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This Supplementary Appendix extends Theorem 1 to correlated valuations (Section SA.1),
non-identical distributions (Section SA.2), continuous valuations (Section SA.3), and the
case that the seller offers two products in each market (the aggregate market ji being the

uniform distribution over [0,1]"; Section SA.4).

SA.1 Correlated Valuations

Our model in Section I supposes that a consumer’s valuation for one product is statisti-
cally independent of his valuations for other products. Naturally, in certain applications a
consumer’s valuations for different products may be correlated; for instance, books by the
same author, or from the same genre, might be valued similarly.

We present a simple generalization of the model that allows for correlation between
valuations. Replace the definition of the aggregate market p in (I) by

n
i(v) = f(v1) kHz (6% (vp) + (1 =) f(vg)), YveX™,

where t € [0,1) and 6 € AX denotes the Dirac measure centered on = € X. Thus, the
valuation vector corresponds to a Markov chain. With probability ¢, the valuation for

product k coincides with the one for product k —1; with probability 1 —t, the valuation
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for product k has distribution f, the distribution of the first product. The interpretation
is that adjacent products are similar, so that consumers may have similar valuations. The
correlation between the valuations, captured by ¢, can be arbitrarily strong; we only exclude
perfect correlation. The baseline model assumed ¢ =0 (no correlation).

We now show that Theorem 1, as stated in Section II, extends to this model. Lemma 1
and thus the first sentence of the theorem obviously still hold. To prove the second sentence
of the theorem, we only need to show that Lemma 3 still holds.

We present an adapted proof of Lemma 3. The broad idea is as follows. Because the
correlation is imperfect, the aggregate market can still be segmented such that, indepen-
dently for each product k, the distribution of valuations is either equal to a given g; or some
residual. In contrast to the original proof of Lemma 3, the residual now depends on the
valuation for product £ —1. We then show that the seller always prefers to offer a product

for which the distribution of valuations is g;.

Proof of Lemma 3. Let (z;,¢;) € S. Analogously to the proof of Lemma 3 for the original
model, choose A € (0,1) such that

Agi(x) <téY(z)+(1—t)f(z), Vz,yelX,

Agi(x) < f(x), VrelX,

and define h(- | vg) € AX, and, for every y € X, h(-|y) € AX, as

1 A
h("UO) = 1_)\f_1_)\gla

t 1—t A
h(-|y) = 6Y — ;.

Finally, set p* := zy, if ¢; = 0; set p* 1= x; if ¢; = u(xy).

Next, we present a market segmentation 7 supported on 2" markets. The markets in
the support of 7 are indexed by superscript a € {g,h}". The notation ((ay) will also be
used and means 1 if ap =g and 0 if ap =h. Set

(1) =TT (Clar)A+ (1= Clar)) (1= N)), Va € {g,n}".
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Market p? is given by

[Tk (C(ak))\gi(vk) +(1—=C¢(ar)) (1 = N)h(vy | ’Uk_1)>
T(u?)
=TT (Clar)gi(on) + (1= Clar)(ox | vg-1)), Wv e X™.

k

P (v) =

Then 7 is a market segmentation:

n

S ()t (v) = fon) T (1691 (o) + (L= ) f(op)) = Alv), Vv € X™.

a k=2

Next, consider any market p2. If ap =g for any k € {1,...,n}, then

pR() = > p(v)

ViU =x

= 2 TI(Clar)gilow) + (1 = Claw)h(vp | vp—1))

VIUR=T L/

= Y T (Clar)gilvr) + (1= Claw ) (o | vpr-1)) gi(w)

Vi V-1 kI <k

= gi(z), YrelX.

Hence,

maxp > pji(x) = maxpd gi(r) =p" D gilx) =

T>p >p >p*

In the following, we show that if a =h for any k € {1,...,n}, then

x; > maxp > ui(x)

T>p
For k=1,
piE) = 3 )
=5 (o) + 1~ Clow) o o)
= h(z|w).

For pf = h(- | vo), (SA.2) holds by Lemma 2.

(SA.1)

(SA.2)



So suppose k € {2,...,n}. Let r* € {0...,k—1} be the number of products such that
aj =h for k' <k and apr # g for k¥’ < k" < k. Then
pp(e) = > pt(v)

ViUp=2

= > T (Clar)giCvn) + (1= Clap))hlop | o))

VIR =T L/

= Y T (Clar)gilon) + (1= Claw)) v | v 1) )bl | vp—1)

V1o V-1 k! <k

k-1
= > e(Vg—r*—1) ( II Avw| Uk'1)) h(z [ vg-1),
Vg —r* —15--:Vk—1 k! =k —p*

where e € {g;,h(- | v0)}.
We show by induction that

Vg —r—15---Vk—1

k-1
Z e(vk_,«_l) ( H h(vk/ ’ Uk’—l)) h(~ ’ Uk—l) e AX
k'=k

is equal to

r+1
toyvtt o 1-(th) (1t A
(1—A) S g (1—Af 1—A%>€A

for all r € N. If r =0, then

[ 1—¢ A
_ h' _ — _ 5vk—1 3
vkz_:16<vk Dh(- [ vg-1) vk_le(vk O A ¥ A e VU
ot 1—tf_ A
S SR P A Py e

Suppose equality holds for a given r > 0. Then equality holds for r + 1:

k-1
> e(vg—r-2) ( II  Alow| Uk:’l)) h(- | vg-1)
k/

Vk—r—25--Vk—1 k—r—1
k—1
1—1¢ A

- ) e(Vg—r—2) II  Auw] Uk’1)) 7(5”’“ '+ f— i

Ve—pr—24--3Vk—1 (k/ k—r—1 1 )\ 1 — >\ 1 - )\

t h? 1—t A

= — > el II Aow ’W:’l)) h(- | vg—2)+ f-= gi

1_)\”016_,4_2,..,71)]6_2 (k/ k—r—1 1_)\ 1—)\

¢ \r+l
o ( " >r+1 +1—(H) Lt A Lt A
BN VDV P S Y gy L P L) R D Rt




We have shown that

-5 1-\ 11—
So
maxp Y pi(x)
r2p
r*+1
£\ 1- () 1t A
- S | () e (- e
T>p —
r*+1
t r 41 _<ﬁ 1—¢
< <> maxp » e(z)+ maxp » | ——f(z)—
11—\ = 1- = \1-X\

< <t>r+1 ._i_l_(li/\rﬂ Z if()_ A (2)
=\ T e T T )

For any p € {z1,...,zi—1}:

implying

t o\~ I={1=
pY_ () < ( ) T+ (1 X
T>p 1

<
For any p € {zj,...,xm}:
1—t A 1-—t A
- _ . < _ .
pz>:<1—xf($) 1—)\‘%(5’:))_1—)\% -
x>p
implying
r*+1
t o\ 1= (i 1—t—\
pguz(@ < (1_)\> Ti+ 1(_2 Ty
xr>p 1
= Zy.



Thus, (SA.2) holds.

By (SA.1) and (SA.2), there exists an optimal strategy p for the seller with the following
property: for every market p® such that ap = g for some product k, offer such a product
at price p*.

Lastly, observe that the only market y® with aj # g for all k£ € {1,...,n} has

T(u®) = (1=1)"

Let m, be the surplus of the seller, and u, the consumer surplus, under this market

segmentation and such an optimal strategy. Then

. _ . n L .
Jim = lim (1= (1—=X)")2; = i,
Jim up = lim (1—(1—A)") > gi(z)(z—p*) =¢.
x>p
m
SA.2 Non-Identical Distributions
Our model in Section I assumes that a consumer’s valuation for any product k € {1,...,n}

is drawn from the same distribution f. For the characterization of feasible surplus pairs in
Theorem 1, f mattered only through 7y, the maximum producer surplus without market
segmentation. In this section, we extend our characterization to a more general setting in
which the valuations for different products may be drawn from different distributions.

To work with an infinite sequence of distributions, we impose a lower bound on the

probabilities. Fix some ¢ € (0,1/m). Let F' be the subset of distributions e € AX such that
e(r) >e, VrelX. (SA.3)

Throughout in this section, we hold fixed an arbitrary sequence (f;);en of distributions in
F'. For any given number of products n € N, replace the definition of the aggregate market
fiin (1) by

a(v) =11 fe(vr), VveX™,
%

that is, the valuations for products k£ =1,...,n are independently drawn from fq,..., fn.
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The maximum producer surplus without market segmentation now depends on the
number of products; denote it by
7r67n = max{mgxp > filx), k= 1,...,n}.
T>p
Define furthermore

. /
o = Sup 7707”,
neN

and suppose that there is some 2’ € X such that = =2’
We can now state our generalization of Theorem 1. The only change concerns the

maximum producer surplus without market segmentation.

Theorem SA.1. For every n € N, the set Sy, of feasible surplus pairs is contained in
Sl = {(W,U) eR?|ne [0, Tm], 1 € [O,H(ﬂ)]}.
Moreover, for every
(mu) € §" = {(m,u) € R? | 7 € [, wm],u € [0,7(m)]},
there exists a sequence ((W”’u”))neN such that (7, upn) € Sy, and (Tp, un) =2 (7, u).

Fix any of the distributions g; used in the proof of Theorem 1. By (SA.3), there exists
for every f’ € F a distribution b’ € AX with eg; + (1 —¢)h/ = f’. The proof of Theorem
SA.1 is then analogous to the proof of Theorem 1, and therefore omitted. In particular, to
attain a point (m,u) € S’ with 7 =x; € {2/,..., ¥, }, decompose each distribution f into g;
and a residual hj, € AX, with the same weights ¢ and 1 — ¢ for each product k.! As in the
original model, the seller prefers to offer a product for which the consumers’ valuations are
distributed according to g; rather than the residual. In a second step, construct a market
segmentation 7 by independently drawing g; or hj for each product k=1,...,n, again with
the same weights € and 1 — ¢ for each product. For large n, it is then again almost certain

that the valuations for at least one product are distributed according to g;.

IThe weight € plays the role of the weight A in Lemma 2.



SA.3 Continuous Valuations

In this section, given any topological space Y, B(Y) denotes the Borel o-algebra, and
AY denotes the set of Borel probability measures on Y. We endow AY with the weak*
topology.?

Let now X = [0,1], and let f be an atomless probability measure in AX with full
support. The rest of the model is analogous to the model in Section I.

The aggregate market g € AX" is defined by
fi(Bix - x Bp)=[[f(Bg), VB1x-xBy,e][[BX).
k k

A market segmentation is a distribution 7 € AAX™ of markets € AX"™ that averages to

TR
/M(B1 x o x Bp)r(dp) = [[f(Bi), VBix - x By € [[ B(X). (SA.4)
k k

We use the notation jy, for the A*-marginal of market p.3

A strategy of the seller is a mapping p: AX" x B({1,...,n} x X) — [0,1] such that
p(p,) € A({1,...,n} x X) for all p € AX™ and u— p(p,{k} x B) is measurable for all
{k} x B € B({1,...,n} x X). Thus, a strategy selects, potentially randomly, a product
ke {1,...,n} to be offered and a price p € X to be charged for any market € AX".

The producer surplus under market segmentation 7 and strategy p is

(o) i= [ [ oo, Dol d(h,p)7 (),

and the consumer surplus is

Urto) = | [ [ o= pelahplu by e(an)

We repeatedly use that the consumer surplus can be written as

Urto) = [ [ [ e Dol ) (),

2All probability measures on product spaces in this subsection are uniquely defined by its values on
the products of the Borel o-algebras (see Aliprantis and Border, 2006, Thms. 4.44 and 10.10). We write
“for all products of Borel sets” rather than “for all Borel sets of the product space” where convenient.

3Thus, p, € AX, with ug(B) = fv:vkEB wu(dv) for all B € B(X).
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using a well-known formula for expected values.* Strategy p* is optimal for the seller under
market segmentation 7 if p* € argmax, I1-(p).

A combination of producer and consumer surplus (7, u) is feasible if there exist a market
segmentation 7 and an optimal strategy p such that (m,u) = (IL;(p),U;(p)). For given n,
the set of feasible surplus pairs is denoted by S,.

For any 7 € (0,1], define g, € AX by

0 if x €[0,7),
gr((0,2]) :=q1-7 ifz € [m,1), (SA.5)

1 ifez=1.

Thus, g assigns zero probability to [0,7), and for any given z € [m, 1], the set [z,1] has
probability /2. The probability measure g, is the analog to g; in the original model. Note

that

1 p ifpe(0,7),
| pge(av) = pga(lp,1)) = (SA.6)
P T if p e [m,1],
analogous to property (2) of the distributions {g;}/"; in the original model.

Lastly, define
1 1
u(m) ::/ gr([z,1])dx :/ m/xde = —7mlnmw, Vre (0,1],
™ T

Sp—)
and the set
S = {(W,u) cR? |7 € [m,1],u € [O,H(W)]}.

We now show that Theorem 1, as stated in Section II, extends to this model. Our proof

of Theorem 1 uses three lemmas. The first lemma is the analog to Lemma 1.
Lemma SA.1. For every n € N, (m,u) € Sy, implies uw < ().

Proof. Let 7 be any market segmentation, and let p be any strategy that is optimal given

7 such that II-(p) = 7 and U(p) = u. Define the probability measure h € AX by

n(B)i= [ [ m(B)p(u,d(k,p))r(dn), VB € B(X).

4See formula (21.9) in Billingsley (1995).



By the optimality of p, we have for any ¢ € [r, 1]

[ [amtla Dptudtep)r@n) < [ [ oo D)pnd(k p)r(dn)

= I:(p) =7 =qgx([g,1]).

Dividing through by ¢, we see that g, first-order stochastically dominates h. Hence,

w = [ [ sl aspeate
=[] [z apluedtepDriam = [ [ [ )dap(ondik. )i
< [ [ [mleazpedtep)r@n = [ [ [ up0dzpluae,p)r(dp)
=[] [l )dep(alkp)r(dp) ==
= [ [ [ w1tk p)r(apyde ==

- /h([:c, 1])da — 7
< /gﬂ([x,l])dx—ﬂ
= a(m),
where we used Fubini’s Theorem for the fifth row. O]

The next lemma is similar to Lemma 3.

Lemma SA.2. Let e,h € AX and X € (0,1) such that

Ne(B)+(1—Nh(B) = f(B) VB e B(X), (SA.7)

max pe([p, 1]) = maxph([p, 1]). (SA.8)

Let p* € argmaxype([p,1]). There exists a sequence ((W”’U”DneN such that (mp,un) € Sy

and
1

*

() 2, (el 0 e 1) (54.9)

Proof. Fix some n € N. We present a market segmentation 7 supported on 2" markets. As
in the proof of Lemma 3, 7 is constructed by independently drawing e or h with probability

A and 1 — A, respectively, for each product k=1,...,n.
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Formally, define for every tuple a = (ay,...,a,) € {e,h}"™ a market py® with
p*(By x -+ x By) =[] ax(Bk), VBix---xB,e][][B(X).
k k
Using the notation ((ax) := X if ax = e and ((ag) :=1— X if ax = h, set

T(pu?) = I;IC(ak), Va € {e,h}".

Then 7 is a market segmentation:

S () (B x - x Bp) =[] f(Br) = m(B1 % -+ X By), VBix---x By, €[[B(X).
k k

a

For every market u®, aj, = e implies uf} = e, and aj, = h implies uf} = h.

Next, we describe a strategy p as follows:

o For every market p® in the support of 7 such that a; = e for some product k, offer

any such product at price p*.

o For the unique market p? in the support of 7 such that a; = h for all products k,

offer product k=1 at some fixed price p’ € argmax, ph([z,1]).

o For every market outside of the support of 7, offer product k = 1 at price p'.

We have not specified how p selects among products k with a; = e, but this indeterminacy
will not matter. Note furthermore that V' is compact and metrizable, which implies that
AX™ is metrizable (Aliprantis and Border, 2006, Thm. 15.11). Hence, any finite subset of
AX™ is a Borel set. Because the support of 7 is finite, this implies that pu+— p(u,{k} x B)
is measurable for all k € {1,...,n} and all B € B(X), as required by the definition of a
strategy. By (SA.7), p is optimal.

Lastly, observe that the only market u® with ap = h for all k € {1,...,n} has

() =(1=A)"
Let m, be the surplus of the seller, and w, the consumer surplus, under this market

segmentation and such an optimal strategy. Then

lim m, = lim (1= (1= 0)")p"e([p", 1]) = pe([p" 1),

Tim uy, = lim (1—(1— /\)”)/pi e([,1])de = /p1 e(z,1])dz.
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Lemma SA.2 is not directly useful because the probability measures g, have an atom at
x =1 whereas f is atomless; thus, f cannot be split into some g, and some h as in (SA.7).
We will approximate the respective g, by atomless probability measures. When doing so,
we must furthermore make sure that the seller sets the right price. To this end, we now
state a third lemma.

Fix some 7 € (0,1), some p € [, 1], and some € € [0,1]. For N € N; let
W:xév<xiv<...<a:%:1

be a collection of points in [r,1] of equal distance. For each i =1,..., N, define

ey o (= 0n(ry 2 2) 4 "y, )
e (EARTEA) ’

where 0P € AX denotes the Dirac measure centered on p. Let

N . e, N\ L
App 1= ( grél[%?f] azy (2)) (SA.10)
1e{1,...,N}

and note that )\TJX » € (0,1) because g, and 0P are probability measures and assign probability
one to [m,1] whereas f assigns probability strictly less than one to [r,1]. For each i =
1,...,N, let furthermore

e,N (: 1 )‘711}{10 e,N(:

We now introduce two probability measures in AX: the probability measure e&Y, which

™,p
has support [7,1] and is given by
ey (2, ) = agy (0 ([.27]), Vo€ a2 ] ¥i=1,....N, (SA.11)
and the probability measure hfg’]},f given by
h5p ((0,23]) = —— 5 f((0,a]), Vo €[0,7),
1=Ar,
hsy ([o,2)) = B (0 f(fe,2]), Ve e oy, ol Vi=1,... N,
Then, f is a mixture of efg’];] and hj;fz\,f ;
AN oS (B)+ (1= AN o (B) = f(B) VB e B(X). (SA.12)
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Lemma SA.3. Let 7 € (0,1) and p € [r,1]. For every e € (0,1], let (p©) yen be a sequence

of prices such that

p° eargmaxxeeN([x,l]% VN e N.

Then,
e,N e Nr..e,N _
lim lim p©Tep ([p°7, 1) =, (SA.13)
lim lim [ e M 1 A
egr(l)Ngnoo peN br /p gﬂ- (S '14)
If furthermore m > mq, then
lim maxahly) ([2,1]) <m, VYN eN. (SA.15)
Proof. Let é7 , € AX be the probability measure given by
exp(B) = (1—€)gr(B)+ed?(B), VBeB(X). (SA.16)
To prove (SA.13), we first show
lim p&Y =p, (SA.17)
N—o00
Jim N (1) = &5 (. 1), (SA.18)
Fix some ¢ € (0,1]. For all x € [z ,#N] and all i = 1,..., N —1,
o€ N N
e,IN ,p([ i—1T5 D N ~E N
v T (NN Z e
Hence,
: e,N
dim e (1) = 6 ([22]), Vo efr,). (SA.19)
It follows that if p < 1, then limy_,o p* = p because x — xéS ([z,1]) is uniquely maxi-

mized at 2 = p by (SA.6). If p =1, then limy_,o, p>" = p because

i eN_1egy ([en-1,1]) = lim oy e ([N, 1]) = &, ({1}).
—00 N—o0
This shows (SA.17).

If p¢V € [z]V 1, 2]], then

Ti— 1,75

e . 1—m
e 1) < e (1) = 5, (1) < 2, [ 5T )),
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where the last inequality holds because [x1¥ ;, 2] has length (1 —7)/N. Hence,

i—1:T;

1—
limsupe;’]]\)]([pe’N 1]) <limsupéy , Qpe’N— i D <ésp(lp, 1))
N—oo ’ N—oo N

because x — €5 ,([x,1]) is upper semicontinuous. On the other hand,

liminfe$ ) M(pN 1)) > ez p(lp;1])

N—oo

because otherwise

tiin e ((p°, 1]) = pliint e (0, 1]) < 95 (0. 1)

N—oo

which contradicts the optimality of p". This shows (SA.18). Together, (SA.17) and
(SA.18) imply

lim p“Nel ([p°Y,1]) = peg ([, 1]).

N—oo

Letting € go to zero concludes the proof of (SA.13):

lim lim p“NeS™ (pSN 1)) = pga([p,1]) = .

e—0N—oo TP
Next, we show (SA.14). For given € € (0,1], the Dominated Convergence Theorem

implies

1
lim / Nef;];,]([x,l])dx = m 1pcn qy(2)e; N([z,1])dz
P ’

N—oo N—oo P

- /1p1 S([2,1])de
— / 65, ([e,1])da

where the second equality holds by (SA.19) and (SA.17). Letting € go to zero yields (SA.14).
Finally, we prove (SA.15). Fix N € N. For any € € (0,1], we have

RN (1) =1~ s F(0,a]) < F([2,1)), Ve 0,m).
™p

Hence

g%xrg[gﬁ]wh p(z1]) < xrg[gf;]xf([x,l]) <

14



On the other hand, if z € [z |, 2], i=1,...,N —1, then

e,N _ 1 )‘7]l¥ é;’, ([$f\£17${v])
hﬂ,p([x’1]> - 1_/\%\/:pf([xvl])_ 1_)\2\]4) ( f;g[xzj\il,va])

P+ (2, 1])) .

By the Maximum Theorem,

lim max zhSN([z,1))= max k0N ([z,1]), Vi=1,...,N—1.
Howe[rf\il,x{v] ,p ([ ]) xe[xf\il,mfy] ) ([ ])
Analogously,
lim max ah&Y z,1]) = max 2hON 2.1]).
€_>0m€[$%_1,1} P ([ ]) IG[I%_l,l] ™,p ([ ])

It remains to show that

max_zh% ([z,1]) < m. (SA.20)

z€[m,1] ik
Note that if z € {={’,...,2¥_;}, then

xe?r7,g<[$’1]) = ngﬂ—ql’,l]) =T >T 2 mf([x,l])

and thus
ey ([#,1]) > f([z,1]).

Because the ratio

O ([2,28) _ gella 1,2
Fwad)) £, a))

is the same for all x € (z)¥,,2N),i=1,...,N, it follows that

N (1) > £, 1), Vre 1]
Using (SA.12), we conclude
hyy (1)) < f([2,1]), vz e [n1],

and thus

ehiyp ([e,1]) <z f([z,1]) <m, Va € [m,1],
which implies (SA.20). O

We are now ready to prove Theorem 1.
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Proof of Theorem 1. The first part of the theorem holds by Lemma SA.1. To prove the
second part, let (m,u) € S. Because the function p +— fpl gr([x,1])dx is continuous, there

exists a price p € [m, 1] such that

1
u= / gr([x,1])d.
p

The function 7 — u(7) = —7ln7 is continuous. To prove the theorem, we may therefore
assume 1 > 7 > 7, because if for any such 7 and any u, € [0,u(7)] there exists a sequence
((ﬂn,un))neN converging to (m,uz), then there also exists a sequence converging to (m,u)
for ™ € {mo,1} and any u € [0,u(7)].

We now apply Lemma SA.3. For every € € (0,1], let (p)yen be a sequence of prices
such that

pol e argmgxxe;g([x,l]), VN e N.

Then by Lemma SA.3,

. : eN _eN (e N —
i Jim e (5. 1) =
1 1

lim lim efgg([x,l])dx:/ gr([x,1])d.

e~>0N—o0 Jpe:N D

To prove the theorem, it therefore suffices to show that for any e below some cutoff and
for any N above some cutoff, there exists a sequence ((ﬂn,un)) - such that (7, u,) € Sy,
n

and

1
(T, Up) — <pe,Ne;g([pe,N,1]),/eNef;g([x,l})dx).
p7

n—oo

Invoking Lemma SA.3, let € be small enough and N big enough such that

PN e ([N, 1]) = 7o > maxahS ([, 1]).

Then, such a sequence ((Wn,un))neN exists by Lemma SA.2. O

SA.4 Seller Offers Two Products

In this section, we consider the setting of Section SA.3, with f being the Lebesgue measure

on X =[0,1], and assume that the seller can offer two products in each market.
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Let K be the set of all subsets of {1,...,n} that have two elements.® A strategy of
the seller is a mapping p: AX"™ x B(K x X™) — [0,1] such that p(u,-) € A(K x X™) for
all p € AX™ and p+— p(p, K x B) is measurable for all K x B € B(KC x X™). Thus, a
strategy selects, for any given market € AX™ and potentially randomly, a set K € IC of
two products to be offered and prices for all products k € {1,...,n}.5 We denote a vector
of prices in X™ by p:= (p1,...,Pn).

A selection of the consumers is a measurable mapping o : X" x K x X" x {1,...,n} —
0, 1], where oy i p(k) denotes the probability that the consumer buys product k at (v, K, p),
where oy g (k) = 0 for all products k ¢ K and

> oviplk) <1

keK
Thus, a selection selects, potentially randomly, for any vector of valuations v € X", any set
of offered products K, and any vector of prices p € X", a product to be purchased, if any.

The producer surplus under market segmentation 7, strategy p, and selection o is

elpo)i= [ [ [ X oviep(k)priu(@v)p(n,d(K, p)r(dn),
keK
and the consumer surplus is
Ur(p.0) = [ [ [ 3 ovrcp®)(or = pi)ie(@v)oie, A(K, p))7(dpe).
keK

A strategy p* is optimal for the seller under market segmentation 7 and selection o if p* €
argmax, Il (p,0). A selection o* is optimal for the consumers under market segmentation
7 and strategy o if o* € argmax, U, (p,0).

The producer surplus without market segmentation is again denoted by my. Without
market segmentation, the seller optimally offers any two products; the valuations for the
two products are independently drawn from the uniform distribution on [0,1]; a consumer

optimally buys that product for which the difference between valuation and price is greatest,

5At some points, we make the dependence of IC on n clear in the notation and write ,, instead of K.
6 Although the seller offers only two products, we assume that she chooses prices for all products in

{1,...,n}. This is to simplify the notation.

17



provided the difference is positive.” By Pavlov (2011, Example 1), it is optimal for the seller

to set the same price for both products in this case, so that

Wl N
G-
w

0 :mgxp(l—pz) = (SA.21)

—~

A combination of producer and consumer surplus (m,u) is feasible if there exist a
market segmentation 7, an optimal strategy p, and an optimal selection p such that
(m,u) = (Il-(p,0),Ur(p,0)). For given n, the set of feasible surplus pairs is again denoted
by Sy.

The other notation is as in Section SA.3. In particular, we use again the set S, the

probability measures g, and the function u defined there.

We now show that Theorem 1, as stated in Section II, extends to this model.

SA.4.1 Proof of the First Part of Theorem 1
We wish to show that for every n € N, the set S, of feasible surplus pairs is a subset of
S ={(mu) €R*| € [m,1],u € [0,7(m)]}.

Let n € N and (7, u,) € Sp,. By the same arguments as in the original model, it holds that
T, € [mo, 1] and u, > 0. The following lemma, the analog to Lemma 1, thus concludes the

proof of the first part of Theorem 1.
Lemma SA.4. For every n € N, (m,u) € Sy, implies uw <u(m).

Proof. Let 7 be any market segmentation, let p be any strategy, and let o be any selection
such that p and o are optimal and II-(p,0) = 7 and U-(p,0) = u.
We first show that

/ / / > 0vKp(k) Ly >q(V)(dv) p(p, A(K,p))7(dp) < 9x([g,1]), Vg € [r,1]. (SA.22)
keK

7A monopolist’s problem of choosing prices for I > 1 products of which the buyer buys at most one
is known in the literature as the “Bayesian unit-demand pricing problem” (see Chawla, Hartline, and
Kleinberg, 2007). Solutions have been obtained only for special cases (see the literature overviews in Cai

and Daskalakis (2015) and Chen, Diakonikolas, Paparas, Sun, and Yannakakis (2018)).
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By contradiction, suppose that there exists ¢ € [, 1] such that
[ [ ] 3 ov s Loyzg(0)(av)plos, dCK, p)r(dn) > g((g, 1]).
keK
Let p’ be the vector of prices where p). = ¢ for every product k € {1,...,n}. We have

/ / / Y v kp(B) 1y >g(v)p(dv) p(p, (K, p))7(dp)

keK

< [ ] ovip ) luz(vunav)p(n,d(K, p)r(dp)

keK
since by the optimality of o,

Y vk (F)lo (V) = 1arekn>q(V) = D 0v i p(k) Ly, >q(v),
keK keK

VK e K,Vpe X" Vve X"

Hence,

0 [ |3 ovicor (k)L (V)(@v)plia, d(E,p)) ()

keK

0 [ [ ovnlk)Lozqv)nav)o(ud(K.p)r(dn)

keK

v

> qgx([g,1])

= .

But then the strategy p’ that differs from p in that it chooses the price vector p’ for every
market p results in a strictly higher producer surplus than p, contradicting the optimality
of p. Hence, (SA.22) holds.

Define now the probability measure h € AX by

mle 1) = [ [ [ X ovrp® Loz (Vn@v)o(nd(K.p)r(dp), Ve (0.1]

keK
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and h([0,1]) = 1. By (SA.22), g, first-order stochastically dominates h. Hence,

wo= [ [ 3 ovrp®)on—pru(av)p(nd(K,p))r(d)

keK

- / / / >~ vk p (k) or(dv) p(p, (K, p))T(dp) =7

keK
- / ch(de) — 7
- /h([x,1])dx—7r
< /gﬁ([m,l])dx—ﬁ
= a(m).

SA.4.2 Proof of the Second Part of Theorem 1: Preliminaries

To prove the second part of Theorem 1, we first state auxiliary results.
Let £ be a probability measure in A", and let K € K. We denote by £x the probability
measure in AX? defined by

n
¢x( I Be) =¢(11 B)
keK k=1
where [T}_; Bi € ITj—1 B(X) such that By = X for every k ¢ K. This extends the notion

of a marginal to two-dimensional marginals. Moreover, we say that a probability measure

&€ AX" is invariant to permutation if
n n
¢(TI Bx) =¢(I1 Buw)
k=1 k=1
for every [Ip_; Br € [1i—; B(X) and every permutation ¢ of {1,...,n}.

Lemma SA.5. a) Let (,¢p € AX? and X € (0,1) such that, for any K € K,

M(TI Be)+(=Ne( II Be) = IT £Bx). ¥ II Bre II BX).
keK keK

keK keK keK
For any n > 3, there exist &* € AX"2 and v € AX™ such that

[T £(By) = (1—(1=0™2) S L¢( T Bo)en( 11 By)
k=1 Kek |]C|

helk kEK (SA.23)
+(1=N"2y (] Be), V]I Bre [IBX).
k=1 k=1 k=1
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Moreover, if ¢ is invariant to permutation then there exist such £",~v with " being

variant to permutation.

b) For everyn >4, let K,, € KCp,. Let £ be as in part a) and invariant to permutation.
Then,
lim &% (B'x B") = f(B")f(B"), VB'xB"eB(X)xB(X).

Proof. Part a): We show (SA.23) first for n =3 and n =4. Afterwards, we will be able
to show (SA.23) for every n > 4 by induction.
Let n =3, and fix any [];—; Bx € [1}—1 B(X). Then,

n

[T /(B = > K (/\C(HBk) ¢(H3k))f(HBk)

k=1 Kek keK keK k¢K
S 11 Bk) (IT B+ =Ne( IT Bx)F(TI Br)
Kek |IC| keK k¢ K keK k¢ K
=(1-(1-)) X IC ¢( I Bi)F(II Be)+ (1= Ne( IT Be)f(IT Be)-
IC‘ | keK k¢ K keK k¢ K

Thus, (SA.23) holds for n = 3.
Let now n =4, and fix any [[;_; B € [Tj—; B(X). Then,

n

1 050 - zm(xuUm MH&ﬂ@dH&HﬂﬂﬂﬂBﬂ

k=1 KeKk keK keK k¢ K k¢ K
-3 & (AC( I1 B) ( M(TT Be)+(1=No( 1 Bk))
Kek keK k¢ K k¢ K
-m%gmmAqnm> uwmﬁ
07 I o1
m)\(( I1 Bx) (AC( I1 Bi) +201—Ns( [T Bk))
Kek keK k¢ K k¢ K
+(1_A)2K§€:’C |K|¢(kg(3k)¢<kg(3k)
- (1_<1_)‘)2>Kze:’d;1q<<kg<3k> (1 (i\2_ )2<(kg<3k> 12_)\21_)\)2¢(kg<3’f))
+(1_A)2I§Kmﬂ¢(kg(3k)¢(kg<3k)



Thus, (SA.23) holds for n =4.
Now suppose that (SA.23) holds for an arbitrary given n > 4. We show that (SA.23)
then holds for n+ 1. Fix any [[}*] By € TI74 ] B(X). We have

:ﬁf(Bk) = X (Ac( [T Bi)+(1=Ns( I1 Bk)) I £(By)

KeKni1 | n+1| keK keK k¢K

[6( L) 1o TT )

keK keK

= 2

Ke]Cn_H ‘ n+1|

- ((1— (IO IEDS

HG’CH_H\{K}

¢(TI Be)™'( II Bx)

|’Cn 1] keH k¢ HUK

+(1 —/\)("_1)+27( 11 Bk))

k¢ K
= 2 A((HB/O
KeKni1 | "+1| keK
1 .
-(2<1—<1—A><“—1>*2> X ® ,c(HBk)g” '(TI B
HeKn \{K} M= kel k¢ HUK

+(1= N2 (] Bk))

k¢ K

+ Y ===y ¢(TI Be)™'( II Bx)
Kekpi1 ’ n+1| HeKp1\{K} "Cn 1‘ keH k¢ HUK
( M(TT Be) +(1=Ne( IT Bk))
keK keK
Y =TT B - N2 ( T By
KelCn+1| n+1 keK k¢ K
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= > ¢( 11 B

KeKni1 | n+1‘ keK

- ((1—(1—A><“>12> )3

HeKn+1\{K}

1

k¢ HUK

FA1 =Ny (] Bk))

k¢ K
+ jeNe(TT B0 -2 (T )
KeKpqp Mt keK k¢ K

= (1 (1-A)He2) 3 ¢( 11 B)
KeKni1 | "+1| keK
1— (1 _)\)(n—1)+2
' (1—(1—A)<n+1) 2

HE/Cn+1\{K}

&' II Be) I1 £(Bw)

|’C" 1] k¢ HUK keH

A(1—\)(n=D=2

AT VICEE 27( 11 Bk))

k¢ K
+ (1 N )\)(n+1)+2 Z

o 11 Be)y( I B).

Ke/an’ n+1’ keK k¢ K

Thus, (SA.23) holds for n+ 1.

Now suppose that ¢ is invariant to permutation and £",v satisfy (SA.23). For n >3
and K € Ky, let U([n]) be the set of all permutations of {1,...,n}, and let ¥([n]\ K') be
the set of all permutations of {1,...,n}\ K. Then,

M/By= 3 Hwa

k=1 pew () "
= (1= (1=X)"?) > 5 ¢TI Buw)e"( T Bugw)
YeU([n KeIC| | keK k¢ K
DS 1,7(HB¢ )
Yev([n]) " k=1
=(1-(1=-N"" Z,CC(HBk)( > 56" (II Bua ))
rer K1 ek DeU([n)\K) (” )! k¢ K

+(1=N)" Y 1!7(]£[1 By,

vew([n) "

where the second equality holds because ( is invariant to permutation. This completes the

23
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keH keH
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proof of part a) because

I B8X)> ] Be~ >

k¢ K k¢ K YeV([n]\K)

2).5n( I1 Buw)

(n— k¢ K

is invariant to permutation.
Part b): For every n >4, let {k'(n),k"(n)} € K,, and, moreover, [}, By € [1}-1 B(X)
with By = B', Bynny = B”, and By, = X for every k ¢ {k'(n),k"(n)}. Then,

f(Bk’ Bk” H f Bk

= (= =22) ¥ (T B)er (T B)+ (- A w2, (1] By)

Kekn, keK k¢K k=1
= (1-(1-X)"?) > |,C| ( )
K EKn:KN{k (n) k" (n)}=0 KEK KK
H1= (1= > < "( 11 5)
K €Kn:KN{k (n) K (n)}£0 keK KK
+1=n (1] 5)
k=1
— (1-(1=0") s R | (11 2)
KeKn:KN{k (n),k" (n k¢ K
HL= (1= 0") > Totl (II B:)
K EKn:KN{k (n) K" (n)}£0 keK KK
+(1= )"y ( H By)
k=1
=:ay,
Thus,
f(By)f(Byr) = lim ap
= i, 2 | IC |
KeKn:KN{k (n),k" (n)}=0 k¢ K
= lim > B'xB"xXx---xX
" K ek KN (K (n) B (n)}=0 "C | ( 1 times )

= lim ¢"(B'x B”><X><--~><X)

n—oo
. ! 174
= lim &7, 5, (B’ x B”)

: n / /
= lim g{k/(n),k‘”(n)}(‘B XB/),

n—oo

24



where the third line and the last line hold because " is invariant to permutation. O]

For (pr,pr) € [0,1]2, define

(1) = o <g7r([pz,1])pk+/pll gr([vr; 1])dvk> + ;pk /pl

(1+ g ([0, 06 —pr+pi]) ) oy

[\]

k

1 1 1 1
= 5P <gw([pz71])p/c+/p (Ul_pl)gw(dvl)> +2pk/p (14 g ([0, 06 — pr+ 1] ) ) oy
l k
1 1 1 1
= sz/p (Uz—pl+Pk)97r(dvl)+2pk/p (1+ g ([0, 0% — pr+ 1)) ) oy
l k

1 1 1 1
- fpl/ / dvkgﬂ(dvl)—l—*pk/ <1+ dgw(dv1)> doy.
2 Pl J VR —p 2V — Pk 2 Dk VU — P SV —Dk

Since the function ¢™ is continuous, it has a maximum on [0,1]2. We show in Lemma SA.7

below that

max ¢ (p;,pp) <m, V€& [m,1].
(p1,pr)€[0,1]2 ( ) mo- 1

We need the following lemma, which provides an upper bound on the maximum value.
Lemma SA.6. It holds that

™ Pk
max " (py,px) < max  pg(l—pg +<1+2pk—pl—>~
(p1,pr)€[0,1]? ( ) pi€[m,1],pr€(0,p1] ( ) 2 D

Proof. We show first that

max ¢ (p;,pr) = max ™ (p1, pr)- SA.24
(p1.pk)€[0,1]2 ( ) (P1,pr)€[0,1]2:p > py, ( ) ( )
Let p; < pr. Then,

1 1 1 1
" (pr, k) = *pk/ / dvggr (dvy) + *pk/ 1+ dgr(dvy) | duy.
2 Pk YUV 2V 2 Pk v Svg

k
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Hence, 2(c™ (px, pr) — <™ (p1,p)) is equal to

1 1
Dk / / dvggn(dvy) + py / / dg (dvy)duy,
Dk Vg0 20k DpE J v <vg
1 1
—pz// dvkgw(dvl)—pk;/ / dgy (dvy)duy,
D Vg0 —pI+PE 2k Pk Y U0 SUE—pr+py
1 1
= pk// dvk9w<dvl)+pk// g (dvy)duy,
Dk Vg0 20k Dk Y0 =P+ <Sur <o
1
—Pz// dvggr(dyy)
D1 v —prtpE >k
1 1
= D / / dvggx(dvy) + pi, / / dvggr (dvy)
Dk Vg U <Dk Pi J Vg PR <vp <y
1
+ P, / / gr (dvy)duy,
Dk /U0 — PP SUp S

1 1
—m / / dvggr(dv) —py / / dvggr(dyy)
p1 SV v <pg D1 YUk SVESv;—pr D

1 1
= min{7,py}vp +pk/ / dvggr (duy) +pk/ gr(dvy)duy,
Pk Y UEPESVE <Y Pk

/vzivk —pr P <v<vg

/ dvkgw (dvl)
Vg Pk <V <V —p1+Pi

1 1
Dk / / dvg gz (dvy) + pi, / / gr (dvy)dug
Pk YV Pk <SvE <y Pk Y U0 =P+ <Sv <
1
—pz// dvggr (dvy)
D1 Y Vg v <vp—pp+pE
1 1
= pk// dvkgﬂ(dvl)"f‘pk// dvggr(dyy)
Pk Y VPR <vE <Y p1 g <vg<v;—p;+pg
1
—m / / dvggr(dvy)
D1 J VPR <vp<v;—p;+Dpk
1 1
= D / / dvggx (dvy) +pi / / dvggr(dyy)
DL JVEpE SV <v; 1 YUk SV <v;—p;+p
1
—pz// dvggr (dvy)
D1 J Vg Svp<vp—pp+pi

1
= (pr—m) / / dvggr(dyy)
D1 J VPR v <v;—p;+Dpk

> 0.

1
—min{m,p; vy, —pz/p
1

v

This shows (SA.24).

26



Let now p; > pg. Then,

1 1 1 1
" (p1.pk) = -p / / dvggr(dvy) + s / <1+ dgw(dvl)> duy,
2" Jp Joprog<vi—pi+pi 2 Dk v <vE—pPr+p;

1 1 1 1
= -y / / dvggr(dv) + sp / / dvggx (dvy)
2 D1 Vv <pg 2 D1 YV <vE<v;—p;+pk
1 1
+*Pk/ <1+ dgn(dvl)> doy,
2 Dk v <py
1 1
5Pk / / dgr (dvy)duy,
Pk Yo S <vp—pr+p;
1 1
Y / / dvggr(dvy) + sm / / dvggx(duy)
27 Jp Joprog<py 27 Jpy Jogipp<vp<1—p;+pp

1 1
o / <1+ dgﬂ(dvl)> duy
2 Dk v <py

1 1
+§pk/ / dgx(dvy)dug
1=pi+pi Jopp<v;<1

=:a(py,pr),

IN

where the inequality holds by p; > pr. There are two cases.
Case 1: p; < 7. Then,

1 1 1 1
a(pr,pr) = ok + zpi(L =) + zp(1 —pr) + =pe(P1 — i),

2 2 2 2
so that
da(pr,pr) 1 1 1 1
o0, 2pk+2( Pz)+2pk 5 TPk DL,
Oa(py,pr) 1 1 1 1
YUPLPE) _ 2 21 _9 Zp— ) — — —9 ,
oo Pt 2( Pi) + 5 (p1 — 2pr) 5~ 2Pt

It follows that if

a(p?ap;;) = a’(plapk)a

max
p1€[0,7],pr€[0,p1]

then pj = p; or pj = 1/4+p} /2. With both solutions for p;, we obtain

da(pr,pr)

0, V 0,1].
apl > U, ple[v]

Hence,

a(pf,pp) = a(pr, pr)

max
ple[oﬂr] 7pk:e[07pl]

implies p; = m. We can therefore drop Case 1 and concentrate on the following Case 2.
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Case 2: p; > . Then,

1 =« 1 =« 1 T 1 T
a(pi,pr) = =p1—pPk+ zp1— (1 —p1) + spe(1 —pg <1+1—>+pk DL —DPk)—
( ) 2" 2 pz( ) 2 ( ) DI 2 ( )pz
T v v v
= Spp+—(1— 1—pp) [ 1—— — ) —
2pk+2( p1) + pi( pk)( 2pl>+pk(pz pk)2pl
™ pr(1—pr)  pe(pr— Dk
=pr(l—pr)+5 (pk+1—pz— ( )+ ( >>
2 DI DI
™ Pk
=pk(1—pk)+§ <1+2pk—pz—>-
DI

]

We use Lemma SA.6 to prove the following lemma. We note that in the proof, we use

Wolfram Mathematica to solve

(2 = V)~ 1);

W |
5l-
w

max z(1—1z)+
z€[0,1]

according to Wolfram Mathematica, the maximum is equal to —0.0185221.8

Lemma SA.7. For every m € [m, 1], it holds that

max ¢ (p,px) < 7.
(p1,px)€[0,1]2

Proof. By Lemma SA.6,

™ Dk
max ¢ (p;,pp)—7 < max Pl —pi +<1+2pk—pl—>—7r
(p1,pr) €10,1]2 ( ) pi€[m,1],p,€[0,p1] ( ) 2 D
T
= max pe(l—pr)+ =
pi€lm,1],pre[0,p] ( ) 2
T
2

Pk
frn-n-2-)
b1

Pk

< max  pp(1—pg)+ »
I

~ pi€(0,1],pk€[0,py]

Define
T Dk
0.5
“The code s Maximize 2(55;963# +(I-2z)r,0> 0,2 < 1} a{x}:| . The output is:

{—0.0185221, {x — 0.564362} }.
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Then,

om(pi,pr) T (_1+pk>7

Iy 2 I
8mg;;p’“) —1-2p+3 (2— ;) .
It follows that if
m(p[,pp) = _ max  m(p;,p)

Pi€(0,1],p€[0,p]
with p; =1, then

om(py, pr) L 1o
Tpk ) =0 <— D = 5 + Z,
(ka)
since
om(py, ) 1+ 50
Ok a1 0) 2
Omlpnpe) | _ LT
Ok 2
But
am(plapk) <1
o1 (14+9)
Hence,
m(pf.pp) = max  m(p;,pr)

ple(ovl]apke[oapl]
implies p; € (0,1). It follows that

om(p, )

=0 <= p; =./p;i €(0,1).
i i =\re0

(p1,01)=(p} ,P,)

We conclude that

T — Dk
max " PLPE) — T < max Pk 1_pk +<2pk_ pk_—1>
(p1,pk)€[0,1]2 ( ) pr€(0,1):pp<\/Dk ( ) 2 v/ Pk
T Dk
< max 1— + —(2pp — _ P 4
st (=) 5 (k= P N )
T
= max pp(1—pr)+ 5 (2r—vPr) —1).
pkE[O),(l]pk( Pk) 2( (Pk = /Pr) )
Now, at
21
m =T = —-——,
0 3\/3



we have

s
1— ~(2(pr— /pr) —1) = —0.0185221 < 0
pirel%fupk( Pi)+ 2( (pk —v/Pr) — 1)

as mentioned in the text above the lemma. Because 2(pg — /pr) — 1 < 0 for every py, € [0, 1],

m
p,fg[lo},{upk(l —pr) + B (2(pk —/Dr) — 1)

is strictly decreasing in 7. Thus,

T
max ¢ (p;,pr) —7 < max 1—pe)+=(2(pr —/pr)—1) <0, V7€ |m,1].
(p1,pr)€[0,1]2 (pr.p) pke[o,upk( P) 2( (P Pk) ) [70,1]

SA.4.3 Proof of the Second Part of Theorem 1

Let (m,u) € S. We wish to show that there exists a sequence ((W”’U“DneN such that
(Tn, un) € Sy and (mp,, up,) — (7, u).
Because the function p — fpl gr([z,1])dx is continuous, there exists a price p’ € [r,1]

such that
1
u= /p/ gr([x,1])dx.

Throughout in this subsection, we hold this price p’ fixed.

SA.4.3.1 Construction of Market Segmentations

Fix some € € (0,1] and some N € N. Define the probability measure fV € AX by

f(BN[0,1/N1)
(10, 1/NT)

Moreover, define the probability measure (¢ € AX? by

FN(B) =

— Nf(Bn[0,1/N]), VB e B(X).

L. 1 c
C“N(B;1 x By) = 5ew’dﬁf,(Bl)fN(BQ) + 5ff\f(]gl)ew’,p]}f,(192), VB x By € B(X) x B(X),
where e;’];f, € AX was defined in (SA.11). Let

A 1
AN = min{)\fr\fp/,N} € (0,1),
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where /\fr\{p, was defined in (SA.10). For every B € B(X), we then have

AFN(B) < F(B) and Anet < f(B);

/
™p —

hence,

AnCON (B x By) < f(B1)f(By), VB1xByeB(X)xB(X).
It follows that

f(B1) f(B2) — ACEN (B1 x Bo)

B(X)x B(X) > By x By — ¢“™ (By x By) :=

is a probability measure in AX? and

ANCEN(By x By)+(1— AY)¢oN (B x By) = f(B1)f(Ba),
(SA.25)
VB x By € B(X) X B(X)
Invoking (SA.25), we apply part a) of Lemma SA.5: for any n > 3, there exist 7 € A"

and £" € AX" 2 such that

[ (B0 = (1= =30 3 e (T Bu)ee (11 )

k=1 Kek keK k¢ K

n " . (SA.26)
+(1- Xm"*%(kr[ By), ka By e [] B(X).

Moreover, since (¢ is invariant to permutation, we can assume by part a) of Lemma SA.5
that £€N" is invariant to permutation.

Note that (SA.26) defines a market segmentation under which market + is drawn with
probability (1—Ax)"*2 and, with probability (1—(1—Ax)"*2), a market pu&VE e AX™
defined by

N,n, K N N a -
pevom ( H Bk) = (" ( H Bk‘)f€’ ,n( H Bk:), VH By € HB(X)
keK keK k¢ K k=1 k=1

is drawn uniformly at random over K € K. We denote this market segmentation by 76",
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SA.4.3.2 Producer Surplus and Consumer Surplus

If p and o are a strategy for the seller and a selection for the consumers, respectively, then
the producer surplus under market segmentation 7" L enn(p,0), is equal to

1=5)"2 [ [52 ov s p(B)pry(@v)o(,d(K'))

keK'’

HI=0=30"D) 5 o [ [ 5 v pRpes ™ (@) plae N (K p)),
Ke;c\ T R

and the consumer surplus U_cn..(p,0) is equal to
A2 [ [ 5 ov ke p )0k~ p)y(@V)p(r, (K p))
keK'

(1= (=)™ %) 2

K ,C\11C|// Z UvK’,p<k)<Uk'_pk:),ueNnK(dv) (1 EN,n,K7d(K,,p))'

keK'
To simplify the notation, we denote the contribution to producer surplus from market

Me,N,n,K by

N, K
G ()= [ [ 5 s Bt S @)K A1)
keK’
and the contribution to consumer surplus by
N K
) i= [ [ X o p () = pi )N ()N (K, p)).

keK'

For {k',k"} € IC,, and (pys,pr) € [0,1]? define also

e N.n,K N, K
CE " ({klyk//}7pk'7pk//) = M?k” I?’/} ({Uk/ 2 Pk, Vg — Dg! Z U _pk//})pk/

N,
+ ?k/ ,?/}} <{Uk" = Py Uy — P > Vg —pk’}>Pk~,

~e,N,n,K
c;]’ i ({k/,k"},pk',pk”) ::/<1vk/2p;€,vk/—pk/zvk//—pk//(Uk’>vk”)(vk’_pk’)

+ 1vk” 2Dl Vgt —Dptt >Vt —Pps (Uk/, Uk”) (Uk” - pk”)) /LE’N’TL’K (dV),

MENE . — arg max EEN’n’K({k/a K"} prs, o)
{k' K" }eKn,(pys oy )€[0,1]2

We describe an optimal selection for the consumers: given any set of offered products
{k',k""} € K,, and corresponding prices (py,py) € [0,1]2, buy product & if and only if vy >

P! and V! — Pr! > V!t — PE! 5 bU.y product k" if and only if V!t > Pr and Vg — Pg!r > V! — PE/
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where p > .’ Denote this selection by ¢*. We also describe an optimal strategy for
the seller, restricted to market pu&N"™%  given o*: choose ({k',k"}, (py,ppr)) € MEN K
so as to maximize 5§}N’n’K({k’ K"}, o, prr). We leave the strategy unspecified for markets
p {usNE K e IC,}, as these will be unimportant, and denote it by p*. Then, for every
Kek,,

R eV R K i) = N (SA27)

= max
{k/vk//}elcn7(pk/ 7pk//)e[071]2

eNnK/ % %\ ~e,Nn,K AN/ e Nn, K
)= iy oS O ) = N (54.28)

We can now prove the second part of Theorem 1 by showing that for every K =

{k/,k'”},k'l,k” c N,k‘l 7é k”,

lim lim lim &% = 7, (SA.29)
e—+0 N—ooN—00
lim lim lim & ™" =, (SA.30)
e—+0N—o00oN—00

SA.4.3.3 Limits

We will see that the limits (SA.29) and (SA.30) hold if, for sufficiently small ¢, we can
choose N sufficiently large such that as n grows without bound, the seller eventually offers
in market V"% the two products in K. The limits (SA.29) and (SA.30) will then follow
from Lemma SA.3 in Section SA.3.

The following lemma concerns the case that the seller offers in market p&V"™% the two

products in K.

Lemma SA.8. Let k' k" e Nk £ k". Let n > max{k',k"}. Then,

é%,N,n,{/cfjkﬂ}({k/7 k’"},pk/,pk") =T (SA.31)

lim lim max
€0 N—00 (p,s,pjr)€[0,1]2

For every € € (0,1], let furthermore ((pZ’/N,pZ’/]/V))NeN be a sequence of prices such that

(pz/NJ)Z/{V) € arg max 61€_iN7n7{k . }<{k/a k//}apk’7pk”)7 VN e N.

(pk/,pk//)e[OJP

9Thus, the consumer breaks ties in favor of the seller under this selection. With this tie-breaking rule,

EE’N’”’K is upper semicontinuous, which implies that MN:"K is nonempty and compact (see Alipran-
tis and Border, 2006, Thm. 2.43). We note that by the Dominated Convergence Theorem, EE’N’"’K is

continuous and therefore has a maximum on M™ ™5 this is used in (SA.28).
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Then,

1
lim lim & (KK}, N ) = /p gx([z,1])dz. (SA.32)

e—+0N—o0

Proof. We first prove (SA.31). We consider here the case that pp > ppr; the other case is
analogous.
prk’ S l/N, then
_e,N,n,{k K’ 1
C;I o }({klvk//}vpk’vpk/’) S N
If Pr S 1/N S P!, then
_e,N,n,{k K"
eV (K i o) = ¢ ({ow = psvw — pv = v — pror} ) i
+¢N ({Uk” 2 Pk Vgt — Dk > Vgt —pk/}>pk~
1
e,N , P
<¢ ({Uk/ > P })Pk t

1.y 1
= Sy (o, )pw +

2 N
max—e_ ; 7y U e
= pg 5 Cmp Pk Dr’ + N

By Lemma SA.3, it follows that

AR
lim lim  max 6EN’H’{k i }({k/,k”},pkhpk”>

€0 N—=00ppr,ppir <pys

IN

1 N 1
li li —eS / n1 U
i iy e o +

1
= .

2
If ﬁnally P > ]_/N, then

~e,Nn {k' k"
C;{ n{ }({k/ak//}apk’vpkj”) = CE’N ({Uk/ Z Py, Vg — P/ Z Vg _pk”}>pk’

+ CQN ({Ukz” Z Pk, Vgt — Pt > Vgt —pk/})pk//
~ 9 ei,p/([Pk’a 1)pw + 5676{4,/([1%", /%

< mgxwe;’g([x, 1]).
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By Lemma SA.3 again, it follows that

} . ~e, N k' K" Y c10 10
lim lim  max ¢ ({K" K"}, prr s i)
e=0N—=00ps,pi <p),

. . e,N
i, e b 1D

IN

= T

This shows (SA.31) and, by (SA.14), also (SA.32). O

The next lemma concerns the case that the seller offers in market pV™% none of the

two products in K. Since (% and £ are invariant to permutation, 6EN’"’K({Z’, Y pysopr)

is the same for every {I',l"} € K,, with {I',{"} N K =0.

Lemma SA.9. Let k', k" € N,k £ k. Let I, € N, £ 1" with {I',I"y " {}',k"} = 0. Let
€ €(0,1] and N € N. Then,

limsup  max 26%N’n’{k k }({l',l”},pl/,plu) < . (SA.33)

n—00 (pl/ ,pl//)G[O,l]

Proof. Note that

-~ 7N’ ) k/7l€1/ 7N7 ) kl7k/1
C;[ i }({llv l//}7pl’7pl”) S 'uil/,l;,/l}{ }({Ul/ Z by, vy —pr Z v _pl//}>pl/
7N7 ) k/7k/l
+Mf[z/,l/77'}{ }<{W’ 2 P, vy —ppr 2 vy —pl'})pl“

N
- f?l’,l”tl} <{Ul’ > py, vy —pyr = v —pl//})pl/
N
&g, (Lo = por, o —pin = vu —po'} )
== an(pl/7pll/>,

Since (py,pyr) — an is upper semicontinuous, there exists (pj,pj) € [0, 1]? such that

a” 7}, i) = max a” ,py).
(wir, i) s (i)

Since [0,1]? is sequentially compact, there exists a converging subsequence ((p?t, p;'t))teN

with

lim o (pyt,pyt) =limsup  max  a"(py,pp).
t—o0 o n—00 (pl/,pl//)E[O,l}z ’

Denoting
. Nt e\ . * *
tlggo(Pz/ oyt ) = (PP )
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it follows that for every y > 0, there exists ¢’ € N such that for every ¢ > ¢/,

7N7
a™ (pptwpt) < Gy ({or > v =y, 00 — v > v = pin =y} ) (0} +9)

67N7nt

€ (v = pi — o — v > pi — b —y}) (Bl + ).
Hence, for every y > 0,
1 3 1N7
Jim o™ (v ppt) < Jim €6 ({vr = p =y, o0 = v > pj = pl =y} (i +9)
,N7
€ (o = v —yevr = v = v =i —}) (0 +-0).
By part b) of Lemma SA.5, since f is the Lebesgue measure on [0, 1],

o 7N7
lim 53/7[/7/1} ({Ul’ Z pzk/ — Yy, vy — v Z p?’ _pzk” - y}) (p?' +y)

n—oo

N,
+€?l’,l,’7} ({Ul// > pzk/ — Y, v — vy > pzk,, —p?‘, — y}) (pzk,, _|_y)

1 1
= (pp+ y)/ vy — (pjy — pjn — y)dop + (pjn + y)/ v — (pjn — pjy —y)dop.
pl*’_y p;/_y
Thus,
Jim o™ (ppt, pit)
1 1
< lim(py + y)/ vy — (ppr — pyr —y)dop + (pjr + y)/ v — (ppr — pjr — y)dop
y—0 Py Py
1 1
= pZ‘// vy — (pjr — pjw)doy +p2‘/// v — (pjn — ppr)dugn
p; p?//
1 1
< max  py / vy — (py — pyr)doy + ppr / vy — (ppr — pyr)doyr
(pl/,pl//)€[0,1]2 Py Dyt
g ﬂ'O
< .

This shows (SA.33).

The next lemma concerns the case that the seller offers in market p&N%

one of the

two products in K and one product that does not belong to K. Since (&Y and £V are

~,Nn,K

invariant to permutation, ¢fj ({I',I"},py,piv) has the same value for every {I',l"} € K

with [{I/,I"} N K| = 1.
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Lemma SA.10. Let k' k" e NJK £ K. Let I," e NI £ 1" with |{U',I"} 0 {K K"} =1.
Then

ﬁiN,n,{/gf’k;/'}({l/7 l”},pl/,pl'/) <7 (SA.34)

lim sup lim sup lim sup max
e—-0 N—oco N0 (plupl//)e[(),lP

Proof. As in the proof of the previous lemma, note that

~ 1N7 ’ klak// 7N7 4 k/7k//
Ci—[ n,q{ }({l/, l”},pl',pl//) < M?l’,lg}{ }({Ul’ > Py, Uy — P > v _pl”})pl’
,N7 ) kl7k//
+ “zl’,l'?}{ }({W 2 Py vy = ppre 2 Oy —pl/})pl“-

Without loss of generality, suppose that product I’ is the product contained in {k' k"}.

Furthermore, let py > 1/N; as in the proof of Lemma SA.8, this will be the case for

sufficiently large N when EEN’n’{k k }({l',l”},pl/,plu) is maximized. Then,

e, N, (k' &
M{p,lu}{ }({Ul’ 2 pysvp —pr = v —pl”})pl’

7N’ b k/7k/,
+IUEZ/’Z/T’L}{ }({Ul” > Dyt — P > vy —pl/})pl//

1

1
N N
= P /pl/ & ’n([oﬂ)l/—pl/+pl"])€f{7p/(dvl/)

b [ (e (000 o +pe])) 6 )

1

GE’N’n(pzupz")-

Since (py,ppr) — a“N"™(py,pp) is upper semicontinuous, there exists (ple,’N’n,p;,’,N’n) €

[0,1]% such that

ae,N,n< e,N,n E,N,n)

Py Dy QE’N’H(

=  max puspr)-

(pyrpyr)€[0,1]2

Since [0, 1]2 is sequentially compact, there exists a converging subsequence

((p;hNS’nt’plelrl’Nsmt))TGN,sEN,teN
with
Jim lim  lim afr-Nsomt (pff’Ns’nt,pf,T,’NS7nt) =limsuplimsuplimsup ~ max _ a“™"(pp,pp).
t—00 e—~>0 N—oo MN—00 (Plhpz//)e[ole
Denoting
Jdim lim lim (p " ™) = (9], pjn),
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it follows that for every y > 0, there exists v’ € N such that for every r > 1/,

].lm llm a/ET‘yNS7nt (p;/" 54Vs, Tt 7p;/7;7 g,”t)

§—00 t—00

N . ]- * 1 Er,Ns,nt 7", s
< lim lim =(pj+y) & GQUN py+Pw+yD (dor)

5—00t—00 2

pl,
1 1 ' S T NS
+2(p7//—|—y)/p* y<1_|_ 5 ) ([O vy — p%—kp?j{-y]))fﬁ/» ’nt(d’l)l//).
[

Consequently,

Er,Ns,nt( er,Ns,nt EmNs,nt)

lim lim lim a Dy s Dy

T"—00 §—00 t—00

1 1 c
< lim lim lim f(p?‘/—l—y)/ ST’NS’nt([O vl/—pl/+pl//+y]) s (duy) (SA.35)

— r—008—00t—o0 2 -
l

' (1 +e GT’NS ([0 v — p??/ —I—pzk/ +y])> §€77N87nt (dvl”)a Vy > 0.

1
+35 2 (pl// ‘f‘y)/
p,, Y
By part b) of Lemma SA.5, since f is the Lebesgue measure on [0, 1],
1; 1 " 1 €r,Ng,nt 0 7, Ns d
fim s wr+y) [ & (10,0 = i+ pin +y] e (o)

14

1 ! v Ng N
+§(p}'?/+y) /p* . (1—}—66 ) ([O,Ul//—pf/,+p2‘,+y]))£l€//, ’m(dvl//)
I
1 1
= 2(pl/+y)/p yf([O,vl/ pl’+pl”+y]) €r, s(dvl/)
l/
1 ! » N
+§(p?‘//+y) /p* y (1—|—eE ) ([O,Ul’/ —pzk// —|—p2§—0—y]>)f(dvln)
"
1 1
= S +y) /p (v = pir + Pl +y)esr (dvp)
l/
1 * 1 Er,Ns * *
+§(pl//+y) _/p* y <1+6 ([07’Ul1/ — P —|—pl,+y]))dvlu
[

1 €r Ns r Ns
= 5 (pl/ + y) ( ! ([pl/ Yy, 1 pl” +/ 6 ! ([Ul/, 1])d’l)l//>

1

+;<p2‘~+y> / (e (0,00 - p2‘~+p7f+y]))dvl~.
Pin—y

By (SA.19) and (SA.16),

N,
lim lim 66“ S =q,.
r—00 S—00 ,p G

Because z +— gr[x,1] is continuous, the Portmanteau Theorem therefore implies

lim lim e i’ S([pl/ y,l]) = g,r([pzk/ —y,l]).

r—00 §— 00
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Since vy e ”’Ns ([vy,1]) and vy = €] er Vs ([0 vy — P+ Dy +y]) are monotone and therefore
have at most countably many dlscontmuity points, the Dominated Convergence Theorem

thus implies

3 3 1 i S T s
lim lim 2<pl'+y)< er, N, ([pl’ y, 1] plu—i—/ o€ ,N ([vl/,l])dvlu>

r—+00 §—00
1 * 1 Er, s
+ 5(]9[// +y) /p* y (1 +e. ([0 (I —pl// —i—pl/ —|—y])) dwvn
I

1 * * * !
= i(pl/ +y) gw([pl/ —Y, 1])])1// + /*
p

l/_y

gﬁqu,u)dw,,)
1

+;(pz~+y)/p y(1+gw([0,vz~—p?//+p7/+y]))dvz~-
"

Because z +— gﬂ([x, 1]) is continuous, and x — gﬂ([(),x]) is continuous except at . =1,

1

1 % %
ilm 2(pl/ +y) (gw([pp Y 1])])1" +/*

by—Y

gx([or, 1])dvl,/>
1

+ ;(pl” +y)/p —y (1 +g7'l'<[07vl” —p}ku +p7/ ~|—y]>) d"Ul//
l//

1 * k * 1
= g (9o (i ool 1t
14

+ ;pl,, /pl (1 +g7r([0,vl// — i +pz<,])) duyr.

1"

y (SA.35), (SA.34) thus holds if
1p 9= [Py 1] 1 pl// —|— gTr [vpr, 1])do | + ;plu ' L4 gz ([0,vp — pju +pp] ) ) dupr < 7.
2" fo

14

This inequality does hold, as we stated in Lemma SA.7. n

Taken together, Lemmas SA.8, SA.9, and SA.10 show the limit (SA.29) regarding the
producer surplus and the limit (SA.30) regarding the consumer surplus. This concludes

the proof of the second part of Theorem 1.
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