M2(t), A(t)) =− Ṁ1(t)− Ṁ2(t).

The state constraint is now of order one. As in other cases we have studied, there will be
a first time τ at which the state constraint binds, and it will bind forever after that time
under a least-cost policy. The current-value Hamiltonian is

H(M1(t),M2(t), A(t), λM1(t), λM2(t))

=C(A(t)) + λM1(t)ψL[E − A(t)] + λM2(t) {ψ0[1− ψL][E − A(t)]− ψM2(t)} .

The current-value Lagrangian is

H[t] + µ(t) [A(t)− E] + ν(t) {−[ψ0(1− ψL) + ψL][E − A(t)] + ψM2(t)} .

The necessary conditions for a maximum are (Hartl et al., 1995):

C ′(A(t)) =λM1(t)ψL + λM2(t)ψ0[1− ψL]− µ(t)− ν(t) [ψ0(1− ψL) + ψL], (D-13)

λ̇M1(t) =rλM1(t),

λ̇M2(t) =[r + ψ]λM2(t)− ν(t)ψ,

µ(t) ≥0, A(t)− E ≤ 0, µ(t) [A(t)− E] = 0,

ν(t)[M̄ −M1(t)−M2(t)] = 0, ν(t) ≤ 0, ν̇(t) ≥ r ν(t),

λM1(τ−) =λM1(τ+)− er(τ−t0) ηM1, (D-14)

λM2(τ−) =λM2(τ+)− er(τ−t0) ηM2, (D-15)

H[τ−] =H[τ+],

ηx ≤0, ηx ≤ e−r(τ−t0) ν(τ+) for x ∈ {M1,M2}, (D-16)

along with the transition equations, the initial conditions on M1(t) and M2(t), and the state
constraint.

For times t ≥ τ , abatement evolves so as to keep g1 = 0. This requirement generates the
same post-τ policy path as in the previous subsection. Now consider whether abatement is
continuous at τ . Use equation (D-13) and substitute in from equations (D-14) and (D-15)
to obtain:

C ′(A(τ+)) =C ′(A(τ−)) + er(τ−t0) [ψL ηM1 + ψ0 (1− ψL) ηM2]− (ψ0(1− ψL) + ψL) ν(τ+).

The conditions in (D-16) then imply that abatement either jumps down at τ (if either
ηM1 < e−r(τ−t0) ν(τ+) or ηM2 < e−r(τ−t0) ν(τ+)) or is continuous at τ (if ηM1 = ηM2 =
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e−r(τ−t0) ν(τ+)). Assume that abatement jumps down at τ . We then have:

Ṁ1(τ−) + Ṁ2(τ−) =[ψL + ψ0(1− ψL)][E − A(τ−)]− ψM2(τ−)

<[ψL + ψ0(1− ψL)][E − A(τ+)]− ψM2(τ−)

=[ψL + ψ0(1− ψL)][E − A(τ+)]− ψM2(τ+)

=Ṁ1(τ+) + Ṁ2(τ+)

=0.

Therefore, if abatement jumps down at τ , then Ṁ1(τ−) + Ṁ2(τ−) < 0, which would imply
that total CO2 is declining towards M̄ and thus that M1(t) + M2(t) > M̄ for some time
t < τ . But this would violate the state constraint. We have a contradiction. As a result,
abatement must be continuous at τ and ηM1 = ηM2 = e−r(τ−t0) ν(τ+).

The remaining analysis and the numerical methods are directly analogous to the previous
subsection. Note that each shadow cost increases exponentially for t ∈ (t0, τ). We therefore
recover a Hotelling-like trajectory, modified for this decay model.

D.3 Numerical example

We now extend the numerical example from the main text to the decay model of Golosov
et al. (2014). Figure D1 depicts the least-cost paths for emissions, temperature, each stock of
carbon dioxide, and the emission tax implied by a 2 degree Celsius temperature constraint,
along with the “Hotelling” paths generated by constraining M(t) ≤ M̄ . This figure is the
analogue of Figure 1 in the main text. As in the main text, we see that the Hotelling
policy reduces emissions more aggressively than does the least-cost policy.15 Temperature
therefore increases more slowly under the Hotelling tax trajectory and only asymptotically
approaches the constraint T̄ (top right). As expected, the new decay model requires more
substantial reductions in emissions than did the geometric decay model of the main text
(top left). In particular, we now see that the nonnegativity constraint on net emissions
binds throughout the twenty-second century. Around the year 2275 (past the end of the
plot), the nonnegativity constraint stops binding. Abatement reaches A(τ) and temperature
reaches T̄ very shortly thereafter.

As in the main text, we see that the policymaker takes advantage of inertia to allow
total CO2 to overshoot M̄ , but now the magnitude of overshoot is reduced (bottom left).
The dotted lines show that the overshoot is due entirely to the decaying stock M2(t). The
non-decaying stock M1(t) cannot overshoot because it can never decline.

The bottom-right panel shows that the least-cost emission tax increases until abatement
is equal to business-as-usual emissions. At this point, there are no more net emissions and
abatement cannot rise further. The least-cost path increases slower than exponentially: the

15The kink in emissions under the Hotelling trajectory is due to reaching M̄ .
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(a) Emissions net of abatement (b) Temperature

(c) Carbon dioxide (d) Carbon price

Figure D1: The least-cost trajectories (solid lines) for emissions, temperature, CO2, and
the carbon price for a temperature limit of T̄ = 2◦C, using the carbon model of Golosov
et al. (2014). Also, the conventional Hotelling-like paths (dashed lines), which are also the
least-cost paths for the corresponding CO2 constraint.
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exponentially increasing Hotelling component (dotted) of the least-cost tax quickly exceeds
the actual least-cost tax. Prior to reaching the maximum allowed value for abatement,
the least-cost path is equal to its Hotelling component minus its inertia component. After
reaching that maximum allowed value, the shadow value of the constraint accounts for the
gap between the maximum allowed emission tax and the emission tax implied by the Hotelling
and inertia components. We see that the inertia component becomes large around the same
time that the constraint on net emissions begins to bind. This growing inertia component
works to offset the exponentially increasing Hotelling component. At first, the gap between
the maximum allowed emission tax and the shadow cost of emissions (which is the Hotelling
component minus the inertia component) grows. This means that the shadow value of the
constraint grows after it first binds. However, as the inertia component grows, that gap
shrinks. The shadow value of the constraint then also begins declining, eventually falling
back to zero. At that time (past the end of the plot), the constraint stops binding and
temperature soon reaches T̄ .

Table D1 is the analogue of Table 1 in the main text. The new decay model restricts the
policymaker much more severely than did the geometric decay model: some fraction of CO2

now persists forever, so the policymaker must reduce emissions more aggressively to make up
for the reduction in natural decay. Accordingly, all temperature limits imply a much more
expensive policy than estimated in the main text. The conventional Hotelling trajectory is
now around three times as expensive as the least-cost trajectory. In the main text’s setting,
recognizing the climate system’s inertia saved a bit over $2 trillion in unnecessary costs when
the temperature limit was 2 degrees Celsius. Here the savings are even greater: almost $13
trillion. The new decay setting increases the magnitude of spending and also the gains from
getting policy right. As in the main text, recognizing inertia allows the policymaker to use
a smaller emission tax in early years, reducing the initial emission tax to less than one-
third of the Hotelling value when the temperature limit is 2 degrees Celsius. The emission
tax still eventually reaches a higher level along the least-cost path than along the Hotelling
path, but the percentage increase in the peak emission tax was greater in the main text’s
setting because there CO2 was able to overshoot its steady-state level by a larger amount.
In contrast, the presence of a permanent CO2 stock here forces the policymaker to be less
aggressive in overshooting the steady state level of CO2.

Finally, while cumulative abatement over an infinite horizon is now fixed by the temper-
ature limit, recognizing inertia does still allow the policymaker to reduce cumulative abate-
ment over the next 200 years. The savings in the next 200 years’ cumulative abatement are
of roughly similar magnitudes as in the main text’s setting, even though the required abate-
ment is about twice as great. Therefore the savings as a percentage of cumulative abatement
are much smaller here than in the main text’s setting. Finally, note that because cumulative
abatement over an infinite horizon is now fixed by T̄ , the monetary savings from using the
least-cost path must ultimately be driven by discounting in the new decay setting.
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Table D1: The present cost of each policy program, the initial carbon prices, the peak carbon
prices, and cumulative abatement over the next 200 years, using the carbon model of Golosov
et al. (2014).

Temperature limit (◦C)
2 2.5 3

Cost of efficient path from 2005–2205 ($billion) 6,750 1,046 130
Cost of Hotelling path from 2005–2205 ($billion) 19,397 3,994 686

CO2 price along the efficient path in 2005 ($/tCO2) 3.91 0.59 0.07
CO2 price along the Hotelling path in 2005 ($/tCO2) 12.24 2.35 0.39

Peak CO2 price along the efficient path ($/tCO2) 353 353 353
Peak CO2 price along the Hotelling path ($/tCO2) 305 289 271

Abatement from 2005–2205 along the efficient path (Gt C) 1,474 1,147 778
Abatement from 2005–2205 along the Hotelling path (Gt C) 1,551 1,281 986

E Nonstationary business-as-usual emissions

We now relax the assumption that business-as-usual emissions are constant. Let these emis-
sions evolve exogenously, as E(t). It is easy to see that the only necessary condition that
changes in an interesting way is the condition that h2 = 0, which gave us A(τ).16 Our
qualitative conclusions about the role of inertia in least-cost policy are therefore unchanged.
The new condition that h2 = 0 now pins down A(t) for t ≥ τ as

A(t) = E(t)− δ(M̄ −Mpre).

We model the emission nonnegativity constraint as in Section D, which modifies the Maxi-
mum Principle’s necessary condition to

C ′(A(t)) =λM(t)− µ(t)− ν(t)φ sF ′(M(t)), (E-17)

with µ(t) ≥ 0, A(t)− E(t) ≤ 0, and µ(t) [A(t)− E(t)] = 0.
To numerically solve this nonstationary setting, we guess τ and λT (τ−). The guess for τ

gives us A(τ) and thus λM(τ−). We know M(τ) = M̄ and T (τ) = T̄ . We solve the system

16Note in particular that h0, h1, and h2 are unchanged except for the dependence of E on t in h2. Even
though we now have explicit time dependence in the problem, the other necessary conditions for a least-cost
trajectory are unchanged because, from Hartl et al. (1995), the only partial derivatives with respect to time
that would matter are those of h0 and h1, which are still zero.
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backwards until reaching either time t0 or a time when the nonnegativity constraint on net
emissions binds. In the latter case, we then simulate the constrained system backwards until
the shadow value of the constraint returns to zero (or to time t0, whichever is later), and then
simulate the unconstrained system backwards to time t0.17 During the interval for which
the constraint binds, the shadow value of the constraint evolves according to the differential
equation found by differentiating equation (E-17). Once we have reached t0, we compare
T (t0) and M(t0) to T0 and M0. We iterate until our guesses for τ and λT (τ−) yield paths
that satisfy the initial conditions.

We calibrate the evolution of business-as-usual emissions to total CO2 emissions in the
DICE model, with investment optimized and abatement fixed at zero. This calibration yields
the following relationship for business-as-usual emissions, with emissions in Gt C and time
in years:

E(t) = 9.9662 e0.0068(t−t0).

This calibration has business-as-usual emissions increasing over time.
Figure E2 is the analogue of Figure 1 in the main text. We see that the least-cost

path now has net emissions increase over the next 50 years, as business-as-usual emissions
increase faster than does abatement (top left). However, abatement ramps up quickly near
the end of the century, so that net emissions fall rapidly and the nonnegativity constraint
begins to bind early in the next century. As in all other cases, the Hotelling policy abates
emissions too aggressively over the next decades. As a result, temperature increases faster
under the least-cost policy trajectory (top right). CO2 overshoots its steady-state level M̄
by a larger amount than in the setting with stationary emissions (bottom left). Finally, the
bottom right panel shows the efficient emission tax and its components. As in Figure D1, the
shadow cost of emissions along the least-cost trajectory is the difference between the Hotelling
and inertia components. The efficient emission tax equals this shadow cost as long as the
nonnegativity constraint on net emissions does not bind, and once that constraint binds, the
shadow value of the constraint picks up the difference between the shadow cost of emissions
and the maximal allowed emission tax. Once the constraint begins binding, its shadow value
grows, but its shadow value eventually falls as the inertia component becomes larger relative
to the Hotelling component (which makes the shadow cost of emissions fall back towards
the maximal allowed emission tax). After the constraint ceases to bind, abatement quickly
moves to A(τ) and temperature reaches T̄ .18

17See Section D for more on handling this constraint.
18Note that the efficient emission tax declines during the period in which the nonnegativity constraint

binds and also in the period after τ , during which abatement holds CO2 at M̄ . In these intervals, the change
in abatement is exactly equal to the change in emissions (Ȧ(t) = Ė(t)). From equation (C-4), marginal
abatement cost changes over these intervals in proportion to (a2−1) Ȧ(t)/A(t)−a2 Ė(t)/E(t). Thus, marginal
abatement cost (but not total abatement cost) declines over these intervals if a2[E(t) − A(t)] − E(t) ≤ 0,
which holds as long as A(t) is not too much smaller than E(t). Allowing Y to increase with business-as-usual
emissions in equation (C-4) would introduce a force that would make marginal abatement cost more likely
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(a) Emissions net of abatement (b) Temperature

(c) Carbon dioxide (d) Carbon price

Figure E2: The least-cost trajectories (solid lines) for emissions, temperature, CO2, and the
carbon price for a temperature limit of T̄ = 2◦C, with business-as-usual emissions increasing
over time. Also, the conventional Hotelling-like paths (dashed lines), which are also the
least-cost paths for the corresponding CO2 constraint.
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Table E2: The present cost of each policy program, the initial carbon prices, the peak carbon
prices, and cumulative abatement over the next 200 years, with business-as-usual emissions
increasing over time.

Temperature limit (◦C)
2 2.5 3

Cost of efficient path from 2005–2205 ($billion) 604 122 26
Cost of Hotelling path from 2005–2205 ($billion) 5,489 1,475 379

CO2 price along the efficient path in 2005 ($/tCO2) 0.65 0.10 0.02
CO2 price along the Hotelling path in 2005 ($/tCO2) 8.38 1.57 0.28

Peak CO2 price along the efficient path ($/tCO2) 168 138 114
Peak CO2 price along the Hotelling path ($/tCO2) 117 88 69

Abatement from 2005–2205 along the efficient path (Gt C) 2,879 2,410 1,931
Abatement from 2005–2205 along the Hotelling path (Gt C) 3,167 2,783 2,384

Table E2 is the analogue of Table 1 in the main text. Unsurprisingly, having business-
as-usual emissions increase exogenously raises the total cost of the policy program, though
policy is still cheaper than in Section D where we used the carbon model of Golosov et al.
(2014). The savings from using the least-cost policy are now greater than in the main text,
so that ignoring inertia now costs almost $5 trillion under a 2 degree Celsius target (as
opposed to just over $2 trillion in the main text). We again see that the least-cost policy
uses a much lower initial carbon price and a much greater peak carbon price than does the
Hotelling policy. Assuming that business-as-usual emissions increase exogenously leads to
greater cumulative abatement under either policy. However, we see that using the least-cost
policy instead of the Hotelling policy now reduces cumulative abatement by an even greater
amount than in the main text’s setting with stationary business-as-usual emissions.

F Alternate degrees of inertia and discounting

Figure F3 shows how the strength of inertia (left column) and the choice of discount rate
(right column) affect the least-cost trajectories for achieving a 2◦C temperature limit. Re-
ducing inertia (i.e., increasing φ) means that the least-cost policy has to reduce emissions
faster in order to avoid T̄ : temperature increases faster than in the baseline case even as

to be increasing over these two intervals.
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CO2 follows a lower trajectory (dashed lines). In contrast, increasing inertia (i.e., reducing
φ) means that the effect of current CO2 on temperature is delayed even further. The ini-
tial portion of the emission price trajectory is therefore lower and, in line with our analytic
results, flatter. CO2 now peaks over 100 ppm above M̄ (dotted lines) even as temperature
remains further from T̄ . However, even though increasing inertia lowers the initial carbon
price, it does strongly raise the eventual peak carbon price (beyond the end of the plotted
period) because the high degree of overshoot in CO2 requires more aggressive abatement in
order to return to M̄ .

The right column of Figure F3 shows the implications of reducing the annual consumption
discount rate from the value of 5.5% used in DICE-2007 to the value of 1.4% used in Stern
(2007). By raising the present cost of each unit of future abatement, the lower discount
rate flattens the carbon price trajectory, which raises this century’s carbon prices and lowers
the next century’s carbon prices. The initially higher carbon prices imply greater abatement
early on, which lowers both the CO2 and temperature trajectories. By increasing the present
cost of future abatement, the lower discount rate reduces the economic importance of inertia.
The more that CO2 overshoots M̄ , the more abatement will eventually be needed to bring it
back down to M̄ before temperature reaches T̄ (i.e., the higher the spike in the carbon price
seen in the figures’ bottom rows). As a result, the least-cost CO2 trajectory overshoots M̄
by only around 50 ppm under the lower discount rate, less than two-thirds of the overshoot
under the higher discount rate, and the policy path is less peaked than with the higher
discount rate.

G Phase portrait analysis

We now return to the setting and results of the main text. We construct conditional phase
portraits for t < τ in order to better understand the evolution of abatement and CO2 along
a least-cost trajectory. Figure G4 depicts conditional phase portraits for a period with low
temperature (top panel) and for a period with high temperature (bottom panel). These two
snapshots correspond, respectively, to the early part of this century and to sometime late in
this century or early in the next. The emission price (λM) is on the vertical axes, and CO2

(M) is on the horizontal axes. Let a(·) denote the inverse of marginal abatement cost, so
that A(t) = a(λM(t)). By the properties of C(·), we have that a(0) = 0 and a′(·) > 0.

In each panel, the downward-sloping solid curve depicts, from equation (1), the M -
nullcline:

M(t)|Ṁ(t)=0 =
1

δ
[E − a(λM(t))] +Mpre.

At these combinations of CO2 and abatement, the CO2 concentration is stationary. Decay
increases in CO2, so higher levels of CO2 become stationary at lower levels of abatement.
This curve is linear if abatement cost is quadratic. The downward-sloping dashed curve in
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Varying the strength of inertia (φ) Varying the discount rate (r)

Temperature
(◦C)

Carbon
dioxide
(ppm)

Carbon
price
($/tCO2)

Figure F3: The least-cost trajectories for temperature, CO2, and the carbon price for a
temperature limit of T̄ = 2◦C. The solid lines show the paths under the baseline calibration.
In the left column, dashed lines double φ to 0.0182 and dotted lines halve φ to 0.0046 (from
the baseline value of 0.0091). In the right column, dashed lines lower r to 0.014 (from the
baseline value of 0.055).
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(a) Near-term

(b) Long-term

Figure G4: Phase portraits conditional on λT and t < τ . Solid curves give the M -nullclines,
dashed curves give the λM -nullclines, dotted curves depict least-cost trajectories, and arrows
give the direction of motion in each sector. The top panel corresponds to a case with T (t)
sufficiently far below T̄ , and the bottom panel corresponds to a case with T (t) closer to T̄ .
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each panel depicts, from equation (5), the λM -nullcline:

λM(t)|λ̇M (t)=0 =
φ s

r + δ
F ′(M(t))λT (t) = e(r+φ)(t−t0) φ s

r + δ
F ′(M(t))λT (t0).

At these combinations of CO2 and abatement, a least-cost trajectory holds abatement con-
stant. The nullcline’s convexity arises from using the scientific result that F ′′(M(t)) < 0,
and the nullcline shifts out as the shadow cost of temperature increases. The arrows describe
the direction of motion in each sector. They follow from recognizing that

∂Ṁ(t)

∂λM(t)
< 0 and

∂λ̇M(t)

∂M(t)
> 0,

where we again use F ′′(M(t)) < 0. In sectors above (below) the M -nullcline, the direction
of motion is to the left (right). In sectors to the right (left) of the λM -nullcline, the direction
of motion is upward (downward).

The top panel depicts a case in which the nullclines intersect: business-as-usual emissions
are sufficiently great that the M -nullcline is pushed out, and temperature is sufficiently far
below T̄ that its shadow cost is low and the λM -nullcline is pushed in. This case corresponds
to the present day for a sufficiently lax temperature target. The point M0 depicts a typical
starting point, and M̄ > M0 indicates the steady-state level of CO2 corresponding to T̄ .
The optimal emission price begins by following the dotted curve. It starts at a relatively low
level in the space between the two nullclines, and it increases along with CO2. It eventually
crosses the M -nullcline at Mpeak, at which point CO2 begins to fall even as abatement
continues increasing. This crossing illustrates how the least-cost CO2 trajectory temporarily
overshoots the terminal level M̄ .

As time passes, the shadow cost of temperature increases and the λM -nullcline shifts
out.19 Eventually we reach a situation such as the bottom panel, where the two nullclines no
longer intersect. This corresponds to a world like that in the next century, once temperatures
are closer to the chosen limit and once technological change has potentially lowered business-
as-usual emissions. It also corresponds to the present world under a sufficiently stringent
temperature target. In this panel, CO2 has already peaked. The story from the last panel
finished at a point such as MT , where we pick up in this panel. As already noted, abatement
is increasing and CO2 is decreasing. The terminal condition has the policymaker hitting
the M -nullcline at M̄ . As CO2 falls, the system crosses the λM -nullcline. At this point,
abatement peaks. As the policymaker steers the system towards T̄ , she decreases abatement
towards the level compatible with steady-state M̄ .

In sum, we have seen that the type of CO2 trajectory depends on the stringency of the
temperature limit. For a sufficiently lax limit, least-cost policy increases CO2 past its termi-
nal level, relying on the climate system’s inertia to avoid crossing T̄ . It then decreases CO2

19And if business-as-usual emissions exogenously decrease, then the M -nullcline shifts in.
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back towards its terminal level, using both abatement and natural decay. For a sufficiently
stringent target, CO2 begins far enough past its terminal level that abatement policy imme-
diately begins decreasing CO2. In either case, least-cost abatement policy generally increases
before decreasing. This least-cost abatement trajectory looks quite different from the conven-
tionally assumed, monotonically increasing Hotelling-like trajectory, and the least-cost CO2

trajectory looks quite different from the CO2 trajectory implied by capping concentrations
at the terminal level M̄ .

Finally, consider how the least-cost CO2 trajectory changes with properties of the climate
system. In the top panel, whether CO2 initially increases or decreases depends on how M0

corresponds to the gap between the nullclines. For sufficiently large M0, abatement begins
at a sufficiently high level to decrease CO2. This case is more likely the larger are φ, s,
F ′(M(t)), and λT (t0). For a given temperature, larger φ (i.e., lower inertia) increases the
speed with which warming responds to any CO2 in excess of M̄ . Larger s and F ′(M(t))
increase the effect of CO2 on temperature, which decreases M̄ and so increases the degree
to which M0 is overshooting M̄ . Finally, greater λT (t0) corresponds to a more stringent
temperature target, which also decreases M̄ and increases the degree of overshoot from M0.

H Least-cost geoengineering trajectory

The only way to achieve a CO2 target is to reduce emissions or, perhaps, to suck CO2 di-
rectly out of the atmosphere, but a temperature target could be achieved by directly reducing
forcing. Geoengineering methods for reducing forcing typically involve “solar radiation man-
agement”: if we reflect incoming solar radiation by injecting particles into the atmosphere,
by placing mirrors in space, or by brightening the tops of clouds, then we can reduce forcing
without reducing greenhouse gases. These methods are drawing increasing attention because
they are potentially cheap but also potentially full of surprises and side-effects (Keith, 2000;
Shepherd, 2012; Caldeira et al., 2013).

We here extend the theoretical setting by allowing for a geoengineering control in the
form of solar radiation management. The time t level of the control is G(t) ≥ 0, and the cost
of exercising the control is a strictly increasing, convex function D(G), where D(0) = 0. The
geoengineering control reduces contemporaneous forcing, which changes the temperature
transition to

Ṫ (t) = φ [s {F (M(t))−G(t)} − T (t)] . (H-18)

The policymaker’s objective is to select abatement and geoengineering trajectories in
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order to minimize the present cost of maintaining temperature weakly below T̄ :

V (M(t0), T (t0), t0) = min
A(t),G(t)

∫ ∞
t0

e−r(t−t0) [C(A(t)) +D(G(t))] dt

subject to equations (1) and (H-18),

T (t) ≤T̄ ,
A(t) ≥0,

G(t) ≥0,

M(t0) = M0, T (t0) = T0.

The current-value Hamiltonian becomes:

H(M(t), T (t), A(t), G(t), λM(t), λT (t)) =C(A(t)) +D(G(t))

+ λM(t) [E − A(t)− δ (M(t)−Mpre)]

+ λT (t)φ [s {F (M(t))−G(t)} − T (t)].

The necessary conditions are unchanged, except that the new temperature transition equa-
tion must be obeyed and there is now an additional condition:

D′(G(t)) = λT (t)φ s− ν(t)φ2s.

For times t < τ , we have ν(t) = 0. Therefore, for t < τ , the marginal cost of geoengineering
along a least-cost path increases with the shadow cost of temperature, which we have seen
increases exponentially at rate r + φ. Intuitively, the goengineering control directly affects
temperature, so an efficient policy pathway equates its marginal cost to the shadow cost of
temperature. And we have already seen that the shadow cost of temperature grows at rate
r+φ, reflecting both the time benefit and the inertial benefit of delaying a unit of warming.
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