Supplemental Appendix: “Bias and Sensitivity under Ambiguity”

Zhen Huo Marcelo Pedroni Guangyu Pei

A Proofs of Main Results 2
B Extensions 16
B.1 Multiple actions . . . . . . . oL L 16
B.2 Inefficient economies . . . . . . . . . . . .. e e e e 34
B.3 Multiple aggregate shocks . . . . . . . . . L L 43
C Proofs of Other Results 48
D Uniqueness and Linearity of Optimal Strategies without Strategic Interactions 60
E Robust Preferences: Derivations and Proofs 61
F Value of Information 68
G Ambiguity about Variance 74
G.1 Ambiguity about the variance of the fundamental . . . . . . .. .. .. ... . 00, 74
G.2 Ambiguity about the variance of signal noise . . . . . . ... ... o oL 75
H Evidence on Inflation Expectations by Income Group 78
H.1 Forecast error bias and persistence . . . . . . . . . . .. 78
H.2 CG and BGMS regressions . . . . . . . . . . o e 81
H.3 Balance-sheet effects . . . . . . . . . . . e e 82



A  Proofs of Main Results

In this appendix, we present the proofs of the main results from Section II. We start by proving Proposition 3,
which yields the fixed point conditions that characterize the equilibrium. We proceed by proving the general
equivalence result, Proposition 4, based on which we can prove the existence of equilibrium, Proposition 2,
as well as the comparative statics of sensitivity S and bias B with respect to the coordination motive «,

Proposition 6.

Proof of Proposition 3. The equilibrium concept from Definition 1 is equivalent to the notion of ex-ante
equilibrium from Hanany, Klibanoff, and Mukerji (2020). It is equivalent to the characterization of sequential
equilibria with ambiguity (SEA) when conditional preferences are updated using the smooth rule of updating
proposed in Hanany and Klibanoff (2009). The key for the equilibrium refinement of SEA is to ensure
dynamic consistency, in the sense that ex-ante contingent plans are respected ex-post with the arrival of new
information. Specifically, conditional on the realization of any possible history of private information, z}, the

optimal strategy of agent ¢ maximizes their conditional preference, given by
t ~
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where E* [u (kiy, Ky, &) | 2] denotes the expected utility conditional on 2! under a particular model pf. The

interim belief system is characterized by a posterior belief p (u' | 2f) that follows the smooth rule of updating:
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where {k, (zf)},. , denotes the equilibrium strategy profiles in the cross-section of the economy and K; =

J; ki denotes the equilibrium aggregate action.

The first-order condition of maximizing (A.1) with respect to k;; yields
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the first-order condition can be used to solve for the optimal strategies {k (z})} . ,,
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which completes the proof. O

Proof of Proposition 4. Following Huo and Pedroni (2020), we first consider a truncated version of our

model. After solving this truncated version, the appropriate limits yield the desired result.

Fix t and define -
V=& = Z ANt —k-
k=0

Let ¥, denote the MA(g) truncation of ¢, such that

q
79q = Z ApTt—k,

k=0
and let a:Z])\ji ={xpit,  + ,Tpit—N}, With zp ;z_s denoting the MA(p) truncation of ;.
Consider the truncated problem of forecasting the the fundamental ¥, given xfx ;- To further ease notation,
define
ui et €it
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Let R denote the length of f}’;\,’i: and N the length of ¢;;. It follows that, there exists a vector a with length

u=T+1, and a matrix B with dimensions n x m, where n = R(T' 4+ 1) and m = (1 + N) (T + 1), such that

the truncated fundamental and the private signals are given by

=9, = Ay, with A=][d,0 |, and =z; =z, = By,

m—u,l Y24

where 0,,,—,,1 is an (m — u) x 1 vector of zeros. In the objective environment, v; is normally distributed,

|

where I, denotes the identity matrix of size u and = denotes the variance-covariance matrix of the (m —u) x 1

2
L,
vi~N(0,Q), with Q= l 0"0

[ o

vector of idiosyncratic shocks, €;. Subjectively, agents believe that 7 is drawn from a Gaussian distribution
with variance-covariance matrix 0727 I, but there is uncertainty about its prior mean, denoted by p. Ambiguity

is then captured by the perception that
n~N(popl,), and p~N(0,9,), with Q,=0.1,.

From Proposition 3, we know that the best response of agent i satisfies

b= [ (= B [6|s] + B (K | 2] )p (1 | ) (A.2)

!See Online Appendix A.1 of Huo and Pedroni (2020) for detailed proofs.



with
P(p | wi) oc exp (=B [u(ki, K, 0)]) p (i | ) p (1) -

We proceed by using a guess-and-verify strategy. First, we guess a symmetric linear equilibrium that
k; =h Bv;+hg Vi
We can show that ex-ante expected utility, under a particular model g, is such that
X [u (i, K, 0)] = — 1 B (1—a)K (A — B'h) (A— W'B)K' + ;wCA’AIC’] B (A.3)
+ [; (1—a)ho(A—KB)K + ;XAIC/] A B (1 —a)hoK (A" — B'h) + %xICA’

—% (1—a)(A-nB)Q (A — B'h) — % (1—a)hd — %ah’B (I, — A\)QB'h — %WAQA,

independent of p

where matrices I and A are such that
K=[14,04m-u], and A=K'K.

At the same time, we have that
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where matrices M, m, and S are such that

M= SK(BQB) ", m=S8[-A(1—a)hk (A — B'h) + AYKA],

and
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S:(ICB (BQB') ' BK'+ Q' = A[(1— ) K (A' — B'h) (A—W'B)K +7/CAAIC]) .

Accordingly, we can show that the subjective expectations are such that
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where matrices T and H are given by

T=AQB (BQB')™', and H= BAQB' (BQB') '.

Therefore, matching coefficients leads to the following equilibrium conditions for A and hy,
W =(1-a)T+ahH+[(1-a)(A—TB)+ah' (BA—HB)|K'SKB (BQB')™", (A.4)

and
(1—a)hp=[(1-a)(A—TB)+ah' (BA -—HB)|K'r. (A.5)

In what follows, we first focus on equation (A.4). Through a sequence of lemmas, we show that this fixed-point
problem for & can be recast as the solution of a pure forecasting problem. We then proceed to characterize hg

using equation (A.5).

The next lemmas are organized as follows. Lemma A.1 rewrites the equilibrium condition for h described above
as a beauty-contest problem with a modified variance-covariance matrix. Lemma A.2 establishes that h can be
obtained by solving a forecasting problem with a modified variance-covariance matrix. Lemma A.3 simplifies
the variance-covariance matrix of the forecasting problem, and Lemma A.4 further simplifies it yielding a
symmetric variance-covariance matrix. After the lemmas we take the limits of the truncated forecasting

problem as T" — oc.
Lemma A.1. Define

~ —1

~ ~ ~ -1 . ~ N
O=Q+ KWK, T=A0B (BQB’) . M= BAOB (BQB') :
and
_ -1 ’ / / ’ ’ M — 1
W= (Q# —A(l-a)K(A"=B'h)(A-KWB)K Jr’yICAAIC]) .
Then, the equilibrium h solves the following fixed-point problem

W=(0-a)T+ahH.

Proof. Using the Woodbury matrix identity, we have that

R —1
(BQB’) = (BQB' + BK'WKB') ™

-1
— (BB ' — (BQB') " BK (ICB’ (BQB') ' BK' + W*l) KB (BQB') ™

= (BQB) ' — (BQB') ' BK'SKB' (BQB') ", (A.6)



Then, if h is such that ' = (1 — &) T + oh/H, we have that

W= (1—a)AQB' (BQB’)  +al/BAQOB (BQB') B

—1 -1

= (1-a)AQ+KWK)B (BQB') +al/BA(Q+ KWK') B’ (BQB’)

-1

1

= (1—a)AQB’ (BQB ) Cf(1—a) AK'WKB' (BQB’)
) -1

+al/BAOB' (B ( OB')  +al/ BAK'WKB' (BQB’)

Using equation (A.6), it follows that

W = (1-a)AQB (BQB') " — (1 - a) AQB (BQB')"' BK'SKB' (BQB') ™"
+(1-a)AK'WKB' (BOB) " — (1 - a) AKWKB' (BQB')” ' BK'SKB' (BQB')™!
+ al/ BAQB' (BQOB') ™" — ah/ BAQB' (BQB')”' BK'SKB' (BQB')™"
+ o/ BAK'WKB' (BQB')™' — al/ BAK'WKB' (BQB') ' BK'SKB' (BQB')™!

= (1- ) AQB' (BQB')"' + o/ BAQB' (BQB')~"

(1—a)T oh'H

— (1-a)AQB' (BQB')~' BK'SKB' (BQB')”' — al!/ BAQB' (BQB') ' BK'SKB' (BQOB') ™
(1—a)TBK’'SKB’(BQB’')~ ! ah/HBK'SKB’(BQB’)~!
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Further, notice that the terms in the second-to-last line can be rewritten as

(1—a) AK'WKB' (BQB') ™"
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-1
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-1
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= (1—a) AK'SKB (BQB') ™",
and, similarly, the terms in the last line can be rewritten as
al/ BAK'WKB' (BQB')™' — al/ BAK'WKB' (BQB') ' BK'SKB' (BQB')™!
= ah/BAK'SKB' (BQB') .

Therefore, we have that

h'=(1-a)T+ak'H+ |(1-a)(A—TB)+ah (BA—HB)|K'SKB' (BQB')™!

b

which is equivalent to the expression for h in equation (A.4).



Lemma A.2. Define

A I —
Qr =TQ, with T'= [ “ Oussm—u ]

m—u,u -«

Then, the equilibrium h satisfies

W = AQrB' (BQrB')~".

Proof. Follows directly from Lemma A.1 and Theorem 1 in Huo and Pedroni (2020). O

Lemma A.3. Define

A=TQ+ a7, ' K'QK, and Q, = (" — MKAAK)

with the scalar W given by
Ty

1-X\1-a)(A-WB)K'Q,K (A" — B'h)

W
Then, the equilibrium h satisfies
W = AAB' (BAB')".
Proof. Tt follows from Lemma A.2 that
(A-hB)QrB' =0,
and from the definition of Qr and Qu we have that
. -1

Op =TQ + K/ (Q;l A1 - a)K (A — B'h) (A— H'B) /c') K.

It is then sufficient to show that

14

~ - —1
(A—1'B) (m + m,;lic’Q#/c) = (A-I'B) (m LK (Q*l ~A1-a)K (A —B'h)(A—I'B) /c') IC) ,
or, equivalently,

- - —1
w7 (A - WB)K'Q,K =(A—HWB)K (9;1 ~M1-a)K (A"~ B'h) (A h'B) /c') K

—(A-WB)K' (Iu —A(1—a) QK (A — B'h) (A—IB) ic’) QK.

Thus, it is sufficient to establish that
- —1
w7, (A= NWB)K =(A—NWB)K' (Iu —A(1—a)Q,K (A — B'h) (A—I'B) ;c') ,

or

7, (A— N B)K/ (Iu ~A(1—a)Q,K (A" — B'h) (A—I'B) ;c') —(A-WB)K



which can be rewritten as
w7yt (1 ~A(1—a)(A—NB)K'Q,K (A — B'h)) (A—WB)K' =(A—HWB)K.
The definition of w then yields the result.

Lemma A.4. Define

A=TQ+ ngllC’Q“IC,
with the scalar w given by
T

L= A (L= a) (A= WB)K (9 + 125858 k(4 - Brh)

W =

Also, let the scalar 7 be given by

. w Ay
A—-NB)K'Q,KA".
"S1tw (1 —MAIC’QMCA’) (A= B KK
Then, the equilibrium h satisfies

W = (1+#)AAB (BAB')™".

Proof. From the definition of Qu and A in Lemma A.3, we have that

AYQ, KA AK'Q,
QN

Q= MKAAK) T =0
( ©w /\’YK: IC) H + 1— )\,YAK:/QHK:A/’

and

AYQCATAK'Q,
1 — \AK'Q, KA’

A=TQ+ b7, 'K'Q.K = A + i, 'K ( ) K=A+siK' (2,KA'AK'Q,) K,
with s = My7 /(1 = AyAK'Q,KA’). Hence, it follows from the result in Lemma A.3 that
B =A(A+soK' (KA’ AK'Q,) K) B' [B (A + swK' (Q,KA’AK'Q,) K) B'] - ,
and, therefore,
B [B (A + swK' (Q,KA'AK'Q,) K) B'] = A (A + swK' (Q,KA"AK'Q,) K) B'.
Rearranging, we get

k' BAB' + swh' BK' (Q,KA’AK'Q,) KB’ = AAB' + swAK (2, KA’ AK'Q,) KB,



and right-multiplying both sides by (BAB’ )71 yields
W' = AAB' (BAB')™' + si (A — ' B) K'Q,KA' AK'Q, KB’ (BAB') ™"

— AAB' (BAB') ' + (1 + w)ir; "AK'Q, KB’ (BAB') ™.

Then, from the definition of A and using the fact that Q, = 7,KQK’ and AT'Q2 = TH_IAIC’QHIC, it follows that
AA = A (TQ+ a7, 'K'QK) = (14 @) 7, ' AK'Q,K.

Plugging this back into the equation for A" we obtain the desired result,

W = (14#) AAB' (BAB')™".

O

Parts 1 and 2 of Proposition 4. Given the result in Lemma A.4, we are left with taking the limit as

T — oo of the truncated problem. In particular, we have that

lim AAB' (BAB')™

T—o0

=p(Liw,a),  lim AK'QKA =V(&),

lim (A —KB)K'QK(A = BI) = V(& — K,), lim (A—WB)K'QKA" = COV (& — K, &),
—00

T—o0

N 1 I
(A-WB)K'QKA _ |

i
Thee  AK/Q, KA’

Let w = limp_, o W, and r = limp_,, #. Then, we can show that
lim W M1, AK'Q, KA (A— R B)K'Q, KA’
T—oo 1+ 1 — Ay, AK'Q), KA AK'Q, ICA!

o w )\’YT#V (gt)
S l4wl-— M1V (&)

T =

(1-9), (A7)

and

— T

W= Tlféo , , MQKA’AK'Q,, , ,
1= A(1=a) (A= WB) K (@ + 1258858 ) K (4 — Bh)

. Tu

Thféo _ _ _ / I _ R Altw / I _ Rt

1-X(1-a)7, (A= NWB)K'QK (A" — B'h) + #E2 AK'Q, K (A’ — B'h))
T

1-A1-a)7, (V(& - K) +riE2 (1-8) V(&)

Solving for w, we obtain

(A.8)

)\TVf,zl_Sz '
1—)\(1—04)7'M (V(ft_Kt)""%ié(&)))



Lemma A.5 below establishes that w > 7, and r > 0, which completes the proof of parts 1 and 2 of Proposition
4.

Lemma A.5. If w and r satisfy equations (A.7) and (A.8), then w > 7, and r > 0.

Proof. The ex-ante objective of an agent ¢ must obtain finite values under an equilibrium strategy k; =

h'Bv; + hg. The ex-ante objective is given by

v= -t ( / exp (—AB* [u (—ki, K, 0)]) p (1) du)

1 1, -
= constant — 3 In </ exp (—2//Su +u'7 + 7r,u,> du) ,
n
with the matrix S and the vector 7 given by

S=0 A1 —a)K (A — B'h)(A—KB)K — MKA AK/,

12

1 1

)
Il

where we used the fact that E* [u (k;, K, 0)] is given by equation (A.3) and
—u - L o-
pl) = (20) /2 det ()™ exp (—QM'QJN) |

Thus, a necessary condition for V to be finite in equilibrium is for S to be positive definite; otherwise, the

integral would become explosive.? Since
5—1 _ -1
Q, =9, — MKA AK

it must be that

Q' N1-a)K(A —Bh)(A—-KWB)K' is positive definite.

o
Defining the vector f = (A — h'B) K'(),,, it follows that
0<r (9" =20 (1—a) (4 = BR) (A= W'B)K') 1’

= (A—WB)K'Q,K (A — B'h) (1 —A(1—a)(A—NB)K'QK (A — B'h)) .

2 The same argument applies to how Assumption 2 ensures the problem is well defined. Specifically, a well-defined
problem requires the choice set to be non-empty, which is equivalent to requiring S to be positive definite for at least
one h. The necessary and sufficient condition for the existence of an h that makes S positive definite is that €, is

~ ’ ’
positive definite. Notice that Q, = Q, + %mﬁ. It is then straightforward to see that 1 — AyAK'Q,KA" > 0

is the sufficient condition to ensure that QM is positive definite. Taking the limit as T — oo, this is equivalent to
Assumption 2.

10



Let = (A — h'B)K'Q,K (A’ — B'h), then we have that
z(1-A1—-a)z) >0 or z>\1-a)z?>0.
Hence, we have that z > 0, and 1 — A\(1 — o)z > 0, which implies that
Tu

S Te
v 1—)\(1—a)33_7-'“

and, since w = lim7_, o W, it follows that w > 7,.

Next, for a contradiction, suppose that r < 0. Then, it follows from equation (A.7) and Assumption 2 that
COV (& — Kt,&) < 0. Further, we have that

COV (& — K¢, &) =V (&) — (1 +7)COV (ktaft) ;

where Ky = K;/ (1 +r) is the average optimal forecast of the fundamental & under the (w,a)-modified signal

process (net of the bias B, which is uncorrelated with &), so that it must be that
0 < COV (f(t,ft) <V(&).

Hence, COV (& — K, &) < 0 implies » > 0 and we have a contradiction. Therefore, > 0. O

Part 3 of Proposition 4. Next, we switch focus to the level of the B = limy_,o ho. From equation (A.5)

and the definition of 7, we have that
(1—a)hy=[(1—-a)(A—TB)+ah' (BA—HB)]K'S[-A(1 - a)hoK (A" — B'h) + \xKA'].

It is straightforward to see there exists a unique hg that satisfies this equation. We postulate that there exists

it such that
(1—a)hy=1[(1—-a)A+ah/'BA - hB|K'f,

so that solving for ji pins down the unique hy. To proceed, first replace the guess for iy on the RHS of equation
(A.5),

RHS = [(1—a) (A —TB) +al/ (BA — HB)|K'S [=\ (1 — &) hok (A — B'h) + \KA]
= [(1—a)(A—TB)+ak' (BA —HB)|K'S
X {=AC (A = B'h)[(1 —a) (A—hB)+al'B(A—1,)] K'fi + \XxKA'}

3More precisely, notice that K; = p(L;w, a) Jzit — B/(1 + 1), and that it follows from Definition 2 that [Zs =
VIFwr, [ and &=yITF wTy &. Therefore, K = ffEit[Et] —B/(1+r) and COV (Kt,ft) = COV (f Eit[ft],&).

11



Next, for the LHS of the equation, we have that
LHS=(1—a)ho =[(1 —a) A+ ah/'BA — I'B]K'L,
and, substituting the last h using equation (A.4), it follows that
LHS = [(1 — a) (A — TB) + alt’ (BA — HB)] [Im — K'SKB’ (BQB') ™" B} K'fi
= [(1—a)(A—TB)+al/ (BA — HB)K'S [5—1 — KB (BQB) ™! B/c’} i
= [1-a)(A—-TB)+ah' (BA-HB)|K'S
X {Q;l — A1 —-a)K (A" = B'h) (A—NWB)K'+vKA"AK']} i,
where the last equality uses the definition of S. Putting these results together, we have that
LHS —RHS = [(1 — a) (A—TB) + ah’' (BA —HB)|K'S
X [ 4 aAC (A" — B'h) h'B (A — 1) K'fi = MKA'AK i — AXKA'] .
Since aA\K (A" — B'h) W B (A — 1) K’ = 0, a sufficient condition for LHS — RHS =0 is
Q;l,& — MKA'AK i — AxKA" =0,

which, using the Sherman-Morrison formula, implies that

AYQ,CAAK
1— MAK'Q, KA’

i = XA (1 — MKAAK) T A = A <1u + ) QKA.

Therefore, we have that

ho= (1—a) '[(1—a)A+ah/BA—NBIK'i
= (A-WB)K'fi
M QA AK
1 — MAK/Q, KA/
M AR, KA’
1= My, AKQ, KA

— (A= W'B) K"\ (Iu . ) QKA

= XM (A= W/ B)K'Q, KA’ (1 +

Taking the limit we get

B= lm hy= M, COV(E — K. &) (1+ V() ) 2D g,

1— M7, V(&) ) - M1V (&)

which completes the proof of part 3 of the proposition. O

Proof of Proposition 2. Using the equivalence result from Proposition 4, establishing existence of an equi-

librium reduces to showing that there exists a (w,r) pair that satisfies equations (A.7) and (A.8).

12



We start by using the intermediate value theorem to prove that there exists w € [r,, 00) that satisfies equation
(A.8). Define

- T;u

M7V (&) (1= 8)
1- )\'YT;LV (gt)

Fw)=w [1—)\(1—@7—“ <V(§t—Kt)+

such that F'(w) = 0 implies equation (A.8). Next, notice that as w — oo, private information becomes
infinitely precise and, therefore, p (L;w,a) — a(L), or Ky — &. It follows that S — 1 and V (& — K;) — 0,
so that lim,, o F'(w) = co and there must exist some finite w > 7, large enough such that F'(w) > 0. Next,

notice that when w = 7,

F(r)=-A1-a)7} (V & — k) + 22V (&) (1 - S)2> 0.

1- AVTMV (ft)

Thus, since F(-) is continuous, F(7,) < 0, and F(w) > 0, there must exist some finite w € [r,,w] such that
F(w) = 0.

Further, from the definition of S we have that (see footnote 3)

_ COV (& — Ky, &) 1
1-85= T = 1-8=1-(1+7)

COV (K4, &)
V(&)

Therefore, equation (A.7) becomes

__w M7V (&) _ , COV (K, &)
T Il oMV (&) (1 =@ > '

Since C@V(K’t, &) does not depend on 7, the existence of w directly implies the existence of r. O

Proof of Proposition 6. According to equation (25), « affects the bias, B, only through 1 — S. It is, then,
sufficient to prove that the sensitivity, S, is decreasing in «. Further, since v = 0 implies r = 0, « affects S

only through the endogenous scalar w. To facilitate the proof, define an alternative signal process such that

& = a(L)n,, with  n, ~ N(0,07), (A.9)
B = m(L)ny +n(L)éy, with & ~N(0,(1 —a) (1 +w)"'%), (A.10)

and let the corresponding optimal Bayesian forecast be given by
Eit €] = P(Liw, @) Zis.

It is straightforward to show that this signal process is equivalent to the (w,a)-modified signal process for
Definition 2, that is

P(L;w, o) = p(Lyw, ).

For the current proof, this signal process is more helpful. Notice that S is affected by « only through p(L;w, a),
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since it is defined on the basis of the objective signal process.

In what follows, we first show that

1 dCOV (& — K, &)
1m

a—1- da

> 0.

We then prove, by contradiction, that there does not exist a € [0,1) such that

dCOV (& — K¢, &)

0.
da <

Then, the result follows by continuity of COV (§; — K¢, &;) with respect to a.

dCOV(E,~K1&) g,
o fug)

Step 1: lim,,_,-

It follows from equation (23) that lim,_,;- w = 7,. So, as a — 17, the signals Z;; become useless and, as a
result,
C@V (Kt, St) == V (Kt) = 0

Further, since w > 7, we have that

TR T R e L )
a—1- da a—1- da

< 0.

Therefore, at the limit of & — 17, an increase in « is akin to an increase in the variance of every idiosyncratic
noise, which implies that (see Lemma D.2 in the Online Appendix D of Huo and Pedroni (2020)),

i 4COV (& — K1 &)
11m

a—1- da

> 0.

Step 2: SECNEKLL) g for all a € [0,1):

dC@V(%;K“&) < 0. Then, by the intermediate value theorem
and continuity of %, there must exist some oy such that

Suppose the there exists a € [0,1) such that

ACOV (& — K1, &) o = d0-otw Lo o W(E K 0

da da da

a:a]\ OL:O[T OL:OAT

since, for COV (¢, — Ky, &;) not to change with «, it must be that the variance of the noise, (1 — ) (1 + w), is

unchanged. Since
d(1—a)(1+w) dw
da =~ (+wn)+ {1 -a)57,

it follows that
d7w > 0
do '

=t

14



However, since COV (&, — Ky, &) and V (§ — K;) do not vary with «, it follows from equation (23) that

M1V (€)% (1-8)?
- ATy, (V(ft—Kt)Jr%ié(a))) <0

_ Ay V(E)2(1—8)2 \ ]2
e P T N TR )

d7w
doa

Thus, we have a contradiction, and we can conclude that

d —
da da
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B Extensions

In this section, we consider three extensions to the baseline model setup. The first is the multiple-actions
extension discussed in Section IL.E; here we simply provide a proof of the results presented there. The
second extension allows for a more general utility specification, which covers economies with different forms
of inefficiencies. The third extension is to the information structure, allowing the fundamental to depend on
multiple aggregate shocks.

B.1 Multiple actions

In this section, we extend the baseline setup to allow for multiple actions instead of just a single one. Each
agent i takes J actions, so that k;; € R’. In what follows, we first demonstrate that the utility specification
with multiple actions introduced in Section ILE, equation (26), represents an efficient economy under both
complete and incomplete information, provided there is no concern for ambiguity. We then proceed to present
the proof of Proposition 7, which characterizes the equilibrium when there is ambiguity and ambiguity aversion

under this multiple actions setup.
B.1.1 An Efficient Economy

Consider the following extension to multiple actions of the generic quadratic utility specification from Angeletos
and Pavan (2007):

1 1 1 1
U (kit; K, Zt,ft) = ikgtUkkkit —+ iKéUKKKt + §££U&& + 522(]222,5 + &U]/CEIC” + KéU]éKkit + féU;(EKt

+ Uikis + U Ky 4+ Ug&y + const.,

where K; and ¥; denote respectively the cross-sectional mean and dispersion of the J actions,

K, E/kit di, and %, = <\//(km — K1) di, - ,\//(kj,it — Kj,)di, - ,\//(km = K.],t)Qdi> .

The jth elements of k;; and K are represented by k; ;; and K ¢, respectively. We assume that Usy; is diagonal,

and that the information structure is the same as in the single-action setup.

Equilibrium. Without any concern for ambiguity, we now define and characterize an equilibrium for this

model.

Definition B.1. In the absence of ambiguity, an equilibrium is a strategy k (zt) such that

k (xf) = argmax kE [u (k,K (nt) DY (nt) € (nt)) | xf] ,

where K (n') = [, k (x}) di denotes the equilibrium aggregate action, and

S0) = 01 )0y ) o0 G w3 ) = k)= 16,
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denotes the equilibrium cross-sectional dispersion of actions.

Proposition B.1. In the absence of ambiguity, a strategy k (xt) is an equilibrium under incomplete informa-
tion if and only if
k(2}) =(I-O)E [k (&) ] 2] + OE[K (n') | 27] ,

where the equilibrium degree of coordination is captured by the J x J matrix
= -U,' Uk,
and k (&) denotes the equilibrium allocation under complete information, given by

k(&) = — Up + Urg) " Une & — (Ui + Uni) ' Uf.

K Ko

Proof. We first characterize the complete-information benchmark. Let Z;; be the information set of agent @
in period ¢t. Under complete information, we have that & € Z;;. That is, all agents have perfect information
about both the fundamental & and, consequently, about the aggregate action K;. The agent’s first-order
condition is then given by

ou (km Ky, %, ft)
Okt

= ki, Upp + §£U,g£ + KU j + U = 0.
Using the fact that k;; = K, the equilibrium strategy under complete information is such that

kit = 5 (&) = — (Upg + Upge) ™" Uke & — (Urk + Ur)” " UL,

K Ko

where both x and kg are J x 1 vectors.

When information is incomplete, the agent’s first-order condition becomes
—~Upi kit = Ue E [& | 2t] + Uk E [Ky | 28] + Uy
Multiplying — (Ugk 4+ Urx )" to both sides of the equation implies
Uk + Urie) ™! Uy kit = — (Unte + Ure) ™ Une E[& | 28]~ (Unr + Urie) ! Unie E[Ky | 28] —(Upse + U) ™' Up,,

and it follows that
kit = Uk_lcl (Ui + Ukr) E [H (&) | Z‘f] — Uk_klUkK E [Kt ‘ J;:] .

which completes the proof. O

Efficient allocation. Abstracting from ambiguity concerns, an efficient allocation is the strategy k (x!) that
maximizes ex-ante utility, subject only to the constraint that the private information of any agent cannot be

transferred to any other agent.

17



Definition B.2. In the absence of ambiguity, an efficient allocation is a strategy k (xt) that mazximizes ex-ante

expected utility,
E [u(k, K ('), % (1) € ()]

Proposition B.2. In the absence of ambiguity, a strategy k (zt) is efficient under incomplete information if

and only if
bal) = (1= 0%) [ (@) (' ) +€° [ K (1) aP (o' ),

,r]t
where P (n' | xt) denotes the cumulative distribution function of n; conditional on zt, the efficient degree of
coordination is captured by the J x J matric
0" = — (Us + Uss) " (Ukk + Uric + Ul — Usy),

and k*(&;) denotes the efficient allocation under complete information, given by

k(&) = — (Upk + Upi + Upe + UKK)71 (Uke + Uke) & — (Urk + Urk + Upg + UKK)71 (U +Uk)".

*

;
K Ko

Proof. We first characterize the first-best allocation, that is, the efficient allocation under complete informa-
tion. Let Z;; be the information set of agent ¢ in period ¢. Under complete information, we have that & € Z;;.
It is, then, straightforward to show that the first-best allocation features k;; = K}, which implies that ¥, = 0.

It follows that the efficient level of K; must maximize
%K{ (Ukk + Uk + Ui + Uk ) Ky + %g,{U&gt + & (Uke + Uke)' Ki + (Uy, + Uk ) Ky + Ug&y + const.,
which implies the following first-order condition,
K{ (U + Upc + Upge + Uk i) + & Uk + Uge)' + (Uy, + Uk) = 0.
It follows that the efficient allocation satisfies

ki = Ky = — (Uk + Upie + Ubge + Ukg) (Uke + Uke) & — (Ui + Urk + Up + Ukk) ™ (Ux + Ux),

*

;
K Ko

where both k™ and k{j are J x 1 vectors.

To characterize the efficient allocation under incomplete information, define the Lagrangian of the problem in
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Definition B.2 by

+/ntb(77t) lK (n") —/z?k(xﬁ) dP (zt | n') | dP (n")
+ /ﬁ 2 (1) [a? () = / (ks () = 55 ()" P (st | ') daf| P ('),

where ¢ (') and ¢; (n') denote the multipliers on the definitions of K (') and o; (n'), respectively. Further,
P (2! | n*) denotes the CDF of ! conditional on 7;, and and P (n') denotes the unconditional CDF of .

To ease notation, denote ¢ (n') = diag (p1 (n*), -+ ,; (n'),--- , 07 (n")). Then, the first-order conditions can
be written as
/ (861;}@ Fo() + 20 () (k (o) - K (nt))> dP (2! |7) =0, foralmost all o, (B.1)
/ (6;“2) C () =20 () (k () — K (nt))) P (if | #) =0, for almost all !,  (B.2)
nt
Ou(-) t) ot t £y _ t
55 dP (zf | n") +2¢ (n") 2 (n) =0, for almost all n". (B.3)

Rearranging equations (B.1) and (B.3), we obtain

ou (- 1
ot g[(()dp (zi ') +e(n) =0, and (') = —§U227 for almost all n".
Further, since
ou (-
) Uk (o) + U & (a2) + Use € 1) + U,

it follows that
v(n') == (Ukxk + Uix) K (n') = Uke & (') — Uk

Using these two expressions to replace ¢ (n') and ¢ (n?) in equation (B.2), and using the fact that

815]5) = Uik (z}) + Up K (n') + Ure€ (n') + Uk,
vields
k(2f) = (U + Uss) ™" (Ui + Ui + Upge + Ukic) /nf K (E(n'))dP (0" | x7)
— (Ui + Usp) ! (Ug i + U + Ujc — Uss) /nt K (n')dP (n" | aj),
which completes the proof. 0
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By comparing Propositions B.1 and B.2, we arrive at the following corollary.

Corollary B.1. An economy is efficient if and only if

k(&) =rK"(&), and © =0

Next, notice that the utility specification in equation (26), used in Section IL.E,

1 1 1
= (ki — 5&) O (ki — &) + 3 (it — Kt) Wi (kip — Ki) + & — 57&27

u(ki, Ky, &) = 2

implies that
Uk =0, Usys=Uge=0, and Uk = Uk =Ugkk.

These constraints imply the conditions from Corollary B.1, which then leads to following result.

Claim 1. The economy with utility given by equation (26) is efficient under both complete and incomplete

information.

We conclude this subsection by two additional remarks:

1. We can normalize Uy, = 0, and thus, kg = 0 without loss of generality. A nonzero U would only add an
exogenous vector of constants to the action strategy under complete or incomplete information. This
same exogenous vector of constants also applies to the equilibrium action strategy with ambiguity. This
vector of constants can be regarded as the deterministic steady state of the economy, which can always

be abstracted away by redefining actions as deviations from the deterministic steady state.

2. We demonstrate that economy with the utility specified as in equation (26) is efficient. This statement
can be strengthened in the sense that, as long as Usy, = 0, equation (26) is the only utility specification

that ensures efficiency under complete and incomplete information.

B.1.2 Equilibrium with Ambiguity

We now proceed to characterize the equilibrium with ambiguity. First notice that the utility specified in

equation (26) is equivalent to the generic quadratic utility if we set
Upr =V + Vg, and Ugg = Vg.

From this point forward, we use these conditions to switch to the notation used in the paper, with ¥ and
U

Analogously to Proposition 3, it can be shown that the optimal strategies for the vector of J actions of all

agents are such that
kig = (1= ©) Fir [K&] + © Fig [ K], (B.4)
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where Fj; [-] represents agent i’s subjective expectation operator, that is,
t N . “ t
Fell= [ BUL 1allp (0 Lol dut, with 5 (u' | al) ox o (B fu (e K0 (1 | 1)
ut
Moreover, the coordination matrix, ©, is such that

0 =UglUrr = () + V) U

B.1.3 Proof of Proposition 7

Next, as in the single action case, we consider a truncated version of the problem using exactly the same
notation as in the proof of Proposition 4. We identify a specific form for the equilibrium optimal strategies,

which we then use to prove the main equivalence result, Proposition 7.
Define higher-order subjective expectations recursively as follows:

_ X, if n=0;
LF [P X)) di, if n> 1

By iteratively eliminating F;; [K] in the best response (B.4), we obtain
ki=» O"(I-0)rF [F"[0].
m=0

Notice that, as long as subjective expectations are Gaussian, agent i’s subjective expectations about any order

must be linear in signals, that is,
Fi [F™ 0] = hiy @i + Gom

where the J x n matrix izﬁn and J x 1 vector ¢, represent the sensitivity and bias of the mth-order subjective

expectation. Further, let the eigenvalue decomposition of © be given by

J
o= Zanfleje;- Q,

J=1
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where e; denotes the j-th column of a J x J identity matrix. It follows that

0 J ™y

= 3 (Seeaa) [So0-aiaege) (i sa)
m=0 \ j=1 =1
[e%S) J J

= [ XareadQ) (X0 -a)Q e @ | (i, witin)
m=0 \ j=1 =1

oo J
= Z Z (1- Oéj) aTQ*leje; Qkr (iz;n x; + (jm)

m=0 j=1
= ZQ eje QK ((1 — o) Z a;niz;n ;i + (1 —aj) Z agn(jm>
Jj=1 m=0 m=0
J ~
— ZQ—leje;Q/@ (h; T; + Aj) ,
j=1

where ilj and ¢; are defined as

oo
= (1-aqj) Z o'hy,, and G = (1-qy) Z o G-
m=0

Interpret & ﬁ; x; + (jj), for all j, as a set of forecasting rules for the equilibrium allocation under complete
information, kf. Then, the derived expression implies that the optimal strategy for each of the J actions is a
linear combination of these forecasting rules. This linear relationship can be “orthogonalized” by transforming

the actions k; and the complete information allocation 6 using the matrix ). Specifically, let
ki = Qk;, and i=Q=k.
It follows that ,
Lo Zeje;- i (iL;l‘l + LL) ,
j=1
so that the j-th transformed action, the j-th row of l%i7 is equal to e;- I (ﬁ; z; + q}).

By defining

the expression for k; can be compactly written as

ki = H'By; + Q.
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Similarly, the @Q-transformed version of the complete information solution can be written as

!/
k() = rRAy; = Ze]e]/iAVl Av;,  with Az[e’lkA ehRA ... ef]/%A} =h® A

Further, the utility function can also be transformed in a similar way,
ui= 3 (k= 20) s (i —20) + 5 (b~ &) e (i — ) + 30— 596 + const.
2 2 2 ’
with
U= (@Y Q7Y and Vi = (Q7Y) QL

It follows that

1 - 1
B fui] = 5 WK (HB—A) U, (H'B—A)K 1 — iyu’ICA’AIC’;H—
N 1 - 1 1
§M/IC (H'B—-A) U0+ in‘Ifk (H'B—-A)K'pn+ QxAIC'u + —xu' KA

Thus, the distorted subjective belief must satisfy

1 1 1
Bl | 25) o exp (—2u’5_1u+ LS (M4 10) S (M +H)/S_1u> ,

with matrices S, M, and II given by

. -1
S = (;CB/ (BOB') ™ BK' + Q' + A (IC (H'B— A ¥, (B - A K — fleA’AIC’))

M=SK(BQB) ™", and =S (—)JC (H'B — A) ¥,0 - AXICA’) .

From agent ¢’s first order condition, equation (B.4), we have that

ks = (I—Zajej J> A F; [vi] (Za]ej j) i[A}»
j=1
and, therefore,

J
H'Br;+ Q= (IZaJe] j) AF; [vi] (Z ) (H'BAF; [vi] + Q).

j=1
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Moreover, the distorted subjective expectations satisfy
Fild = [ B ikl (ulo) s
n
— [ @ o)+ ) ()
N

- / (QB’ (BB ™! (m—uHu)ﬁ(ulxi)du

= 0B/ (BOB) " w; + (1- QB (BB B) K / e (1) ds

123

1 1

— OB (BQB') 'z + (I — QB (BB B) K'SKB' (BB "z,
+ (1 — QB (BQB) ™ B) K'S (—)\IC (H'B — A) ¥,0 - AXICA’> .
Matching coefficients then implies that
H =(1-®)T+dHH+[I-®)(A—TB)+dH (BA—HB)K'SKB (BQB')™ ", (B.5)
and

(I-®)Q=[1-®)(A—TB)+&H (BA —HB)|K'S (—/\IC (H'B—A) ¥,0— )\XICA’) : (B.6)

where T, H, and ® are given by

J
— /
, and @:5 aje;e;.

j=1

1

T = AQB (BQB)™', H=BAQB (BQB')™"

In what follows, we first focus on equation (B.5). Through a sequence of lemmas, we show that this fixed-
point problem for H can be recast as the linear combination of pure forecasting problems. We then proceed

to characterize Q using equation (B.6).

Lemma B.1. Define

O=o+ WK, T=a08 (BOB) " = BAGB (BOB') -

Y

and

. -1
W= (9;1 A (/c (H'B— A ¥ (B — A K — ~leA’AIC’)> .
Then, the equilibrium H solves the following fixed-point problem

H =(1-®)T+dH'H
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Proof. Using the Woodbury matrix identity, we have that

R —1
(BQB’) = (BQB' + BKWKB') ™
-1
= (BQB')™' — (BQB) ' BK (ICB’ (BQB') " BK' + W—l) KB (BQB') ™

-1

= (BQB')"" — (BQB') ' BK/'SKB' (BQB') (B.7)

If some H is such that #' = (I — ®) T + ®H'H, then

H = (1- ) AQB’ (BQB’) T ST BAOB (BQB’) B

1

o 1 . A -
— (1= ) A2+ K'WK) B (BOB')  +®H'BA(Q+ KWK') B' (BOB)

= (I ) AQB’ (BQB’) T (- @) AKWKB' (BQB’)_l
+ ®H'BAQB' (BQB’) O BAK'WKE' (BQB’) -

Using equation (B.7), it follows that

H = (1- ) AQB (BQB')™' — (1—®) AQB' (BQB')”' BK'SKB' (BQB')™

+(I-®) AK'WKB' (BQB') ' — (1— &) AKWKB' (BQB')~' BK'SKB' (BQB') ™
+ ®H'BAQB' (BQB')~' — ®H'BAQB' (BQB') ' BK'SKB' (BQB') ™
+ ®H'BAK'WKB' (BQB')~" — 1/ BAK'WKB' (BQB')~' BK'SKB' (BQB') ™

= (I— ®) AQB' (BOB') '+ ®H'BAQB' (BQB') ™'

(I-2)T SH'H
— (1-®) AQB' (BQB')"' BK'SKB' (BQB')~' — oH'BAQB' (BQB')”' BK'SKB' (BQB') ™"
(I-®)TBK'SKB'(BQB’)~! SH'HBK'SKB'(BQB’)~!

-1

+ (I-®) AK'WKB' (BQB')™' — (1- &) AK'WKB' (BQB') " BK'SKB' (BQB') ™
1

+ ®H'BAK'WKB' (BQB')™" — 1/ BAK'WKB' (BQB')~' BK'SKB' (BQB')™".
Further, notice that the terms in the second-to-last line can be rewritten as
(1-®) AK'WKB' (BQB')™' — (1- &) AKWKB' (BQB')” ' BK'SKB' (BQB')™"
-1
= (I-®) AK'W (ICB’ (BQB') ' BK' + w—l) (ICB’ (BQB') ' BK' + W—l) KB (BQB') ™
-1
~ (1-®) AK'WKB' (BQB') ' BK' (ICB’ (BQB') "' BK' + W‘1> KB (BQB') ™
= (I1- ) AK'SKB (BQB') ",
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and, similarly, the terms in the last line can be rewritten as

®H'BAK'WKB' (BQB')~" — 1/ BAK'WKB' (BQB')~' BK'SKB' (BQB')~

= &H'BAK'SKB' (BQB')™".

Therefore, we have that

H =(1-3)T+oH'H+ [( @) (A—TB) + ®H' (BA — HB)] K'SKB' (BQB')~

which is equivalent to the expression for H in equation (B.5).

Lemma B.2. For any j € {1,---,J}, define

O I’NL*’LL
m—u,u T—aj

A . Iu Ou m—u
Qr, =1;Q, with T'; = ’ .

Then, the equilibrium H satisfies

¢iH' = e/ AQr, B' (BQr,B') " .

Proof. Tt follows from Lemma B.1 that
H = (1— ) AQB' (BQB’) T OHBAOB (BQB’) o
Right multiplying by BQB’, we obtain
H'BOB' = (1 - ®) AQB' + ®H'BAQR/,
or, using ® = E;-le ejelay,

J

> ejeH' BOB — Za]eje’HBAQB' (1-®)AQB,

j=1

which can be rewritten as

Zeje H'B(1—a;A) QB = (I- &) AQB'.

Since (I — a;A) = (1 — )T, it follows that

> (1—aj)eje;H'BIQB = (I- ®) AQB'.

j=1
Guessing that

¢\ = ¢ AQr, B’ (B, B')
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and using AI'; = A, we obtain

(1— ;) ;e AQB' (BQr, B') ' BQr, B = (1- @) AQB,
1

J

n

or

(1—a;)e;e; AQB" = (1— &) AQB'.
1

n

J
The fact that (I— ®) = ijl (1 — ;) eje; concludes the proof.

Lemma B.3. Define
A =T,0+ KWK, and O, = (Q," — \KAAK)
with
W =1, — A\Q,K (A—H B) U,W (A—H'B) K,

and
_ - Lo\l
W= (1 + A (A= HB) KK (A-HB) &) .
Then, the equilibrium H satisfies
J
Hl = ZGJB;AA]‘B/ (BAjB/)il .

i=1
Proof. Tt follows from Lemma B.2 that
Z ejes (A=H'B)Qr, B’ =0.
j=1
From the definitions of ij and Qu, we have that

-1

O, = T30+ K (2,1 + MC (A= H'B) ¥ (A-HB)K') K.
It is then sufficient to show that

Xn: eje; (A—H'B) (rjﬂ + IC’WQ,JC)

J=1

n 5 PR _1
=Y e (A-H'B) (Fjsz + K (9,1 + A (A= H'B) e (A-H'B) K) /c) :

j=1

or, equivalently,

(A= H'B) (KWQK) = (A= H'B) </c' (9 + M (A= #'B) ¥ (A~ H'B) K) - IC) :
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In turn, a sufficient condition for this equation to be satisfied is that

W= (L + QK (A~ H'B) ¥ (A-HB)K')
which, using the Woodbury matrix identity, can be rewritten as
W =1, - MK (A-HB) W, W (A-H B) K,

with .
W= (L + XA (A= HB) K0,k (A-HB) &) .

Lemma B.4. Denote the eigenvalue decomposition of (1; — @) (TH_J'IJ + W) by

J
(IJ-@)(TJ11J+W):P71 ZUJJ'BJE;- P.
=1

Define

A =T, e B o
A =T;Q+K ((1_%)% m,);c,

and let the scalars ¥; and Z; be given by

Foo= )\’ye;-W (A—-H'B)K'Q,LA P ! (I—a) 7\ .
YT MAK'QKANR; and ;= ;Pji (1 + wj) B,

and let X' be such that

Then, the equilibrium H satisfies

Proof. From Lemma B.3, we have that

eH = A (0,0 + KWAK) B (B (10 + KWOKE) B)

J

and, therefore,
eH'B (0,0 + K'WO,K) B = ) A (T, + KWQK) B.

Rearranging, we get
¢/ H'BT;QB' = ¢, AT;QB' + ¢} (A— H'B) K'WQ,KB'.
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Since

(A-—H'B)K'W = (A—H'B)K' = A(A—H'B)K'Q,K (A—HB) U,W (A -HB) K
= (1= AMA=HB) KK (A~ H'B) &) W (A~ H'B) K’
w

(A—H'B)K,

it follows that
eiH'BT;QB’ = ¢ AT;QB' + ¢;W (A - H'B) K'Q,KB'.

From the definition of Qw we have that

1

Q= (' = MKA'AK') ™ = Q, + sQ, KA AK'Q,,

with
Ay

1— M\ AK'Q, KA

s
So that

¢/H'BT;QB' = ¢\ AT;QB' + ¢;W (A~ H'B) K’ (Q, + 502,KA' AK'Q,) KB’
= ¢ AT QB + ;W (A —H'B) K'Q,KB' + e, AK'Q, KB,

where we used the fact that e} (A —H'B) K'Q,KA" and #; = €k are scalars, /;A = e}.A, and

s (ejW (A—H'B)K'Q,KA)
Ty = ~ .
kj

Thus, it follows that
e;H’BFjQB’ = e;A (T;Q+7K'Q,K)B + e;.W (A-H'B)K'Q,KB,
which implies
J J
> ejefH'BLQB = " ejel A(L;Q+#K'Q,K) B+ W (A—H'B)K'Q,KB,
Jj=1 j=1

and, therefore,
J B J B
> ejefH' BT QB + WH'BK'Q,KB' =) " e;e; A(T;Q + #,K'Q,K) B+ WAK'Q,KB'.
j=1 j=1

Next, we use this equation to solve for . Recall that A = [a’,0], where a is of dimension u x 1, and let
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B = [By, Bs], with Bj of dimension n x u and By of dimension n x (m —

@

J
Zeje;’H/ (BlQ Bl
j=1

Using the fact that 7, 10, = Q,, it follows that
(1, 'Ly + W) H (B1QBY) + (Iy — @)~ H/ (B2Q.Bb) Ze]/f]
Left multiplying by (I; — ®), then, implies
(Iy — ®) (1,71 + W) H (B1Q,B})+H (B2Q.By) = (I — Z ejijal
Since, by definition,
(I =®) (7, 'L, + W) = P'DP, with D=

it follows that

BI

u). Then,

—— By, BQ> + WH (B:Q,B)) = Zejmj (Q, +7;Q,) B} + Wka'Q,Bj.

+ (7, 'Ly + W) ka'Q, By

Q) B + (

J
/
> wiese |
j=1

7, L+ W) kd'Q,Bj

PTIDPH' (B1Q,B}) +H' (B:Q.Bb) = (I; — @ Zem (#;Q,) B} + P"'DP#a'Q,B;.

Left multiplying by P, then, implies
DPH' (B1Q,B}) + PH (B2Q.Bb) = P (1 — Z ejrja’
Next, define
X' = PH/,

so that we can rewrite the equation as

) B! + DP#d'Q,B).

J
DX (Bi,By) + X' (BoQ:Bj) = Py e; (1 — ;) kja’ (759,) B + DPkd'Q,By.
j=1

Next, using the definition of D, we obtain

ej X' (B1w; QB + ByQ.B}) = (PZel
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Right multiplying by (Biw;Q,B] + BQQ&-Bé)il, then, yields

J
(P > e (1— o) fia’ (749,) B + Dwa’Q,,,B;> (Byw; B, + ByQ.By) ™!
=1

Notice that

e Pe; (1 — a;) kia (7Q,) B) + €;DPka’Q, By

M-

@
Il
-

J
¢ (P D e (1— o) kid (74,) B) + DP/%a’QuB{> =

Pji (1 — o) 7 + wj) kia'Q,BY,

I
KM“

s
Il
—

so that we can further rewrite the expression as

(Z P (WW) fid'w;Q, Bl> (Byw; B} + ByQ.By) ™!
J

-1
;) Ty + wj ;W , wj , 1 ,
(Z P;; (wj ) kia ) aj)QuBl> <31 a—ay aj)QMBl - 327(1 — aj)QEBQ .

Finally, using the definition of A;, we get

J .
1—a) i\ ., o
=> P (1 + (Q)T) ki (AA;B') (BA;B) ',
s
i=1 J
and the definition of X’ implies

O

Parts 1 and 2 of Proposition 7. Given the result in Lemma B.4, we are left with taking the limit, as

TpWi

T — o0, of the truncated problem. Define w; = Ty 1, then, in particular, we have that

lim AA;B' (BA,;B')™

T—o0

=p (L, Wy, Oéj) 5 Th—r)noo A]CIQUICA/ = V(ft),

lim (A~ H'B) K'QK (A= H'B) = V(i ~ K), lim (A= H'B)K'QKA = COV (i ~ Ki.&)

T—o0

31



Next, let W = limg 00 7, W, 7j = limr_00 %fj, and x; = limp_,o &, for j € {1,...,J}. Then, it follows
J
that

(L . Ay QLA AK'Q) Lo\
1 1
W = Thm (TM 1;+ )\TN (.A - H/B) K’ (QH + T )\“’y ]C/Q#IC H/) K (.A _ ’H/B) qlk)

-1
. 1 1 M (A-H'B)K (KA AK'Qy ) K(A-H'B) \ 2
= Thﬁrrg>O <T# Iy+A <(A -~ H'B)K'Q,K (A-H'B) + ( )Tu_,l(f;'yAIC'Q,,}CZX)’ ( ) ) \I/k>

-1

MCOV (& — Ky, &) COV (g — K, ft)/
- MV (&)

— | 771+ A V(fﬁgﬁfg)+

-1

MCOV (k& — Ky, &) COV (k€ — Ky, ft)/> \PkQ1>

W= <T#11J +AQ (V(Iift ~K)+

= MV (&)
and
ri= lim —% Y et W V(A—HB)K'QKCA
T Thee L4 wy 1 — MWAK'Q, KA i j
T Ay e;WCOV ("%t ~ Ky, ft)
L+ wj 1= AV (&) R
B ATy, eSWQCOV (k& — Ky, &)
MTVE&E) dQm+aw)
and

- (152 - S 12 )

Part 3 of Proposition 7. Next, we characterize the bias term, B = limz_, o, @' Q. From equation (B.6),
we have that

(I;—®)Q=[(I—®)(A—-TB)+®H (BA-HB)|K'S (—)\IC (H'B—-A) 0,0 - )\XICA’) .
There exists a unique Q that satisfies this equation. We postulate that there exists ) such that
(I, —®)Q=[1;—-®) A+ dH'BA —H'B|K'Y,

so that solving for ) pins down the unique Q. To proceed, first replace the guess for Q on the RHS of equation
(B.6),

RHS = [(I; — @) (A~ TB) + ®H' (BA — HB)|K'S (—)\IC H'B—-A) T (1;—®) " (1, —®)Q - )\XICA’)
= [(I; — ®) (A—TB) + ®H' (BA - HB)|K'S
X (f/\IC (H'B— A ¥, (I — ®) "' [(Iy — &) A+ ®H'BA — H'B|K'Y — AXICA’) .
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Next, for the LHS of the equation, we have that
LHS = (I; - ®) Q = [(I; — ) A+ OH'BA — H'B] K'Y,
and, substituting the last H’ using equation (B.5), it follows that
LHS = [(I; — @) (A — TB) + X' (BA — HB)] [Im — K'SKB' (BQB') ™" B} K'y
= [(Iy — ®) (A~ TB) + ®H' (BA — HB)|K'S {5—1 — KB (BQB)™! B/c’} Y
= [(I, - ®) (A— TB) + &X' (BA — HB)| k'S
X {Q;l A (/c (H'B— A U (B — A K — WICA’AIC’) } Y,

where the last equality uses the definition of S. Putting these results together, we have that

LHS — RHS = [(I; — ®) (A— TB) + X' (BA — HB)| K'S
) { AC(H'B — A W, {(H’B ~AK + Iy — @) (I — ) A+ OH'BA — H'B] IC/} Y }
Q1Y — MKAAKY — A KA’
= [(I; — ®) (A—TB) + &K' (BA —HB)|K'S
x {Q;ly +AC(H'B—A) U, (1; —®) " dH'B (A —1,,) K'Y — MyKA'AK'Y — /\XICA’} .

Since (A —1I,,) K’ = 0, a sufficient condition for LHS — RHS = 0 is
Q'Y — MKAAK'Y — AxKA' =0,

which, using the Sherman-Morrison formula, implies that

_ -1 A
Y = A (01 = d A AK) A = v (9,4 T QA ARD,) KA

Therefore, we have that

Q= (I, —®) '[1;— ®) A+ ®H'BA —H'B| K'Y
(I, @) ' [(Iy - @) (A-H'B)K' + ®H'B(A —1,)K'] ¥

(A-H'B)K'Y
(

Ay
1 - MWAK'Q, KA
M1, AKQ, ICA
1= My, AKX, A

A—H'B) K'\x (QH + QHICA’AIC’QH> KA

= ATux (1 + ) (A—H'B) K'Q, KA.

Taking the limit we obtain

ATLX

s -1 _ _ ANTpX _
B = TlgnooQ Q - 1— A’YTHV(gt)(C@V(HSt Kt7§t)7
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which completes the proof of part 3 of the proposition.
B.2 Inefficient economies

The economy in our baseline setup is assumed to be efficient under both complete and incomplete information.
We now consider a generalized utility in the vein of Angeletos and Pavan (2007),

Lo (K, — ) — 0Kit — oKy, (BS)

i, b, ) = — (1) (hie = £0° + 1 (i — K0)?] — 57967 — X6 —

which allows inefficiencies under both complete and incomplete information. Specifically, it can be shown that:

e Under complete information, the equilibrium allocation is such that k;; = K; = &, whereas the efficient
allocation is such that k; = Ky = k& + K with (k7, k§) being given by

*_1_(04—1/’)_(%5

2
T T (a—w)

1—(a—1v)

*
,and Ky =

e Under incomplete information, the equilibrium degree of coordination is «, while the efficient degree of
coordination is a* = a — 1.

The following proposition generalizes our equivalence result to the utility function in equation (B.8). The
equilibrium strategy still features the simple form, which results in additional sensitivity and bias.
Proposition B.3. The linear strategy in equilibrium takes the following form
g(zh) = (1 +r)p(L;w, )z + B. (B.9)
1. The polynomial matriz p(L;w, «) is the Bayesian forecasting rule with the (w, a)-modified signal process
and w satisfies
T

ATy 12)V (€)% (1-8)? ;
(I+n)=Ad-aty)m (V (& — Ko) + 2 ey )

w =

2. The additional amplification, r, satisfies

_ V@) A+ w
1= V(&) (T4 vs) L +w

(1-39);

3. The level of bias, B, satisfies
B XAV (&) (1= 8) + vy
L= A7, V(&) +vs
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4. Relative to Proposition 4, the inefficiencies imply the following correction terms

2227 (V&) (1= 8 V(&) V(& — K)) = MmV (&) (1= S)
te L=V (&) 27— 6 (1+8) |

_, 9 V(& — Ky)
=12 es)
¢

r3=1—--(1+38),
3 7( )

va = Mpr (V (&) (1 - 8) =V (& — K))
~ N2 (6 00— 9) +299) (V&) (1= S = V(&) V (& - K))
vs = ATV (&) (268 —7) + X2726% (V(&)* (1 S = V(&) V(& - K1)

It is easy to see that without inefficiencies, that is if v = ¢ = ¢ = 0, we have that 1y =1, =v3 =1y =v5 =0,

and the formulas reduce to the ones in Proposition 4.

Proof of Proposition B.3. Consider the same truncated version of the model described in the proof of

Proposition 4. For the utility in equation (B.8), we have that
~ 1 rg—1 1 ro—1 1 I o—1
P (plzi) ocexp | —op'S™ p 4 op'S™H (Mg +m) + 5 (May +m) 5™ )

where matrices M, m, and S are such that

M= SK(BQB) ", m=S8[-A(1—a*)hoK (A — B'h) + \YKA' + A\pKB'h],

and
S= (ICB’ (BOB') ' BK' + Q' = A[(1—a*) K(A' = B'h) (A= W' B) K/ + 7K A AK
— XK (AB'hA + Al BA) IC’) -
which, using ¢ = (1 — a*)(1 — &%), can be rearranged into
S = (ICB’ (BQB') ™ BK' + Q' = M\ KA'AK — (1 — a*) K (k] A' — B'h) (k1A — W' B) /c’) -

where
T =y+ (1 -af)(1 - (5])%).

We have the same equilibrium conditions for h and hg as in Proposition 4, equations (A.4) and (A.5), and the

proof proceeds analogously and we keep the same structure to facilitate comparison.
Lemma B.5. Define

Q=0+ KWK, T=A0B (BQB’)_l . H=BAOB (BQB’) -
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and
—1
W= (Q;l CMKAAK — A(1— o) K (k1A — B'R) (k1A — I B) /c’) .

Then, the equilibrium h solves the following fixed-point problem

h=(1-a)T+ah'H.

Proof. This proof is exactly analogous to the proof of Lemma A.1. In particular, notice that W and S are
still such that )
S = (ICB’ (BB BK + W‘1> .

O

Lemma B.6. Define
A Iu Ou m—u
Qr =T, with F[ L. ]
m-uu Too
Then, the equilibrium h satisfies
W = AQrB (BQrB') .

Proof. This lemma, is exactly the same as Lemma A.2, and is repeated here just for convenience. O

Lemma B.7. Define
A=TQ+ b7, 'K'Q,K,
and

Q= (] = M KAAK A1 — o) K[(WjA' = B'h) (kjA— W' B) — (A — B'h) (A~ I'B) k') ",

with the scalar W given by

Tu
1—M1—a*)(A—NWB)K'QK (A — B'h)’

w

Then, the equilibrium h satisfies
h' = AAB' (BAB') ",

Proof. Tt follows from Lemma B.6 that
(A-HB)QrB =0,

and from the definition of Qr and Qu we have that

- —1
Op = TQ+ K’ (Q;l A1 —a*)K (A — B'h) (A~ I'B) /c’) K.
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It is then sufficient to show that
- ~ —1
(A—1'B) (m + m;lzc’gzuic) — (A—I'B) <m + K (Q;l ~A(1-a*)K (A — B'h)(A— IB) /c’) IC) ,

or, equivalently,

w7 (A=W B)K'QK =(A— 1 B)K' (Q;l — A1 -a*)K (A — B'h) (A— B) IC’) K
—(A—HWB)K' (Iu —A(1—a*) QK (A — B'h) (A— I'B) ic') Ak
Thus, it is sufficient to establish that
it (A= WB)K = (A~ WB)K (L = A(1- ") 0K (4~ B'h) (A~ 'B) ;c')fl .

It follows that

Wt (A= WB)K' (Iu —A(1—a*)Q,K (A — B'h) (A—I'B) /c') =(A-KB)K,
which can be rewritten as

! (1 ~A(1—a") (A—WB)K'QK (A — B’h)) (A—WB)K' =(A—WB)K.
The definition of w then yields the result. O

Lemma B.8. Let

_ v :_L)‘ / _ Y,
w= A=) (d=r)’ = wKA’ vy = K (wA" — B'h),

and
cij =viQuuj,  fori,j €{1,2}, and s;=(A—-NWB)K'Quu;, forie{l,2}.
Further, define
A=TQ+ a7, 'K'Q,K,

with the scalar w given by
c1182 — (14 c12) 51

W= 1+ w,
< (1+ c12) (1 + co1) —011022>

and let the scalar T be given by

2 (9951 — (14 ¢a1) 52) + (1 — w) (cr152 — (1 + €12) 51) @

w

Fe—
(1+ci2) (1 +ca1) — crica2 +c1182 — (1 4+ c12) 51 14w

Then, the equilibrium h satisfies
. . -1
W = (1+7) AAB' (BAB’) .
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Proof. From the definition of Qu in Lemma B.7, we have that

~ -1

Q, = (9;1 FA1—a) (1K) K[A (wA— ' B) + (wA' — B'h) A /c') ,

with
(-0 (- (81 -7 gl

(1 —a) (1= k7) (1—a*) (I =r7)

w

Thus, defining

v = —EICA', and ve =K (wA' — B'h),
w

we can write

Q, = (Q;l + v1vh + vgvi)fl,

and applying the Sherman-Morrison formula twice, we obtain

—Q 4 Cllngﬂ}éQp + CQQqulviﬁu — (1 + 012) qul’UIQQM — (1 + 621) QN’UQ’UZ/LQM

Q, =
a . (14 c12) 1+ co1) — cr1c22

with
cij = viQuu;, fori,j e {1,2}.

Thus, from the definition of A in Lemma B.7 and defining
A=TQ+ wTJIIC'QuIC,
we have that
A =TQ+ b7, 'K'Q.K = A + b7, ' K'Q, VK,
with

’ ’ / ’
C11V2Vgy + C22V10V] — (1 + 012) V1Vy — (1 + 621) Va7

V=
(14 c12) (1 +co1) — cr1ca2

Hence, it follows from the result in Lemma B.7 that
’ A N =1t ’ A N n—1
W =A(A+ar,'K'Q,VQ,K) B [B(A+wr, 'K'Q,VQ,K) B,

and, therefore,
W [B(A+a7,'K'Q,VQ,K) B'] = A (A +wr, ' K'Q,VQ,K) B

Rearranging, we get
W BAB' + 1, 'h'BK'Q,VQ,KB = AAB' + 7, "AK'Q,VQ,KB’,
and right-multiplying both side by (BAB’)_1 yields

I = AAB' (BAB')™ + 7' (A~ W B)K'Q,VQ,KB' (BAB') ™.
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Defining
si=(A-NWB)K'Quuv;, forie{l,2},

we obtain

_ - —a / —a
W — AAB' (BAB') 1+1DT;1(02281 ( +C21)82)U1+(011i2 (1+c12) 51)
(1 +c12) (1 +c21) — crica

= AAB' (BAB') ™ + i1, a1 AK'Q,KB' (BAB') ™" + ibr, 'ash/ BK'Q,KB' (BAB')~

!/
20,KB (BAB) ™!

1

—(c2251 — (1 +c21) 82) % + (c1182 — (1 +c12) s1) w
(1 +c12) (1 +co1) —crican

(c1182 — (1 + ¢12) 1)
(1+c12) (1 + co1) — cr1ca2’

a1 = , and ap=—

Next, notice that
K'Q.K = 7,K'KQ,

and

A= ((1 LK+ (1—a) " (L, — IC’IC)) Q,

so we have
.

K'Q,K = —F—-K'KA.
1+w
Thus, it follows that

B - (1 fa 2 ) AAB (BAB) ™+ as—" WBK'KAB (BAB) ™,
14+ 1+w
or
I = /1AAB' (BAB') ™' + foh' BK'KAB' (BAB') ™

with R )

w w

=1 d =
Ar=ltorg—n, and By=oay——0

Define

and guess that

. - 1
AAB' (BAB’) :
It follows that

B1
1— B

- - -1 _ _
AAB' (BAB’) B (L, — foK'K)AB' = B AAB'

B1
1— B2

- - 1 _ _ - ~ —1 _
AAB' (BAB’) BAB' = 5 AAB' + 8,AAB' (BAB’) BK'KAB'
B1
1— B

BLAAB' = 3, (1 — ) AAB',
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which verifies the guess, since AA = (1 — B2) AA. Finally, we have that

A= (I, - fK'K) ((1 YK+ (1 —a) " (I — /c’/q) QO
- ((1 —B) L+ ) KK+ (1 —a) (I, — IC’IC)) Q
=TQ+ a7, 'K'QK,

with R
B=(1—-B)(1+d)—1= <10¢21_1:w) (1+%) — 1= (1 — as)i.
and .
PR S e e e S
1—f 170121;_“@ l—ay 1+w
Substituting the definitions of oy and «s yields the result. O

Parts 1 and 2 of Proposition B.3. Given the result in Lemma B.8, we are left with taking the limit as

T — oo of the truncated problem. In particular, we have that

2
. YA . . YA
Th_rgo ci1 = T (w> V (&), Tlgrgw c12 = Th_rgf;c co1 = _TH;(C@V (W& — Ky, &),
. . A
Tll—I>Ic1>o e = 71,V (w& — Ky), Th_{réo 51 = —TM%C@V (& — K, &), and
lim So = Tu(C@V (wft - Ktvft - Kt) .
T— 00

Notice that

X Tu
w = ) 2 .
% c1185+c2087—(24ci2+c21)s18
1= )\(1 @ ) {(A N h/B) ’C,QMK (A/ - Blh) + = (21+62122)1(1+021)1E61126122 - 2}
Let w = limp_, o0 W, and r = limr_,» 7. Using equations w = ma o =a—tp,and (1 —a*) (1 — k}) =

¢, in order to return to primitive parameters, it follows that

A+ A0 —a+9)rV(§) (1 -5))

I NI —a+ ) (VE—E)+1V (&) (1L-S) +

and
ATV (&) (1 + o) w

Tl V(&) At l+w

(1_8)7

40



with

X922 (V&) (1= 8) = V(&) V (& — K)) = MomaV (&) (1-8)

"= 1=V (&) 2y —o6(1+3)) ’
¢y V(&K
V2= (2 V(&)(l—S))’

1/351—7(14—8).
This completes the proof of parts 1 and 2 of Proposition B.3.

Part 3 of Proposition B.3. Next, we switch focus to the level of the B = lim7_., hg. From equation
(A.5) and the definition of 7, we have that

(1—a)ho= [(1- ) (A—TB)+ah' (BA — HB)]
% K'S[=A (1 — a*) hok (A — B'h) + AXKA' + A\pKB'h],

which, using ¢ = (1 — o*)k§ and defining x* = x + (1 — a*)k{, can be rewritten as

(1—a)ho = [(1—a)(A—TB)+ah' (BA — HB)]
) K/S[=A (1 — %) (ho + £5)K (A" — B'h) + A KA. (B.10)

It is straightforward to see there exists a unique hg that satisfies this equation. We postulate that there exists
[ such that
(1—a)hy=1[(1—-a)A+ah’'BA—hB]K i,

so that solving for ji pins down the unique hy. To proceed, first replace the guess for iy on the RHS of equation
(B.10),
RHS = [(1 —a)(A—TB)+ah’' (BA—HB)|K'S[-X(1 — a*) (ho + k§)K (A" — B'h) + Ax*K A’
= [1-a)(A—-TB)+ah' (BA-HB)|K'S
— _ p / _ !~

l—«

+ HS} + Ax*ICA’}
Next, for the LHS of the equation, we have that

LHS= (1—a)ho =[(1 — o)A+ ah/BA — W'B|K'§,
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and, substituting the last h using equation (A.4), it follows that

LHS = [(1—a) (A — TB) + ah’ (BA — HB)] [Im — K'SKB’ (BQB') B} K'ji

= [(1—a)(A—TB)+ah'(BA - HB)|K'S [5 - KB (BOB) ' BK| i
= [(1—a)(A—TB)+ah' (BA - HB)}
B'h)

x {Q ' = A1 —a")K (k1A — (nlA W B)K' +v*KA AK'}

where the last equality uses the definition of S. Putting these results together, we have that

LHS — RHS = [(1 — a) (A — TB) + of’ (BA — HB)|K'S
X { {07 = A[(1— ") K (k1A' — B'h) (5] A — WB) K’ + v KA AK')} i
FA1L—a)K (A — B'h)(A—KB)K' i+ A(1 - a*) kiK (A — B'h) — )\X*ICA’},
where we used the fact that K (A’ — B'h) i’ B (A — 1;,) K' = 0. Thus, a sufficient condition for LHS — RHS = 0
is
{9, = A1 - a*)K (k]A" = B'h) (kiA— W'B)K' + v*KA'AK')} i
A1 —a")K (A" —=B'h)(A-—NWB)K'i+ A(1 —a*) kK (A" = B'h) — AX*KA' =

Notice that, using the definitions from Lemma B.8, this equation can be rewritten as
{9, +viv] +vavh} = —A(1—a*) koK (A" = B'h) + AX"KA'.
It follows that
1={Q, +QVQ}{-A1-a") kK (A" — B'h) + \x* KA},

and, therefore,

ho=(1—a) " [1—a)A+ah'BA—hB|K'L
—(A—W'B)K'f
— (A~ WB)K {2 + 2V} {-A(L — a*) k5K (A — B'h) + A" KA}
1183 + €2257 — (24 c12 + C21) 5152 }
(1+ci2) (1 +c21) — crican

c115222 + €225121 — (1 4+ ¢12) s122 — (1 4+ ¢c21) 5221
+ M (A-KWB)K'Q, KA + ,
X {( ) a (1+012) (1+021) — C11C22

=-A(1-a") kK {(A —h'B)K'Q,K (A" — B'h) +

with
zi = AK'Quu;,  fori e {1,2}.

Notice that we have the following limits

A
lim z = —7,2°V (&), and Jim_ 2 = 7,00V (W& — Ki,&).
w — 00

T—00
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Therefore, using x* = x + ¢, and (1 — a*) kK = ¢, we obtain the bias as a function of primitive parameters,

_ XAV (E) (1 =8) +v

B= 1=, V(&) +vs
with
v = Apry (V (&) (1= 8) = V (& — K2))
— N2 (6 (x— 9) +299) (V (&) (1= 8)* =V (&) V (& — K0))
vs = AV (&) (208 = 7) + N726% (V (€)° (1= 8)° = V(&) V (& — K0))
which completes the proof of part 3 of the proposition. O

B.3 Multiple aggregate shocks

Consider the same setup described in Section II, but suppose that the common fundamental, &, is now driven

by a Z x 1 vector of shocks, 7, according to the following stochastic process:
& =a(L)n, with n ~N(0,%,),

where a(L) is a polynomial in the lag operator L. In the objective environment, 7; is normally distributed
with mean zero: pu; = 0. Subjectively, agents believe that 7, is drawn from a Gaussian distribution with the
same covariance matrix, ,, but there is uncertainty about its prior mean, denoted by the Z x 1 vector p.
Ambiguity about &; is then captured by the perception that

Up NN(/’('hEn)v and Ht NN(OaZM)

In Section II, the degree of ambiguity is captured by the ai. Here, the covariance matrix ¥, plays this role.
Without loss of generality, we assume that 3, and 3, are diagonal matrices, that is 3, = diag(ag’l, ey 0727’ 7)

and X, = diag(o? ;... ,03 2)-

)

Auxiliary forecasting problem Consider the following pure forecasting problem, which we later link back

to the economy with ambiguity.

Definition B.3. The (w,a, {r;}Z ,)-modified signal process is given by

& = a(L)diag(1 +r1,..., 1 +7y)f, with i ~N(0,%, +wX,),
T4t = m(L)7; + n(L)&y, with & ~ N(0,(1 —a)"'%),

where w is a non-negative scalar and « is the degree of complementarity. Let the optimal Bayesian forecast be
given by
Eitl&] = p(L;w, a, {r;}) ) Zi.

This modified signal process is analogous to the baseline. The adjustment w to the volatility of 7, is the
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counterpart to w = wr, !'in the univariate baseline, that is ¥, + wY, is the counterpart of (1 + w)ag =
(1 + wry)op = o7 + wo,.. Further, the amplification factor, (1 +r) in the univariate case, has now been
incorporated into this modified signal process since in the multivariate case each shock requires a potentially
different adjustment, before being put together into a modified fundamental. So, p(L; w, o, {r;}Z_;) here is the

counterpart of (1+r)p(L;w, &) in the univariate case. To proceed we need the additional following definitions.

Definition B.4. Define the p-modified fundamental and (unbiased) aggregate action as
& =a(L)p, and Kf' =p(Liw,a, {ri})m,

and the p-modified aggregate sensitivity to signals as

V(&)

St=1

We can then prove the following proposition.

Proposition B.4. The linear strategy in equilibrium takes the following form

g(.’[f) = p(L7 w, &, {ri}iZ:1)xit + B

1. The polynomial matriz p(L;w, o, {r;}%,) is the Bayesian forecasting rule with the (w,c,{r;}%)-

modified signal process and w satisfies

1

MAV(EZ(1—5m)2 )’
1—Au4%@(V@ffkff*;%?ﬂng*)

w =

2. Foralli € {l,...,Z}, the additional amplification, r;, satisfies

=" AV (6#) WTy,i (
! 1—-MV(EH) 1+ wr,

- 8");

3. The level of bias, B, satisfies
AV (&)

=X v

(1-8").

Proof of Proposition B.4. The truncated version of the problem is analogous to the case with one common
shock, with the following adjustments: (1) the size of the vector of aggregate common shocks must be set to
u = Z(T +1); (2) the size of the vector of all shocks becomes m = (Z + N)(T + 1); (3) instead of Q, =1, 07

and Q, =1, 02

1> We now have Q,, = Ir11 ® X, and Q,, = Ir41 ® ¥,,. These modifications do not affect in any

way the results in Lemmas A.1, A.2, and A.3. However, Lemma A .4 relies on the fact that €, = I, 0‘727 and

Q, =1, O’i. The following lemma provides the relevant analogous result.

Lemma B.9. Define
A=TQ+wK'Q,K,
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with the scalar w given by

1

L= A=) (A= WB)K (9 + 1225058 k(4 - Brh)

/II):

Also, let the diagonal matrix R be given by

R =1p4, ®diag (71,...,72),
with the scalars 7;, fori € {1,...,Z}, given by

A~ 2
L WTyuy Ay , , , . _ 0L
s = : A-NB)K'Q,KA", with 7,;, ="
" T, <1—)\7AIC’QNICA’>( J LK e T, ol

5T

Then, the equilibrium h satisfies
W =Al,+R)AB (BAB')

Proof. From the definition of Qu and A in Lemma A.3, we have that

5 (o -1 M, A AK'Q)
Q= (" = MKAAK) = Q41— A‘;AK,Q#KA“,.

Thus, it follows that

QL CA AK'Q,
1 — MAK'Q, KA’

A=TQ+wK'Q.K = A +wK/ ( ) K=A+ sk (Q,KAAK'Q,) K,
with s = Ay/(1 — AyAK'Q,KCA"). Hence, it follows from the result in Lemma A.3 that

o= A (A + sk (KA AK'Q,) K) B [B (A + stk (2, KA AK'Q,) K) B ™,
and, therefore,

W [B(A+ swK' (Q,KAAK'Q,)K) B'] = A (A + soK' (Q,KA’AK'Q,) K) B'.

Rearranging, we get

h'BAB' + swh' BK' QKA AK'Q,) KB = AAB' + s AK' QKA AK'Q,) KB,
and right-multiplying both sides by (BAB’) ! yields

W = AAB' (BAB')™ + s (A — W' B) K'Q,KA' AK'Q, KB (BAB') ™!

= AAB' (BAB')™' + 20AK'Q,KB' (BAB') ™.

Next, notice that
K'Q.K = IC’QHQ#ICQ,
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and
A= (IC’(IU 02,0 + (1) (L, — /C’/C)) Q

so we have

K'Q.K =K' (Qu(Qn + wﬂu)*l) KA.
Thus, it follows that

— AAB' (BAB') ' + 20 AK (2,(Q, +99,) ") KAB' (BAB') ',

with the scalar Z given by

2

Ay N / /
(1_MAK,QMKA,> (A—I'B)K'QKA'.

Further, we can write
' =A(, + R)AB’ (BAB’) ,

with
R:IC'(ézi) (Q + Q)" )IC
=K' (20(Ir41 ® £) (Ir1 ® By) + 0 (Irs1 ® 8,)) 1) K
=K' (Ir41 ® GUE, (2, + 0Z,) 1)) K
=K' (Ir41 @ diag (20, (0] ) + o )", ... o 400, + 105, ) ")) K
=K' (Ir41 @ diag (71,...,72)) K,
which concludes the proof. [

Parts 1 and 2 of Proposition B.4. Given the result in Lemma B.9, we are left with taking the limit as
T — oo of the truncated problem. In particular, we have that
lim A (L, + R)AB' (BAB')™

T—o0

=p(Liw, o {ri}ily), Jim AK'QLA"=V(g),

lim (A~ h'B)K'QK(A — BN) = V(¢ = K}'), lim (A—hB)K'QKA = COV (& — Kf',&"),
—00

T—o0

(A= I'B)K'Q, KA’

i —1-8"
P AR, KA s
Let w = limp_, 00 W, and r; = limyp_, o 74, for ¢ € {1,...,Z}. Then, we can show that

0T MAKQKA (A- WB)K'QKA
T e T i, 1 — MAKQ,KA A, KA
wTM,Z )‘rYV (gt )

- 1 sn
1+w7#7¢17>\7V(§f)( ),
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and

1
w= lim

T 1 _\(1—a)(A—WB)K' (Q,L + %) K (A" — B'h)

1
= lim

0o M ((A—h'B)K'Q,KA)(AK'Q,K(A’—B’h
T2 1A (1—a) (A= WB) K9, (A — Brh) 4 2UAN DO E 0, p) )
1

MV(EHZA=81)2\"
1-A1-a) (V(Eé‘fKé‘HW)

Part 3 of Proposition B.4. All the steps used in the proof of part 3 of Proposition 4 hold without change

except for the last step. From those derivations we have that

I /
ho = x\ (A — ' B)K'Q, KA’ <Iu + AVAKTY, KA )

1 — AyAK'Q, KA/

Taking the limit we get

B = Jim ho =, COVE: - k) (14 20y - XD,

L=MV(EH ) 1=V (e

which completes the proof of part 3 of the proposition.
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C Proofs of Other Results

Proof of Proposition 1. Following the same arguments used in the proof of Proposition 3, the optimal

linear strategy, g (x;) = s*z; + B, solves the following fixed point problem

2 2
g o

ri+B= | EF[{|a]p i)dp = £ i < p i) duy,

s*w; + /H [€]s] p (p|z:) dp og+ag‘$+a§+ag/ﬂ“p(“|m)“

with

B (ules) ox exp (NB* [(s"ws + B~ &) = x¢] ) p (il p (1)

(Cvi—ﬂ)z _ Ly

*\2 2 *
oxexp [ A(L—5")"p" +2X(s" = 1) Bu — xp — —
Q(Jngaf) 2‘72

Mapping it into the kernel of a normal distribution yields
ﬁ’bm“l’Q)\(s**l)B*)\X 1

L4 Ao -oa(1-s)? AL+ s —20(1-s)°
m I3 € "

Ug—&-o?

u~N

which implies that

p xX; = .
”/“L HiEeH 0%4-#—2)\(1—8*)2
I e

Matching coefficients leads to the following conditions

1
" 52 UngU?
2, 2 2. 2 1 1 27
of+o02 0 +o0? oz + oito? 2) (1 — s%)

2
«_ Y o

and

o? 2A(s* —1)B— Ax
o§+<f§é+ L ox(1—s%)?

og-‘rog

Solving for s* and B leads to the expressions stated in the proposition. O

Proof of Corollary 1. Aggregating the individual best response in equation (14) leads to

K. = (1-a)F, [&] +aF, [Ki).
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Iterating forward using the definitions of subjective higher-order expectations, it follows that

K= (1-a)F 6] +al-a)F, [&] + o?F, K]

N . .
= (1-a) Y dF 6]+ NF K
j=0

= (1-a) ) o/F 4],
j=0
which completes the proof. O

Proof of Corollary 2. This result follows directly from the fact that p (L;w, ) permits a finite state repre-
sentation. O

Proof of Proposition 5. Applying Proposition 4, we obtain

2
(1+w)og

i = i 1-— A 2, ith = >
File] = cxi = ( S) XTus W s (1—|—w)a§+a€2

Aggregating over i, it follows that
Fle] =€ = (1 =¢) Axop.
Applying the operator F; to both sides and aggregating again yields,

Fle == (1—¢) (14) Ao,

Iterating forward, it follows that

m—1
FUE =" = (1=¢) Y FMAx0 = k€ + B,
k=0
with
m—1
km=¢", and B, =-—(1-5) gk)\xai_
k=0

Therefore, we have that

Bm - ﬁm—l - (1 - C) ’Qm—l/\XUi = /8771—1 + (K:m - Hm—l) AXUEU

which completes the proof of Part 1. Moreover, combing equation (15) with the fact that F [€] = km& + Bm
leads to

K:(l—a)Zam/ﬁm£+(1—a)zamﬁm7
m=0 m=0
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which completes the proof of Part 3.

To establish Part 2 notice that, from Proposition 4, we have

w = {1—A(1—Q)V(§—K)}1,

Tu

which, differentiating with respect to «, yields

%:AMZ [(10&)WV(€K):|.
Since
9 2
V(E-K)= <(1+w)(1_€a)ag+ag> g,

it follows that

and, therefore,

dw | 4 _ 02 _ _adﬂ —
M—A“’V@_K)[Q(l O‘)<(1+w)(1a)a§+02>(w (1 )da> 1]

AV (€ - K) ((w— 1)(1 - a)o? —oz)
1+w+2A(1 - a)w?V (- K)|(1-a)of +02

Then, since, in the limit as « increases to 1, we have that w — 7, and V(§ — K) — V(&), it follows that

lim 3 —AT2V(€) < 0.

a—1- do

On the other hand, notice that

. dw
sgn [ lim da} =sgn [(w—1) o? —-o?],

a—0t

so that, since w > 7,, we have that

2 2

loris dw

s < lim — > 0.
og a—0t+ da

Ty >

Hence, w is non-monotonic in « if 7, is large enough.
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Proof of Proposition 6. It follows from Proposition 4 that, when v = 0,
B=x\,V(&)(1-S).

Therefore, to prove that |B| is increasing in «, it is sufficient to prove that the sensitivity S is decreasing in

«. Since, by definition

S _ C(D)V (Ktaft)
V(&)

with V (&) independent of «, it is sufficient to show that

dCOV (K, &)

0.
da <

Following the notation of the truncated economy introduced in the proof of Proposition 4, we have that
COV (K, &) = W BAQA',
with h denoting the optimal forecasting rule
h=AQB (BOB) ™', with Q=(1+w)AQ+(1—a) " (I, —A)Q.
Since € is diagonal, we can rewrite h as
h= AQB' (BQB’>_1 , owith Q= AQ+ma (In—A)Q, and ma=[(1-a)(1+w)] "

It follows that

R —1
!
MW—(K“&) _ AQAB/d <BQB ) BAQA’
da

. —1 ( . -1

— _AQAB' (BQB’) gy (BQB’) BAQA’

da
= (2 (L, — A)Q2)m2 [(ler) —(1-a) j“’} ,
(07

where z is a column vector,

. 1
:=B(BOB')  BAQA.
Since (I,, — A) Q is positive semi-definite, it follows that

dw

san [dmwm} ~ s [(1 by (1-a) S0

do

Further, notice that since w > 7, and lim,_,;- w = 7, we have that the lim,_,;- dw/da is bounded and,
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therefore,
. dCOV (K4, &)
lim ———=>=

0.
a—1- da <

Finally, for a contradiction, suppose there exists some a € [0, 1) such that dCOV (K, &) /da > 0. Tt follows
from the intermediate value theorem and the continuity of dCOV (K%, &) /da that there must exist some oy
such that

dCOV (K3, &)
da

d;w
da

71+U)T
B 1 — oy

=0

a=ay

>0,

a=ay

where w; denotes w evaluated at a. With v = 0, Proposition 4 implies that

and it follows that

dw _ —w? [V(ft -Ki)—(1-«a)

da

dV(f(,;a— Kt)] .

Using the fact that, similarly to COV (&, K;), V (§; — K;) depends on « only through m,, we have that

dV (& — Ky) dV (& — K;) dmg dV (& — Ki) 5 dw
—t ¢ = = St 1 —(1—a)— =0
do a=a; dmg da |o—q, dm, e (1+w)-(1-a) doff,o,
and, therefore,
dw
— = - M?V (& — K;) <0
da|oa, w7V (& — Ky) <0,
which yields the desired contradiction. O

Proof of Lemma 2. We start by characterizing the zero-inflation steady state. From the budget constraint

of household i, we have that

C. 1= Yg — Ci,g,t
27 9 - :
I 1+ g

Substituting C; 4 41 into the utility function U (C; 4.4, Ci g.4+1) yields

ley Yg*Ci-,y,t 1=y
bot 4 g IHmets

U(Cig,t,Ti41) = T T

The Euler equation in the zero-inflation steady state implies that

C,V =B (Yy—Cy) " =0. (C.1)

52



Let ¢;,4,+ be the log-deviation from the zero-inflation steady state, that is
Cigt =logCi g1 —log Cy.
The quadratic approximation of U (Cj 4.4, m+1) around the zero-inflation steady state leads to

U (Ci,g,t,ﬁtﬂ) ~Q (étﬂTt-H)

_ Yy _0O _
= const — C}7V ( g) m41 + (L —v) Cgliucfhg’tﬂ't_i_l

g Cg
-1
1 ~l—v Yg -C 2 ~l—v Yg — Cg 2
+§(1—V) o z. T — 5vCy " |1+ z, Ci gt
~l—y Yy, -C (Y, - C 1-vY, —C,
:const—C'; (gC )77,5+1+(1—1/)C; <gC’ g V gY g>7rt2+1
g g g
2
1 o, Y, 1-vY,-C,
,I/Cg Yiq — Og (Cl g,t L Ytq Tt+4+1

Given subjective beliefs F; 4 [-], the optimal consumption must be proportional to the households subjective

expectation about inflation:

1-vY,—-C
=, %}—i,g,t[ﬁtﬂ]

g
ﬁl/u

:W}—Lw [me4a],

where the last equality directly follows equation (C.1).

In the smooth model of ambiguity, similarly to the proof of Proposition 3, it can be shown that

1-vY, — C t R
Cigt = ——— " / E* [mis1|Zig,i) D (1| Zig,0) dpts
14 Yg pt

where the distorted posterior p (u!|Z; 4.¢) is such that

P (1" Zigt) o< exp (*)\E”t [Q (¢, 7Tt+1)]) :
Let the subjective belief of the household be such that

Figtl[]= /ut B [T g.4] B (11 Z1g0) dit',
then, it follows that

51/1/
Cig,t :Wﬁ,w [Ti41] 5
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which yields equation (28). Substituting ¢; 4, into Q (&, m41), leads to equation (29) with

7 ﬂl/u
=ylv—-
Xg g (1 +61/V)1_u
1o, (v=1p"" 14+vp""
§Yg 1—v 1/1/
(1+pur) v (L4 B8YY)
1 (1—v)* Bl

0g = Zyl-v

Vg =

Notice that d4, x4, and 7y, are all proportional to Yg”_l. Moreover, when v > 1, they are all positive and
decreasing in Y. O

The following lemma is used in the proof of the next propositions.

Lemma C.1 (Kalman filter for AR(1)). Given a state equation
£t = Pftfl + v, with 14 NN (070-3) )

and an observation equation
_ . 2
xy =& +ug, with ug ~N (0, O'u) ,

the steady-state Kalman gain is given by

1 2 2 2 2\ 2 2
o= pffjf\/(pffgcf) 1a% )
2p POy POy Tu

and the updating rule for the Bayesian forecast follows

E¢ [€e11] = p(1 — &) E¢—1 [€] + pry.

Proof of Proposition 8. Cosider Lemma C.1 with & = 7y, 02 = 0‘%, and 02 = 02, and define w = p (1 — k).

Since every agent ¢ in every group g has the same information structure with signals given by
_ : 2
xi,g,t = T¢ + Ei,g,h with Ei,g,t ~ N (0, O'E) s
it immediately follows from Lemma C.1 that

Ei gt [mi1] = wEig -1 [m] + (p — w) Ti gt

1 o2+ o2 o2 + 02\ 2
w=g |+ = 2"_\/<p+ E 2»7) -
po? po?

and

[\
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Integrating the updating rule for the forecast, we have that

[Bialrin) =o [Boper m)+ (0= ) [y

Egt [mi11] = WBg i1 [m] + (p — w) e,

and, therefore,

which can be rewritten as
p—w

E ¢ [mi41] = ——.
gt [Te1] = 7 ——m
The average forecast error is, then, given by
p—w
Tt4+1 — Eg,t [7Tt+1] = Tt41 — 1— wLﬂt

Nev1  p—w Ly
1-pL 1—-wLl-pL
Nt+1

1—wlL’

which concludes the proof. O

Proof of Proposition 9. It follows from Proposition 4 that
Figt 1] = (L4 719) Eig [meia] + By

where E; g ; [m41] denotes the periot-t Bayesian forecast of 741 of agent ¢ in group g given the (wg, 0)-modified
information structure (notice that here a = 0). Thus, setting & = m, 07 = (1 +w) 0, and o, = 02, it follows
from Lemma C.1 that

Ei gt [mir1] = p(1 = kg) Ei g1 [me] + prgmi g,

with

2
pPo; e

2 2 2
o L G%+a+%wﬂ¢Gﬁ+a+%waMu+%wz

It follows that
(L47g) Eige [miqa] + By = p (1 — kg) (L4 79) Ei g1 [me] + By) + (L +1g) prigige — p (1 — kg) By + By
and, therefore,
Figit[me1] = p (1= Kg) Fi g1 [m] + (1 +1g) prgaige + (1= p(1 = ky)) By.
Defining 9, = p (1 — k4), we obtain

Fig,t [Te41] = Vg Figt—1 [me] + (1 + Tg) (p— ﬁg) Tigt + (1- 199) B,
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with

1 o2+ (1 +w,)o? o2+ (1 +w,) o2\
9= L Hwﬂﬁwgu) y

Integrating the updating rule for the forecast, we have that

[ Fatlmn) =0, [ Fupis (md + (41 (0= 9) [wig+(1-0,)B,

and, therefore,
Foilm] = 9F g [m] + (1 +1y) (p—0g) m + (1 —9y) By,
which can be rewritten as

= (1+7y) (p— V) m
Fot[mes1] =
9.t LN+ 1-9,L

+ B,.
The average forecast error is, then, given by

T 147 —9,)m
M1 — Foe[mer] = w1 — ( f)—(%gL J) Tt

(1 +7g) M1 Ty

1—0,L  1-pL ™"

B,

Bg.
The fact that ry > 0, wy > 0, and By > 0 follows immediately from Proposition 4 together with the fact that

dg > 0, xg > 0, and 4 > 0 established in Lemma 2 and that, by assumption, A > 0 and O'Z > 0. Finally, to

see that ¥, < w notice that, from the triangle inequality, we have that

02 +02\? wy02\ > 02+ (1+w,)o2\>
po? po? po?

Wyo2 o2 4+ (1 +w,)o2\2 02 4+ o2\ ?
g;’— p—|——€ ( 29)7’ —4 < — p+ < 27’ — 4.
po2 po? po?

0'2

n

2
Adding p + Usp% and dividing by 2 yields the result. O

so that

Proof of Proposition 10. Under rational expectations, the optimal inflation forecast is such that
Fi[r] =E; [(1 —a)m" + Oé?[ﬂ']] .

It follows from the the equivalence result in Huo and Pedroni (2020), that the optimal forecast is given by

Fi[m] = T Z;.

o2+ (1— a)fl o?
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Aggregating, we obtain

o 2
Fln] = T .

02+ (1—a) o

Plugging this into the time-invariant inflation policy rule (34) completes the proof. O

Proof of Proposition 11. To ease notation, let
ki=F;[r], and K = F]In].
Plugging (34) into the utility function of the agent results in
uky, K,7%) == (ki — (1 — o) 7 — aK)? = x (1 — a) 7* + oK)
=— [(1 —a) (ki — 1) 4+ a(k; —K)Q} —(l-a)xm" +a(l—a)(K -9 - axK.
This is an inefficient economy, so we use Proposition B.3 to characterize the optimal forecasts. Let

Aineff, = 2)\7 Oineft. = @, Yineff. =0,  Xineff. = (1 - a) X

DN | =

1
wineff. =—a (1 - Ol) ,  Oiner. =0, and Qineff. = iax’

where parameters with a subscript “ineff.” correspond to the ones in the setup of Proposition B.3. It follows

that
T

w = 3
1-22(1-)" 7,V (1 — K)

, and 7 =0,
where 7, = az /o2 is the normalized amount of ambiguity. Moreover, the bias is given by
B=A(1-0a)x7,V(r)(1-=38)+ daxm, [V(r)(1-8)—-V(r—K).

Using V (7) = 02 and V(7 — K) = (1 — 8)? 62, we obtain the desired expressions for sensitivity S and bias
B. Finally, the implied inflation policy directly follows from equation (34), which completes the proof. O

Proof of Proposition 12. Since the loss function is continuous in oi, it is sufficient to show that

dL
— < 0.
dUIQL Uﬁ:O
Fist notice that
w 2 o 9 d 2w 5 dR dc
L=—|1-R C —=—|-(1-R — +C—
a[< ) oxt } = dgﬁ a{ ( )U”daﬁ—i_ daﬁ
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If UZ =0, it is optimal to set R < 1 and C = 0, so that it is sufficient to show that

a”
daﬁ

or, equivalently,

ds

— 0
do? =5

2_
aufo

since R =1 — a + aS. Further, notice that sensitivity S depends on ai only through w and is monotonically

increasing in w, it is then sufficient to show that

dw
— > 0.
dO'ﬁ 05:0
This, in turn, follows from the fact that w = 0 if O'Z =0, and w > 0 for any O'Z > 0. O

Proof of Proposition 13. The optimal inflation forecast must satisfy
Filr)=(1— ) F [7*] + oF; [F [7]] .

With heterogeneous priors, the belief system of agent ¢ is such that

Fi[r'] = Ei[r] = ("’%) z;, and

2 2
0%+ 02

) o2 o2 o2\’ o?
Filml=Fi [03+0?Ij+0§+038} B (M) xi+<072r+‘7?) .

It follows that
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Continuing to iterate forwards, we obtain that, for all k£ > 1,

) :(o£+oz> <02+a2> " <Z_:O (UQHQ) ) (cn%ﬂr?) 5
0'2 k 0'2 0'2 F
_ s s . 1 — T
(%) (ﬁwf)“( (%) )&

Notice that the optimal forecast of agent i can be expressed as a weighted sum of higher-order beliefs,

Filrl = (- a) R[]+ (1 -a) ) o' F [F ]
k=1

k 2 oo 2 k
O—ﬂ' 0-7('
(1-a) (ZO‘ <02+02> ) (02+02> xiJF(l*a)Zak <1<02+02> )B
™ € k=1 ™ €

:SREICi+OZ( —SRE)B,

2
where SR = W denotes the sensitivity under rational expectations.
From the inflation policy in equation (34), it follows that
R=1-—a+ oSt =REE  and C:a(a—aSRE)Bza(l—’RRE)B.
Finally, the social loss function is given by

L= [(1—7%)2072,—#62],

w
(0%

which is increasing in B since C = « (1 — RRE) B.
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D Uniqueness and Linearity of Optimal Strategies without Strategic Interactions

In this Appendix, we prove that in the absence of strategic interactions, the optimal strategy is unique and
linear in signals. It is worth noting that the uniqueness of the optimal strategy only requires concavity of the
utility function () and the ¢(-) function (Lemma D.1). Linearity, on the other hand, requires u (-) to be
quadratic, ¢ (-) to be of CAAA form, and the information structure to be Gaussian (Lemma D.2).

We base our analysis on the truncated economy outlined in the proof of Proposition 4, while shutting down

strategic interactions by suppressing the dependence of the utility function on the aggregate action K:

g / & (B [u (k(z;), 0)]) plu)dp.

Agent ¢ must choose an ex-ante strategy k(x;), a function of their entire history of private information, x;.

Lemma D.1. Without strategic interactions, there is a unique optimal strategy k; = g (z;).

Proof. To simplify notation, denote
W) = [ 6@ W) du and W =W (7).
o

Suppose there are at least two strategies g; (z;) and g (z;) with g; # g2 both achieving the optimum, that is,
W (g1) = W (g2) = W. Consider an alternative strategy h = 2592 It follows that

Wi > [ o (2 |Gutn0+ 0] ) pimas

= [0 (5E o 00+ 57 000,00 ) )
> [ (50 o000 + 50 n(a1.00) ) )

1 1 _
= §W (g1) + §W (g2) =W,
where the first and second inequalities use the concavity of u and ¢, respectively. The condition W (h) > W
contradicts the assumption that g; and go are both optimal strategies. As a result, it must be the case that

there exists a unique optimal strategy g. O

Lemma D.2. If u(-) is quadratic, ¢ (-) takes the CAAA form, and the information structure is Gaussian,

the optimal strategy is unique and linear in signals, i.e., there exist unique h' and hg such that

Proof. Notice that the economy under consideration is a special case of our model in Section II in which there
are no strategic interactions, i.e., « = 0. Then, invoking Proposition 2, we know that a linear optimal strategy

exists. Combining this with the uniqueness result of Lemma D.1 completes the proof. O
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E Robust Preferences: Derivations and Proofs

Lemma E.1. Taking the law of motion of K; as given, individual i’s best response satisfies
kie = (1 — o) Fir [&] + aFi [ K],

where Fit [/] denotes agent i’s subjective expectation, such that for any random variable X,

]'—it[X] = /Xf)it(X)dXv with f)it(X) X €xXp (_wu(kitaKtvft)) P(X | xf)

Proof of Lemma E.1. The first-order-condition for the minimization with respect to m;; is given by

1

1
u ki, Kty &) + —logmy + — = 0.
w w

Together with the fact that E;; [m;] = 1, it follows that

exp (—wu (i, K¢, &))
Ei [exp (—wou (ki, Ki, &)

mix =
Thus, problem (35) can be rewritten as the following problem with risk sensitivity:

max ,% log (E; [exp (—wou (kt, Ky, &))]) -

kit

The first-order-condition for this problem with respect to k;; is given by

Eir [exp (~mu (i, K1, &) 252080 | ;
Eit [exp (—wu (kit, K¢, &)

Since

ou kz ,K,
w =ki— (1 —a)& — akKy,
it follows that

exp (—wu (kit, K, &) ] ‘ [ exp (—wu (kit, K, &)
it [exp(fwu (kataft))] ok KtEit [exp(fwu (kitaKtaft))]

ki = (1 —a)Ey ftE

exp(—wu(kit, Kt,6t))

Lettlng Ei¢lexp(—wu(ks, K¢ €t

] be the Radon-Nikodym derivative completes the proof. O

Proof of Proposition 14. Consider the same truncated version of the model used in the proof of Proposition

4. From Lemma E.1 we have that the optimal strategy then satisfies that

ki=(1—a)F[0]|z)]+aF K|z, (E.1)
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with the distorted posterior given by
P (n|w:) o< exp (—wu (ki, K, 0)) p (1 | 2:) -
We proceed with a guess-and-verify strategy. First we guess that
k; = h' By; + hy.
Substituting this into equation (E.1), it follows that
ki = ((1—a) AK" + ah' BK') F [n | Bvi] + ahy.

Thus, we need to determine the subjective conditional expectation F [ | By;]. We proceed to characterize the

distorted posterior p (| By;) by the following three steps:

1. First, the Bayesian posterior p (n | By;) is such that

p(n | Br;) o exp (—; (1= tnisr) Zy s, (0= /‘an)> 7
with the conditional mean and variance of given by
fig By, = KQB' (BQB') ™' By;, and Sz, = KQK' — KQB' (BQB') ™" BOK'.
2. Second, notice that

u(k,K,0) = — % (1 — o) (WBv; + ho — AK'n)* + o (W Bv; — h’B/c’n)ﬂ — xAK'n — %wn’ICA’AIC’n
= constant — %fyn’lCA’AlC’n - % [(1—a)nKA"AK'n + an'KB'hh BK'n)
45101 = 0) (o + vLB') A+ v BHI'B — XA K'n
4 n’/c% (1= a) A’ (ho + W Bui) + aB'hi By — x A,
with the constant independent of 7.

3. Finally, putting these results together, the distorted posterior must be such that

1
2

- 1 ~ 1 -
-1 ~ —1 1 -
nlszwn + 7'u/U|BViEn\Buin + 277/2n|3yilu'an>

] B o exp :

where the distorted posterior variance and mean are given by

i;llBul = E;IIBW +Q and Hy|By; = EUIBW (Z;IIBW,M,”BW + RBVZ‘) + Ty,
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with the matrices Q and R and the vector 7, given by

Q= —wyKA'AK' — w[(1 — a) KA'AK' + oK B'hl/ BK'], (E.2)

R= —wK[(1—a)A +aBhl, (E.3)
-1

= —w (z;ﬁBw n Q) K[(1—a)A'hy— xA. (E.4)

The distorted expectation under robust preferences can, then, be written as
E[n| Bvi] = fiyjpy, = MBv; + 7,

with the matrix M given by

-1

M= (5h, +Q) (S5, KB (BRB) ' +R). (E.5)

Thus, we that that
ki = ((1 - a) AK" + ah' BK') (MBy; + m,) + ahy.

and for the initial guess to be correct the following fixed-point conditions must be satisfied:

h' = [(1-a)A+ah'B KM, (E.6)

ho = [(1 —a) A+ ah'B] K, + ahy. (E.7)

In what follows, we first characterize the responsiveness to signals h that solves equation (E.6) and then

characterize the bias hg that solves equation (E.7).

Characterization of the responsiveness, h. We start by rewriting the equation for the matrix M. Sub-

stituting 2’ from equation (E.6) into equation (E.3), we obtain
R=-wK((1-a)A"+aB'h)((1—a)A+ah’B)K'M
Plugging this expression for R into the definition of M, equation (E.5), it follows that
(E;ﬁBw n Q) M = (z;ﬁBWmB’ (BB — wK (1 —a) A +aB'h) (1 — ) A+ ol B) IC’M) .
Solving for M we get
N\ -1 .
M= (Iu + S50, Q) KQB' (BQB) !,

where the I, is the identity matrix of dimension u and the matrix Q is given by

Q

Q+wK((1—a)A +aB'h)(1—a)A+ah’B)K’ (E.8)

= —wKA'AK' —wa (1 —a) K (B'h—A") (WB - A)K'.

63



To ease notation, we define matrices
7y = —wyKA —wa(l—a)K (A" = B'h), and Z;=-wa(l—a)K(B'h—A"),
so that
Q = 7, AK' + Zoh/ BK'.
The fixed-point condition (E.6) can, then, be rewritten as

~ 1
W =[(1-a)A+al/B|K’ (Iu + ZmB,,iQ) 0,KB' (BQB) ™",

where we used the fact that XQ = , K. Using the Woodbury matrix identity, we obtain

(1t S50Q) 2=~ (L4550 Q) Dy Q0.

so, we can further rewrite the fixed-point condition as

B =[1-a)A+al/BK (Qn - (Iu n EU‘BWQ) anWQQn> KB (BQB') ™

-\ —1
—[(1—a)A+al'B|K' (Q,, - (Iu + %180 Q) Syiv: (Z1 AKX + Zoh/ BK') Q,,) KB (BQB')™!

= (1 — a+ ) ANQB' + (o — 50) W BAQB',

where A = K'K and the endogenous scalars 32 and s are given by

o\ —1
= —[(1-a)A+ah'B|K' (zu n ZmByiQ) S B0 21

-1
s = [(1—a)A+ah'B]K' (Iu + anBuiQ) Yn|Br: Za-

Solving for k' we obtain
1— . -1
i W YN oY 4 (Bop) (E.9)
1 — o+ V%)

where the transformed variance-covariance matrix €2 is given by

1—a+ 1

O AQ+ —— (I = A) O, (E.10)
—

1-a
with I,,, denoting the identity matrix of dimension m.

In what follows, we provide expressions for the two endogenous scalars (¢, 72) such that we can take the

limit as T' — oo and obtain the formulas in Proposition 14. For this purpose, it is useful to define

X= (=) A+al'BIK (S}, +Q) .
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Notice that (s¢1, 52) can then be written as
sy = —XZ1 = wyXKA + 505, and 30 = —XZy = wa(l —a)XK (A — B'h).

Therefore, it follows that

~\—1 o
X = [(1 — Oz) A+ Oéh'B] K’ <ZU|BW — (277'13”1 + Q) QE,”BW)

(1—a)A+al'BIK'S, ., — XQZ, 4,

(I-a)A+ Oéh/B] IC/E”‘BW -X (ZlAIC/ + Zgh/BIC/) ET]\BW
(1—a)A+ ah'B| IC'E,”BW + (5 AK' — 300/ BK') DI

1 —a+ ) AK'S, gy, + (a0 — 52) W BK'S, gy, -

Thus, since 21 — 35 = wyXKA’, we have that,
sy — sy =wy (1 —a+ ) AK'S, 5, KA + @y (a — 3) W BK'S, 5, KA. (E.11)
Next, notice that

KQB' (BQB') ' BQK' = XS L KQK' — ' BQK/,

-1 -1 -1
X=XEb %5, =XE0L KOK — X2 b,

n|Bvi n|Bv; n|Bvi
where the second equality uses the definition of ¥, p,, and the last equality uses the fact that

W=X% %, KQB (BQB) .

Rearranging terms and right-multiplying (KQK') ™" KQB’ to both sides of the equation, we obtain

X3, s, KQB' = X (KQK') ™ KQB' + ' BOK' (KQK') ' KQB' = XKB' + I/ BAQB'.

Further, since XE;l}E;WICQB/ = I BQB’, it follows that
XKB'h = W' B (I, — A) QB'h.
Hence, we have that

sy = wa (1l —a)XKA —wa(l —a)XKB'h (E.12)

= 04(1704) (361 — s00) —wa (1l — ) n'B (I — A) QB'h, (E.13)

where we use the fact that wyXKA' = s — 0.

Given the above results, we are left with taking the limit as 7' — oo of the truncated problem. In particular,
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we have that

R R —1
lim AAQB' (BQB’) =p(L;w,a) lim AK'S, g, KA = Vi (&)
T—00 T—o0
Jim 1 BK'S, 5, KA = COVy, (K, €) Jim 1B (I, — A) QB'h = DISP (k)
—00 —00

which, together with equations (E.9), (E.10), (E.11), and (E.13), completes the characterization of the respon-

siveness to signals.

Characterization of the bias, hy. From the fixed-point condition (E.7) and the definition of 7, in equa-
tion (E.4), it follows that

1-—a)hy=w|[(1—a)A+ah/B]K (Z;lBV +Q)711C[XA’ —(1—a) Ak,

which can be solved for hy implying
x@Y

1-a)(1+xY)’

ho =

with Y given by
Y=[1-a)a+al'BIK (3,5, +Q) KA.

Using the definition of Q in equation (E.8) and the Woodbury matrix identity, it follows that

( nIBV +Q) = (angy +Q-wk((1-a) A’—i—ozB'h)((l—oz)A—i—ah’B)lC’)_1
- ( n|Bu; +Q) +
= (S, +Q) K(1—a) A +aB'h) (1 o) A+ ol B) K’ (S5, +Q)71
lfw((lfoz)A+ah’B)lC’< i +Q) K((1—a) A’ +aB'h)
B wX'X
= (v le*Q) T oXK(1—a) A L aBh)
Therefore,

[( a) A+ ah'B]K'X'XKA’

Y = XKA +
K @wXK ((1 —a) A’ + aB'h)
B XICA’
T 1-wXK((1—a)A +aB'h)
_ %1;’;{2
1— (52 (e — ) — w0l B (1, — A) QB

where the last equality uses the fact that

5 — g = wyXKA', and XKB'h=NB(l,, —A)QBh.
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Therefore, we have that

X (s — 22)

ho = (1—a)(y+a( — ) — ywah'B (I, — A) QB'R)’

Finally, taking the limit as T' — oo leads to

_ X(221 — »2)
T—o0 (1 - 04) ('Y + a (%1 — %2) — ’YWCVDHS]P (kzt)) '

O

Proof of Corollary 3. Observe that, by using (24), the expression of w under smooth model (23) can be

transformed into

w = [1 “A(1-a) (V(& _ K4t o —sw(gt))r (E.14)

Tu

Take any pair (w,r) and the associated sensitivity S that would arise from robust preferences. We may solve
(A, 02) from (24) and (E.14). Note that the first condition w > 0,7 > 0,8 < 1 ensures that Assumption 2
can be satisfied and the second condition(1 — S) ((1115))7“ _ (1—a)ful+w)r> +7>(1—-0a) V(%(Ef)(f) ensures that
the resulted 7, > 0.
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F Value of Information

In this appendix, we demonstrate that the value of information increases with the amount of ambiguity. To
start with, as a simplification, we restrict our attention to the situation where the idiosyncratic noises share

a common variance 2. Specifically, we investigate the sign of the following cross-derivative for agent i:

A CATACN)

D=
do2dr, ’

where

Vieta ) = ot ([ o (2 s kg p () ant )

and g (ajt_l) denotes the strategies taken by all other agents. The derivative —dV (03; g (xt_z)) /do? captures
the effect on the agent’s objective function of an increase in signal precision, thereby quantifying the value of
extra information. As a result, a positive sign of the cross-derivative D reflects that a higher level of ambiguity

increases the value of information.

We allow D to depend on the strategies of the other agents g (:L‘t_l) This approach focuses our analysis on
the value of information from the perspective of agent ¢, without imposing a symmetric equilibrium a priori.
As a result, this notion of the value of information is ready to be incorporated into a rational inattention
framework with some information acquisition cost function. This way of measuring the value of information
is also comsistent with our framework of persistent learning, where all private information shares the same
precision so that a marginal change in o2 changes the precision of all private information. In a generic
environment where the precision of different sources of private information can differ substantially, our notion
of the value of information can be equivalently understood as increasing the precision of all private information

by the same amount.

In what follows, through the lens of a set of lemmas, we demonstrate that D > 0, i.e., the value of information
increases with the amount of ambiguity. We begin with Lemma F.1, which analytically characterizes the value

of information.

Lemma F.1. If §(-) takes the CAAA form, i.e., d(x) = —% exp(—Az), the value of information equals the

equilibrium cross-sectional dispersion of actions:

dV(eZ;g(at,) 1
——— 3 = 5,3 Ellku — K0)’]

€

Proof. We start the proof with the truncated economy as in the proof of Proposition 4. As a result, the

strategies of individual agent i and of the other agents are respectively given by

ki = h'Bv; + hg, and K = h/BAv; + hy.
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When ¢(-) takes the CAAA form, the ex-ante value of agent ¢ is such that
VioZihuho) = =5 1o ([ exp (-XB uth, K.0)) p(un )
I
st. k; = h/Bl/i +hy and K = B/BAI/,' + hg.

Taking derivative with respect to o2 leads to

— OE# i, 4%, OEH ZEEAE) 2 OEH (2
AV (2; b, ho) S exp (= NE*[u(ki, K, 6)]) (W%Jr E"[u(k, K.0)] dhy | OE [u(k KQ)])p(M)dM

Oho d<72 do?
doz L eXp(—)\E“[ (ki, K, 0)]) p(p)dps
:/HaIE“[ g:g,K 9)] kZ,K 9)] ) dp ng/ﬂ@E [u é/ZO,K ,0)] . Hu)dp,

where p(p) is the (ex-ante) distorted subjective belief given by

P(p) o< exp (=AEH[u(ki, K, 0)]) p(p).
Note that the first-order conditions that pin down the optimal sensitivity h and bias hg are such that

/8E“[u(ki,K,0)]ﬁ(u)du:/ OE#[u(k;, K,0)] .

oh ohg p(p)dp = 0.

Denote K and G by
K= [Iua Ou,m—u] 5 and G = [Om—u,ua Im—u] .

It can then be shown that
B fu(ki, K, 0)] = — 51— @JEF(W By + G'ex) + ho — ')
- %aE“[(h’B(IC’n +G'ei) + ho — h'BK'n — ho)?] — E*[xa'n + %va’nn’a]
— %h/B(I — N)B'ho? + Z(p, 07, h, ho, h, hy),

where A = K'KC, and Z(u, 0727, h, ho, h, ho) are independent of o.. Therefore, we have

Py )du—th(I A)B'h =

dV(oZihho) _ _/ OE [u(k:, K, 0)] .

1 / !
= 507 W' B(I — A)QB'h.

€

Taking the limit as T' — oo of the truncated problem yields

- dV(o?h,he)  dV(oZ;g(zL,)) o . )
plim - = e . andlim WB(I— AQB'h = E[(ki — K,).

Thus, the value of information equals the equilibrium cross-sectional dispersion of actions. O

Does higher ambiguity increase the value of information? Providing an answer to this question is equivalent
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to analyzing whether the cross-sectional dispersion of actions increases with the amount of ambiguity 7,,. Our
equivalence result suggests that 7, shapes cross-sectional dispersion by affecting the two endogenous scalars
w and r. In what follows, we first characterize how w and r affect the cross-sectional dispersion of actions
(Lemma F.2). Intuitively, increases in either w or r should increase the cross-sectional dispersion, given that

both higher w and r contribute to more overreactions. Lemma F.2 confirms this intuition.
Lemma F.2. The cross-sectional dispersion of actions is increasing in both w and r:

O [(kit - Kt)ﬂ
ow

OE [(im - K,ﬂ

>0 d
b or

> 0.

Proof. Again, we start the proof with the truncated economy, in which h(w,r) B(I — A)QB’h(w,r) denotes
cross-sectional dispersion. Further, denote h/(w) as the truncated version of p(L; w, o), namely the forecasting

rule of the (w, @)-modified signal process in Section 3.3. Then, we have that
B (w,r) = (14 )k (w),
which implies that
h(w, ) B(I — MQB'h(w,r) = (14 r)2h(w)'B(I — A)QB'h(w).

It is then straightforward to see that

Oh(w,r)' B(I — AN)QB'h(w,r)

or > 0.

In what follows, we proceed to prove that h(w) B(I — A)QB’h(w) is increasing in w. Utilizing our equivalence
results, it can be shown that

B (w) =A (1 +w)AQ + (1 — )" (I = A)Q) B' (B (1 + w)AQ+ (1 —a) (I — A)Q) B') ™'
—A(AQ+ (14+w) (1 - ) (I-—NQ) B (B(AQ+(1+w) '(1—a) "(I-A)Q)B)"
—AQB' (B(AQ+ (1+w)" (I - A)Q) B') ™

—AQB' (B (AQq + (1+w)~ (I N, B)
where Q, = AQ + (1 — o)1 (I — A)Q. As a result, taking the derivative with respect to w leads to

dﬁ’(w)
dw

— (1 +w) W (w)B(I — N2 B’ (B(AQy + (1+w)"}(I = A)Q,)B) .
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Therefore, we have that

,dh(w)' B(I — N)QB' h(w)
dw
— I/(w)B(I = A B’ (B(AQy + (1 +w) " (I = A)Q2)B') " B(I — N)QB'h(w)

+ h(w) B(I = M)QB' (B(AQy + (14 w) (I = A)Q4)B') ™" B(I — A)Q0B'h(w)

(1= a) A (w)B(I = NQB' (B(AQ + (1 +w) " (I = A)Q,)B') ' B(I — N)QB'h(w)
+ (1= a) "h(w) B(I = QB (B(AQy + (1 +w) " (I — A)Q2)B') " B(I — A)QB h(w)
=2(1 —a) twll e,

(1+w)

where @w = h/(w)B(I — A)QB’ and 11 = B(AQ, + (14 w)~'(I — A)Q,)B’. Notice that the matrix I~ is

symmetric and positive semi-definite, hence so is II. We then conclude that

dh(w)'BU = N)QB'h(w) _ _ Oh(w,r)BU - A)QB'h(wr) _

dw ow

Finally, taking the limit as 7' — oo of the truncated problem results in

- 2 / _ /
dE[(k;: — K+)?] — lim Oh(w,r)' B(I — N)QB'h(w,r) 50
dr T—o00 or

and

dE[(kis — Ky)?) — lim Oh(w,r)' B(I — N)QB'h(w,r)

> 0.
dw TS00 ow

O

In the last step, we analyze how changes in 7, affect w and r directly. To enjoy an analytical result, we
abstract out r by setting v = 0.

Lemma F.3. The endogenous scaler w is increasing in 7, if v = 0.

Proof. When v = 0, it can be shown that

1
T \1—a)(A— WB)AQ(A— KB’

Tu

w =

(F.1)

Similar to the proof of Lemma F.2 and using the same notation, it can be shown that

-1

h=AOB" (B(AQy + (1+w) ' (I - N)Q)B')

which implies that

% —(1+ w) W B(I — N)QuB' (B(AQu + (1 +w)" (I — A)2)B') "
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Therefore, we can show that
d(A - WB)AQ(A - W B)
dw
A ~ -1 A
= —2(1+w)"Y(A - KB)AQB' (BQB') B(I — NQB'h

= 2(1+w)~ (W BAQB' (BQB’)_l B(I — NQB'h — ' B(I — NQB'h)
= 2(1+w)" W (BAQB' — BAQB' (BQB’) "~ BAQB - B(I - NQB)A
= 2(1 + w)" W (BAQB' (BQB’)A B(I — NQB' — B(I — NOB)h

= 2(1+w) " W (BAQB' (BQB’)_1 ~DB(I - NQB'h

= —2(1+w) " (WB(I - NQB) (BQB') B - M)OBR) < 0,

where we denote Q2 = AQ, + (1 +w) (I — A)Qq. It can be further shown that

d(A— WB)AQ(A - W B)Y
dw

o o -1 o
= 2(1+w)" (W BAQB' (BQB') B(I — NQB'h
N ~ -1 N o
= 2(1+w)" (W BAQB' (BQB’) B(I — NQB'h — ' B(I — NQB'h)

= 2(1+w)" W (BAQB' — BAQB' (BQB’) "BAQB' — B(I — MQB)A
= 2(1+w)" W (BAQB' (BQB’) B = MOB - B(I— MOB

= 2(1+w) " W (BAQB' (BQB’) T D)B(I-AQBh

= 201+ w)"'(WB(I - NQB) (BQB'Y1 (B(I — A)QB'R) < 0.

Denote the right-hand side of equation (F.1) by RHS(7,,w) and the left-hand side by LHS(w). It is then

straightforward to demonstrate that

dLHS(w)
dw

ORHS(7,, w)
ow

ORHS(7,,w)

>0,
0T,

<0, and <0,

which jointly proves that

dw
dry,

O

Lemma F.1, Lemma F.3, and Lemma F.2 combined establish the desired result, that the value of information

increases with the amount of ambiguity if v = 0:

D>0 if y=0.
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In the general case where v > 0, proving that D > 0 turns out to be challenging. However, extensive numerical
exercises suggest that the value of information continues to increase with the level of ambiguity in this more
complex scenario. Intuitively, with v > 0, there is an additional channel of overreaction, namely, the scalar
r > 0, which leads to a higher utilization of information. It is the intricate interaction between w and r,

however, that complicates the analytical analysis.
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G Ambiguity about Variance

In this section, we explore the cases in which there is ambiguity about the variance of the fundamental and

about the variance of the noise, respectively.

G.1 Ambiguity about the variance of the fundamental

We start with the case that agents perceive ambiguity about the variance of the fundamental. Specifically, we
assume that the fundamental £ follows a normal distribution with mean 0 and variance 0?7*: E~N (0, 0’?7*).

Agents exhibit ambiguity regarding the true variance of the fundamental, 0’?7*. We let T'¢ be the the range

of possible values for the variance of the fundamental, ag. Analysts believe that og € I'c and have some

prior belief about I'¢ with density distribution given by p (o?). To ensure that strategies based on Bayesian

inference and ambiguity neutrality coincide, we impose the following assumption on the agents’ prior belief:

Assumption 1. The prior belief of the agent is such that
| otp(otyaot =at..
¢

Similar to the setup of ambiguity about the mean of the fundamental, each agent receives a private signal
r; =E&+¢;, with g NN(O,O’?)

Agents are ambiguity-averse and select a strategy g(z;) to minimize the following objective:

Lg) = ( / 6 ¢(E [(gee) — €2 — x€] )p<o§>do§> ,

where ¢ (z) = %exp (Az) takes the CAAA form with X representing the degree of ambiguity aversion. Finally,
we restrict our analysis to linear strategies such that

g(x;) = sx; + b, (G.1)

which facilitates a direct comparison with our baseline setup, where ambiguity pertains to the mean of the

fundamental.

The following proposition suggests that ambiguity has a more limited effect, leading to an optimal linear
strategy that exhibits higher sensitivity compared to the rational RE benchmark, but no bias.

Proposition G.1. When agents are ambiguity-averse, A > 0, the optimal linear strategy exhibits higher
sensitivity than the RE benchmark and features no bias:

o2
2k
s> st = #, and b* =0.
o2 2
&, x €
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Proof. Given the restriction to linear strategies, the objective function of the agents can be written as a

function of the sensitivity, s, and bias, b, as follows

L(s,b) = iln (/F exp ()\ ((s —1)° o} +52g€2))p(03) dU?) + %b?
¢

The zero-bias result is straight-forward: the FOC with respect to bias b is such that

oL (s,b)

o, =0

To characterize the optimal of sensitivity, s, we consider the corresponding FOC,

0L (s,b) fF§ exp (/\ <(s —1)? o + 52052)) {(s —1)o¢ + sag} D (ag) do? 0
os fF§ exp ()\ ((s -1)° of + 52052)) P (O’?) do? o
which is equivalent to

sol=(1- s)/ Ugﬁ(og) da?,
Le

where the distorted belief j(07) is such that

D (Te) x exp ()\ (s — 1)2 ag) D (Jg) .

Notice that, relative to the agents’ prior p(og), the distorted belief ﬁ(o?) puts higher weights on the larger ag
in Tg: ]3(02) first-order stochastically dominates p(ag). It follows that

[ otp (= [ otp(eR)st=ot..

3

and, therefore,

2+( 2 2
« st U5p<0§>daf Jg,* RE
5= 24( 2 2 2>02 +02:s
frg agp(ag) dof + o2 gx T e

G.2 Ambiguity about the variance of signal noise

We proceed to analyze the effect of ambiguity about the variance of the noise instead. Similar to the setup of

Section G.1, we assume that the fundamental £ follows a normal distribution with mean 0 and variance 0'?,

E~N (0, Ug). Moreover, each agent receives a private signal

Ty = E + €4, with ¢g; ~ N(0,0’i*) .
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Agents face ambiguity regarding the true variance of the noise, denoted as 062’*. We let I' represent the range
of possible values for this variance. Agents maintain a belief that o2 lies within I'. and hold a prior distribution
over this range, represented by p(c2). To ensure that strategies based on Bayesian inference and ambiguity

neutrality coincide, we impose the following assumption on the agents’ prior belief:

Assumption 2. The prior belief of the agent is such that

| #tplotiar a2,
re

Agents are ambiguity averse and select a strategy g(z;) to minimize the following objective:
2
cl) =07 ([ o7l ~ €7 1l Joto2iao?).
T

where ¢(z) = %exp()\x) takes the CAAA form with ) representing the degree of ambiguity aversion. Finally,

we restrict our analysis to linear strategies as in equation (G.1).

The following proposition states that ambiguity has not only a more limited effect but an opposite one on
sensitivity when ambiguity is on the variance of noise: the optimal linear strategy exhibits lower sensitivity

compared to the rational RE benchmark, while featuring no bias.

Proposition G.2. When agents are ambiguity averse, A > 0, the optimal linear strategy exhibits higher

sensitivity than the RE benchmark and features no bias:

o2
st < sftf = 2752, and b* =0.
Ug +06*

Proof. Given the restriction to linear strategies, the objective function of the agents can be written as a

function of the sensitivity, s, and bias, b, as follows:

L(s,b) = iln (/F exp (A ((s —1)%0F + 520'52))77(‘762)(1062) + %bz'

€

The zero-bias result is straightforward: the first-order condition with respect to bias b is such that

OL(s,b)

To characterize the optimal sensitivity, s, we consider the corresponding first-order condition,

dL(s,b) _ frg exp ()\ ((5 — 1)202 + 32062)) [(s — 1)0? + sa?} p(o?)do?
s Jr, exp ()\ ((s —1)%07 + 82062>> p(o?)do?

:0’

which is equivalent to
s [ a?iloR)o? = (1~ s)o?.
I
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where the distorted belief p(02) is such that

p(7e) x exp ()\52062) p(o?).
Notice that, relative to the agents’ prior p(c?), the distorted belief p(c?) assigns higher weights to larger o2
in I'c: p(0?) first-order stochastically dominates p(c?). It follows that

/ o2 p(o?)do? 2/ oZp(o?)do? =02, ,
.

I

and, therefore,
2 2
& — 9¢ <% _ RE
o+ I o2 p(o?)do? ~ oZ+ a2,
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H Evidence on Inflation Expectations by Income Group

H.1 Forecast error bias and persistence

We investigate the joint behaviors of bias and persistence in forecast errors using both the Michigan Survey of

Consumers (MSC) and the Survey of Consumer Expectations (SCE). We examine two regression equations:

N
ﬁg,t = ZBQIQ + Wg.ty

g=1

N N
ﬁg,t = Z BoZy + Z agﬁg,t—l +wg.t
g=1 g=1

where FE, ; represents the average forecast errors for group g at year-quarter ¢ and Z, is the group dummy.
For the MSC dataset, we divide individuals into N = 7 income groups, while for the SCE dataset, we divide
individuals into N = 5 income groups. Table H.1 provides the results of our analysis. We use the poorest
group (Group 1) as the reference group when reporting the results. The overall patterns of bias and persistence
are similar in both the MSC and SCE datasets: as the income level increases, the amount of bias decreases,
while the persistence of forecast errors increases. Similar to Figure 3 that displays the empirical patterns in
MSC, Figure H.1 plot the point estimates of the biases and the persistence across different income groups in
SCE.

Ficure H.1: Bias and Persistence of Forecast Error in the Survey Data (NYSCE)
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(A) Bias in forecast (B) Persistence of forecast error

Note: This figure reports bias (Panel A) and persistence (Panel B) of households’ inflation forecasts in the cross-
section of the income distribution. Bias and persistence of each income percentile are calculated by the mean and serial
correlation of forecast errors of households’ inflation expectations for the next 12 months. Data are obtained from
FRBNY Survey of Consumer Expectations (2013:11-2022:1) and U.S. Consumer Price Index (2013:1-2022:1V).
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TABLE H.1: Bias and Persistence of Forecast Errors: MSC and SCE

MSC SCE
Bias Persistence Bias Persistence
Constant —2.297***  —1.055"**  —6.403***  —2.187***
(0.072) (0.081) (0.164) (0.204)
Group 2 0.235*** 0.366** 2.488*** 0.760**
(0.060) (0.085) (0.110) (0.155)
Group 3 0.766*** 0.564*** 3.514*** 1.650***
(0.053) (0.053) (0.142) (0.150)
Group 4 1.103*** 0.713*** 4.734*** 1.980***
(0.057) (0.032) (0.142) (0.092)
Group 5 1.258*** 0.810*** 5.539*** 2.105***
(0.054) (0.025) (0.163) (0.143)
Group 6 1.535%** 0.876***
(0.051) (0.030)
Group 7 1.924*** 0.959***
(0.044) (0.055)
FE;_ 0.537*** 0.663***
(0.044) (0.031)
FE;_1x Group 2 0.125** -0.017
(0.034) (0.069)
FE;_1x Group 3 0.142** 0.150
(0.038) (0.084)
FE;_1x Group 4 0.171%** 0.205**
(0.023) (0.049)
FE;_1x Group 5 0.217*** 0.221**
(0.040) (0.063)
FE;_1x Group 6 0.218***
(0.041)
FE;_1x Group 7 0.192***
(0.042)
Obs. 952 945 180 175

* p<0.1, ¥* p<0.05, *** p<0.01.

79



To address the concern that bias may be influenced by other observed individual characteristics, such as age
and resident state, we introduce the following empirical specification at the individual level for both the MSC
and the SCE:

N
FE;: = Z ByLigt + 7' Xip + 0t + wi,

g=1
where Z; 4, is a dummy variable that equals to 1 if individual 7 belongs to income group g at year-month ¢,
and X;; is a vector of observed individual characteristics. For the MSC dataset, we control for age, gender,
education, birth cohort, marital status, region, and the number of kids and adults in the household. It is
worth noting that controlling for the birth cohort helps address concerns regarding the impact of inflation
experiences on households’ inflation expectations (Malmendier and Nagel, 2016). For the SCE dataset, we
control for age group, numeracy, education, and region. Table H.2 reports the results. Again, we use the
poorest group (Group 1) as the base group for both the MSC and SCE datasets. Even after controlling for
additional individual characteristics, the biases in forecasts persist and exhibit a negative correlation with

households’ income levels.

TABLE H.2: Bias of Forecast Errors Controlling Individual Characteristics: MSC and SCE

MSC SCE
Constant —2.370***  —5.255%**

(0.288) (0.246)
Group 2 0.162*** 1.834%**

(0.036) (0.108)
Group 3 0.573*** 2.446%**

(0.030) (0.126)
Group 4 0.856*** 3.212%%*

(0.032) (0.183)
Group 5 0.989*** 3.754***

(0.034) (0.245)
Group 6 1.223***

(0.024)
Group 7 1.510%**

(0.031)
Demographics Yes Yes
Birth Cohort Yes No
Age Yes Yes
Region Yes Yes
Time fixed effects Yes Yes
Obs. 146,622 135,434

* p<0.1, ¥* p<0.05, ¥** p<0.01.
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H.2 CG and BGMS regressions

As a comparison to the group-specific CG and BGMS coefficients derived from our model, we run the cor-
responding CG and BGMS regressions using data from the Michigan Survey of Consumers and the Survey
of Consumer Expectations. The term structure of the forecasts is not available in these datasets, preventing
us from constructing exact forecast revisions. As a compromise, we consider the following closely related
regressions instead:

CG: M1 — By [mq1] = o+ Bea (I_Et [meg1] — By [Wt]) + €141, (H.1)
BGMS: Tir1 — Big [mi41] = a4 Brams (B [mi1] — Ei—1 [me]) + €41 (H.2)

Columns (1)-(2) in Table H.3 display the results for the MSC, and columns (5)-(6) display the results for the
SCE. At the individual level, the BGMS regression coefficients are more negative for poorer households, while

the CG regression coefficients are larger for richer households. These results are broadly consistent with our
model’s predictions.

TABLE H.3: CG and BGMS Estimates: MSC and SCE

MSC SCE
(1) (2) (3) (4) (5) (6) (7) (8)

BGMS CG CG (IV) F-Stat BGMS CG CG (IV) F-Stat

Group 1 —0.546** —0.411*** 0.600* 14.08 —0.510***  —0.372*** —0.455 6.50
(0.048) (0.101) (0.349) (0.184) (0.127) (0.760)

Group 2 —0.435***  —0.314** 2.033** 5.13 —0.440***  —0.289** 0.624 2.97
(0.040) (0.145) (0.920) (0.014) (0.136) (0.786)

Group 3 —0.395*** —0.207 1.080** 9.04 —0.422***  —0.295* 2.777 0.62
(0.025) (0.266) (0.489) (0.015) (0.175) (3.588)

Group 4 —0.393*** —0.169 0.493* 24.87 —0.408*** 0.202 2.590 4.90
(0.031) (0.230) (0.285) (0.019) (0.333) (2.334)

Group 5 —0.375*** —0.147 0.984**  10.67 —0.384*** 0.281 2.888* 15.24
(0.028) (0.260) (0.383) (0.035) (0.331) (1.628)

Group 6 —0.394*** 0.054 0.797*  17.56
(0.018) (0.370) (0.340)

Group 7 —0.418*** 0.011 0.982** 9.85
(0.018) (0.301) (0.483)

* p<0.1, ¥* p<0.05, ¥** p<0.01.

However, due to the previously mentioned data limitations, the approximating regressions (H.1) and (H.2)

may suffer from an endogeneity issue.* We follow Coibion and Gorodnichenko (2015) and use Spot Crude

4The error term ;11 in the CG specification above contains not only the rational expectations forecast errors €11
but also the expected change in inflation Sca (Et71 [re41] — E¢e—q [m]). Under rational expectations, €;41 is uncorrelated
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Oil Price (1987-2022) as the instrumental variable. Unfortunately, while the instrumental variable is strong
enough for the entire sample, it tends to be weak when segmenting the sample by different income groups
(see the F-statistics in Columns (4) and (8)). Bearing in mind the weak IV issue, the CG coefficient generally

increases with income, a trend that is more pronounced in the SCE data.

H.3 Balance-sheet effects

This section addresses the concern that balance-sheet effects may overturn the effects of inflation on labor

income. We argue that this is unlikely to be the case.

First, notice that balance-sheet effects are primarily relevant for capital income, which constitutes a relatively
small share of total income, especially for the income-poor. In Table H.4, we document the shares of different
sources of income using the Survey of Consumer Finances, since this data is not available in the Michigan
Survey.® For all households, capital and business income represent a relatively small share of total income,
and this is especially true for the bottom four quintiles of income. The table also shows that the bottom
quintiles of income have relatively low levels of net worth. With this in mind, one would expect that even the
large proportional effects documented by Doepke and Schneider (2006) would be dominated by the effects of

inflation on labor and transfer incomes.

TABLE H.4: Income Sources (%) by Quintiles of Income

Quintiles of Income

1st 2nd 3rd 4th 5th
Labor 48.9 77.3 83.4 85.8 64.3
Capital 0.1 0.4 0.3 0.8 10.8
Business 6.2 5.4 5.9 5.6 18.7
Transfer 37.3 15.0 9.2 7.1 2.4
Other 7.5 1.8 1.2 0.7 3.7
Total Income 2.7 6.5 11.0 16.9 63.0
Net Worth 1.4 2.7 5.5 9.8 80.6

Notes: Calculated using data from the Survey of Consumer Finances (2016). We use the definitions from Kuhn and
Rios-Rull (2016) and limit the sample to heads of households aged 18 to 65, for comparability with the results in the
paper. We also choose the 2016 wave of the survey as it is roughly in the middle of the time sample we use in the

paper.

with the consensus forecast error my+1 — E¢ [mi41]. However, the covariance between the expected change in inflation
Bca (IEFl [re41] — Ei_1 [mD and the consensus forecast error my11 — Ey [me+1] is correlated as long as the inflation
process is not a random walk. Therefore, the error term €;41 will be correlated with the forecast error on the left-hand
side. Note that the reason for this endogeneity issue arises from the fact that neither the MSC nor the SCE provides
the term structure of forecasts. As a result, forecasts are imperfectly overlapped.

5The seven groups from the MSC sample have average incomes, in thousands of 2016 dollars, of
{12.9, 24.5, 40.5, 59.8, 74.5, 104.9, 216.8}, while the quintiles of income from the SCF show averages of
{13.9, 33.0, 56.4, 90.3, 331.2}. Although the top income levels from the SCF are higher, reflecting its detailed ap-
proach to top-coding issues, the bottom four quintiles align relatively well with the MSC groups. The net worth levels
for these income quintiles in the SCF, again in thousands of 2016 dollars, are {39.2, 75.0, 156.2, 287.0, 2322.3}.
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TABLE H.5: Concern About Inflation (%) by Income Levels

Income Levels (thousands of dollars)

<25 25-35 35-50 50-75 75-100 100-150 150-200 >200

Very concerned 66.5 62.2 60.9 57.3 53.9 46.1 38.7 24.0
Somewhat concerned 17.9 20.6 21.7 23.0 21.9 26.2 27.3 28.2
A little concerned 10.4 12.6 13.1 14.4 16.7 19.1 22.2 29.5
Not at all concerned 5.2 4.5 4.2 5.3 7.5 8.6 11.8 18.3

Notes: Calculated using data from Household Pulse Survey (2024). This survey started in 2020, so we selected the
most recent wave to try to mitigate the impact of Covid-related concerns. Similar results are reported, using data from
2021, by Jayashankar and Murphy (2023).

One way to assess the overall effect of inflation on different households is to estimate a quantitative structural
model incorporating the relevant mechanisms and heterogeneity, and then compute the conditional welfare
effects for different groups. This approach is pursued by Cao, Meh, Rios-Rull, and Terajima (2021). They
find that poorer households are more negatively affected by inflation:

“An increase in inflation from 2% to 5% costs 13% of one-year consumption. [...] From the point of
view of consumption class, the poor lose a lot more than the rich: 37.0% of 2010 consumption versus
5.6% for the poorest and richest quintiles.”

The same conclusions can be drawn from the Census Bureau’s Household Pulse Survey data, which includes
the question, “In the area where you live and shop, how concerned are you, if at all, that prices will increase
in the next six months?” In Table H.5, we present the results categorized by income brackets. A clear pattern

can be observed, with the inflation concern monotonically decreasing as income levels increase.
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