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A Sensitivity Analysis

A.1 Household Indirect Effects
We explore the sensitivity of our results to four specification choices: how we adjust for pre-period co-
variates, the range of birth dates used to define treatment and control children, Poisson instead of OLS,
and the handling of measurement error.

Our first robustness test adjusts for vaccination status and COVID incidence as of April, 2021. In
Appendix Table A.6, Panel A, we reproduce our main estimates but model the propensity score as a
function of vaccination and prior COVID as well as age. This has essentially no effect on our estimates.
Our results are also not overly sensitive to the time period used to define treatment and control children.
In our baseline analysis we use a 365 day range of birth dates to define treatment and control children. In
Panels B and C of Appendix Table A.6, we show results for two alternative approaches, using 180 or 540
day ranges. The shorter cutoff results in a larger point estimate for the indirect effect, but also a larger
standard error; the estimates are statistically indistinguishable. In Appendix Table A.4 we show estimates
from Poisson regression models.

The final panel shows that our results are also robust to a procedure which better handles measure-
ment error: obviously related instrumental variables (Gillen et al., 2019). This procedure differs from
our baseline in that we use addresses from one time period to measure treatment status and form the
sample, and addresses from a separate time period to measure household vaccination rates. Using non-
overlapping time periods makes it more likely that our measurement error is independent, and hence
solved by instrumental variable methods. To implement ORIV, we start by imputing address character-
istics based on the full set of residents ever recorded at each address. But we assign these patients to two
primary addresses, separately using the address log from 2016-2020 and from 2021-2022. (We choose these
ranges because there are roughly equal numbers of entries in each time period.) This gives us two mea-
sures, one from each time period, of instrument status, sample eligibility (i.e. household size and presence
of treatment, control, and interim children), and household vaccination rate. In the ORIV approach, we
stack the two data sets—one based on the first address and the other on the second address—and then use
each time period once for the endogenous regressor and once for the instrument. We continue to cluster
standard errors at the address level (as measured in the instrument), accounting for the dependence this
stacking generates.

The ORIV estimates end up a bit larger than but fairly similar to our baseline estimates. The first
stage and reduced form estimates are quite similar to our baseline estimates, and so is the IV estimate.1

This sensitivity analysis shows that our main results—that the vaccines do produce indirect effects on
COVID infection within households—are robust to measurement error, and indeed the similarity of the
point estimates suggest that there is little error in our main measures.

A.2 School-wide Indirect Effects
Our finding of no spillovers from vaccinated schoolmates is robust to alternative samples and specifica-
tions, as we show in Appendix Table A.7 and Appendix Table A.4. In particular, we expand the sample
to include students with imputed school assignment, limit the sample to include students with unique

1The point estimate is actually smaller, despite our argument of attenuation bias from measurement error. This difference
is potentially explained by the different sample; we limit to adults with two household measures in the ORIV analysis.
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schools (rather than just unique school type), control for instructional modality and mask mandate pres-
ence, adjust for prior infection via the propensity score (as in the direct effect design), and estimate poisson
models. Across these specifications the reduced form and instrumental variables estimates are positive and
insignificant, we continue to estimate school-wide spillovers that are much smaller than the family-level
spillover, albeit often not statistically significantly so.

Our results are also robust to design. Our main design holds fixed students’ cohort in the pre-period
and post period, so their grade changes. Our results are not sensitive to this design choice. In our alter-
native design, we hold fixed the grade, so in the pre-period sample consists of 2020 sixth graders. As in
our main design, the treatment group is students who will go to middle school in sixth grade, and the
control group is students who will go to elementary school in sixth grade. This design better controls for
school effects, but at the expense of possible grade effects (in the sense that in our main design but not
this design, the treatment group changes schools from pre-period to post period). We report the results
in Appendix Table A.8. The estimates are quite similar and we continue to estimate a small (but now
negative, i.e. incorrectly signed) indirect effect. The IV point estimate is now positive and significantly
different from the family-level estimate.2

2The first stages are identical in this design and our main design. To understand why, recall that this is a DID estimate,
i.e. (ȳpost, treat− ȳpost,control) − (ȳpre, treat− ȳpre,control). The first difference is the 2021 difference in vaccination
rates (own or school wide) among middle school versus elementary school sixth graders, the same in both designs. The second
difference in our main design is the 2020 difference between the same group, where as in our alternative design it is the 2020
difference between fifth graders. However for the first stage, the outcome is vaccination, which is always zero in 2020, so the
different pre-period comparison does not affect the first stage.
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Table A.1: Sample restrictions and sample counts

Restriction # People

A. Direct effects design
Born May 13, 2008-May 12, 2009, or Nov 3, 2009-Nov 2, 2010 133,048
... and alive January 1, 2020 133,013

B. Household-level indirect effects design
Proper age, alive Jan-1-2020, valid address, treated child or control child present 254,577
... and just treated or just control child, and no interim children 238,684
... and 8 or fewer household members 159,254

C. School-level indirect effects design
All 6th graders, 2021-22 65,969
... and alive Jan-1-2020 65,950
... and has address 46,511
... and has school 44,562
... and school unambiguously middle or elementary 29,060
... and school not imputed 27,114

D. Grade-level indirect effects design
Born within 1 year of August 1, 2009 133,165
... and alive Jan-1-2020 133,128

Notes: Table reports how the sample size changes as we impose our inclusion criteria for the different study designs. For the
household-level indirect effects design, “proper age" is 2-10 or 30 or older, and treated children are born May 13, 2008-May 12,
2009 and control children are born November 13, 2009 - Nov 2, 2010. The final row in each panel is the analysis sample.
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Table A.2: Direct effects: Impact on ER visits with and without COVID

Type of ER visit All With positive test With negative test With no test (COVID-unrelated)

DID estimate 0.00040 -0.00010 -0.00014 0.00042
(0.00031) (0.00007) (0.00013) (0.00029)

IV estimate 0.00188 -0.00047 -0.00064 0.00199
(0.00145) (0.00031) (0.00061) (0.00139)

# People 133,013

Notes: Table shows the effect of vaccine eligibility (DID) and vaccine take-up (IV) on all ER visits, ER visits with positive
COVID test in surrounding days, and ER visits with negative (and no positive) test in surrounding days, and ER visits with
no COVID test in surrounding days, which we call “COVID-unrelated" visits. Surrounding days are 5 days before to four
days after the ER visit. The sample and specification are defined in the notes to Table ??.

5



Table A.3: Direct effects: Sensitivity analysis

Dep. var. 1+ dose 2+ doses Any COVID Non-COVID ER

A. Adjust for prior COVID via the propensity score

DID estimate 0.2259 0.2122 -0.0021 0.0004
(0.0015) (0.0015) (0.0002) (0.0003)

IV estimate -0.0101 0.0021
(0.0011) (0.0014)

Vaccine effectiveness 0.760 -0.172
(0.024) (0.134)

# People 133,013

B. Limit to born within 180 days of the cutoff
DID estimate 0.2207 0.2090 -0.0028 0.0002

(0.0022) (0.0021) (0.0003) (0.0004)
IV estimate -0.0134 0.0010

(0.0016) (0.0020)
Vaccine effectiveness 0.818 -0.072

(0.024) (0.161)
# People 64,420

C. Expand to born within 540 months of cutoff
DID estimate 0.2290 0.2149 -0.0023 0.0003

(0.0013) (0.0012) (0.0002) (0.0002)
IV estimate -0.0108 0.0012

(0.0009) (0.0009)
Vaccine effectiveness 0.757 -0.152

(0.018) (0.130)
# People 195,730

D. Has Address
DID estimate 0.2524 0.2391 -0.0031 0.0005

(0.0023) (0.0022) (0.0004) (0.0004)
IV estimate -0.0129 0.0022

(0.0015) (0.0018)
Vaccine effectiveness 0.793 -0.180

(0.025) (0.174)
# People 60,914

Notes: See notes to Table ??. Table reports identical estimates, except the specification or sample differs as indicated. Specif-
ically, in panel A we estimate a propensity score as a function of indicator for any COVID infection as of April, 2021, and
weight by the inverse propensity score. In panel B the sample is limited to children born within 180 days of the vaccine eligi-
bility cutoff; in C it is extended to 540 days. In Panel D it is limited to students with an address (as used in the household-level
indirect effects design).
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Table A.4: Poisson model estimates

Specification DID (Reduced form)

A. Direct effect
DID estimate -0.350
Standard error (0.033)
Percent effect <-0.295>

B. Indirect effect- household
DID estimate -0.075
Standard error (0.026)
Percent effect <-0.072>

C. Indirect effect - school
DID estimate -0.069
Standard error (0.065)
Percent effect <-0.067>

Notes: Table reports coefficients estimated from Poisson models for the indicated design. The DID estimate the coefficient
on treat × post. The percent effect is obtained as exp(β) − 1. See notes to Tables ??, ??, and ??] for details on sample and
design. Robust standard errors, clustered on individual/household/school district, in parentheses.

Table A.5: Sources of household vaccination rate increases

Group All ages Ages 0-10 Ages 11-13 Ages 14-18 Ages 18-29 Ages 30+
(1) (2) (3) (4) (5) (6)

DID Estimate (Child eligibility) 0.09675 -0.00009 0.08996 0.00379 0.00228 0.00081
(0.00203) (0.00005) (0.00078) (0.00068) (0.00049) (0.00138)

Outcome mean (Dec, 2021) 0.3195 0.0015 0.0604 0.0387 0.0222 0.1967
N Addresses 64,950 64,950 64,950 64,950 64,950 64,950
N People 159,254 159,254 159,254 159,254 159,254 159,254

Notes: Table decomposes the impact of the presence of a vaccine eligible child on the household (leave-one-out) vaccination
rate into vaccine responses by age group. The sample and specification are identical to those in Table ??. Each column reports
the reduced form estimate for vaccination rates at a different age. Column (1) is the first stage of our IV model. Columns
(2)-(5) aggregate to the first stage, as the denominator is always the household size minus 1, and the numerator always excludes
the focal respondent (a 2-10 or 30+ year-old).
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Table A.6: Household-level indirect effects: Sensitivity analysis

Household Own Any Severe
Outcome Vaccination Vaccination COVID COVID

(1) (2) (3) (4)

A. Adjust for prior COVID and prior vaccination
DID Estimate (Child eligibility) 0.09735 0.00263 -0.00086 0.00001

(0.00203) (0.00246) (0.00030) (0.00012)
IV Estimate (Family Vaccination) -0.00885 0.00008

(0.00309) (0.00121)
Percent effect <-0.62650> <0.02874>
N Addresses 64,950 64,950 64,950 64,950
N People 159,254 159,254 159,254 159,254

B. Use 180 day window for child birthday
DID Estimate (Child eligibility) 0.09044 0.00338 -0.00099 0.00005

(0.00279) (0.00337) (0.00042) (0.00016)

IV Estimate (Family Vaccination) -0.01095 0.00057
(0.00457) (0.00180)

Percent effect <-0.77848> <0.21331>

N Addresses 33,991 33,991 33,991 33,991
N People 83,746 83,746 83,746 83,746

C. Use 540 day window for child birthday
DID Estimate (Child eligibility) 0.10358 -0.00055 -0.00081 -0.00001

(0.00175) (0.00211) (0.00026) (0.00010)

IV Estimate (Family Vaccination) -0.00785 -0.00007
(0.00249) (0.00097)

Percent effect <-0.56373> <-0.02735>

N Addresses 88,654 88,654 88,654 88,654
N People 216,742 216,742 216,742 216,742

D. Obviously related instrumental variables
DID Estimate (Child eligibility) 0.14195 0.00473 -0.00155 0.00010

(0.00252) (0.00310) (0.00043) (0.00016)
IV Estimate (Family Vaccination) -0.01091 0.00069

(0.00301) (0.00110)
Percent effect <-0.720> <0.239>
N Addresses 56,705 56,705 56,705 56,705
N People 101,613 101,613 101,613 101,613

Notes: The sample and specification are identical to those in Table ??, except each panel differs in one dimension. In panel
A we adjust for prior COVID and prior vaccination (both as of April, 2021) via the propensity score, which we specify as
a fully saturated function of indicators for age, prior COVID, and prior vaccination. In panel B we define treatment and
control children as born within 180 days of the cutoff (vs. 365 at baseline); in panel C the definition is 540 days. In panel D
we employ an obviously related instrumental variable strategy, using separate different time periods to measure the address for
the instrument and the endogenous regressor.
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Table A.7: School-level indirect effects: Sensitivity analysis

School Own Any
Outcome Vaccination Vaccination COVID

(1) (2) (3)

A. Include students with imputed school assignment
DID Estimate (Middle school effect) 0.22428 0.00263 0.00104

(0.01556) (0.00640) (0.00127)
IV Estimate (School vaccination rate) 0.00466
Percent effect <0.24622>
Test β1 = −0.010 0.012

N Students 59,345 59,345 59,345
N Districts 192 192 192

B. Limit to students with unique school assignment
DID Estimate (Middle school effect) 0.22292 0.00498 -0.00022

(0.01818) (0.00756) (0.00152)
IV Estimate (School vaccination rate) -0.00100
Percent effect <-0.05242>
Test β1 = −0.010 0.207

N Students 23,912 23,912 23,912
N Districts 174 174 174

C. Control for instruction modality and mask mandate
DID Estimate (Middle school effect) 0.21405 -0.00052 -0.00032

(0.01627) (0.00667) (0.00138)
IV Estimate (School vaccination rate) -0.00149
Percent effect <-0.07833>
Test β1 = −0.010 0.210

N Students 27,086 27,086 27,086
N Districts 181 181 181

D. Inverse propensity-score weighted for prior infection
DID Estimate (Middle school effect) 0.22525 0.00252 0.00078

(0.01620) (0.00676) (0.00149)
IV Estimate (School vaccination rate) 0.00347

(0.00662)
Percent effect <0.18340>
Test β1 = −0.010 0.049

N Students 27,113 27,113 27,113
N Districts 182 182 182

Notes: See notes to Table ??. The sample and specification are identical except as indicated. Panel A expands the sample to
further include students with imputed school assignment. Panel B limits the sample to students with unique school assign-
ment. Panel C indicators for the presence of virtual instruction and mask mandates. The sample changes because these are
not observed for all schools. Because these time varying regressors are not balanced between treat and control, we also include
school-district and date (year-month) fixed effects here. In panel D we adjust for prior COVID incidence via the propensity
score. Each panel reports p-value of the test that the effect of school-wide vaccination rates, β1, equals the point estimate for
the effect of household vaccination rates. Robust standard errors, clustered on school district, in parentheses.
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Table A.8: School-level indirect effects: Fixed grade design

School Own Any
Outcome Vaccination Vaccination COVID

(1) (2) (3)

DID Estimate (Middle school effect) 0.22526 0.00292 0.00116
(0.01620) (0.00668) (0.00134)

IV Estimate (School vaccination rate) 0.00516
Percent effect <0.27085>
Test β1 = −0.010 0.014

N Students 55,963 55,963 55,963
N Districts 185 185 185

Notes: See notes to Table ??. The specification is identical but the sample consists of a fixed grade rather than a fixed cohort.
Specifically the pre-period includes sixth graders in 2020-21, rather than fifth graders. Robust standard errors, clustered on
school district, in parentheses.

Table A.9: Grade-level indirect effects: Placebo regression discontinuity designs

Outcome Vaccination rate COVID incidence

A. Born within 1 year of August 1, 2008
RD Estimate -0.0099 0.0007

(0.0123) (0.0013)
Bandwidth 81.2 95.9
# Observations 31,079 35,998

B. Born within 1 year of August 1, 2010
RD Estimate 0.0014 -0.0021

(0.0031) (0.0014)
Bandwidth 63.9 79.6
# Observations 23,151 28,978

Notes: Table reports placebo tests for the effect of more vaccine-eligible grade mates on the indicated outcome. The running
variable is date of birth relative to the indicated date. These are placebo tests because there is no discontinuity in the share of
grade mates that are vaccine eligible at these thresholds (in contrast to our main threshold of August 1,2009). The vaccination
rate is measured in December, 2021, and COVID incidence is averaged over August-December, 2021. The bandwidth is the
Calonico et al. (2014) optimal one. We report the Calonico et al. (2014) robust standard errors, clustered on the running
variable.
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Figure A.1: Population counts: INPC vs. US Census
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Notes: Figure reports population counts (left side) from the INPC and from Census (U.S. Census Bureaul (2024b), as of
April 1, 2020), by age, overall and by sex, as well as the ratio of INPC to Census counts (right side).
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Figure A.2: Comparison of Indiana and United States
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Notes: Figure comapres Indiana to other states in terms of full vaccination rates (Center for Disease Control (2024a), left side)
and cumulative COVID death rate (Center for Disease Control (2024b), right side). The top panels show the time series for
Indiana and each other state, and the bottom panels show the time series of Indiana’s ranking among states (as well as select
other states). Population counts from U.S. Census Bureaul (2024a).
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Figure A.3: COVID-19 vaccine eligibility by date of birth
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Notes: Figure shows the date (in 2021) Indiana expanded eligibility for the COVID-19 vaccines to different age groups, by day
of birth.
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Figure A.4: Direct effects: Inverse propensity-score weighted event study
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Notes: See notes to Figure ??. This figure is identical except it is propensity score weighted. The figure shows that the level
of COVID incidence matches almost exactly in the pre-period. As the propensity score is a function of April, 2021 COVID
incidence, the average pre-period COVID rates will match, but the trend is not guaranteed to match. The figure therefore
provides evidence to support the parallel trends assumption, conditional on the propensity score.
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Figure A.5: Complier Weights
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Notes: Figure shows the distribution of weights underlying the interpretation of our 2SLS estimates as a weighted-average
of complier marginal effects. The weight shows the weight put by the estimator on the fraction of compliers with a control
(z = 0) vaccination rate below the indicated level, and a treatment (z = 1) vaccination rate at that level or greater. Our
calculation of these weights follows Angrist and Imbens (1995).
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Figure A.6: Household-level indirect effects: Inverse propensity-score weighted event study
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Notes: Figure is identical to Figure ?? except the propensity score includes vaccination status (as of April, 2021), and ever
having COVID (as of April 2021), all fully interacted with age indicators.
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Figure A.7: COVID incidence among fifth and seventh graders
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Notes: Figure shows the fraction of 5th and 7th graders with at least one positive COVID test in each month.
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Figure A.8: School-level indirect effects: Inverse propensity-score weighted event study
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Notes: See notes to Figure ??. This figure is identical except it is propensity score weighted. The figure shows that the level
of COVID incidence matches almost exactly in the pre-period. As the propensity score is a function of April, 2021 COVID
incidence, the average pre-period COVID rates will match, but the trend is not guaranteed to match. The figure therefore
provides evidence to support the parallel trends assumption, conditional on the propensity score.

18



Figure A.9: Monthly regression discontinuity estimates
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Notes: This figure plots monthly averages of the indicated outcome for children born just before and just after the threshold
for school starting age (August 1, 2009). See notes to Figure ?? for details on the sample. We estimate these averages as α0 and
βITT from Equation ??. 95% confidence based on robust standard errors, clustered on date of birth (the running variable) are
in parentheses.
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B Vaccine effectiveness in an instrumental variables framework
Studies of causal effects in empirical microeconomics typically focus on treatment effect parameters that
are expressed as differences in the expected value of treated and untreated potential outcomes for spec-
ified sub-populations. Instrumental variable estimators that account for incomplete take up or non-
compliance with assigned treatments are interpreted as average causal effects among members of the com-
plier sub-population. The clinical trials used to evaluate the effects of the COVID vaccines focused pri-
marily on a somewhat different causal parameter, which is often referred to as “vaccine efficacy”.

In this appendix, we define a new parameter called “complier average vaccine efficacy" (CAVE). We
derive an instrumental variables estimator of the CAVE that is valid under standard instrumental variable
assumptions. We use the estimator in the paper to estimate the CAVE in our own-effects study design.

B.1 Notation and Assumptions
Use i = 1...N to index members of a study population. Ci is a binary observed outcome variable that
indicates whether the person has a confirmed positive COVID test during a specified follow up window.
Vi is a binary treatment variable indicating whether the person was vaccinated for COVID before the start
of the follow up window. And Zi is a binary instrumental variable, which is supposed to affect vaccine
take up but is unrelated to COVID infection risk. Values of (Ci, Vi, Zi) are observed for each member
of the study population.

Observed vaccine take up and COVID infections are realizations of underlying potential outcomes.
Specifically, let Vi(z) be the vaccination status of person i when her instrument is set to z for z = [0, 1].
That means that realized vaccine take up is Vi = Vi(0) + Zi[Vi(1) − Vi(0)], where Vi(1) − Vi(0)
represents the causal effect of the instrument on person i′s vaccine take up. Similarly, let Ci(z, v) be
person i′s downstream COVID infection status if person i′s instrument is set to z and her vaccination
status is set to v for v = [0, 1].

We work with a set of five instrumental variable assumptions, which were originally described in pa-
pers by Imbens and Angrist (1994) and Angrist et al. (1996).

A1 SUTVA COVID infection outcomes are individualistic and do not depend on the vaccination status
or instrumental variable assignments of any other members of the study population. More formally, let
Z−i be the 1×N − 1 vector containing the instrumental variable assignments of each j = 1...N such
that j ̸= i. Likewise V −i is the 1 × N − 1 vector of vaccination outcomes for each j ̸= i. Now let
Ci(Zi, Vi, Z

−i, V −i) be the potential outcome that person i would experience under a specific combi-
nation of own instrument and vaccine exposures **and** peer instrument and vaccine exposures. Under
SUTVA Ci(Zi, Vi, Z

−i, V −i) = Ci(Zi, Vi) so that each person’s potential outcomes do not depend on
the vaccine status or instrumental variable status of any other member of the study population.

A2 Independence – The instrument is statistically independent of potential vaccine take up and po-
tential COVID infection outcomes. Formally, independence implies Pr(Zi = 1|Vi(z), Ci(z, v)) =
Pr(Zi = 1) for all combinations of z and v.

A3 Exclusion – The instrument has no causal effect on COVID infection outcomes. This implies that
Ci(z, v) = Ci(v) for all i = 1...N .
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A4 Monotonicity – The causal effect of the instrument on vaccine take up is non-negative for any indi-
vidual in the sample. In other words Vi(1)− Vi(0) ≥ 0 for all i = 1...N .

A5 First Stage – The instrument has a non-zero causal effect on vaccine take up for at least some members
of the study population so that E[Vi(1)− Vi(0)] ̸= 0.

B.2 Treatment Effects
B.2.1 Additive Effects

At the person level, the additive causal effect of the vaccine on COVID infections is βi = Ci(1) −
Ci(0). Since the infection variable is binary, the treatment effect for any single individual can only take
on three different values. When βi = −1, the person would have been infected with COVID if not for
the vaccine. When βi = 1 the person is infected with COVID if she is vaccinated but not infected if she
is not vaccinated. Finally βi = 0 if the person would either be infected in both vaccination states of the
world or uninfected in both states of the world.

Treatment effect heterogeneity across subjects may occur for a variety of reasons, including: (i) be-
havioral responses to vaccination that lead some people to engage in riskier behaviors (Peltzman effects)
or safer behaviors (health complementarity); (ii) biological differences in the immune response generated
by the vaccine across subjects; and (iii) differences in epidemiological conditions (exposures) experienced
by subjects in different times, places, and social settings.

The average treatment effect of the vaccine is

ATE = E[Ci(1)− Ci(0)].

The ATE is the difference in COVID infection rates between counterfactual states in which the
population is universally vaccinated or universally unvaccinated. It is straightforward to defined con-
ditional average treatment effects. Standard examples are the average treatment effect on the treated:
ATT = E[Ci(1) − Ci(0)|Vi = 1], which represents the average effect of the vaccine on COVID
infection among people who are actually vaccinated. If ATT > ATE , vaccinated people benefit more
from the vaccine than unvaccinated people. If ATT < ATE then vaccination would have larger effects
on the unvaccinated population.

B.3 Vaccine Efficacy Effects
The literature on vaccine trials often focuses on measures of vaccine efficacy rather than on additive av-
erage treatment effects. Using the notation developed so far, vaccine efficacy is

δ = 1− Pr(Ci(1))

Pr(Ci(0))

With a vaccine that is perfectly effective, vaccinating the entire population eliminates 100% of the
infections that would occur in the absence of the vaccine. Note, however, that vaccine efficiency is un-
defined when there is infection risk in the absence of the vaccine so that Pr(Ci(0)) = 0. In addition,
it is less sensible to define efficacy at the person level the way we do for the additive treatment effect. For
instance, δi = 1 − Ci(1)

Ci(0)
will equal 0 for people who get infected regardless of vaccination status, 1 for
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people who avoid an infection due to vaccination, and is undefined for people who are are not infected in
the absence of vaccination. That is unappealing since the vaccine could – in theory – increase infection
risk among some people due to Peltzman type risk adjustment responses. The vaccine efficacy concept
makes sense at a group level as long as there is a non-zero prevalence of cases of disease in the absence of
vaccination.

B.4 Treatment Effects With Non-compliance
The COVID vaccine trials for the Pfizer, Moderna, and Johnson and Johnson vaccines used randomized
experimental designs (Polack et al., 2020; Baden et al., 2020; Sadoff et al., 2021). People were randomly
assigned to a vaccine group and a placebo group. COVID infections were measured at follow up and
the infection rates in the two groups were used to estimate the causal effects of the vaccine. For example,
Baden et al. (2020) report that at the end point of the Moderna trial, there were about131.5COVID cases
per 10,000 people in the placebo group and about 7.8COVID cases per 10,000 in the vaccine group. The
average treatment effect implies that the vaccine reduced COVID infection rates by 7.8−131.5 ≈ 123.7
cases per 10,000. The efficacy of the vaccine was 1− 7.8

123.7
× 100 ≈ 94.1%.

B.4.1 Complier Average Treatment Effects

The COVID vaccine trials experienced a small amount of non-compliance with the study protocol. Some
subjects were lost to follow up, did not receive both doses of the vaccine, or experienced other events that
made them ineligible. The main analysis in the trials used some form of per-protocol analysis in which
these subjects were discarded, although various types of intent-to-treat samples were also considered.

In empirical economics, non-compliance with assigned treatments is often handled using instrumen-
tal variables analysis, providing a bridge between randomized experiments and quasi-experimental de-
signs. A pair of papers by Imbens and Angrist (1994) and Angrist et al. (1996) show that in settings with
a binary treatment and a binary instrumental variable satisfying assumptions A1-A5, the Wald-IV estima-
tor identifies a parameter called the “Complier Average Treatment Effect” (CATE). Using the notation
developed above, these papers show that

E[Ci|Zi = 1]− E[Ci|Zi = 0]

E[Ci|Zi = 1]− E[Ci|Zi = 0]
= E[Ci(1)− Ci(0)|Vi(1) > Vi(0)]

The right hand side is the CATE, which is the average treatment effect in the sub-population of peo-
ple who are induced to be vaccinated because of the instrumental variable. Given a valid instrumental
variable, it is straightforward to estimate the CATE parameter from observed data. We report estimates
of the CATE in our study of the own effects of the vaccine in Table ??.

B.4.2 Complier Vaccine Efficacy

In this section, we show how to identify a conditional version of the overall vaccine efficacy parameter,
which we refer to as the “Complier Vaccine Efficacy” (CAE). The CAE is analogous to the CATE in
the sense that it is a measure of vaccine efficacy in the sub-population of people who are induced to be
vaccinated because of a binary instrumental variable. The CAE parameter that we focus on in this section
is defined as:

22



δcomplier = 1− Pr(Ci(1)|Vi(1) > Vi(0))

Pr(Ci(0)|Vi(1) > Vi(0))
.

δcomplier is a function of two counterfactual quantities. Pr(Ci(0)|Vi(1) > Vi(0)) is the com-
plier base rate: it represents the COVIDinfection rate among compliers in the absence of vaccination.
Pr(Ci(1)|Vi(1) > Vi(0)) is the complier breakthrough rate. It represents the complier infection rate
when the compliers are vaccinated.

In this section, we show that both of these quantities are identified under assumptions A1-A5. The
CAE is identified under the additional restriction that Pr(Ci(0)|Vi(1) > Vi(0)) > 0.
The First Stage

Under A1-A5, the first stage comparison identifies the fraction of compliers in the population:

F = E[Vi|Zi = 1]− E[Vi|Zi = 0]

= E[Vi(1)|Zi = 1]− E[Vi(0)|Zi = 0]

= E[Vi(1)]− E[Vi(0)]

= P [Vi(1) > Vi(0)]

The second equality follows after substitution of the potential vaccine take up expression for the
observed vaccine take up outcomes. The third equality imposes the independence assumption. And the
fourth equality imposes the monotonicity condition. This shows that the first stage difference in vaccine
take up rates identifies the prevalence of compliers.
The Complier Base Rate

The logical challenge in identifying the complier base rate is that complier status is unknown at the
individual level, and unvaccinated COVID potential outcomes are not observed for the full population.
We can apply the standard instrumental variables analysis to an adjusted/censored outcome variable to
uncover complier averages of the individual outcomes.

Let Rbase
i = (1 − Vi)Ci to be an adjusted outcome that is set to 0 for people who are vaccinated

and set to the value of Ci for people who are unvaccinated. The reduced form difference in (adjusted)
COVID outcomes across levels of the instrument is:

ITTbase = E[Rbase
i |Zi = 1]− E[Rbase

i |Zi = 0]

= E[(1− Vi)Ci|Zi = 1]− E[(1− Vi)Ci|Zi = 0]

= E[(1− Vi(1))Ci(0)|Zi = 1]− E[(1− Vi(0))Ci(0)|Zi = 0]

= E[Ci(0)(Vi(0)− Vi(1))]

= −E[Ci(0)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0)).

The second equality substitutes the definition of the adjusted outcome, and the third equality intro-
duces the potential outcomes structure, invoking the exclusion restriction. The fourth quality imposes
the independence assumption to drop conditioning on the instrument. The fifth line decomposes the ex-
pectation using the fact that Vi(0)−Vi(1) can only take on the values 1, 0, and -1. Two of the three terms
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drop out: the zero term is multiplied by zero and Pr(Vi(0)− Vi(1) = 1) = 0 under Under A4 (mono-
tonicity). Thus ITTbase is equal to the negative of the complier base rate multiplied by the prevalence of
compliers. Dividing by the negative of the complier share using a standard Wald Ratio gives:

Wbase =
ITTbase

−F

=
E[Rbase

i |Zi = 1]− E[Rbase
i |Zi = 0]]

−(E[Vi|Zi = 1]− E[Vi|Zi = 0])

=
−E[Ci(0)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0))

−Pr(Vi(1) > Vi(0))

= E[Ci(0)|Vi(1) > Vi(0)]

= Pr[Ci(0) = 1|Vi(1) > Vi(0)].

The Complier Breakthrough Rate
Following a parallel approach for the complier breakthrough rate, define the adjusted outcomeRbreak

i =
ViCi, which is set to 0 for people who are unvaccinated and set to Ci for people who are vaccinated. The
reduced form comparison in this case is:

ITTbreak = E[Rbreak
i |Zi = 1]− E[Rbreak

i |Zi = 0]

= E[ViCi|Zi = 1]− E[ViCi|Zi = 0]

= E[Vi(1)Ci(1)|Zi = 1]− E[(Vi(0)Ci(1)|Zi = 0]

= E[Ci(1)(Vi(1)− Vi(0))]

= E[Ci(1)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0)).

Here, the second equality uses the definition of the adjusted outcome and the third line equality in-
troduces the potential outcomes structure, invoking the SUTVA condition and the exclusion restriction.
The fourth equality imposes the independence assumption and collects terms. The fifth line decomposes
the expected value of the product ofCi(1) andVi(1)−Vi(0) and imposes the monotonicity assumption.
The result shows that ITTbreak is the complier breakthrough infection rate multiplied by the prevalence
of compliers. The Wald ratio isolates the complier breakthrough rate:

Wbreak =
ITTbreak

F

=
E[Rbreak

i |Zi = 1]− E[Rbreak
i |Zi = 0]]

E[Vi|Zi = 1]− E[Vi|Zi = 0]

=
E[Ci(1)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0))

Pr(Vi(1) > Vi(0))

= E[Ci(1)|Vi(1) > Vi(0)]

= Pr[Ci(1) = 1|Vi(1) > Vi(0)].

Identifying Complier Vaccine Efficacy
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The complier average vaccine efficiency can be estimated using the ratio of the two Wald ratios:

δcomplier = 1− Wbreak

Wbase

= 1− ITTbreak × F−1

−ITTbase × F−1

= 1 +
ITTbreak

ITTbase

= 1− Pr(Ci(1)|Vi(1) > Vi(0))

Pr(Ci(0)|Vi(1) > Vi(0))
.

Interestingly, the first stages cancel and so the efficiency is equal to 1 plus the ratio of the reduced forms.
In practice, you could estimate the complier efficiency by computing the two IV estimates (complier base
rate and complier breakthrough rate) directly and then computing the ratio of the two. Or your could
compute the two ITT effects and compute their ratio. In both cases, it would be sensible to use a stacked
framework so that one could straightforwardly produce a joint covariance matrix.
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C Selection into testing
Our primary outcome is an indicator for at least one lab confirmed case of COVID-19 in a given month,
Pr(test positive). This decomposes as

Pr(test positive) = Pr(positive|test = 1) · Pr(test = 1). (1)

This decomposition shows that our outcome can change, in principle, not because of true changes in
COVID incidence but because of changes in testing behavior, i.e. changes in Pr(test = 1).

Here we argue that changing test behavior is unlikely to account for our key qualitative results. Key
to our argument is the observation that the test positivity rate,Pr(positive|test = 1), soemtimes called
the yield, reflects the combination of selection into testing and overall COVID incidence (Manski and
Molinari, 2021; Sacks et al., 2022). Holding fixed COVID incidence, as the tested population becomes
more positively selected, Pr(positive|test = 1) increases. Thus our estimate that vaccine eligibility re-
duces measured COVID incidence might be explained by reduced testing rather than reduced incidence.

If this explanation were true, we would expect to see that vaccine eligibility increases the test posi-
tivity rate, because the marginal patient induced not to test by vaccine eligibility should have a relatively
low chance of having COVID. More generally, strong selection effects imply opposite signed effects on
the unconditional probability of a positive test and on the positivity rate. We therefore re-estimate our
main DID models , for direct effects, indirect household-level effects, and indirect-school level effects, but
looking at test positivity as an outcome. We define test positivity as the fraction of positive COVID tests
in a given month, as a share of all COVID tests.

The results, in Appendix Table C.1, are inconsistent with strong selection effects. We report DID esti-
mates in the first row and, to contextualize the magnitudes, we report main effects for “post" and “treat"
in the remaining rows. In general treatment effects are small relative to main effects; positivity spiked
during the delta wave. The results in column (1) show that own vaccine eligibility reduces test positivity.
This is of course consistent with our conclusion that the vaccine is effective for the vaccinated. But it is
inconsistent with falling test rates (conditional on symptoms) among the vaccinated, and thus indicates
that changing selection into testing does not account for our finding of substantial direct effects. Column
(2) shows a small and insignificant effect of household member eligibility on positivity, again consistent
with no change in selection behavior. Column (3) shows a positive and marginally significant effect of
schoolmate eligibility on positivity. Given that we find a positive but insignificant effect of schoolmate
eligibility on own COVID incidence, this result too is inconsistent with important selection effects.
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Table C.1: Impact of own and peer vaccine eligibility on test positivity

Design Direct effect Indirect - household Indirect - school
(1) (2) (3)

DID Estimate -0.037 -0.004 0.019
(0.005) (0.005) (0.013)

Coef. on post 0.117 0.075 0.100
(0.003) (0.004) (0.011)

Coef. on treat 0.013 0.001 0.016
(0.003) (0.003) (0.008)

Constant 0.109 0.145 0.102
(0.002) (0.002) (0.007)

# Observations 91,056 119,207 18,393
# Clusters 54,815 44,565 410
Clustering Individual Household School

Notes: Table difference-in-difference estimates for the effect of own (column 1), household member (column 2), or schoolmate
(column 3) vaccine eligibility on own test positivity rate. See notes to Tables ??, ??, and ?? for description on each sample and
design. The sample here is further limited to person-months with at least one COVID test, for whom positivity is defined.
Robust standard errors, clustered at the indicated level, in parentheses.
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D Average Causal Response and Vaccine Effects
When we examined the direct effect of the vaccine treatment, a person’s treatment status was binary –
vaccinated or unvaccinated. It made sense to think about a pair of potential health outcomes for the
person under vaccinated or unvaccinated conditions. Indirect vaccine effects – at least in the contexts
we consider in this paper – are better understood as a treatment with variable intensity. We want to
understand the same person’s health outcomes under alternative vaccination rates among some specified
peer group. In section ?? we estimate household indirect effects using two stage least squares regressions.
The estimating equations we use are:

Yit = β0 + β1
̂V acc−it + β2treati + β3postt + ϵit

V acc−it = α0 + α1EarlyEligChildPresenti · postt + α2EarlyEligChildPresenti + α3postt + εit

In the model, V acc−it is the vaccination rate of all members in i’s household except i herself, and
the excluded instrument is the interaction EarlyEligChildi · postt. Our primary outcome—Yit—is a
dummy variable indicating that the person had a lab-confirmed COVID infection during month t. The
first stage is a difference-in-difference regression that measures the effect of the early eligible child on the
vaccination rate in the household where the treated adult is living.

On the surface, the two stage least squares framework appears to impose unrealistic linearity assump-
tions, which would imply that increases in household vaccination rates have a constant effect on COVID
infection risk. It turns out, however, that the two stage least squares coefficient – β1 – can be interpreted
through the lens of the average causal response theorem developed in Angrist and Imbens (1995). In par-
ticular, in a model where the causal effects of marginal increases in vaccination rates are heterogeneous
across individuals and also across levels of the vaccination rate, β1 represents a weighted average of causal
effects of increasing the household vaccination rate among complier households, averaging over the dis-
tribution of instrument-induced changes in household vaccination.

To see the idea, suppose that the household vaccination rate V acc−it takes values on a grid of j =
0...1000 different values. The values on the grid correspond to houshold vaccination rates ranging from
0% vaccinated to 100% vaccinated in steps of 0.1 percentage points. Thus vj is the household vaccination
rate at grid point j, which means that v0 = 0, v1 = .001, ... v1000 = 1.

Abstracting from covariates and letting Zi = treati · postt represent the value of the instrumental
variable for person i. V−it(z) represents the potential household vaccination rate outcome that person i
would experience when exposed to instrumental variable settingZi = z. For instance,V−it(1) represents
the household vaccination rate the person would face given exposure to an early eligible child, andV−it(0)
represents the same person’s household vaccination rate when exposed to late eligible child. Finally, let
Yi(z, vj) represent the health outcome that person i would experience is she were exposed to instrument
setting Zi = z and household vaccination rate V−it = vj .

Impose the standard instrumental variable assumptions:

1. SUTVA While our household indirect effects analysis is designed to measure spillover effects within
households, we do maintain the assumption that the Covid-19 infection outcomes of adults in our
household spillover sample are household specific and do not depend on the vaccination status
or instrumental variable assignments of any other households in the study population. More for-
mally, let HZ−i be the 1 × N − 1 vector of instrumental variable of households that do not
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contain person i. Likewise HV −i is the 1 × N − 1 vector of vaccination outcomes of the adult
members of households that do not contain person i. Now let Yi(Z−i, Vi, HZ−i, HV −i) be
the potential outcome that person i would experience under a specific combination of own in-
strument and vaccine exposures **and** peer instrument and vaccine exposures. Under SUTVA
Yi(Zi, Vi, Z

−i, V −i) = Yi(Zi, Vi) so that each person’s potential outcomes do not depend on the
vaccine or instrumental status in other households.

2. Independence – Pr(Yi(z, vj), V−it(z)|Zi) = Pr(Yi(z, vj), V−it(z)) for all z, vj

3. Exclusion – Yi(z, vj) = Yi(vj)

4. First Stage – E[V−it|Zi = 1 ̸= E[V−it|Zi = 0]

5. Monotonicity – V−it(1)≥V−it(0) for all i

Under SUTVA and the exclusion restriction, Yi(vj) represents the potential outcome that person i
would experience if she were exposed to a household vaccination rate of V acc−it = vj . And τ j,j−1

i =
Yi(vj)−Yi(vj−1) is causal effect of increasing the household vaccination rate from vj−1 to vj on person
i′sCOVID related health outcome. Angrist and Imbens (1995) show that under the instrumental variable
assumptions above, the conventional Wald ratio corresponds to a weighted average of these incremental
causal effects among a collection of complier groups affected by the instrument. Specifically, they show
that:

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[V acc−i|Zi = 1]− E[V acc−i|Zi = 0]
=

J∑
j=1

wj × E[τ j,j−1
i |V−it(1) ≥ j > V−it(0)].

Angrist and Imbens (1995) develop their result for Wald estimators whereas we estimate 2SLS models.
However our 2SLS estimates are numerically identical to Wald estimates applied to first differenced data,
taking the difference at the individual level between average outcomes in the pre and post period, and us-
ing treatment as an instrument for the difference in household vaccination rate. The expression above im-
plies that the Wald Ratio gives a weighted average of the causal effects of incremental changes in household
vaccination from across the range of possible vaccination rates. The weights in the expression—wj—are
proportional to the fraction of compliers whose household vaccination rate increases from below vj to
vj or above. Using the notation developed above and abstracting from covariates, the weights are

wj =
Pr(V−it(1) ≥ j > V−it(0))∑J

j V−it(1) ≥ j > V−it(0)
.

Figure A.5 plots the weights from our household indirect effects analysis. The figure shows that there
is a positive weight on household vaccination rates across the full 0-1 range. However most of the weight
is concentrated on household vaccination rates between 33% and and 75%. Very little weight is applied
to household vaccination rates below 25%. This distribution of weights implies that our two stage least
squares estimate of the household indirect effect is a close approximation to the the average casual effect
of marginal changes in household vaccination rates for intermediate vaccination rates. Our estimate may
be less informative about indirect effects created when a household shifts from a very low vaccination rate
to a moderate moderate vaccination rate.
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E A quantitative model of vaccine externalities
This section presents and numerically analyzes an SIR-model with vaccination to understand whether in-
complete vaccine take-up could explain the near-zero spillovers we estimate. We have three results. First,
except for very high levels of infectiousness, prevalence among the unvaccinated is nearly linear in the
vaccination rate, up to the herd immunity threshold. The effect of additional vaccinations on the unvac-
cinated therefore is not very sensitive to baseline vaccination rates except at high levels of infectiousness.
Our second result is that at high levels of infectiousness, a marginal vaccination provide little protection
to the unvaccinated, because an unvaccinated person is likely to become infected from another source.3

Taken together these results imply that when spillovers exist, they are likely large enough for us to
detect from a 20 percentage point increase in schoolmate vaccination rates. Our third result shows this
directly: at all levels of vaccination below herd immunity, the simulated effect of a 20 percentage point
increase in vaccination is much larger than what our confidence intervals rule out, except in the case of
high infectiousness, when spillovers are small.

We caution that this model is particularly simple and may not capture the dynamics of COVID-19.
The results here do not necessarily generalize to other disease models.

E.1 Model set-up
We consider the simple SIR model with uniform mixing and a share v of the population of size N is vac-
cinated. The vaccine is assumed to be 100 percent effective, and we model vaccinated people as removed
from the susceptible pool. Our set up is the discrete time analog of the model in Goodkin-Gold et al.
(2020), except we assume perfect effectiveness and abstract from the vaccine demand phase. Thus

N = S + I +R + vN.

The equations describing infection dynamics are

∆S = −βS · I/N
∆I = βS · I/N − γI

∆R = γI.

Here β is the transmission rate and γ is the recovery rate.
A key parameter is the reproductive number R, the number of new infections spawned by a single

infection. The basic reproductive number R0 is the value of R in a completely susceptible population,
so R0 = β/γ. When R < 1, infections do not replace themselves and so disease outbreaks die out.

Because the vaccinated and unvaccinated populations mix uniformly, a vaccination rate of v scales
down the susceptible population by (1 − v), and so reduce the reproductive number (1 − v). A large
enough vaccinated population ensures that R < 1; the so-called herd-immunity vaccination rate guar-
anteeing this condition is

v∗ = 1− 1/R0.

As we will see, this threshold plays an important role in the results.
3This intuition is from Goodkin-Gold et al. (2020), who develop it in a series of related results.
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Simulation details Closed-form solutions for final infection rates and infection dynamics do not
exist, so we solve the model with forward simulation to obtain the final-period count of ever infected
individuals, R(T ). We simulate for T = 20000 time periods, starting with I(1) = 1 and R(1) = 0. In
each run we verify that the simulation converges in the sense that the number of infected people change
by less than 1/1000 over the last periods.

Parameterization The model parameters are N, β, γ and v. We fix N = 100, 00 and γ = 1/10.
We choose β so thatR0 ∈ 1.1, 1.5, 2, 3, 5; note that γ = .1, meaning a 10 day expected infection length.
For each β I vary the vaccination rate from 0 to 1 in increments of 0.01.

These parameters trace out a range of reasonable values forR0 in the context of COVID-19; 1.1 is lower
than estimates; 1.5 is the estimated R0 for the ancestral strain (also used in Goodkin-Gold et al. (2020)),
and 5 represents a very high estimate, possibly occurring with the latest strains, although it is unclear if
high transmission of the latest waves reflects immune escape or high R0. The scale of γ is not relevant
for R0, but γ = 1 has multiple advantages. First, high values of γ ensure that the epidemic concludes in
relatively few iterations. However, β must be less than 1 since it is a transmission probability. Choosing
γ = .1 means that β = .5 when R0 = 5.

Simulation output: For each value of v and R0 we calculate the fraction of the unvaccinated pop-
ulation that ever becomes. Since the vaccinated cannot be infected, this fraction is

pr(infected|unvaccinated; v,R0) = R(T ; v,R0)/(N · (1− v)).

Our empirical analysis of vaccine spillovers considers a shock that increases peer vaccination rate by roughly
20 percentage points. We therefore also calculate the implied impact of such a shock on the unvaccinated
infection rate:

∆pr(infected|unvacc; v,R0) = pr(infected|unvacc; v+ .2, R0)− pr(infected|unvacc; v,R0).

E.2 Model results
We begin by showing the fraction of the unvaccinated population that ever becomes infected, as a func-
tion of the vaccination rate, for variousR0, in Appendix Figure E.1. Several patterns are clear in the figure.
Most obviously, marginal vaccinations beyond the herd immunity threshold (the vertical lines) have only
very small impacts on the unvaccinated, because at the the herd immunity threshold and beyond, infec-
tions die out and nearly all unvaccinated would not become infected even absent greater vaccination.

More importantly, for low levels of infectiousness—R0 < 3—the relationship betweenPr(infected|
unvacc) and v is approximately linear, up to the herd immunity threshold. Thus the marginal benefit of
vaccinations is roughly constant in v; it does not depend on the starting level of vaccination. Estimates
of the impact of greater peer vaccination on own infections, if this model were true, would not be too
sensitive to baseline vaccination rate. For high levels of infection, the nonlinearity is stronger. However
it is also true at these high levels of infection, especially when R0 = 5, there is very little external benefit
of vaccines; even large increases in the vaccination rate do not produce large reductions in unvaccinated
incidence, except at very high levels of vaccination.

We show this more specifically in Appendix Figure E.2. The figure shows the simulated impact of a
20 percentage point increase in the vaccination rate on incidence among the unvaccinated, as a function
of the initial vaccination rate, for different levels of R0. While the effect size does vary with v, it is always

31



large when R0 < 5. Indeed the lower bound of the confidence interval from our main estimates—
about -0.005 — easily lets us rule out any effect size in the figure, except when either (a) herd immunity
is reached, or (b) infectiousness is so high that the spillover is small for a wide range of initial vaccination
levels. Even in the case, however, the implied effect is on the order of a few percentage points, an order of
magnitude larger (in absolute value) than the lower bound of our confidence interval.
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Figure E.1: Infections among the unvaccinated fall with the vaccination rate, up to the herd immunity
threshold
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Notes: Figure shows the simulated infections per unvaccinated capita, over the course of a pandemic, as a function of the
vaccination rate, for various levels of infectiousness given by R0.
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Figure E.2: A 20 percentage point increase in the vaccination rate causes a large reduction in infections
among the unvaccinated, regardless of starting level
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Notes: Figure shows the change in the share of the unvaccinated that are ever infected, when the vaccination rate increases by
20 percentage points, from a given initial vaccination rate for various levels of infectiousness given by R0.

E.3 Ex Post Power Analysis
Our analysis of school-wide indirect effects is premised on the idea that schoolmates are the relevant peer
group for our study population of vaccine ineligible sixth graders. One concern is that schoolmates are
only part of the relevant peer group for our sixth graders. The true peer group is unknown but it is
could be some mixture of schoolmates, grademates, and general community members. In this case, the
middle school vs elementary school variation that underlies the first stage of our school-wide indirect
effects design might be overestimating the shift in "true" peer vaccination rates. In addition, the first stage
shift may occur at different points along the dose-response relationship between vaccination rates and
outcomes, which could be non-linear.

To explore how these concerns may affect the statistical power of our study, we used the estimated
standard error from our school wide indirect effects IV models to assess the (ex post) statistical power to
reject the null of no indirect effect when the true indirect effect was assumed to be the value generated
from the SIR model.

We examined four scenarios:

1. In scenario 1, we use our main results in which the peer group is the school wide vaccination rate.
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This implies a first stage shift from 2% to 22%.

2. In scenario 2, the peer vaccination rate is comprised of half community members with a 50% vac-
cination rate, and half school wide vaccination rate of 22% in the treatment group and 2% in the
control group). This implies a first stage shift from 26% to 36%.

3. In scenario 3, the peer vaccination rate is comprised of half grade mates with a 6% vaccination rate,
and half school wide vaccination rates of 22% in the treatment group and 2% in the control group.
This implies a first stage shift from 4% to 14%.

4. In scenario 4, the peer vaccination rate is an even average of community members with a 50% vacci-
nation rate, grade mates with a 6% vaccination rate, and school wide vaccination rates with 22% in
the treatment group and 2% in the control group. This implies a first stage shift from 19% to 22%.

The results of this exercise are in table E.1. In scenario 1, which corresponds to our main analysis,
power is high for all but the highest value of R0. In scenario 2, the model implied "true effect" is very
small under a low R0 and the power is low in these scenarios. For R0 above 1.25, the implied indirect
effect ranges from .019 to .19 and power is between 90% and 100%. In scenario 3, which leads to a shift
from very low vaccination to 14% vaccination, the implied treatment effects are larger and well powered
for R0 below 5. In scenario 4, treatment effects are small for very low R0 and very high R0 and power is
low in these cases. But power is high for the implied treatment effects for R0 between 1.25 and 3.
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Table E.1: Power Analysis Results for Different Mixing Scenarios

r0 True Effect p-value Power

Scenario 1: The peer group is the school.
1.10 -0.1414 0.0000 1.0000
1.25 -0.3439 0.0000 1.0000
1.50 -0.2891 0.0000 1.0000
2.00 -0.1679 0.0000 1.0000
3.00 -0.0670 0.0000 1.0000
5.00 -0.0125 0.0265 0.6142

Scenario 2: The peer group is a mix of the community and school.
1.10 -0.0000 0.4986 0.0504
1.25 -0.0001 0.4936 0.0517
1.50 -0.1915 0.0000 1.0000
2.00 -0.1680 0.0000 1.0000
3.00 -0.0750 0.0000 1.0000
5.00 -0.0192 0.0015 0.9084

Scenario 3: The peer group is a mix of the grade and school.
1.10 -0.1042 0.0000 1.0000
1.25 -0.1781 0.0000 1.0000
1.50 -0.1295 0.0000 1.0000
2.00 -0.0744 0.0000 1.0000
3.00 -0.0289 0.0000 0.9977
5.00 -0.0050 0.2208 0.1907

Scenario 4: The peer group is a mix of the community, grade, and school.
1.10 -0.0000 0.4974 0.0507
1.25 -0.0254 0.0000 0.9890
1.50 -0.1409 0.0000 1.0000
2.00 -0.0839 0.0000 1.0000
3.00 -0.0356 0.0000 0.9999
5.00 -0.0079 0.1113 0.3354

Notes: In scenario 1, treatment effectively changes the peer vaccination rate from 2% to 22%. In scenario 2, from 26% to 36%;
in scenario 3, from 4% to 14%, in scenario 4, from 19% to 26%.
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