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A Proof of Propositions

A.1 Proof of Proposition 1

Here we give a proof of Proposition 1. For notational convenience, we cast this proof in terms
of the time series model developed in Section 3 for our application, but translating it into the
notation used in section 2 is straightforward. In particular, we let ut = xt − Et−1xt, and let
εt be a vector collecting all structural shocks, and wt is the idiosyncratic noise. D collects
the effects of all structural shocks. In particular, its first column corresponds to ∂x

∂c
. Consider

a version of our model without dynamics (to focus our attention on the identification of
shocks)1:

ut = Dεt + wt (A-1)

εt = εt (A-2)

ut are the stacked forecast errors at the aggregate level and sectoral level stacked into one
vector. The second equation/identity is added to turn our model into a state space model.
Because all shocks are Gaussian, we can apply the Kalman filter to calculate filtered estimates
of our structural shocks εt. Note that because our state εt does not feature any dynamics,
the application of the Kalman filter does not require specifying initial condition. Likewise,
filtered estimates will generally equal smoothed estimates, so there is no need to have a
separate treatment for smoothed estimates below.2 We assume the equations above are the

1All VAR-type parameters are identified in our setting, so this is without loss of generality.
2Because our state is iid, the initial distribution of the state does also not matter for smoothed/filtered

estimates of the state. To see this, consider a generic linear Gaussian state space system with observables yt
and state xt:

yt = Axt + ut (A-3)
xt = Cxt−1 + wt (A-4)

where ut ∼i.i.d. N(0, B) and wt ∼iid N(0, D). The one-step ahead conditional expectation and conditional
variance of the state are then given by

Et−1xt = CEt−1xt−1 (A-5)

V art−1xt = CV art−1xt−1C
′
+D (A-6)
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true data-generating process. Without loss of generality, we assume that the shock whose
responses are not misspecified is the first element of εt. The Kalman filter returns a least
squares estimate of Etεt = εt|t:

εt|t = βut

The matrix of coefficients β is given by the standard formula linking the covariance matrix of
the right hand side variable ut with the covariance of the right-hand-side variable with the
left-hand side variable, the vector of structural shocks εt:

β = E(εtu
′
t)[E(utu

′
t)]

−1

The second term on the right hand side, E(utu
′
t), can be identified from the data as the

second moment matrix of the observables. As such, it does not depend on whether or not D
is correctly specified as long as our choice of D is consistent with the overall variability of
the data. Where identification matters is in the first term on the right-hand side:

E(εtu
′
t) = D′

Let’s now assume that we have a misspecified version of the model where, instead of using
the true impact matrix D, we use a matrix D̃ such that the first column of D and D̃ coincide.
Therefore, the response to the first element of ε is correctly identified, whereas the others are
not. This means that the first row of D′ and D̃′ coincide. This in turn, means that the first
row of D′[E(utu

′
t)]

−1 equals the first row of D̃′[E(utu
′
t)]

−1 and thus that the first element of
the estimated shock series is independent of whether D or D̃ is used to form the estimate.

In terms of the notation in the statement of the proposition, it follows that information on
the covariance matrix of xt − Et−1xt (equal to [E(utu

′
t)]) and the vector of effects ∂x

∂c
(equal

to the first column of D̃ and of D) are sufficient for the identification of εCt (the first element
of εt)

A.2 Proof of Proposition 2

As in the proof of Proposition 1, we use the notation in Section 3. In particular, Let εt be
the vector of all macroeconomic shocks εs,t. Let D be a matrix where each row corresponds
to an element of xt and each column to one of the shocks εs,t so that each element has the
effect of εs,t on xt. Without loss of generality, we assume that ε1,t = εCt , in which case the

In our application, C = 0 (the state is iid), and hence the one step ahead expectation and variance do not
feature any temporal dependence. This then also means that Etxt and V artxt do not depend on Et−1xt−1

and V art−1xt−1.
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first column of D is equal to ∂xt/∂ε
C
t . Also, let ut ≡ xt − Et−1xt. Finally, let N denote the

dimensionality of xt or, equivalently, ut. To prove the proposition, it is sufficient to construct
an estimator for εCt and show that it converges asymptotically to its true value as N → ∞.

Step 1 - Obtain estimates of the space spanned by the macroeconomic shocks
εt: Result A.2(a) in Bai and Ng (2008) states that, given the assumptions in Section 4, as
N → ∞, one can estimate a ε̂t such that

√
N(ε̂t − Hεt) → N(0,Ξt) where Ξt is a matrix

defined in their paper and H is a rotation matrix. The estimation error therefore concentrates
around zero as N → ∞. In other words, using factor-analytic methods one can consistently
estimate the space spanned by εt.

Step 2 - Obtain D̂ ≡ DH ′

Recall that ut = Dεt+wt = DH ′ε̂t+wt, where we use the fact that, for rotation matrices,
H ′ = H−1. As N → ∞, ε̂t is measured without error. Since wt is orthogonal to ε̂t, we can
recover D̂ ≡ DH ′ by regressing ut on ε̂t

Step 3 - Estimate εCt : Given that D has a column matching ∂xt/∂ε
C
t , one can find a

rotation matrix H̃ such that (i) D̃ = D̂H̃ ′ and (ii) D̃ has its first column equal to ∂xt/∂ε
C
t .

Such a matrix exists, since H̃ = H ′ would satisfy the condition. In general, however, there
may be multiple such matrices. We take H̃ to be any matrix of that set.

Let ūt = Dεt = D̂ε̂t = D̃H̃ε̂t denote the part of ut explained by εt. Note that with
N → ∞, one can construct ūt given Steps 1 and 2 above. Consider now a projection of ūt on
D̃. The projection coefficients satisfy

ε̃t = (D̃′D̃)−1D̃′ūt

Note that D̃′D̃ = D̃′H̃ ′H̃D̃ = D̂′D̂ = D̂′HH ′D̂′ = D′D, so that (D̃′D̃)−1 = (D′D)−1

irrespective of H or H̃. Moreover, given that we chose H̃ to ensure that the first column of
D̃ is equal to ∂xt/∂ε

C
t , the first row of D̃′ūt will also be the same for all H and for all H̃

satisfying that restriction. In particular, that will be true for H̃ = H ′, so that D̃ = D. It
follows that ε̃1,t = ε1,t = εCt .

B Data

B.1 Aggregate Data

See figure 3 for a depiction of the aggregate time-series. The sources and definitions are given
below. Growth refers to year over year changes of quarterly data.
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• Real GDP growth: Real Gross Domestic Product, Billions of Chained 2012 Dollars
Series (FRED Series GDPC1) Quarterly, Seasonally Adjusted Annual Rate. U.S. Bureau
of Economic Analysis (f)

• CPI inflation: FRED Series CPIAUCSL, Consumer Price Index for All Urban Con-
sumers: All Items. Quarterly, seasonally adjusted. U.S. Bureau of Labor Statistics
(U.S. Bureau of Labor Statistics)

• The effective Federal Funds rate: FRED Series FEDFUNDS, Quarterly, not seasonally
adjusted, Percent. Board of Governors of the Federal Reserve System (US) (a)

• Growth rate in real government spending: FRED Series GCEC1, Quarterly, seasonally
adjusted, Billions of chained 2009 Dollars. U.S. Bureau of Economic Analysis (e)

• Real PCE consumption growth:FRED Series PCECC96, Quarterly, sea- sonally adjusted,
Billions of chained 2009 Dollars. U.S. Bureau of Economic Analysis (g)

• Moody’s Seasoned BAA Corporate Bond Yield Relative to Yield on 10-Year Treasury
Constant Maturity: FRED Series BAA10YM, Quarterly, not seasonally adjusted.
Federal Reserve Bank of St. Louis (Federal Reserve Bank of St. Louis)

• Fernald’s utility adjusted TFP (Fernald (2014)): Percent Change (natural log difference).
John Fernald (2014)

• Inflation based on the relevant producer price index: Producer Prices Index: Economic
Activities: Total Energy for the United States, FRED Series PIEAEN01USQ661N.
Organization for Economic Co-operation and Development (Organization for Economic
Co-operation and Development)
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Figure A-1: Aggregate Data

B.2 Sectoral Level Data

We use PCE sectors throughout. For Industrial Production, the data originally was classified
by 4-digit 2007 NAICS and was converted to PCE using the 2007 PCE Bridge Table published
by the BEA. U.S. Bureau of Economic Analysis (a)

• PCE Price Index (PCEPI): BEA Table 2.4.4U. Price Indexes for Personal Consumption
Expenditures by Type of Product. See figure A-2 upper panel for a depiction of the
data series. U.S. Bureau of Economic Analysis (d)

• PCE Quantity Index (PCEQI): BEA Table 2.4.3U. Real Personal Consumption Ex-
penditures by Type of Product, Quantity Indexes. See figure A-2 middle panel for a
depiction of the data series. U.S. Bureau of Economic Analysis (c)

• Industrial production index: This is the Fed Board of Governor’s IP data. One can
access the IP data release here: https://www.federalreserve.gov/releases/G17/. See
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figure A-2 lower panel for a depiction of the data series. Board of Governors of the
Federal Reserve System (US) (b)

• Technology Exposure: Using the BEA Use Table, we take the ratio of intermediate
inputs from high technology sectors to total intermediate inputs. High technology
sectors are those defined by Heckler (2005) as such. U.S. Bureau of Economic Analysis
(b)

• Financial exposure: We take the ratio of intermediate inputs from finance and insurance
sectors to total intermediate inputs using the BEA Use Table. Finance sectors are those
with 2-digit NAICS code 52.

• Household Consumption Share: We calculate the Household share as the proportion of
output that goes to Personal Consumption Expenditures from the BEA IO Use Table.

• Government Consumption Share: We calculate the government share as the total output
sold to all federal, state, and local government categories listed in the Use Table, divided
by total industry output.

• Energy exposure: We take the ratio of intermediate inputs from energy sectors to total
intermediate inputs using the BEA Use Table. Energy sectors are defined as electrical
power generation, oil and gas extraction, natural gas distribution, and petroleum and
coal manufacturing.

• Price stickiness: The median price adjustment duration from Nakumura Steinsson
(2008) across PCE categories. To capture the frequency of price changes within industry,
we take the price adjustment durations estimated by Nakamura and Steinsson (2008).
Estimates are provided at the Entry Line Item (ELI) level. Using the ELI/PCE
crosswalk provided by the BLS, we can transfer these ELI level duration values to the
PCE classification. For each PCE category, we assign the average of the duration values
for the set of ELIs with which the PCE category is matched. U.S. Bureau of Labor
Statistics (2011); Nakamura and Steinsson (2008b).
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Figure A-2: Sectoral Data
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C A Tractable Multi-Sector Model with Nominal Rigidites

We now lay out a tractable, multi-sector model with nominal rigidities to motivate the shock
identification scheme. Nominal rigidities allow for a non-trivial “aggregate demand” channel.
Since our main focus is in the cross-sectional differences between industries, rather than their
individual dynamics, we lay out a static multi-sector economy. This is appropriate for our
empirical analysis since we use identifying restrictions (via our priors) on the impact of shocks
rather than on the dynamic responses to those. The model shares many elements with the
framework developed in Pasten et al. (2020), while also allowing for nominal wage stickiness
and for several aggregate shocks.

C.1 Households

There are J sectors, indexed i ∈ {1, ..., J}. There is a representative household with Cobb-
Douglas preferences over the various goods, with share-parameter αj for a good of industry
i.

U =
∏
j

C
αj

j ,

where
∑

j αj = 1. The household chooses its the amount it consumes of good i, Cj, to
maximize its utility subject to the budget constraint

∑
j

PjCj + T = WL+Π+
∑
j

rjK̄j,

where T is a lump-sum tax levied by the government to finance its consumption, W is the
wage rate, Π are profits rebated from firms, K̄j is the stock of capital specific to sector i

owned by the household, with rj the corresponding rental rate, and L < 1 is employment to
be determined in equilibrium.

Finally, households supply one unit of labor inelastically, but nominal wages are rigid so
that labor is rationed.

Given those constraints, optimal household consumption choice satisfies:

PjCj = αC
j PC

for PC ≡
∏

j

(
Pj

αj

)αj

and C ≡
∏

j (Cj)
αj .
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C.2 Fiscal Authority

The fiscal authority minimizes the cost of consuming an exogenously given aggregate govern-
ment consumption G,

min
∑
j

PjGj

s.t. :
∏
j

(Gj)
αG
j = G,

where G is exogenously determined and αG
j are expenditure shares. The optimality condition

for the government is:

Gj = αG
j

PG

Pj

G

where

PG =
∏
j

(
Gj

αG
j

)αG
j

.

C.3 Firms

Within each sector there is a continuum of varieties of intermediate products indexed v ∈ [0, 1].
Those varieties are purchased by final goods producers that bundle them into the I goods
according to a CES aggregator:

Yj =

[∫ 1

0

Yj(v)
θ−1
θ dv

] θ
θ−1

The demand for final good producer in sector i for intermediate input of variety v is

Yj(v) =

(
Pj(v)

Pj

)−θ

Yj

where

Pj =

[∫
Pj(v)

1−θdv

] 1
1−θ

For each variety, production takes place with a Cobb-Douglas production function:
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Yj(v) = eϵj
∏
j

(Xj′j(v))
γj′j × (Lj(v))

λj (Kj (v))
χ ,

where Xj′j(v) is the quantity of final goods materials produced in sector j used as materials in
sector i for variety v, Lj(v) is labor, Kj(v) is sector-specific capital, and ϵj is a sector-specific
exogenous productivity shock. The share parameter for good j used in sector i is γj′j. We
assume that

∑
j γj′j + λj + χ = 1, so that firms in the industry face constant returns to scale.

Producers of varieties are monopolists. Firms differ on the information set available to
them regarding prices and the demand for their intermediate input. Letting s denote the
state of the economy, they take the wage rate, final goods prices, and household demand as
given and choose their inputs to maximize expected profits.

max
Mj′j

E

[
Pj(v)Yj(v, s)−

∑
j

Pj(s)Xj′j(v, s)− w(s)Lj(v, s)− rj(s)Kj(v, s)|Ij(v)

]

s.t. :Yj(v, s) =

(
Pj(v)

Pj(s)

)−θ

Yj(s)

Yj(v, s) = eϵj
∏
j

(Xj′j(v, s))
γj′j (Lj(v, s))

λj (Kj(v, s))
χ

where Ij(v) is the information set for variety v in sector i. For a fraction ϕj of variety
producers in sector i (v ∈ [0, ϕj]) the information set does not includes the realized vector
of shocks s. For the remainder, the information set does includes it. Yet, firms commit to
producing as much as necessary to satisfy demand at the prices that they choose.

Given cost-minimization, marginal cost is

mcj(s) = e−ϵj
∏
j

(
Pj(s)

γj′j

)γj′j
(
w(s)

λj

)λj
(
r(s)

χ

)χ

Firms with full information set prices to

Pj(v, s) =
θ

θ − 1
mcj(s)

Firms without full information set prices to

Pj(v) =
θ

θ − 1
E

[
Pj(s)

θYj(s)

E [Pj(s)θYj(s)]
mcj(s)

]
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We thus have that the price index for sector i is

Pj(s) =

[
ϕj

(
θ

θ − 1
E

[
Pj(s)

θYj(s)

E [Pj(s)θYj(s)]
mcj(s)

])1−θ

+ (1− ϕj)

(
θ

θ − 1
mcj(s)

)1−θ
] 1

1−θ

Given that all firms in a sector have the same marginal cost, we can write the average
markup as

µj =
Pj(s)

mcj(s)
=

[
ϕj

θ

θ − 1
E

[
Pj(s)

θYj(s)

E [Pj(s)θYj(s)]
mcj(s)

]1−θ (
1

mcj(s)

)1−θ

+ (1− ϕj)

(
θ

θ − 1

)1−θ
] 1

1−θ

C.4 Market Clearing

Market clearing for each sector i, requires that all output is used either as materials, for
household consumption or for government consumption:

Yj =
∑
j

Xjj′ + Cj +Gj

In addition, there is a fixed stock of capital K̄j for each sector. Market clearing in capital
markets thus requires that the demand for capital in sector i equals supply:

Kj = K̄j

The resource constraint in the labor market is

∑
j

Lj ≤ 1

With sticky wages, the inequality need not hold. We assume that wages are stuck at a
level high enough that it does not bind. Labor rationing thus implies that

L =
∑
j

Lj

C.5 Shocks

As in Woodford (2003), we assume exogenous processes for nominal aggregates. In particular,
we assume that nominal private consumption and nominal government consumption are set
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exogenously. Specifically, we assume that

PCC = MCMY

PGG = MGMY

so that nominal private and government consumptions can be affected either by an exogenous
component which is specific to each type of final expenditure MC or MG, or by a common
component MY .

Finally, we also allow for industry-level productivity shocks ϵj. We assume that ϵj =∑R
r=1 λirϵr+ ϵ̂j , where ϵr are aggregate shocks, Fj captures the sensitivity of various sectors to

that shock, and ϵ̂j is a sector-specific shock. In our application, we will allow ϵr to incorporate
shocks to technology and financial shocks.

C.6 Log-linearized system

Up to a first-order approximation the economy is described by the following system of
equations (small letters indicate log deviations from steady-state):

pC + c = mC +mY

pG + g = mG +mY (A-7)

w = 0 (A-8)

gj − g = pG − pj ∀i (A-9)

cj − c = pC − pj ∀i (A-10)

yj = ϵj +
∑
j

γj′jxj′j + λjlj + χkj ∀i (A-11)

w + lj = pj + yj − µj ∀i (A-12)

pj + xj′j = pj + yj − µj ∀i, j (A-13)

rj + kj = pj + yj − µj ∀i (A-14)

kj = k̄j (A-15)

µj = −ϕj

(∑
j

γj′jpj + λjw + χrj − ϵj

)
(A-16)

yj =
∑
j

Xjj′

Yj

xjj′ +
Cj

Yj

cj +
Gj

Yj

gj (A-17)
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The system can be reduced to:

pj − (1− χ)µj = −ϵj +
∑
j

γj′jpj + χ
(
pj + yj − k̄j

)
pj + yj =

∑
j

γjj′
Yj

Yj

(yj + pj − µj) +
Cj

Yj

(mC +mY ) +
Gj

Yj

(mG +mY )

µj = − ϕj

1− ϕjχ

(
−ϵj +

∑
j

γj′jpj + χ
(
pj + yj − k̄j

))

Or, eliminating µj,

pj =
1− ϕj

1− χ

(
−ϵj +

∑
j

γj′jpj + χ
(
yj − k̄j

))

pj + yj =
∑
j

γjj′
Yj

Yj

(yj +
1

1− ϕj

pj) +
Cj

Yj

(mC +mY ) +
Gj

Yj

(mG +mY )

The system can be rewritten as

pj =
1− ϕj

1− χ
χ

[
(1− χΦj)

[∑
j

fjj′(yj +
1

1− ϕj

pj) +
Cj

Yj

(mC +mY ) +
Gj

Yj

(mG +mY )

]
+ Φj

(
ϵj + χk̄j

)]
− Φj

(
ϵj + χk̄j

)
+ Φj

∑
j

bj′jpj

yj = (1− χΦj)

[∑
j

fjj′(yj +
1

1− ϕj

pj) +
Cj

Yj

(mC +mY ) +
Gj

Yj

(mG +mY )

]
+ Φj

(
ϵj + χk̄j

)
− Φj

∑
j

bj′jpj

with fjj′ = γjj′
Yj

Yj
capturing forward links and bj′j = γj′j capturing backward links
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After log-linearizing and rearranging, the model can be reduced to:

pj =
1− ϕj

1− χ

(
−ϵj +

∑
j

γj′jpj + χ
(
yj − k̄j

))

pj + yj =
∑
j

γjj′
Yj

Yj

(
yj +

1

1− ϕj

pj

)
+

Cj

Yj

(mC +mY ) +
Gj

Yj

(mG +mY )

where small caps letters denote log deviations from a reference level. The first set of equations
are “sectoral supply” equations, relating marginal production cost to prices. The second set of
equations are “sectoral demand” equations, relating nominal expenditures to sectoral prices.
The last set of equations links nominal consumption expenditures and exogenous demand
shocks.

The system has the form

Z = AZ + b = ANZ +
N−1∑
n=0

Anb

with Z including prices and quantities in all sectors, b including the direct impact of all
exogenous shocks, and A including the indirect impact of shocks through linkages.

Lemma 1 characterizes the direct and indirect impacts of the shocks on prices, output
and consumption:

Lemma 1 The direct impact of shocks is given by b =
[
pDirect,yDirect, cDirect

]T , where

pDirect
j = Φjχ

[
Cj

Yj

mC +
Gj

Yj

mG +mY

]
− Φj

(
ϵj + χk̄j

)
(A-18)

yDirect
j = (1− Φjχ)

[
Cj

Yj

mC +
Gj

Yj

mG +mY

]
+ Φj

(
ϵj + χk̄j

)
(A-19)

cDirect
j =

(
1− Φjχ

Cj

Yj

)
mC + (1− Φjχ)m

Y − Φjχ
Gj

Yj

mG + Φj

(
ϵj + χk̄j

)
(A-20)

and

Φj ≡
1− ϕj

χ(1− ϕj) + 1− χ

is inversely related to ϕj. Indirect effects are AZ =
[
pIndirect,yIndirect, cIndirect

]T , where
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pIndirect
j = Φj

∑
j

(
χ

fjj′

1− ϕj

+ bj′j

)
pj + χΦj

∑
j

fjj′yj (A-21)

yIndirect
j = (1− χΦj)

∑
j

fjj′yj +
∑
j

[
1− χΦj

1− ϕj

fjj′ − Φjbj′j

]
pj (A-22)

cIndirect
j = −pIndirect

j (A-23)

where fjj′ = γjj′
Yj

Yj
capture forward linkages and bj′j = γj′j captures backward linkages.

Lemma 1 implies that the direct impact of a consumption shock mC on prices increases
in Φjχ

Cj

Yj

D Dynamic Model

In what follows, we present a dynamic model with multiple sectors, sticky nominal prices
and sticky nominal wages. The exposition largely follows Justiniano et al. (2010), with some
simplifications (we omit markup shocks) and extensions where needed.

D.1 Final good producers

There are J sectors (indexed j ∈ [1, ..., J ]). In each of these sectors there are perfectly
competitive firms producing final goods Y j

t combining a continuum of intermediate goods
{Yt(i)}r, i ∈ [0, 1], according to the technology

Y j
t =

[∫ 1

0

Y j
t (i)

ϵp−1
ϵp di

] ϵp

ϵp−1

From profit maximization and zero profit conditions we have that

Yt(i) =

(
Pt(i)

Pt

)−ϵp

Y j
t

where Pt is the price of final good j and satisfies

Pt =

[∫ 1

0

Pt(i)
1

1−ϵp di

]1−ϵp
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D.2 Intermediate good producers

A monopolist produces the intermediate good i in sector j according to the production
function

Y j
t (i) = max


(

Kj
t (i)

(1− γj)ωj

)(1−γj)ωj (
Aj

tL
j
t(i)

(1− γj) (1− ωj)

)(1−γj)(1−ωj)∏
j′

(
M j′j

t (i)

γj′j

)γj′j

− F j, 0


where Kj

t (i), L
j
t(i) denote the amounts of capital and labor emploiyed by firm i in sector j,

M j′j
t (i) is the amount of materials produced in sector j′ used by firm i in sector j and F j

is a fixed cost of production, chosen so that profits are zero in stead state. Aj
t respresents

exogenous technological progress in sector j. We assume that it consists of a combination of
aggregate and sector specific components:

Aj
t = AtÂ

j
t

where
lnAt = ρA lnAt−1 + εAt

where ϵAt is iid with standard deviation σA

Furthermore,

ln Âj
t = (1− ρA

j

) ln Âj + ρA
j

ln Âj
t−1 + εA,j

t

where εA,j
t has, likewise, standard deviation σAj Every period in each sector j, a fraction ξpj

of intermediate firms cannot choose its price optimally, and as in Smets and Wouters (2003),
they reset it according to the indexation rule

Pt(i) = Pt−1(i)
(
Πj

t−1

)ιp
Π1−ιp ,

where πj
t =

P j
t

P j
t−1

is gross sector j inflation and π is its steady state. The remaining fraction of

firms chooses its price Pt(i) optimally, by maximizing the present discounted value of future
profits

Et

{
∞∑
s=0

(
ξpj
)s βsΛt+s

Λt

[
Pt(i)

(
Πj

t,t+s

)
Yt+s(i)−W j

t+sLt+s(i)−Rk,j
t+sKt+s(i)−

∑
j′

P j′

t+s(i)M
j′

t+s(i)

]}
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where

Πj
t,s ≡

s∏
k=1

(
Πj

t+k−1

)ιp
Π(1−ιp)k for s ≥ 1

Πj
t,t = 1

and

Yt+s(i) =

(
Pt+s(i)

Pt+s

)−ϵp

Y j
t+s

subject to the demand function and to cost minimization. In this objective, Λt is the marginal
utility of nominal income for the representative household that owns the firm, while Wt and
rk,jt are the nominal wage and the rental rate of capital specific to sector j.

Cost minimization by firms implies that

Kj
t (i)

Lj
t(i)

=
W j

t

Rk,j
t

ωj

1− ωj

and

M j′j
t (i)

Lj
t(i)

=
W j

t

P j′

t

γj′j

(1− γj)(1− ωj)
,

so that nominal marginal cost in sector j is common to all firms and given by

MCj
t =

(
Rk,j

t

)(1−γj)ωj
(
W j

t

Aj
t

)(1−γj)(1−ωj)∏
j′

(
P j′

t

)γj′j

.

Substituting back input choices, and ignoring the fixed costs, yields employment in each
variety as a function of sectoral output and the price of the variety,

Lj
t(i) = (1− γj)(1− ωj)

MCj
t

W j
t

(
Pt(i)

Pt

)−ϵp

Y j
t .

Integrating both sides yields sectoral employment:

Lj
t = (1− γj)(1− ωj)

MCj
t

W j
t

P ϵp

t Y j
t

∫
Pt(i)

−ϵpdi.

From the intermediate input demand function,
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Yt(i) =

(
Pt(i)

Pt

)−ϵp

Y j
t .

Given that, with our production function, average variable costs and marginal costs
coincide, the objective function for firms setting prices optimally can be rewritten as

max
Pt(i)

Et

[
∞∑
s=0

(
ξpj
)s βsΛt+s

Λt

[(
P j
t (i)Π

j
t,t+s −MCt

)
Yt+s(i)

]]

s.t. :Y j
t+s(i) =

(
Pt(i)Π

j
t,t+s

Pt+s

)−ϵp

Y j
t+s

The first-order condition can then be written as

P̃ j
t =

ϵp

ϵp − 1

∞∑
s=0

Et

{
(βξpj)

s
Λt+sỸ

j
t+sMCj

t+s

}
∑∞

s=0Et

{
(βξpj)s Λt+sỸ

j
t+sΠ

j
t,t+s

}
where P̃ j

t is the optimally chosen price for all firms i choosing their prices in period t (so that
P j
t (i) = P̃ j

t ), and Ỹt+s is the demand they face in t+ s.
Alternatively,

P̃ j
t

Pt

=
ϵp

ϵp − 1

∞∑
s=0

Et

{
(βξpj)

s
Λt+sPt+s

(
Ỹ j
t+s

)
MCj

t+s

P j
t

}
∑∞

s=0Et

{
(βξpj)s Λt+sPt+s

(
Ỹ j
t+s

) (
Πj

t,t+s/Πt,t+s

)}
where

Πt,s ≡
s∏

k=1

Πt+k for s ≥ 1

Πt,t = 1

D.3 Employment Agencies

Workers have monopoly power over their labor supply. There is a competitive employment
agency which combines specialized household labor into a homogeneous labor input sold to
firms in sector j according to
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Lj
t =

[∫
Lj
t(h)

ϵw−1
ϵw dh

] ϵw

ϵw−1

.

Profit maximization implies that

Lj
t(h) =

(
W j

t (h)

W j
t

)−ϵw

Lj
t ,

and the wage paid by firms for homogeneous labor input is

W j
t =

[∫ 1

0

W j
t (h)

1−ϵwdh

] 1
1−ϵw

D.4 Households

Each household (h) has labor which is specific to some sector j and utility function given by

Ut =
∑
s

Etβ
sbt+s

[
ln [Xt+s(h)]−

∑
j

φj

1 + ν
Lj
t(h)

1+ν

]
,

where
Xt+s(h) =

∏
j

(
Cj

t+s(h)− ηCj
t+s−1

)αj
t ,

and where Cj
t+s(i), Lt(i) and Xt+s(i) are household choices and Xt+s and Cj

t+s are equilibrium
objects that the household takes as given. The formulation corresponds to allowing for habits
to consumption of particular goods.

To allow for sector-specific demand shocks, we allow consumption shares, αj
t to be

time-varying. Specifically3

lnαj
t = (1− ρα)αj + ρα lnαj

t−1 + εα,jt

where εαt is a random normal variable with standard deviation σαj . The time-varying parame-
ter bt is a shock to the discount factor, affecting both the marginal utility of consumption and
the marginal disutility of labor. This intertemporal preference shock follows the stochastic
process

∆ log bt = ρb∆ log bt−1 + εb,t

3While this formulation constrains share parameters to be positive, it does not constrain them to add up
to 1. Allowing for this degree of freedom is necessary to give the ability to match the full set of sector-specific
variables.
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where ∆ is the time-difference operator and εb,t is an iid random normal variable with
mean zero and standard deviation σb. There are state contingent securities ensuring that in
equilibrium consumption and asset holdings are the same for all households. As a result, the
household’s flow budget constraint is

∑
j

P j
t C

j
t +

∑
j,j′

P j′

t Ij
′j

t + Tt +Bt ≤ Rt−1Bt−1 +Qt(j) + Πt +W j
t (j)Lt(j) +

∑
j

Rk,j
t Kj

t−1,

where Ij
′j

t is investment in good j′ to form capital in sector j, Tt is lump-sum taxes, Bt is
holdings of government bonds, Rt is the gross nominal interest rate, Qt(j) is the net cas flow
from household’s j portfolio of state contingent securities, and Πt is the per-capital profit
accruing to households from ownership of the firms.

Consumption Given interest rates on riskless debt Rt, the problem induces the Euler
equation:

Λt = βRtEtΛt+1,

where Pt =
∏

j

(
P j
t

αj
t

)αj
t

is the consumption price index and Λt ≡ bt
PtXt

is the “nominal” marginal
utility of consumption. Given that we get the intra-temporal allocation across industries:

Cj
t (h) = αj

t

Pt

P j
t

Xt(h) + ηCj
t−1.

The model features a representative household, so that in equilibrium, Cj
t = Ct(h).

Capital accumulation Households own capital specific to each sector j and rent them to
firms at the rate Rk,j

t . The physical capital accumulation equation is

Kj
t = (1− δ)Kj

t−1 +

(
1− S

(
Ijt

Ijt−1

))
Ijt ,

where δ is the depreciation rate and is the investment in sector j. The function S captures
the presence of adjustment costs in investment, as in Christiano, Eichenbaum, and Evans
(2005). In steady state, S = S ′ = 0 and S ′′ > 0.

Production of investment goods in sector j require using goods produced by other sectors
according to the production function
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Ijt = Bj
t

∏
j′

(
Ij

′j
t

γj′j
I

)γj′j
I

where Ij
′j

t is the quantity of goods produced in sector j′ used for investment in sector j.
The production function for investment in each sector is scaled by an investment-specific
productivity shock Bj

t . Like the labor-augmenting productivity shock Aj
t , Bj

t has both
aggregate and an idiosyncratic components:

Bj
t = BtB̂

j
t

where

lnBt = ρB lnBt−1 + εBt

and
ln B̂j

t = ρB ln B̂j
t−1 + εB

j

t

where εBt and εB
j

t are iid normal variables with zero mean and variance σB and σBj , respec-
tively. We assume that they have a common persistence parameter ρB.

The optimal choice of physical capital stock for sector j satisfies the optimality conditions:

χj
t = βEt

[
Rk,j

t+1Λt+1 + (1− δ)χj
t+1

]
,

P j′

t Λt = γj′j
I

Ijt

Ij
′j

t

χj
t

[
1− S

(
Ijt

Ijt−1

)
− S ′

(
Ijt

Ijt−1

)
Ijt

Ijt−1

]
+ βS ′

(
Ijt+1

Ijt

)(
Ijt+1

Ijt

)2

χt+1

 ,

where χt is the multiplier on the capital accumulation equation. Defining Tobin’s q for sector

j as Qj
t =

χj
t

P I,j
t Λt

=
Ptχ

j
t

P I,j
t bt[Xt(h)]

−σ , where P I,j
t =

∏(
P j′

t

)γj′j

, the relative marginal value of
installed capital with respect to consumption, we can also write

Qj
t = βEt

[
Rk,j

t+1Λt+1

P I,j
t Λt

+
P I,j
t+1Λt+1

P I,j
t Λt

(1− δ)Qj
t+1

]
,

1 =

Qj
t

[
1− S

(
Ijt

Ijt−1

)
− S ′

(
Ijt

Ijt−1

)
Ijt

Ijt−1

]
+ β

Λt+1P
I,j
t+1

ΛtP
I,j
t

S ′

(
Ijt+1

Ijt

)(
Ijt+1

Ijt

)2

Qj
t+1

 .
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Wage setting Every period a fraction ξw of households cannot freely set its wage, but
follows the indexation rule

W j
t (j) = W j

t−1(j) (πt−1e
zt−1)ι

w

(π)1−ιw .

The remaining fraction of households chooses instead an optimal wage Wt(j) by maximizing

Et

{
∞∑
s=0

ξwsβs

[
−bt+sφ

jL
j
t+s(h)

1+ν

1 + ν
+ Λt+sΠ

w
t,t+sW

j
t (h)L

j
t+s(h)

]}
,

where

Πw
t,t+s =

s∏
v=1

(Πt+v−1e
zt+v−1)ι

w

(Π)v(1−ιw) if s ≥ 1

Πw
t,t = 1

subject to the labor demand function of the employment agencies.
The F.O.C. for a wage chosen by household h to work in industry j is to maximize

Et

{
∞∑
s=0

ξwsβs

[
−bt+sφ

Lj
t+s(h)

ν

1 + ν
+ Λt+sΠ

w
t,t+sW

j
t (h)L

j
t+s(h)

]}
,

subject to the demand of the employment agency,

Lj
t(h) =

(
W j

t (h)

W j
t

)−ϵw

Lj
t ,

The F.O.C. is

Et


∞∑
s=0

ξwsβs

bt+sφ

(Πw
t,t+sW

j
t (h)

W j
t+s

)−ϵw

Lj
t+s

1+ν

1

W j
t (h)


= Et


∞∑
s=0

ξwsβs

Λt+sΠ
w
t,t+s

(Πw
t,t+sW

j
t (h)

W j
t+s

)−ϵw

Lj
t+s

 ,

which can be rewritten as
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(
W̃ j

t

)1+νϵw

=
ϵw

ϵw − 1

Et

{∑∞
s=0 ξ

wsβs

[
bt+sφ

j

[(
Πw

t,t+s

W j
t+s

)−ϵw

Lj
t+s

]1+ν
]}

Et

{∑∞
s=0 ξ

wsβsΛt+sΠw
t,t+s

(
Πw

t,t+s

W j
t+s

)−ϵw

Lj
t+s

}

D.5 The government

A monetary policy authority sets the nominal interest rate following a feedback rule of the
form

Rt

R
=

(
Rt−1

R

)ρR
[(

Πt

Π

)ϕπ
(

Yt

Yt−1

)ϕX

]1−ρR

ηmp,t,

where R is the steady-state of the gross nominal interest rate. As in Smets and Wouters
(2003), interest rates responds to deviations of inflation from its steady state, as well as to
the level and growth rate of the GDP (Yt =

∑
γj P

j
t

Pt
Y j
t ). The monetary policy rule is also

perturbed by a monetary policy shock ηmp,t, is iid N(0, σ2
mp).

Fiscal policy is fully Ricardian. The government finances its budget deficit by issuing
short term bonds. Public spending is determined exogenously as a time varying fraction of
output:

Gt =

(
1− 1

ζt

)
Yt

where the government spending shock ζt follows the stochastic process

log ζt = (1− ρG)ζ + ρG log ζt−1 + εGt .

where εGt is iid normal random variable with standard deviation σG.
Public spending is a Cobb-Douglas aggregate of spending in different sectors. The

government chooses sector-specific spending to minimize the cost of Gt:

{
Gj

t

}
j
= argmin

∑
j

P j
t G

j
t

s.t. :
∏(

Gj
t

)αj
G = Gt

so that
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Gj
t = αj

G

PG
t

P j
t

Gt

where PG
t =

∏( P j
t

αG
j

)αG
j

D.6 Market clearing

The aggregate resource constraint for each sector j is

Cj
t +

∑
j′

Ijj
′

t +
∑
j′

M jj′

t +Gj
t = Y j

t

D.7 Model Solution and Calibration

To solve the model, we first write it in terms of stationary variables (detrended the permanent
part of TFP for real output variables and by the price level for nominal variables), log-linearize
it and find the rational expectations equilibrium using Dynare.

The calibration is based on Justiniano et al. (2010) and Carvalho et al. (2021). Furthermore,
we use information from sectoral linkages and consumer shares obtained from the input-output
tables made available by the BEA and on sector-specific price stickiness from Nakamura and
Steinsson (2008a). Tables A-1 and A-2 list the calibrated parameters together with their
sources.
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Parameter Description Value Source
N Number of Sectors 52
ζ 1/steady-state government share of output 2.70 G/Y = 37%
δ Capital depreciation 0.05 Justiniano et al. (2010)
β Discount Factor 1.00 Justiniano et al. (2010)
ν Inverse Frisch elasticity of labor supply 3.79 Justiniano et al. (2010)
η Consumption habit parameter 0.78 Justiniano et al. (2010)
ϵw Elasticity of substition for employment 1.87 Justiniano et al. (2010)
ϵp Elasticity of substition for goods 1.81 Justiniano et al. (2010)
ξw Calvo parameter (wages) 0.70 Justiniano et al. (2010)
ιp Indexation coefficient for prices 0.24 Justiniano et al. (2010)
ιw Indexation coefficient for wages 0.11 Justiniano et al. (2010)
I ′′ Investment adjustment cost parameter 2.85 Justiniano et al. (2010)
ϕx Taylor rule, coefficient on output 0.24 Justiniano et al. (2010)
ϕπ Taylor rule, coefficient on inflation 2.09 Justiniano et al. (2010)
Π steady-state inflation rate 0.03 Justiniano et al. (2010)
ρR Taylor rule, smoothing parameter 0.82 Justiniano et al. (2010)
ρA Persistence aggregate TFP 0.99 Carvalho et al. (2019)
ρA

j Persistence sectoral TFP shock 0.93 Carvalho et al. (2019), average persistence
for sectoral demand shock

ρG Persistence government spending shock 0.99 Justiniano et al. (2010)
ρb Persistence intertemporal preference shock 0.94 Carvalho et al. (2019), average persistence

for sectoral demand shock
ρB Persistence investment-specific TFP 0.72 Justiniano et al. (2010)
ρα Persistence sectoral Demand shock 0.94 Carvalho et al. (2019), average persistence

for sectoral demand shock
ση Volatility to monetary shock 0.001 Carvalho et al. (2019), adjusted for iid mone-

tary shocks
σA Volatility, aggregate TFP 0.003 Carvalho et al. (2019)
σAj Volatility, sectoral TFP 0.003 Carvalho et al. (2003), average across sectors
σG Volatility, government shock 0.00 Justiniano et al. (2010)
σB Volatility, investment-specific TFP 0.06 Justiniano et al. (2010)
σBj Volatility, sectoral investment productivity 0.06 Same proportion to aggregate as A shock
σb Volatility, preference shock 0.15 see text
σαj Volatility, consumption share 0.019 Carvalho et al. (2003), average across sectors

Table A-1: Calibration of Aggregate Parameters
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Parameter Description Source

αj steady-state consumption share BEA use tables
αj
G government consumption share BEA use tables

φj Disutility of labor of type j parameter calibrated so steady-state wage is
the same for all sectors

ωj Capital Share (by sector) BEA use tables
γj Materials Share (by sector) BEA use tables
γj′j
I Share of sector j’ in sector j investment Capital flow table

ξpj Calvo parameter (prices) Nakamura and Steinsson (2008)

Table A-2: Sectoral Parameters

E Selected Impulse Responses for the Simulation-based

experiment

Our model has variables for 182 sectors as well as 8 aggregate variables. This leads us to focus
on the estimated shock series as a low dimensional check in the main text. Nonetheless, we
want to give readers a sense of the estimated impulse responses. Below we plot the responses
of GDP and consumption. The true impulse responses of those variables in the DSGE model
are very similar. As expected, the estimated impulse responses in our model are then very
similar across these two aggregate variables. As Figure A-3 shows, we are able to replicate
the patterns of the true impulse responses.
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Figure A-3: Responses to Household Demand Shock for consumption and GDP in Monte
Carlo exercise. Dashed lines are 16th and 84th Posterior Percentile Bands, Dots are 5th and
95th Posterior Percentiles. The x-axis shows time in quarters. DSGE-model based IRF in
green (normalized to coincide with the median estimated IRF on impact).

F Results with T = 1, 000

We simulate 1,000 observations from our benchmark DSGE model. As can be seen from
Figure A-4, the results are similar to the results in the main text. This confirms that with a
macro standard sample size we already achieve what is possible with our specific identification
assumptions (as we discuss in the main text, if a researcher had more detailed information
on the sectoral responses, that researcher could improve on our benchmark approach using
sectoral differences in C/Y ratios, but that is practically infeasible).
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Figure A-4: Posterior of βi, DGP with 1,000 observations.

G The Prior for the Household Shock

Table A-3 shows the percentiles (across sectors) of the prior mean of the relevant entries
of Di for the household shock. We focus on sectoral inflation and consumption since those
variables are available for all sectors. The prior means completely characterize the Gaussian
priors since we set the prior standard deviation equal to a fixed fraction of the absolute value
of the prior mean.

5th Percentile Median 95th Percentile

Inflation 0.1 0.7 1.7
Consumption 0.1 1.2 2.4

Table A-3: Prior on the Impact of the Household Shock.

H Asymptotic Posterior Distribution of DZ

We can make some progress toward characterizing the asymptotic behavior of the marginal
posterior of D. Our prior p(DZ , θ) is absolutely continuous with respect to the likelihood
function L(DZ , θ|Z) where Z is the array of all observations on Zt and θ is the vector of
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all parameters except DZ .4 VAR and factor model identification arguments imply that
under standard regularity conditions (including linearity and Gaussian innovations) all
parameters except DZ are identified - even with infinite data we can only identify DZDZ ′. All
other parameters converge to a unique limiting value θ∗ such that the asymptotic posterior
p∗(DZ , θ|Z) (with conditional distribution p∗(DZ |Z, θ) and marginal distribution p∗(DZ |Z))
is given by

p∗(DZ , θ∗|Z) = p∗(DZ |Z, θ = θ∗) = p∗(DZ |Z)

This equivalence between joint, conditional, and marginal asymptotic posterior is due to the
fact that asymptotically the marginal posterior for θ will be degenerate and only have mass
at θ∗.
Let’s define the limit of DZDZ ′ as the sample size T grows large:

lim
T→∞

DZDZ ′
= ϕ

where this limit should be understood to mean that asymptotically the joint posterior
p(DZ , θ|Z) will be equal to 0 except when θ = θ∗ and DZDZ ′

= ϕ. Then the asymptotic
marginal posterior of DZ (denoted by p∗(DZ |Z)) is the prior restricted to those values of DZ

consistent with ϕ:
p∗(DZ |Z) = p(DZ |DZDZ ′

= ϕ)

Applying Bayes’ rule to the conditional prior yields:

p(DZ |DZDZ ′
= ϕ) =

p(DZDZ ′
= ϕ|DZ)p(DZ)

p(DZDZ ′ = ϕ)

The first term in the numerator p(DZDZ ′
= ϕ|DZ) can be interpreted as an indicator

function because it will only be non-zero when a value for DZ is consistent with DZDZ ′
= ϕ.

The second term in the numerator is just the prior p(DZ). The term in the denominator
is a normalizing constant that will be independent of DZ for all values of DZ such that
DZDZ ′

= ϕ.
4Since our priors on blocks of parameters are either Gaussian or inverse Wishart this assumption is satisfied

in our model.
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I Validating our approach: A Monte Carlo experiment

with a Hi-VAR DGP

This section describes the results of an experiment that is meant to highlight the amount
of additional information that sectoral information brings to bear on identifying structural
shocks of interest. We simulate one dataset5 of 170 observations (roughly the size of our actual
sample) and discuss results for two sets of priors. We assume there are 4 aggregate variables,
180 sectors (in line with the number of sectors in our actual sample), and 2 observables per
sector. All lag lengths (in both the data-generating process and the estimated model) are set
to 1 for simplicity. The aggregate VAR coefficients in the data-generating process are set
so that all variables are stationary, but persistent. The VAR coefficient matrices for each
sector are drawn at random subject to the constraint that dynamics are stationary. We set
the values of Ω, Ωi, and the loadings on the two structural shocks for all variables in such a
way that the structural shocks explain a small fraction of the variance at the sectoral level,
as depicted in Figure A-5. These fractions are substantially smaller than what we find with
our posterior estimates, both at the aggregate and sectoral level, so we are tying our hands
with this conservative choice - we are consciously making this exercise hard for our approach.
Furthermore, to mimic our empirical setting, we allow the loading on the structural shocks
to be correlated within sectors across variables and across sectors.6 The priors for the shock
loadings are centered at the true value. The variance is set in the same fashion as in the
empirical analysis of the main text.

We now ask two related questions: (i) How well does the posterior median of the structural
shock series line up with the true value? and (ii) Is the estimation uncertainty small enough
to draw meaningful conclusions from such an estimation?

We first set the prior means of the effects equal to their true value, and their standard
deviations as in the empirical analysis, to be half the absolute values of the prior means.

Figure A-6 plots the true shock series, the posterior medians as well as 98 percent posterior
bands centered at the median. We see that the posterior median capture the true evolution of
the shock very well (the correlations are 0.93 for both shocks) and the posterior uncertainty
surrounding the estimates are small. Why is the posterior uncertainty small? While each
piece of identification information we use is not very informative, with a large number of
sectors, the set of identification restrictions implicit in our priors is actually informative.
This is reminiscent of results in standard dynamic factor models, where the model can

5We show that even with one datatset the evidence in favor of using sectoral information is so strong that
we don’t need to simulate a larger number of samples.

6We draw all these sectoral coefficients jointly from a multivariate Gaussian distribution with correlation
coefficient 0.5.
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Figure A-5: Fraction of variance explained by structural shocks in our simulation exercise.

become exactly identified even when using standard sign restrictions when the number of
sign restrictions grows to infinity (Amir-Ahmadi and Uhlig (2015)). On top of that we get
additional identification strength from using information on magnitudes, as highlighted by
Amir-Ahmadi and Drautzburg (2021).
As depicted in Figure A-6, we can identify the structural shocks with great accuracy. In the
main text we discuss that knowledge of loadings of other shocks is not necessary to identify
the loadings of one specific shock. To highlight this feature, we now re-estimate our model
with the same simulated data, but setting the prior on all shock loadings of the second shock
to a Gaussian distribution with mean 0 and standard deviation 0.25. Figure A-7 shows the
results. Two results stand out: first, the first shock is still estimated precisely (the correlation
of the posterior median with the true shock series is now 0.78), whereas the estimated second
shock series does not match the truth at first sight. However, a further look reveals that
the correlation between the posterior median and the true series is actually high in absolute
value (-0.89). What happens? Our model correctly estimates the space spanned by the two
shocks (i.e. the overall effect of the two shocks). But without any identification information
on the second shock (in particular on the sign of the effects of this shock), the algorithm
cannot pin down the shock exactly, but only the space spanned by this second shock. In this
run of the posterior sampler, it concentrated on the part of the posterior distribution where
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Figure A-6: Estimated and true shocks, Monte Carlo Exercise.Prior centered at true values
for both shocks.

the sign of the effects and the actual shocks is flipped relative to the true values. 7

7We run the posterior sampler for only 20,000 draws, half of which are discarded, in this simulation
exercise. Even with this small amount of draws we can already see that our algorithm performs well. Such
a small number of draws is generally not enough to fully capture severe multi-modality of the posterior
distribution. In our empirical analyses we use 150,000 draws.
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Figure A-7: Estimated and true shocks. Uninformative prior on effects of second shock.
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J Why don’t we use more aggregated sectoral data?

Sectoral data are available at various levels of aggregation. We choose to use data that is
as disaggregated as possible. To justify this choice, we will study a very simple example.
Consider an economy consisting of two equally sized sectors (we could easily generalize this
argument to more sectors, but this extension would not add anything to our argument). We
disregard aggregate variables here because they are not important for the argument. We also
consider one observable per sector. So the state space system we study is

u1
t = εt + w1

t (A-24)

u2
t = εt + w2

t (A-25)

εt = εt (A-26)

where w1
t ∼ (N(0,Σ1) and w2

t ∼ (N(0,Σ2) are two independent Gaussian processes, and, as
before, εt ∼ (N(0, 1). For simplicity, we have normalized D to 1 in this example in both
sectors. Alternatively, we could study a system where we aggregate the two sectors (we use
equal weights here because we have assumed for simplicity that the sectors have equal size):

ut = εt + wt (A-27)

εt = εt (A-28)

Here we have wt =
1
2
(w1

t +w2
t ) and thus wt ∼ N(0, 1

4
(Σ1+Σ2)) . First note that we abstract in

this example from two aspects that would make a researcher want to use more disaggregated
data:

1. We don’t model any dynamics in the sector. It is well known in the time series literature
that aggregating VAR processes generally leads to VARMA processes for the aggregated
variables. To at the very least be able to approximate these VARMA dynamics in our
framework we would need to incorporate more lags of observables into the sectoral
equations when using more aggregated data.

2. Here, we focus on the case of one aggregate shock. If there is more than one shock and
different sectors have heterogeneous exposures to the different shocks, then averaging
over this heterogeneous exposure can lead to a substantial loss of information.

Returning to our example, we can ask which of the two systems leads to a more precise
estimate of the shock εt. We focus here on the variance of the estimation error for εt 8. While

8To be precise, we study var(εt|It) where It is the information set including time t observations
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Figure A-8: Variance of estimation error.

it is easy to derive the formulas for the variance in closed form in our simple examples, we
can already illustrate the main point with a numerical example. We fix the variance of w1

t

at 1 and vary the variance of w2
t from 0.1 to 2. We then compute the estimated variance

for both environments (one with two observables, one with the average observable). Figure
A-8 shows our main result: it is always preferable to use more disaggregated data. The only
point of indifference occurs when the variances of the w shocks are exactly equal. Turning
to the analytical solutions, var(εt|It) in the case when we observe both sectors separately is
given by

vartwo sectors(εt|Itwo sectors
t ) = 1− (1 1)

((
1 1

1 1

)
+

(
Σ1 0

0 Σ2

))−1(
1

1

)
(A-29)

The corresponding formula for the case where the average is observed is

varaverage(εt|I
average
t ) = 1− 1

1 + 1
4
(Σ1 + Σ2)

(A-30)

Both these equations are standard Kalman filtering formulas. One can then show that the
following always holds:

vartwo sectors(εt|Itwo sectors
t ) ≤ varaverage(εt|I

average
t ) (A-31)
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Furthermore, the equality is strict unless Σ1 = Σ2. The proof amounts to tedious but
straightforward algebra. The result should not be surprising: you can never be worse off by
using more information. Note that in our simple example one could take a weighted average
of the sectors to achieve the same variance as in the case with two observables, but in practice
this is not feasible because the weights would depend on the variances of the noise terms (the
w terms), which are not known before estimation.

K Sectoral Impulse Responses

Sectoral impulse responses, sorted by C/Y and the prior impact to household consumption
shock (which is not the same as C/Y, as it also varies with differences in overall volatility of
sectoral innovations).
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Figure A-9: Sectoral IRFs, high C/Y vs. low C/Y
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Figure A-10: Sectoral IRFs, high prior mean vs. low prior mean

L Impulse Responses to Other Economic Shocks

Note that the responses to the household consumption shock and the monetary shock are in
the main text (Figures 3 and 8).
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Figure A-12: Responses to Credit Shock. Dashed lines are 16th and 84th Posterior Percentile
Bands, Dots are 5th and 95th Posterior Percentiles. The x-axis Shows Time in Quarters.
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Figure A-11: Responses to Technology Shock. Dashed lines are 16th and 84th Posterior
Percentile Bands, Dots are 5th and 95th Posterior Percentiles. The x-axis Shows Time in
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Figure A-13: Responses to Government Spending Shock. Dashed lines are 16th and 84th
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L.1 Sentiment Shock

We can examine whether the sentiment series is a good IV for the consumption shock, by
estimating impulse responses to a consumer “sentiment” shock using the series for consumer
sentiment as an IV (figure A-15). In particular, to estimate the IRFs, sentiment is ordered
first in the VAR(4) and identification of the sentiment shock is achieved via Cholesky
decomposition. We use the Canova and Ferroni (2021) toolbox to implement Minnesota
priors with estimated hyperparameters (Giannone et al., 2015) and otherwise use standard
prior settings as implemented by Canova and Ferroni (2021).

We find that they look similar to the IRFs for the consumption shock in some but not
all instances. In particular, it is also associated with increased TFP and stable inflation,
indicating that consumer sentiment also captures the response of household expectations to
productivity news.
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Figure A-15: Impulse response to a one-standard deviation sentiment shock. Black line is the
posterior median, error bands represent 68% (darker area) and 90% posterior probability.

.

M Further Robustness checks

To economize on space, we focus in our robustness checks on the importance/variance
decomposition (for business cycle frequencies) of the consumption shock for aggregate variables.
Relative to the main text, we also show the 5th and 95th percentiles of this variance
decomposition. Therefore, we start by showing the results for our benchmark case. Throughout
all these specifications, the household consumption shock remains a key driver of economic
activity.
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M.1 Benchmark

Inflation 29.4 34.6 42.4
GDP 28.7 37.3 42.3

Nominal Interest Rate 29.6 36.3 43.4
Consumption 36.6 41.7 44.7

Spread 5.6 8.9 10.5
Government Spending 8.2 26.8 35.7

TFP 5.1 9.8 16.6
Energy Prices 7.2 10.4 13.1

Table A-4: Variance decomposition across business cycle frequencies, consumption shock.
Benchmark specification.

M.2 Aggregates only identification

To show the marginal gain from using sectoral data for identification of shocks, we show the
variance decomposition when only informative priors on the effect of aggregate shocks are
used.

5th Percentile Mean 95th Percentile

Inflation 6.7 13.5 17.4
GDP 12.2 15.6 29.7

Nominal Interest Rate 13.1 15.4 17.1
Consumption 34.5 42.2 47.4

Spread 5.7 9.0 11.8
Government Spending 13.1 23.7 44.1

TFP 3.2 5.5 13.4
Energy Prices 6.8 10.9 13.5

Table A-5: Variance decomposition across business cycle frequencies, consumption shock,
only aggregate identification restrictions.
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M.3 Larger Prior Variance on Impact of Consumption Shock

Next, we increase the prior standard deviation for the impact of the consumption shock on
aggregate consumption equal to 1/2× abs (E [Dc]), where Dc is the prior mean of the impact
of the household shock on aggregate consumption.9

5th Percentile Mean 95th Percentile

Inflation 24.6 31.2 38.4
GDP 22.0 30.9 37.6

Nominal Interest Rate 25.1 33.5 43.9
Consumption 35.5 41.3 45.8

Spread 15.1 20.3 27.0
Government Spending 7.6 22.6 30.4

TFP 6.4 10.3 13.9
Energy Prices 3.8 7.3 11.2

Table A-6: Variance decomposition across business cycle frequencies, consumption shock.
Larger prior variance.

M.4 Shorter Sample

To assess whether or not our results are driven by the Great Recession, we re-estimate the
model ending our sample in 2004:Q3.

5th Percentile Mean 95th Percentile

Inflation 21.4 26.5 41.3
GDP 21.4 25.4 29.2

Nominal Interest Rate 21.1 31.5 45.1
Consumption 31.7 34.3 37.8

Spread 9.4 15.6 19.9
Government Spending 12.8 20.5 27.1

TFP 5.4 12.4 17.6
Energy Prices 7.9 14.7 18.5

Table A-7: Variance decomposition across business cycle frequencies, consumption shock.
Shorter sample.

9For our benchmark, we use 0.1× abs (E [Dc]). The prior standard deviation for the aggregate impact of
the other aggregate shocks is set in the same fashion.
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M.5 Fewer Lags

We now reduce the number of lags L and LX to 4 from our benchmark specification of 6.

5th Percentile Mean 95th Percentile

Inflation 12.1 18.6 34.4
GDP 34.6 39.5 41.8

Nominal Interest Rate 12.9 19.3 34.6
Consumption 37.3 39.0 39.7

Spread 13.8 15.1 18.6
Government Spending 6.8 12.4 17.9

TFP 7.2 10.3 20.4
Energy Prices 3.6 9.1 20.3

Table A-8: Variance decomposition across business cycle frequencies, consumption shock.
Fewer lags.

M.6 Investment specific technology shock

In this robustness check we modify our benchmark specification in two ways:

1. We add year-over-year growth in investment to our set of aggregate observables. As
a measure of investment we use Real Gross Private Domestic Investment (FRED
mnemonic GPDIC1).

2. We also identify an investment shock. This shock moves aggregate investment positively
on impact (the prior is set in the same fashion as for our consumption shock, for
example). At the sectoral level, it decreases inflation while increasing quantities. These
effects are stronger the higher the investment intensity for a sector is, which we measure
as the ratio between the value of goods produced in the sector that go towards gross
capital formation and its total gross output.

As displayed in Table A-9, our consumption shock still remains the main driver of business
cycle fluctutations.
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5th Percentile Mean 95th Percentile

Inflation 14.5 23.6 38.4
GDP 12.4 17.0 19.9

Nominal Interest Rate 15.0 26.0 41.2
Consumption 25.8 30.4 34.6

Spread 12.1 17.6 28.6
Government Spending 8.1 12.7 15.3

TFP 5.5 8.7 12.0
Energy Prices 6.6 8.9 13.6
Investment 8.0 12.3 20.4

Table A-9: Variance decomposition across business cycle frequencies, consumption shock.
Specification with investment-specific technology shocks .

M.7 Sample starting in 1985

To assess whether or not our results are driven by the Great Inflation, we re-estimate the
model starting our sample in 1985:Q1.

5th Percentile Mean 95th Percentile

Inflation 7.6 14.2 25.2
GDP 23.2 24.7 27.9

Nominal Interest Rate 8.2 15.8 21.2
Consumption 27.1 30.2 33.1

Spread 4.8 8.5 11.0
Government Spending 10.4 12.7 17.1

TFP 8.0 10.6 12.9
Energy Prices 6.3 9.9 11.7

Table A-10: Variance decomposition across business cycle frequencies, consumption shock.
Sample starting in 1985.
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M.8 Comparison of Main Business Cycle Shock in Angeletos et al.

(2020)

Our results suggest that consumption shocks are one of several important shocks, rather than
a single main business cycle shock. We tested this by regressing the main business cycle
shock from Angeletos et al. (2020) on the various shocks we identify. We found that this
main shock has a small correlation with the consumption shock and can be better understood
as a combination of various shocks, with the coefficients shown in Table A-11. This supports
the view that multiple shocks play a significant role in business cycles, and the consumption
shock plays a prominent but not dominant role.

tech credit demand gov energy monetary investment

βi 0.3 -0.1 0.0 0.1 -0.1 -0.1 0.2

Table A-11: Regression coefficients: ACDt =
∑

βishock
i
t + vt
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