
Supplemental Appendix: “Bias and Sensitivity under Ambiguity”
Zhen Huo Marcelo Pedroni Guangyu Pei

A Proofs of Main Results 2

B Extensions 16

B.1 Multiple actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.2 Inefficient economies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B.3 Multiple aggregate shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C Proofs of Other Results 48

D Uniqueness and Linearity of Optimal Strategies without Strategic Interactions 60

E Robust Preferences: Derivations and Proofs 61

F Value of Information 68

G Ambiguity about Variance 74

G.1 Ambiguity about the variance of the fundamental . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

G.2 Ambiguity about the variance of signal noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

H Evidence on Inflation Expectations by Income Group 78

H.1 Forecast error bias and persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

H.2 CG and BGMS regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

H.3 Balance-sheet effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1



A Proofs of Main Results

In this appendix, we present the proofs of the main results from Section II. We start by proving Proposition 3,
which yields the fixed point conditions that characterize the equilibrium. We proceed by proving the general
equivalence result, Proposition 4, based on which we can prove the existence of equilibrium, Proposition 2,
as well as the comparative statics of sensitivity S and bias B with respect to the coordination motive α,
Proposition 6.

Proof of Proposition 3. The equilibrium concept from Definition 1 is equivalent to the notion of ex-ante
equilibrium from Hanany, Klibanoff, and Mukerji (2020). It is equivalent to the characterization of sequential
equilibria with ambiguity (SEA) when conditional preferences are updated using the smooth rule of updating
proposed in Hanany and Klibanoff (2009). The key for the equilibrium refinement of SEA is to ensure
dynamic consistency, in the sense that ex-ante contingent plans are respected ex-post with the arrival of new
information. Specifically, conditional on the realization of any possible history of private information, xti, the
optimal strategy of agent i maximizes their conditional preference, given by

ϕ−1

(∫
µt

ϕ
(
Eµt [

u (kit,Kt, ξt) | xti
])
p̃
(
µt | xti

)
dµt

)
, (A.1)

where Eµt

[u (kit,Kt, ξt) | xti] denotes the expected utility conditional on xti under a particular model µt. The
interim belief system is characterized by a posterior belief p̃ (µt | xti) that follows the smooth rule of updating:

p̃
(
µt | xti

)
∝

ϕ′
(
Eµt

[u (k∗it,K
∗
t , ξt)]

)
ϕ′ (Eµt [u (k∗it,K

∗
t , ξt) | xti])︸ ︷︷ ︸

Weights

p
(
xti | µt

)
p
(
µt
)︸ ︷︷ ︸

Bayesian Kernel

,

where {k∗it (xti)}xt
i,i

denotes the equilibrium strategy profiles in the cross-section of the economy and K∗
t ≡∫

i
k∗itdi denotes the equilibrium aggregate action.

The first-order condition of maximizing (A.1) with respect to kit yields∫
µt

ϕ′
(
Eµt [

u (kit,Kt, ξt) | xti
]) ∂Eµt

[u (kit,Kt, ξt) | xti]
∂kit

p̃
(
µt | xti

)
dµt = 0.

Since
∂Eµt

[u (kit,Kt, ξt) | xti]
∂kit

= kit − (1− α)Eµt [
ξt | xti

]
− αEµt [

Kt | xti
]
,

the first-order condition can be used to solve for the optimal strategies {k∗it (xti)}xt
i,i

,

k∗it(x
t
i) =

∫
µt

(
(1− α)Eµt [

ξt | xti
]
+ αEµt [

K∗
t | xti

])
p̂
(
µt | xti

)
dµt,

with

p̂
(
µt | xti

)
≡

ϕ′
(
Eµt

[u (k∗it,K
∗
t , ξt)]

)
p (xti | µt) p (µt)∫

µt ϕ′ (Eµt [u (k∗it,K
∗
t , ξt)]) p (x

t
i | µt) p (µt) dµt

,
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which completes the proof.

Proof of Proposition 4. Following Huo and Pedroni (2020), we first consider a truncated version of our
model. After solving this truncated version, the appropriate limits yield the desired result.1

Fix t and define

ϑ ≡ ξt =

∞∑
k=0

akηt−k.

Let ϑq denote the MA(q) truncation of ϑ, such that

ϑq =

q∑
k=0

akηt−k,

and let xNp,i ≡ {xp,it, · · · , xp,it−N}, with xp,it−k denoting the MA(p) truncation of xit−k.

Consider the truncated problem of forecasting the the fundamental ϑq given xNp,i. To further ease notation,
define

η ≡


ηt
...

ηt−T

 , µ ≡


µt

...
µt−T

 , ϵi ≡


ϵit
...

ϵit−T

 , and νi ≡

[
η

ϵi

]

Let R denote the length of xNp,i, and N the length of ϵit. It follows that, there exists a vector a with length
u ≡ T + 1, and a matrix B with dimensions n×m, where n ≡ R (T + 1) and m ≡ (1 +N) (T + 1), such that
the truncated fundamental and the private signals are given by

θ ≡ ϑq = Aνi, with A ≡
[
a′, 0′m−u,1

]
, and xi ≡ xNp,i = Bνi,

where 0m−u,1 is an (m− u)× 1 vector of zeros. In the objective environment, νi is normally distributed,

νi ∼ N (0,Ω) , with Ω =

[
σ2
η Iu 0

0 Ξ

]
,

where Iu denotes the identity matrix of size u and Ξ denotes the variance-covariance matrix of the (m−u)×1

vector of idiosyncratic shocks, ϵi. Subjectively, agents believe that η is drawn from a Gaussian distribution
with variance-covariance matrix σ2

η Iu but there is uncertainty about its prior mean, denoted by µ. Ambiguity
is then captured by the perception that

η ∼ N
(
µ, σ2

η Iu
)
, and µ ∼ N (0,Ωµ) , with Ωµ ≡ σ2

u Iu.

From Proposition 3, we know that the best response of agent i satisfies

ki =

∫
µ

(
(1− α)Eµ [θ | xi] + αEµ [K | xi]

)
p̂ (µ | xi) dµ, (A.2)

1See Online Appendix A.1 of Huo and Pedroni (2020) for detailed proofs.
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with
p̂ (µ | xi) ∝ exp

(
−λEµ

[
u(ki,K, θ)

])
p (xi | µ) p (µ) .

We proceed by using a guess-and-verify strategy. First, we guess a symmetric linear equilibrium that

ki = h′Bνi + h0 ∀i.

We can show that ex-ante expected utility, under a particular model µ, is such that

Eµ [u (ki,K, θ)] = − µ′
[
1

2
(1− α)K (A′ −B′h) (A− h′B)K′ +

1

2
γKA′AK′

]
µ (A.3)

+

[
1

2
(1− α)h0 (A− h′B)K′ +

1

2
χAK′

]
µ+ µ′

[
1

2
(1− α)h0K (A′ −B′h) +

1

2
χKA′

]
−1

2
(1− α) (A− h′B)Ω (A′ −B′h)− 1

2
(1− α)h20 −

1

2
αh′B (Im − Λ)ΩB′h− 1

2
γAΩA︸ ︷︷ ︸

independent of µ

,

where matrices K and Λ are such that

K ≡ [Iu, 0u,m−u] , and Λ ≡ K′K.

At the same time, we have that

p (µ | xi) ∝ exp

(
−1

2
µ′
(
KB′ (BΩB′)

−1
BK′

)−1

µ+
1

2
µ′K (BΩB′)

−1
xi +

1

2
x′i (BΩB′)

−1 K′µ

)
.

It follows that

p̂ (µ | xi) ∝ exp

(
−1

2
µ′S−1µ+

1

2
µ′S−1 (Mxi + π) +

1

2
(Mxi + π)

′
S−1µ

)
,

where matrices M , π, and S are such that

M ≡ SK (BΩB′)
−1
, π ≡ S [−λ (1− α)h0K (A′ −B′h) + λχKA′] ,

and
S ≡

(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ − λ [(1− α)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]
)−1

.

Accordingly, we can show that the subjective expectations are such that∫
µ

Eµ [θ | xi] p̂ (µ | xi) dµ = Txi + (A− TB)K′
[
SKB′ (BΩB′)

−1
xi + π

]
,

and ∫
µ

Eµ [K | xi] p̂ (µ | xi) dµ = Hxi + h′ (BΛ−HB)K′
[
SKB′ (BΩB′)

−1
xi + π

]
+ h0,
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where matrices T and H are given by

T ≡ AΩB′ (BΩB′)
−1
, and H ≡ BΛΩB′ (BΩB′)

−1
.

Therefore, matching coefficients leads to the following equilibrium conditions for h and h0,

h′ = (1− α)T + αh′H+ [(1− α) (A− TB) + αh′ (BΛ−HB)]K′SKB′ (BΩB′)
−1
, (A.4)

and
(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′π. (A.5)

In what follows, we first focus on equation (A.4). Through a sequence of lemmas, we show that this fixed-point
problem for h can be recast as the solution of a pure forecasting problem. We then proceed to characterize h0
using equation (A.5).

The next lemmas are organized as follows. Lemma A.1 rewrites the equilibrium condition for h described above
as a beauty-contest problem with a modified variance-covariance matrix. Lemma A.2 establishes that h can be
obtained by solving a forecasting problem with a modified variance-covariance matrix. Lemma A.3 simplifies
the variance-covariance matrix of the forecasting problem, and Lemma A.4 further simplifies it yielding a
symmetric variance-covariance matrix. After the lemmas we take the limits of the truncated forecasting
problem as T → ∞.

Lemma A.1. Define

Ω̂ ≡ Ω+K′WK, T̂ ≡ AΩ̂B′
(
BΩ̂B′

)−1

, Ĥ ≡ BΛΩ̂B′
(
BΩ̂B′

)−1

,

and
W ≡

(
Ω−1

µ − λ [(1− α)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]
)−1

.

Then, the equilibrium h solves the following fixed-point problem

h′ = (1− α) T̂ + αh′Ĥ.

Proof. Using the Woodbury matrix identity, we have that(
BΩ̂B′

)−1

= (BΩB′ +BK′WKB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
, (A.6)
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Then, if ĥ is such that ĥ′ = (1− α) T̂ + αĥ′Ĥ, we have that

ĥ′ = (1− α)AΩ̂B′
(
BΩ̂B′

)−1

+ αĥ′BΛΩ̂B′
(
BΩ̂B′

)−1

= (1− α)A (Ω +K′WK)B′
(
BΩ̂B′

)−1

+ αĥ′BΛ (Ω +KWK′)B′
(
BΩ̂B′

)−1

= (1− α)AΩB′
(
BΩ̂B′

)−1

+ (1− α)AK′WKB′
(
BΩ̂B′

)−1

+ αĥ′BΛΩB′
(
BΩ̂B′

)−1

+ αĥ′BΛK′WKB′
(
BΩ̂B′

)−1

.

Using equation (A.6), it follows that

ĥ′ = (1− α)AΩB′ (BΩB′)
−1 − (1− α)AΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ (1− α)AK′WKB′ (BΩB′)
−1 − (1− α)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ αĥ′BΛΩB′ (BΩB′)
−1 − αĥ′BΛΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ αĥ′BΛK′WKB′ (BΩB′)
−1 − αĥ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (1− α)AΩB′ (BΩB′)
−1︸ ︷︷ ︸

(1−α)T

+αĥ′BΛΩB′ (BΩB′)
−1︸ ︷︷ ︸

αĥ′H

− (1− α)AΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
(1−α)TBK′SKB′(BΩB′)−1

−αĥ′BΛΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
αĥ′HBK′SKB′(BΩB′)−1

+ (1− α)AK′WKB′ (BΩB′)
−1 − (1− α)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ αĥ′BΛK′WKB′ (BΩB′)
−1 − αĥ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
.

Further, notice that the terms in the second-to-last line can be rewritten as

(1− α)AK′WKB′ (BΩB′)
−1 − (1− α)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (1− α)AK′W
(
KB′ (BΩB′)

−1
BK′ +W−1

)(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

− (1− α)AK′WKB′ (BΩB′)
−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (1− α)AK′SKB′ (BΩB′)
−1
,

and, similarly, the terms in the last line can be rewritten as

αĥ′BΛK′WKB′ (BΩB′)
−1 − αĥ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= αĥ′BΛK′SKB′ (BΩB′)
−1
.

Therefore, we have that

ĥ′ = (1− α)T + αĥ′H+
[
(1− α) (A− TB) + αĥ′ (BΛ−HB)

]
K′SKB′ (BΩB′)

−1
,

which is equivalent to the expression for h in equation (A.4).
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Lemma A.2. Define

ΩΓ ≡ ΓΩ̂, with Γ ≡

[
Iu 0u,m−u

0m−u,u
Im−u

1−α

]
.

Then, the equilibrium h satisfies

h′ = AΩΓB
′ (BΩΓB

′)
−1
.

Proof. Follows directly from Lemma A.1 and Theorem 1 in Huo and Pedroni (2020).

Lemma A.3. Define

∆ ≡ ΓΩ + ŵτ−1
µ K′Ω̃µK, and Ω̃µ ≡

(
Ω−1

µ − λγKA′AK′)−1
,

with the scalar ŵ given by
ŵ ≡ τµ

1− λ(1− α) (A− h′B)K′Ω̃µK (A′ −B′h)
.

Then, the equilibrium h satisfies
h′ = A∆B′ (B∆B′)

−1
.

Proof. It follows from Lemma A.2 that
(A− h′B)ΩΓB

′ = 0,

and from the definition of ΩΓ and Ω̃µ we have that

ΩΓ = ΓΩ+K′
(
Ω̃−1

µ − λ(1− α)K (A′ −B′h) (A− h′B)K′
)−1

K.

It is then sufficient to show that

(A− h′B)
(
ΓΩ + ŵτ−1

µ K′Ω̃µK
)
= (A− h′B)

(
ΓΩ +K′

(
Ω̃−1

µ − λ (1− α)K (A′ −B′h) (A− h′B)K′
)−1

K
)
,

or, equivalently,

ŵτ−1
µ (A− h′B)K′Ω̃µK =(A− h′B)K′

(
Ω̃−1

µ − λ (1− α)K (A′ −B′h) (A− h′B)K′
)−1

K

=(A− h′B)K′
(
Iu − λ (1− α) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

Ω̃µK.

Thus, it is sufficient to establish that

ŵτ−1
µ (A− h′B)K′ =(A− h′B)K′

(
Iu − λ (1− α) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

,

or

ŵτ−1
µ (A− h′B)K′

(
Iu − λ (1− α) Ω̃µK (A′ −B′h) (A− h′B)K′

)
=(A− h′B)K′,
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which can be rewritten as

ŵτ−1
µ

(
1− λ (1− α) (A− h′B)K′Ω̃µK (A′ −B′h)

)
(A− h′B)K′ =(A− h′B)K′.

The definition of ŵ then yields the result.

Lemma A.4. Define
∆̄ ≡ ΓΩ + ŵτ−1

µ K′ΩµK,

with the scalar ŵ given by

ŵ =
τµ

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

.

Also, let the scalar r̂ be given by

r̂ ≡ ŵ

1 + ŵ

(
λγ

1− λγAK′ΩµKA′

)
(A− h′B)K′ΩµKA′.

Then, the equilibrium h satisfies
h′ = (1 + r̂)A∆̄B′ (B∆̄B′)−1

.

Proof. From the definition of Ω̃µ and ∆ in Lemma A.3, we have that

Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
= Ωµ +

λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′ ,

and

∆ ≡ ΓΩ + ŵτ−1
µ K′Ω̃µK = ∆̄ + ŵτ−1

µ K′
(
λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′

)
K = ∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K,

with s ≡ λγτ−1
µ /(1− λγAK′ΩµKA′). Hence, it follows from the result in Lemma A.3 that

h′ = A
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′ [B (∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′]−1

,

and, therefore,

h′
[
B
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′] = A

(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′.

Rearranging, we get

h′B∆̄B′ + sŵh′BK′ (ΩµKA′AK′Ωµ)KB′ = A∆̄B′ + sŵAK′ (ΩµKA′AK′Ωµ)KB′,
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and right-multiplying both sides by
(
B∆̄B′)−1 yields

h′ = A∆̄B′ (B∆̄B′)−1
+ sŵ (A− h′B)K′ΩµKA′AK′ΩµKB′ (B∆̄B′)−1

= A∆̄B′ (B∆̄B′)−1
+ (1 + ŵ)r̂τ−1

µ AK′ΩµKB′ (B∆̄B′)−1
.

Then, from the definition of ∆̄ and using the fact that Ωµ = τµKΩK′ and AΓΩ = τ−1
µ AK′ΩµK, it follows that

A∆̄ = A
(
ΓΩ + ŵτ−1

µ K′ΩµK
)
= (1 + ŵ) τ−1

µ AK′ΩµK.

Plugging this back into the equation for h′ we obtain the desired result,

h′ = (1 + r̂)A∆̄B′ (B∆̄B′)−1
.

Parts 1 and 2 of Proposition 4. Given the result in Lemma A.4, we are left with taking the limit as
T → ∞ of the truncated problem. In particular, we have that

lim
T→∞

A∆̄B′ (B∆̄B′)−1
= p (L;w,α) , lim

T→∞
AK′ΩηKA′ = V(ξt),

lim
T→∞

(A− h′B)K′ΩηK(A′ −Bh′) = V(ξt −Kt), lim
T→∞

(A− h′B)K′ΩηKA′ = COV (ξt −Kt, ξt) ,

lim
T→∞

(A− h′B)K′ΩηKA′

AK′ΩηKA′ = 1− S.

Let w ≡ limT→∞ ŵ, and r ≡ limT→∞ r̂. Then, we can show that

r = lim
T→∞

ŵ

1 + ŵ

λγτµAK′ΩηKA′

1− λγτµAK′ΩηKA′
(A− h′B)K′ΩηKA′

AK′ΩηKA′

=
w

1 + w

λγτµV (ξt)

1− λγτµV (ξt)
(1− S) , (A.7)

and

w = lim
T→∞

τµ

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

= lim
T→∞

τµ

1− λ (1− α) τµ
(
(A− h′B)K′ΩηK (A′ −B′h) + r̂ 1+ŵ

ŵ AK′ΩηK (A′ −B′h)
)

=
τµ

1− λ (1− α) τµ
(
V (ξt −Kt) + r 1+w

w (1− S)V (ξt)
) .

Solving for w, we obtain

w =
τµ

1− λ (1− α) τµ

(
V (ξt −Kt) +

λγτµV(ξt)2(1−S)2

1−λγτµV(ξt)

) . (A.8)
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Lemma A.5 below establishes that w ≥ τµ and r ≥ 0, which completes the proof of parts 1 and 2 of Proposition
4.

Lemma A.5. If w and r satisfy equations (A.7) and (A.8), then w ≥ τµ and r ≥ 0.

Proof. The ex-ante objective of an agent i must obtain finite values under an equilibrium strategy ki =

h′Bνi + h0. The ex-ante objective is given by

V = − 1

λ
ln

(∫
µ

exp (−λEµ [u (−ki,K, θ)]) p (µ) dµ
)

= constant − 1

λ
ln

(∫
µ

exp

(
−1

2
µ′S̄µ+ µ′π̄′ + π̄µ

)
dµ

)
,

with the matrix S̄ and the vector π̄ given by

S̄ ≡ Ω−1
µ − λ (1− α)K (A′ −B′h) (A− h′B)K′ − λγKA′AK′,

π̄ ≡ − λ
1

2
(1− α)h0 (A− h′B)K′ − λ

1

2
χAK′,

where we used the fact that Eµ [u (ki,K, θ)] is given by equation (A.3) and

p(µ) = (2π)
−u/2

det (Ωµ)
−1/2

exp

(
−1

2
µ′Ω−1

µ µ

)
.

Thus, a necessary condition for V to be finite in equilibrium is for S̄ to be positive definite; otherwise, the
integral would become explosive.2 Since

Ω̃−1
µ = Ω−1

µ − λγKA′AK′,

it must be that

Ω̃−1
µ − λ (1− α)K (A′ −B′h) (A− h′B)K′ is positive definite.

Defining the vector 𝟋 ≡ (A− h′B)K′Ω̃µ, it follows that

0 ≤ 𝟋
(
Ω̃−1

µ − 2λ (1− α)K (A′ −B′h) (A− h′B)K′
)
𝟋′

= (A− h′B)K′Ω̃µK (A′ −B′h)
(
1− λ (1− α) (A− h′B)K′Ω̃µK (A′ −B′h)

)
.

2 The same argument applies to how Assumption 2 ensures the problem is well defined. Specifically, a well-defined
problem requires the choice set to be non-empty, which is equivalent to requiring S̄ to be positive definite for at least
one h. The necessary and sufficient condition for the existence of an h that makes S̄ positive definite is that Ω̃µ is
positive definite. Notice that Ω̃µ = Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′ . It is then straightforward to see that 1 − λγAK′ΩµKA′ > 0

is the sufficient condition to ensure that Ω̃µ is positive definite. Taking the limit as T → ∞, this is equivalent to
Assumption 2.
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Let x ≡ (A− h′B)K′Ω̃µK (A′ −B′h), then we have that

x(1− λ(1− α)x) ≥ 0 or x ≥ λ(1− α)x2 ≥ 0.

Hence, we have that x ≥ 0, and 1− λ(1− α)x ≥ 0, which implies that

ŵ =
τµ

1− λ(1− α)x
≥ τµ,

and, since w = limT→∞ ŵ, it follows that w ≥ τµ.

Next, for a contradiction, suppose that r < 0. Then, it follows from equation (A.7) and Assumption 2 that
COV (ξt −Kt, ξt) < 0. Further, we have that

COV (ξt −Kt, ξt) = V (ξt)− (1 + r)COV
(
K̂t, ξt

)
,

where K̂t ≡ Kt/ (1 + r) is the average optimal forecast of the fundamental ξt under the (w,α)-modified signal
process (net of the bias B, which is uncorrelated with ξt),3 so that it must be that

0 ≤ COV
(
K̂t, ξt

)
≤ V (ξt) .

Hence, COV (ξt −Kt, ξt) < 0 implies r > 0 and we have a contradiction. Therefore, r ≥ 0.

Part 3 of Proposition 4. Next, we switch focus to the level of the B ≡ limT→∞ h0. From equation (A.5)
and the definition of π, we have that

(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S [−λ (1− α)h0K (A′ −B′h) + λχKA′] .

It is straightforward to see there exists a unique h0 that satisfies this equation. We postulate that there exists
µ̃ such that

(1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,

so that solving for µ̃ pins down the unique h0. To proceed, first replace the guess for h0 on the RHS of equation
(A.5),

RHS ≡ [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S [−λ (1− α)h0K (A′ −B′h) + λχKA′]

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

× {−λK (A′ −B′h) [(1− α) (A− h′B) + αh′B (Λ− Im)]K′µ̃+ λχKA′}

3More precisely, notice that K̂t = p(L;w,α)
∫
xit − B/(1 + r), and that it follows from Definition 2 that

∫
x̃it =

√
1 + wτµ

∫
xit and ξ̃t =

√
1 + wτµ ξt. Therefore, K̂t =

∫
Ẽit[ξt]− B/(1 + r) and COV

(
K̂t, ξt

)
= COV

(∫
Ẽit[ξt], ξt

)
.
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Next, for the LHS of the equation, we have that

LHS ≡ (1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,

and, substituting the last h using equation (A.4), it follows that

LHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]
[
Im −K′SKB′ (BΩB′)

−1
B
]
K′µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S
[
S−1 −KB′ (BΩB′)

−1
BK′

]
µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{
Ω−1

µ − λ [(1− α)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]
}
µ̃,

where the last equality uses the definition of S. Putting these results together, we have that

LHS − RHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
[
Ω−1

µ µ̃+ αλK (A′ −B′h)h′B (Λ− Im)K′µ̃− λγKA′AK′µ̃− λχKA′] .
Since αλK (A′ −B′h)h′B (Λ− Im)K′ = 0, a sufficient condition for LHS − RHS = 0 is

Ω−1
µ µ̃− λγKA′AK′µ̃− λχKA′ = 0,

which, using the Sherman-Morrison formula, implies that

µ̃ = χλ
(
Ω−1

µ − λγKA′AK′)−1 KA′ = χλ

(
Iu +

λγΩµKA′AK′

1− λγAK′ΩµKA′

)
ΩµKA′.

Therefore, we have that

h0 = (1− α)
−1

[(1− α)A+ αh′BΛ− h′B]K′µ̃

= (A− h′B)K′µ̃

= (A− h′B)K′χλ

(
Iu +

λγΩµKA′AK′

1− λγAK′ΩµKA′

)
ΩµKA′

= χλτµ (A− h′B)K′ΩηKA′
(
1 +

λγτµAK′ΩηKA′

1− λγτµAK′ΩηKA′

)
.

Taking the limit we get

B = lim
T→∞

h0 = χλτµCOV(ξt −Kt, ξt)

(
1 +

λγτµV(ξt)
1− λγτµV(ξt)

)
= χ

λτµV (ξt)

1− λγτµV (ξt)
(1− S) ,

which completes the proof of part 3 of the proposition.

Proof of Proposition 2. Using the equivalence result from Proposition 4, establishing existence of an equi-
librium reduces to showing that there exists a (w, r) pair that satisfies equations (A.7) and (A.8).
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We start by using the intermediate value theorem to prove that there exists w ∈ [τµ,∞) that satisfies equation
(A.8). Define

F (w) ≡ w

[
1− λ (1− α) τµ

(
V (ξt −Kt) +

λγτµV (ξt)
2
(1− S)2

1− λγτµV (ξt)

)]
− τµ,

such that F (w) = 0 implies equation (A.8). Next, notice that as w → ∞, private information becomes
infinitely precise and, therefore, p (L;w,α) → a(L), or Kt → ξt. It follows that S → 1 and V (ξt −Kt) → 0,
so that limw→∞ F (w) = ∞ and there must exist some finite w̄ ≥ τµ large enough such that F (w̄) > 0. Next,
notice that when w = τµ,

F (τµ) = −λ (1− α) τ2µ

(
V (ξt −Kt) +

λγτµV (ξt)
2
(1− S)2

1− λγτµV (ξt)

)
< 0.

Thus, since F (·) is continuous, F (τµ) < 0, and F (w̄) > 0, there must exist some finite w ∈ [τµ, w̄] such that
F (w) = 0.

Further, from the definition of S we have that (see footnote 3)

1− S =
COV (ξt −Kt, ξt)

V (ξt)
⇒ 1− S = 1− (1 + r)

COV(K̂t, ξt)

V (ξt)
.

Therefore, equation (A.7) becomes

r =
w

1 + w

λγτµV (ξt)

1− λγτµV (ξt)

(
1− (1 + r)

COV(K̂t, ξt)

V (ξt)

)
.

Since COV(K̂t, ξt) does not depend on r, the existence of w directly implies the existence of r.

Proof of Proposition 6. According to equation (25), α affects the bias, B, only through 1− S. It is, then,
sufficient to prove that the sensitivity, S, is decreasing in α. Further, since γ = 0 implies r = 0, α affects S
only through the endogenous scalar w. To facilitate the proof, define an alternative signal process such that

ξt = a(L)ηt, with ηt ∼ N (0, σ2
η), (A.9)

x̂it = m(L)ηt + n(L)ϵ̂it, with ϵ̂it ∼ N (0, (1− α)−1(1 + w)−1Σ), (A.10)

and let the corresponding optimal Bayesian forecast be given by

Êit[ξt] = p̂(L;w,α)x̂it.

It is straightforward to show that this signal process is equivalent to the (w,α)-modified signal process for
Definition 2, that is

p̂(L;w,α) = p(L;w,α).

For the current proof, this signal process is more helpful. Notice that S is affected by α only through p(L;w,α),
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since it is defined on the basis of the objective signal process.

In what follows, we first show that

lim
α→1−

dCOV (ξt −Kt, ξt)

dα
> 0.

We then prove, by contradiction, that there does not exist α ∈ [0, 1) such that

dCOV (ξt −Kt, ξt)

dα
< 0.

Then, the result follows by continuity of COV (ξt −Kt, ξt) with respect to α.

Step 1: limα→1−
dCOV(ξt−Kt,ξt)

dα > 0:

It follows from equation (23) that limα→1− w = τµ. So, as α → 1−, the signals x̂it become useless and, as a
result,

COV (Kt, ξt) = V (Kt) = 0.

Further, since w ≥ τµ, we have that

lim
α→1−

dw

dα
≤ 0 ⇒ lim

α→1−

d (1− α) (1 + w)

dα
< 0.

Therefore, at the limit of α→ 1−, an increase in α is akin to an increase in the variance of every idiosyncratic
noise, which implies that (see Lemma D.2 in the Online Appendix D of Huo and Pedroni (2020)),

lim
α→1−

dCOV (ξt −Kt, ξt)

dα
> 0.

Step 2: dCOV(ξt−Kt,ξt)
dα > 0 for all α ∈ [0, 1):

Suppose the there exists α ∈ [0, 1) such that dCOV(ξt−Kt,ξt)
dα < 0. Then, by the intermediate value theorem

and continuity of dCOV(ξt−Kt,ξt)
dα , there must exist some α† such that

dCOV (ξt −Kt, ξt)

dα

∣∣∣∣
α=α†

= 0 ⇒ d (1− α) (1 + w)

dα

∣∣∣∣
α=α†

= 0 ⇒ dV (ξt −Kt)

dα

∣∣∣∣
α=α†

= 0,

since, for COV (ξt −Kt, ξt) not to change with α, it must be that the variance of the noise, (1− α) (1 + w), is
unchanged. Since

d (1− α) (1 + w)

dα
= − (1 + wτµ) + (1− α)

dw

dα
,

it follows that
dw

dα

∣∣∣∣
α=α†

> 0.
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However, since COV (ξt −Kt, ξt) and V (ξt −Kt) do not vary with α, it follows from equation (23) that

dw

dα

∣∣∣∣
α=α†

= −
λτµ

(
V (ξt −Kt) +

λγτµV(ξt)2(1−S)2

1−λγτµV(ξt)

)
[
1− λ (1− α†) τµ

(
V (ξt −Kt) +

λγτµV(ξt)2(1−S)2

1−λγτµV(ξt)

)]2 < 0.

Thus, we have a contradiction, and we can conclude that

dCOV (ξt −Kt, ξt)

dα
< 0 ⇒ dS

dα
< 0.
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B Extensions

In this section, we consider three extensions to the baseline model setup. The first is the multiple-actions
extension discussed in Section II.E; here we simply provide a proof of the results presented there. The
second extension allows for a more general utility specification, which covers economies with different forms
of inefficiencies. The third extension is to the information structure, allowing the fundamental to depend on
multiple aggregate shocks.

B.1 Multiple actions

In this section, we extend the baseline setup to allow for multiple actions instead of just a single one. Each
agent i takes J actions, so that kit ∈ RJ . In what follows, we first demonstrate that the utility specification
with multiple actions introduced in Section II.E, equation (26), represents an efficient economy under both
complete and incomplete information, provided there is no concern for ambiguity. We then proceed to present
the proof of Proposition 7, which characterizes the equilibrium when there is ambiguity and ambiguity aversion
under this multiple actions setup.

B.1.1 An Efficient Economy

Consider the following extension to multiple actions of the generic quadratic utility specification from Angeletos
and Pavan (2007):

u (kit,Kt,Σt, ξt) =
1

2
k′itUkkkit +

1

2
K ′

tUKKKt +
1

2
ξ′tUξξξt +

1

2
Σ′

tUΣΣΣt + ξ′tU
′
kξkit +K ′

tU
′
kKkit + ξ′tU

′
KξKt

+ Ukkit + UKKt + Uξξt + const.,

where Kt and Σt denote respectively the cross-sectional mean and dispersion of the J actions,

Kt ≡
∫
i

kit di, and Σt ≡

(√∫
i

(k1,it −K1,t)
2
di, · · · ,

√∫
i

(kj,it −Kj,t)
2
di, · · · ,

√∫
i

(kJ,it −KJ,t)
2
di

)
.

The jth elements of kit and Kt are represented by kj,it and Kj,t, respectively. We assume that UΣΣ is diagonal,
and that the information structure is the same as in the single-action setup.

Equilibrium. Without any concern for ambiguity, we now define and characterize an equilibrium for this
model.

Definition B.1. In the absence of ambiguity, an equilibrium is a strategy k (xti) such that

k
(
xti
)
= argmax kE

[
u
(
k,K

(
ηt
)
,Σ
(
ηt
)
, ξ
(
ηt
))

| xti
]
,

where K (ηt) ≡
∫
i
k (xti) di denotes the equilibrium aggregate action, and

Σ
(
ηt
)
≡
(
σ1
(
ηt
)
, · · · , σj

(
ηt
)
, · · · , σJ

(
ηt
))′

, with σj
(
ηt
)
≡

√∫
i

(kj,i (xti)−Kj (ηt))
2
di,
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denotes the equilibrium cross-sectional dispersion of actions.

Proposition B.1. In the absence of ambiguity, a strategy k (xti) is an equilibrium under incomplete informa-
tion if and only if

k
(
xti
)
= (I−Θ)E

[
κ (ξt) | xti

]
+ΘE

[
K
(
ηt
)
| xti
]
,

where the equilibrium degree of coordination is captured by the J × J matrix

Θ ≡ −U−1
kk UkK ,

and κ (ξt) denotes the equilibrium allocation under complete information, given by

κ (ξt) ≡ − (Ukk + UkK)
−1
Ukξ︸ ︷︷ ︸

κ

ξt − (Ukk + UkK)
−1
U ′
k︸ ︷︷ ︸

κ0

.

Proof. We first characterize the complete-information benchmark. Let Iit be the information set of agent i
in period t. Under complete information, we have that ξt ∈ Iit. That is, all agents have perfect information
about both the fundamental ξt and, consequently, about the aggregate action Kt. The agent’s first-order
condition is then given by

∂u (kit,Kt,Σt, ξt)

∂kit
= k′itUkk + ξ′tU

′
kξ +K ′

tU
′
kK + Uk = 0.

Using the fact that kit = Kt, the equilibrium strategy under complete information is such that

kit = κ (ξt) ≡ − (Ukk + UkK)
−1
Ukξ︸ ︷︷ ︸

κ

ξt − (Ukk + UkK)
−1
U ′
k︸ ︷︷ ︸

κ0

,

where both κ and κ0 are J × 1 vectors.

When information is incomplete, the agent’s first-order condition becomes

−Ukk kit = Ukξ E
[
ξt | xti

]
+ UkK E

[
Kt | xti

]
+ U ′

k.

Multiplying − (Ukk + UkK)
−1 to both sides of the equation implies

(Ukk + UkK)
−1
Ukk kit = − (Ukk + UkK)

−1
Ukξ E

[
ξt | xti

]
−(Ukk + UkK)

−1
UkK E

[
Kt | xti

]
−(Ukk + UkK)

−1
U ′
k,

and it follows that
kit = U−1

kk (Ukk + UkK) E
[
κ (ξt) | xti

]
− U−1

kk UkK E
[
Kt | xti

]
.

which completes the proof.

Efficient allocation. Abstracting from ambiguity concerns, an efficient allocation is the strategy k (xti) that
maximizes ex-ante utility, subject only to the constraint that the private information of any agent cannot be
transferred to any other agent.
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Definition B.2. In the absence of ambiguity, an efficient allocation is a strategy k (xti) that maximizes ex-ante
expected utility,

E
[
u
(
k,K

(
ηt
)
,Σ
(
ηt
)
, ξ
(
ηt
))]

.

Proposition B.2. In the absence of ambiguity, a strategy k (xti) is efficient under incomplete information if
and only if

k
(
xti
)
= (I−Θ∗)

∫
ηt

κ∗(ξ
(
ηt
)
)dP

(
ηt | xti

)
+Θ∗

∫
ηt

K
(
ηt
)
dP
(
ηt | xti

)
,

where P (ηt | xti) denotes the cumulative distribution function of ηt conditional on xti, the efficient degree of
coordination is captured by the J × J matrix

Θ∗ = − (Ukk + UΣΣ)
−1

(UKK + UkK + U ′
kK − UΣΣ) ,

and κ∗(ξt) denotes the efficient allocation under complete information, given by

κ∗(ξt) ≡ − (Ukk + UkK + U ′
kK + UKK)

−1
(Ukξ + UKξ)︸ ︷︷ ︸

κ∗

ξt − (Ukk + UkK + U ′
kK + UKK)

−1
(Uk + UK)

′︸ ︷︷ ︸
κ∗
0

.

Proof. We first characterize the first-best allocation, that is, the efficient allocation under complete informa-
tion. Let Iit be the information set of agent i in period t. Under complete information, we have that ξt ∈ Iit.
It is, then, straightforward to show that the first-best allocation features kit = Kt, which implies that Σt = 0.
It follows that the efficient level of Kt must maximize

1

2
K ′

t (Ukk + UkK + U ′
kK + UKK)Kt +

1

2
ξ′tUξξξt + ξ′t (Ukξ + UKξ)

′
Kt + (Uk + UK)Kt + Uθξt + const.,

which implies the following first-order condition,

K ′
t (Ukk + UkK + U ′

kK + UKK) + ξ′t (Ukξ + UKξ)
′
+ (Uk + UK) = 0.

It follows that the efficient allocation satisfies

kit = Kt = − (Ukk + UkK + U ′
kK + UKK)

−1
(Ukξ + UKξ)︸ ︷︷ ︸

κ∗

ξt − (Ukk + UkK + U ′
kK + UKK)

−1
(Uk + UK)

′︸ ︷︷ ︸
κ∗
0

,

where both κ∗ and κ∗0 are J × 1 vectors.

To characterize the efficient allocation under incomplete information, define the Lagrangian of the problem in
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Definition B.2 by

Λ =

∫
ηt

∫
xt
i

u
(
k
(
xti
)
,K
(
ηt
)
,Σ
(
ηt
)
, ξ
(
ηt
))

dP
(
xti | ηt

)
dP
(
ηt
)

+

∫
ηt

ι
(
ηt
) [
K
(
ηt
)
−
∫
xt
i

k
(
xti
)
dP
(
xti | ηt

)]
dP
(
ηt
)

+

∫
ηt

J∑
j=1

φj

(
ηt
) [
σ2
j

(
ηt
)
−
∫
xt
i

(
kj,i

(
xti
)
−Kj

(
ηt
))2

P
(
xti | ηt

)
dxti

]
dP
(
ηt
)
,

where ι (ηt) and φj (η
t) denote the multipliers on the definitions of K (ηt) and σj (η

t), respectively. Further,
P (xti | ηt) denotes the CDF of xti conditional on ηt, and and P (ηt) denotes the unconditional CDF of ηt.

To ease notation, denote φ (ηt) ≡ diag (φ1 (η
t) , · · · , φj (η

t) , · · · , φJ (ηt)). Then, the first-order conditions can
be written as∫

xt
i

(
∂u (·)
∂K

+ ι
(
ηt
)
+ 2φ

(
ηt
) (
k
(
xti
)
−K

(
ηt
)))

dP
(
xti | ηt

)
= 0, for almost all ηt, (B.1)

∫
ηt

(
∂u (·)
∂k

− ι
(
ηt
)
− 2φ

(
ηt
) (
k
(
xti
)
−K

(
ηt
)))

dP
(
ηt | xti

)
= 0, for almost all xti, (B.2)

∫
xt
i

(
∂u (·)
∂Σ

)
dP
(
xti | ηt

)
+ 2φ

(
ηt
)
Σ
(
ηt
)
= 0, for almost all ηt. (B.3)

Rearranging equations (B.1) and (B.3), we obtain∫
xt
i

∂u (·)
∂K

dP
(
xti | ηt

)
+ ι
(
ηt
)
= 0, and φ

(
ηt
)
= −1

2
UΣΣ, for almost all ηt.

Further, since
∂u (·)
∂K

= UKKK
(
ηt
)
+ U ′

kK k
(
xti
)
+ UKξ ξ

(
ηt
)
+ UK ,

it follows that
ι
(
ηt
)
= − (UKK + U ′

kK)K
(
ηt
)
− UKξ ξ

(
ηt
)
− UK .

Using these two expressions to replace ι (ηt) and φ (ηt) in equation (B.2), and using the fact that

∂u (·)
∂k

= Ukkk
(
xti
)
+ UkKK

(
ηt
)
+ Ukξξ

(
ηt
)
+ Uk,

yields

k
(
xti
)
= (Ukk + UΣΣ)

−1
(Ukk + UkK + U ′

kK + UKK)

∫
ηt

κ∗(ξ
(
ηt
)
)dP

(
ηt | xti

)
− (Ukk + UΣΣ)

−1
(UKK + UkK + U ′

kK − UΣΣ)

∫
ηt

K
(
ηt
)
dP
(
ηt | xti

)
,

which completes the proof.
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By comparing Propositions B.1 and B.2, we arrive at the following corollary.

Corollary B.1. An economy is efficient if and only if

κ (ξt) = κ∗(ξt), and Θ = Θ∗.

Next, notice that the utility specification in equation (26), used in Section II.E,

u(kit,Kt, ξt) =
1

2
(kit − κξt)

′
Ψk (kit − κξt) +

1

2
(kit −Kt)

′
ΨK (kit −Kt) + χξt −

1

2
γξ2t ,

implies that
UK = 0, UΣΣ = UKξ = 0, and UkK = UkK′ = UKK .

These constraints imply the conditions from Corollary B.1, which then leads to following result.

Claim 1. The economy with utility given by equation (26) is efficient under both complete and incomplete
information.

We conclude this subsection by two additional remarks:

1. We can normalize Uk = 0, and thus, κ0 = 0 without loss of generality. A nonzero Uk would only add an
exogenous vector of constants to the action strategy under complete or incomplete information. This
same exogenous vector of constants also applies to the equilibrium action strategy with ambiguity. This
vector of constants can be regarded as the deterministic steady state of the economy, which can always
be abstracted away by redefining actions as deviations from the deterministic steady state.

2. We demonstrate that economy with the utility specified as in equation (26) is efficient. This statement
can be strengthened in the sense that, as long as UΣΣ = 0, equation (26) is the only utility specification
that ensures efficiency under complete and incomplete information.

B.1.2 Equilibrium with Ambiguity

We now proceed to characterize the equilibrium with ambiguity. First notice that the utility specified in
equation (26) is equivalent to the generic quadratic utility if we set

Ukk = Ψk +ΨK , and UKK = ΨK .

From this point forward, we use these conditions to switch to the notation used in the paper, with Ψk and
ΨK .

Analogously to Proposition 3, it can be shown that the optimal strategies for the vector of J actions of all
agents are such that

kit = (I−Θ)Fit [κξt] + ΘFit [Kt] , (B.4)
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where Fit [·] represents agent i’s subjective expectation operator, that is,

Fit [·] ≡
∫
µt

Eµt

[ · | xti] p̂
(
µt | xti

)
dµt, with p̂

(
µt | xti

)
∝ ϕ′

(
Eµt

[u (kit,Kt, ξt)]
)
p
(
µt | xti

)
.

Moreover, the coordination matrix, Θ, is such that

Θ = U−1
kk UKK = (Ψk +ΨK)

−1
ΨK .

B.1.3 Proof of Proposition 7

Next, as in the single action case, we consider a truncated version of the problem using exactly the same
notation as in the proof of Proposition 4. We identify a specific form for the equilibrium optimal strategies,
which we then use to prove the main equivalence result, Proposition 7.

Define higher-order subjective expectations recursively as follows:

F̄n [X] ≡

X, if n = 0;∫
i
Fi

[
F̄n−1 [X]

]
di, if n ≥ 1.

By iteratively eliminating Fit [K] in the best response (B.4), we obtain

ki =

∞∑
m=0

Θm (I −Θ)κ Fi

[
F̄m [θ]

]
.

Notice that, as long as subjective expectations are Gaussian, agent i’s subjective expectations about any order
must be linear in signals, that is,

Fi

[
F̄m [θ]

]
= h̃′m xi + q̃m,

where the J ×n matrix h̃′m and J × 1 vector q̃m represent the sensitivity and bias of the mth-order subjective
expectation. Further, let the eigenvalue decomposition of Θ be given by

Θ ≡
J∑

j=1

αjQ
−1eje

′
j Q,
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where ej denotes the j-th column of a J × J identity matrix. It follows that

ki =

∞∑
m=0

 J∑
j=1

αjQ
−1eje

′
j Q

m J∑
j=1

(1− αj)Q
−1eje

′
j Q

κ
(
h̃′m xi + q̃m

)

=

∞∑
m=0

 J∑
j=1

αm
j Q

−1eje
′
j Q

 J∑
j=1

(1− αj)Q
−1eje

′
j Q

κ
(
h̃′m xi + q̃m

)

=

∞∑
m=0

J∑
j=1

(1− αj)α
m
j Q

−1eje
′
j Qκ

(
h̃′m xi + q̃m

)

=

J∑
j=1

Q−1eje
′
j Qκ

(
(1− αj)

∞∑
m=0

αm
j h̃

′
m xi + (1− αj)

∞∑
m=0

αm
j q̃m

)

=

J∑
j=1

Q−1eje
′
j Qκ

(
ĥ′j xi + q̂j

)
,

where ĥj and q̂j are defined as

ĥj ≡ (1− αj)

∞∑
m=0

αm
j h̃

′
m, and q̂j ≡ (1− αj)

∞∑
m=0

αm
j q̃m.

Interpret κ
(
ĥ′j xi + q̂j

)
, for all j, as a set of forecasting rules for the equilibrium allocation under complete

information, κθ. Then, the derived expression implies that the optimal strategy for each of the J actions is a
linear combination of these forecasting rules. This linear relationship can be “orthogonalized” by transforming
the actions ki and the complete information allocation κθ using the matrix Q. Specifically, let

k̂i ≡ Qki, and κ̂ ≡ Qκ.

It follows that

k̂i =

J∑
j=1

eje
′
j κ̂
(
ĥ′jxi + q̂j

)
,

so that the j-th transformed action, the j-th row of k̂i, is equal to e′j κ̂
(
ĥ′j xi + q̂j

)
.

By defining

H ≡
[
e′1κ̂ĥ

′
1 e′2κ̂ĥ

′
2 . . . e′J κ̂ĥ

′
J

]
, and Q ≡

[
e′1κ̂q̂1 e′2κ̂q̂2 . . . e′J κ̂q̂J

]′
,

the expression for k̂i can be compactly written as

k̂i = H′Bνi +Q.
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Similarly, the Q-transformed version of the complete information solution can be written as

κ̂ (θ) = κ̂Aνi =

J∑
j=1

eje
′
j κ̂Aνi = Aνi, with A ≡

[
e′1κ̂A e′2κ̂A . . . e′J κ̂A

]′
= κ̂⊗A.

Further, the utility function can also be transformed in a similar way,

ui =
1

2

(
k̂i − κ̂ (θ)

)′
Ψ̂k

(
k̂i − κ̂ (θ)

)
+

1

2

(
k̂i − K̂

)′
Ψ̂K

(
k̂i − K̂

)
+ χθ − 1

2
γθ2 + const.,

with
Ψ̂k ≡

(
Q−1

)′
ΨkQ

−1, and Ψ̂K ≡
(
Q−1

)′
ΨKQ

−1.

It follows that

Eµ [ui] =
1

2
µ′K (H′B −A)

′
Ψ̂k (H′B −A)K′µ− 1

2
γµ′KA′AK′µ+

1

2
µ′K (H′B −A)

′
Ψ̂KQ+

1

2
Q′Ψ̂k (H′B −A)K′µ+

1

2
χAK′µ+

1

2
χµ′KA′.

Thus, the distorted subjective belief must satisfy

p̂ (µ | xi) ∝ exp

(
−1

2
µ′S−1µ+

1

2
µ′S−1 (Mxi +Π) +

1

2
(Mxi +Π)

′
S−1µ

)
,

with matrices S, M , and Π given by

S ≡
(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ + λ
(
K (H′B −A)

′
Ψ̂k (H′B −A)K′ − γKA′AK′

))−1

.

M ≡ SK (BΩB′)
−1
, and Π ≡ S

(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
.

From agent i’s first order condition, equation (B.4), we have that

k̂i =

I−
J∑

j=1

αjeje
′
j

AFi [νi] +

 J∑
j=1

αjeje
′
j

Fi

[
K̂
]
,

and, therefore,

H′Bνi +Q =

I−
J∑

j=1

αjeje
′
j

AFi [νi] +

 J∑
j=1

αjeje
′
j

 (H′BΛFi [νi] +Q) .
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Moreover, the distorted subjective expectations satisfy

Fi [νi] =

∫
µ

Eµ [νi|xi] p̂ (µ|xi) dµ

=

∫
µ

(Eµ [νi − µ|xi] + µ) p̂ (µ|xi) dµ

=

∫
µ

(
ΩB′ (BΩB′)

−1
(xi − µ) + µ

)
p̂ (µ|xi) dµ

= ΩB′ (BΩB′)
−1
xi +

(
I− ΩB′ (BΩB′)

−1
B
)
K′
∫
µ

µp̂i (µ) dµ

= ΩB′ (BΩB′)
−1
xi +

(
I− ΩB′ (BΩB′)

−1
B
)
K′SKB′ (BΩB′)

−1
xi

+
(
I− ΩB′ (BΩB′)

−1
B
)
K′S

(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
.

Matching coefficients then implies that

H′ = (I− Φ)T + ΦH′H+ [(I− Φ) (A− TB) + ΦH′ (BΛ−HB)]K′SKB′ (BΩB′)
−1
, (B.5)

and

(I− Φ)Q = [(I− Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
, (B.6)

where T, H, and Φ are given by

T ≡ AΩB′ (BΩB′)
−1
, H ≡ BΛΩB′ (BΩB′)

−1
, and Φ ≡

J∑
j=1

αjeje
′
j .

In what follows, we first focus on equation (B.5). Through a sequence of lemmas, we show that this fixed-
point problem for H can be recast as the linear combination of pure forecasting problems. We then proceed
to characterize Q using equation (B.6).

Lemma B.1. Define

Ω̂ ≡ Ω+K′WK, T̂ ≡ AΩ̂B′
(
BΩ̂B′

)−1

, Ĥ ≡ BΛΩ̂B′
(
BΩ̂B′

)−1

,

and
W ≡

(
Ω−1

µ + λ
(
K (H′B −A)

′
Ψ̂k (H′B −A)K′ − γKA′AK′

))−1

.

Then, the equilibrium H solves the following fixed-point problem

H′ = (I− Φ) T̂ + ΦH′Ĥ.
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Proof. Using the Woodbury matrix identity, we have that(
BΩ̂B′

)−1

= (BΩB′ +BK′WKB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
. (B.7)

If some H̃ is such that H̃′ = (I− Φ) T̂ + ΦH̃′Ĥ, then

H̃′ = (I− Φ)AΩ̂B′
(
BΩ̂B′

)−1

+ΦH̃′BΛΩ̂B′
(
BΩ̂B′

)−1

= (I− Φ)A (Ω +K′WK)B′
(
BΩ̂B′

)−1

+ΦH̃′BΛ (Ω +KWK′)B′
(
BΩ̂B′

)−1

= (I− Φ)AΩB′
(
BΩ̂B′

)−1

+ (I− Φ)AK′WKB′
(
BΩ̂B′

)−1

+ΦH̃′BΛΩB′
(
BΩ̂B′

)−1

+ΦH̃′BΛK′WKB′
(
BΩ̂B′

)−1

.

Using equation (B.7), it follows that

H̃′ = (I− Φ)AΩB′ (BΩB′)
−1 − (I− Φ)AΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ (I− Φ)AK′WKB′ (BΩB′)
−1 − (I− Φ)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ΦH̃′BΛΩB′ (BΩB′)
−1 − ΦH̃′BΛΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ΦH̃′BΛK′WKB′ (BΩB′)
−1 − ΦH̃′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (I− Φ)AΩB′ (BΩB′)
−1︸ ︷︷ ︸

(I−Φ)T

+ΦH̃′BΛΩB′ (BΩB′)
−1︸ ︷︷ ︸

ΦH̃′H

− (I− Φ)AΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
(I−Φ)TBK′SKB′(BΩB′)−1

−ΦH̃′BΛΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
ΦH̃′HBK′SKB′(BΩB′)−1

+ (I− Φ)AK′WKB′ (BΩB′)
−1 − (I− Φ)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ΦH̃′BΛK′WKB′ (BΩB′)
−1 − ΦH̃′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
.

Further, notice that the terms in the second-to-last line can be rewritten as

(I− Φ)AK′WKB′ (BΩB′)
−1 − (I− Φ)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (I− Φ)AK′W
(
KB′ (BΩB′)

−1
BK′ +W−1

)(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

− (I− Φ)AK′WKB′ (BΩB′)
−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (I− Φ)AK′SKB′ (BΩB′)
−1
,

25



and, similarly, the terms in the last line can be rewritten as

ΦH̃′BΛK′WKB′ (BΩB′)
−1 − ΦĤ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= ΦH̃′BΛK′SKB′ (BΩB′)
−1
.

Therefore, we have that

H̃′ = (I− Φ)T + ΦH̃′H+
[
(I− Φ) (A− TB) + ΦH̃′ (BΛ−HB)

]
K′SKB′ (BΩB′)

−1
,

which is equivalent to the expression for H in equation (B.5).

Lemma B.2. For any j ∈ {1, · · · , J}, define

ΩΓj
≡ Γj Ω̂, with Γj ≡

[
Iu 0u,m−u

0m−u,u
Im−u

1−αj

]
.

Then, the equilibrium H satisfies
e′jH′ = e′jAΩΓj

B′ (BΩΓj
B′)−1

.

Proof. It follows from Lemma B.1 that

H′ = (I− Φ)AΩ̂B′
(
BΩ̂B′

)−1

+ΦH′BΛΩ̂B′
(
BΩ̂B′

)−1

.

Right multiplying by BΩ̂B′, we obtain

H′BΩ̂B′ = (I− Φ)AΩ̂B′ +ΦH′BΛΩ̂B′,

or, using Φ =
∑J

j=1 eje
′
jαj ,

J∑
j=1

eje
′
jH′BΩ̂B′ −

J∑
j=1

αjeje
′
jH′BΛΩ̂B′ = (I− Φ)AΩ̂B′,

which can be rewritten as
n∑

j=1

eje
′
jH′B (I− αjΛ) Ω̂B

′ = (I− Φ)AΩ̂B′.

Since (I− αjΛ) = (1− αj)Γj , it follows that

n∑
j=1

(1− αj) eje
′
jH′BΓjΩ̂B

′ = (I− Φ)AΩ̂B′.

Guessing that
e′jH′ = e′jAΩΓjB

′ (BΩΓjB
′)−1

,
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and using AΓj = A, we obtain

n∑
j=1

(1− αj) eje
′
jAΩ̂B′ (BΩΓj

B′)−1
BΩΓj

B′ = (I− Φ)AΩ̂B′,

or
n∑

j=1

(1− αj) eje
′
jAΩ̂B′ = (I− Φ)AΩ̂B′.

The fact that (I− Φ) =
∑J

j=1 (1− αj) eje
′
j concludes the proof.

Lemma B.3. Define

∆j ≡ ΓjΩ+K′Ŵ Ω̃µK, and Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
,

with
Ŵ ≡ Iu − λΩ̃µK

(
A−H′B

)′
Ψ̂kW̄

(
A−H′B

)
K′,

and
W̄ ≡

(
IJ + λ

(
A−H′B

)
K′Ω̃µK

(
A−H′B

)′
Ψ̂k

)−1

.

Then, the equilibrium H satisfies

H′ =

J∑
i=1

eje
′
jA∆jB

′ (B∆jB
′)
−1
.

Proof. It follows from Lemma B.2 that

n∑
j=1

eje
′
j (A−H′B)ΩΓj

B′ = 0.

From the definitions of ΩΓj
and Ω̃µ, we have that

ΩΓj = ΓjΩ+K′
(
Ω̃−1

µ + λK
(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

K.

It is then sufficient to show that

n∑
j=1

eje
′
j (A−H′B)

(
ΓjΩ+K′Ŵ Ω̃µK

)
=

n∑
j=1

eje
′
j (A−H′B)

(
ΓjΩ+K′

(
Ω̃−1

µ + λK
(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

K
)
,

or, equivalently,

(A−H′B)
(
K′Ŵ Ω̃µK

)
= (A−H′B)

(
K′
(
Ω̃−1

µ + λK
(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

K
)
.
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In turn, a sufficient condition for this equation to be satisfied is that

Ŵ =
(
Iu + λΩ̃µK

(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

,

which, using the Woodbury matrix identity, can be rewritten as

Ŵ = Iu − λΩ̃µK
(
A−H′B

)′
Ψ̂kW̄

(
A−H′B

)
K′,

with
W̄ =

(
IJ + λ

(
A−H′B

)
K′Ω̃µK

(
A−H′B

)′
Ψ̂k

)−1

.

Lemma B.4. Denote the eigenvalue decomposition of (IJ − Φ)
(
τ−1
µ IJ + W̄

)
by

(IJ − Φ)
(
τ−1
µ IJ + W̄

)
= P−1

 J∑
j=1

ωjeje
′
j

P .

Define

∆̄j ≡ ΓjΩ+K′
(

ωj

(1− αj)
Ωµ − Ωη

)
K,

and let the scalars r̂j and x̂j be given by

r̂j ≡
λγe′jW̄ (A−H′B)K′ΩµKA′

(1− λγAK′ΩµKA′)κ̂j
, and x̂j ≡

J∑
i=1

Pji

(
1 +

(1− αi) r̂i
ωj

)
κ̂i,

and let X ′ be such that
e′jX ′ ≡ x̂j

(
A∆̄jB

′) (B∆̄jB
′)−1

.

Then, the equilibrium H satisfies
H′ = P−1X ′.

Proof. From Lemma B.3, we have that

e′jH′ = e′jA
(
ΓjΩ+K′Ŵ Ω̃µK

)
B′
(
B
(
ΓjΩ+K′Ŵ Ω̃µK

)
B′
)−1

,

and, therefore,
e′jH′B

(
ΓjΩ+K′Ŵ Ω̃µK

)
B′ = e′jA

(
ΓjΩ+K′Ŵ Ω̃µK

)
B′.

Rearranging, we get
e′jH′BΓjΩB

′ = e′jAΓjΩB
′ + e′j (A−H′B)K′Ŵ Ω̃µKB′.
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Since

(A−H′B)K′Ŵ = (A−H′B)K′ − λ (A−H′B)K′Ω̃µK
(
A−H′B

)′
Ψ̂kW̄

(
A−H′B

)
K′

=
(
IJ − λ (A−H′B)K′Ω̃µK

(
A−H′B

)′
Ψ̂k

)
W̄
(
A−H′B

)
K′

= W̄ (A−H′B)K′,

it follows that
e′jH′BΓjΩB

′ = e′jAΓjΩB
′ + e′jW̄ (A−H′B)K′Ω̃µKB′.

From the definition of Ω̃µ, we have that

Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
= Ωµ + sΩµKA′AK′Ωµ,

with
s ≡ λγ

1− λγAK′ΩµKA′ .

So that

e′jH′BΓjΩB
′ = e′jAΓjΩB

′ + e′jW̄ (A−H′B)K′ (Ωµ + sΩµKA′AK′Ωµ)KB′

= e′jAΓjΩB
′ + e′jW̄ (A−H′B)K′ΩµKB′ + r̂je

′
jAK′ΩµKB′,

where we used the fact that e′j (A−H′B)K′ΩµKA′ and κ̂j ≡ e′j κ̂ are scalars, κ̂jA = e′jA, and

r̂j ≡
s
(
e′jW̄ (A−H′B)K′ΩµKA′)

κ̂j
.

Thus, it follows that

e′jH′BΓjΩB
′ = e′jA (ΓjΩ+ r̂jK′ΩµK)B′ + e′jW̄ (A−H′B)K′ΩµKB′,

which implies

J∑
j=1

eje
′
jH′BΓjΩB

′ =

J∑
j=1

eje
′
jA (ΓjΩ+ r̂jK′ΩµK)B′ + W̄ (A−H′B)K′ΩµKB′,

and, therefore,

J∑
j=1

eje
′
jH′BΓjΩB

′ + W̄H′BK′ΩµKB′ =

J∑
j=1

eje
′
jA (ΓjΩ+ r̂jK′ΩµK)B′ + W̄AK′ΩµKB′.

Next, we use this equation to solve for H. Recall that A = [a′, 0], where a is of dimension u × 1, and let
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B = [B1, B2], with B1 of dimension n× u and B2 of dimension n× (m− u). Then,

J∑
j=1

eje
′
jH′

(
B1ΩηB

′
1 +

1

1− αj
B2ΩεB

′
2

)
+ W̄H′ (B1ΩµB

′
1) =

J∑
j=1

ej κ̂ja
′ (Ωη + r̂jΩµ)B

′
1 + W̄ κ̂a′ΩµB

′
1.

Using the fact that τ−1
µ Ωµ = Ωη, it follows that

(
τ−1
µ IJ + W̄

)
H′ (B1ΩµB

′
1) + (IJ − Φ)

−1 H′ (B2ΩεB
′
2) =

J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 +

(
τ−1
µ IJ + W̄

)
κ̂a′ΩµB

′
1.

Left multiplying by (IJ − Φ), then, implies

(IJ − Φ)
(
τ−1
µ IJ + W̄

)
H′ (B1ΩµB

′
1)+H′ (B2ΩεB

′
2) = (IJ − Φ)

 J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 +

(
τ−1
µ IJ + W̄

)
κ̂a′ΩµB

′
1

 .

Since, by definition,

(IJ − Φ)
(
τ−1
µ IJ + W̄

)
= P−1DP, with D ≡

 J∑
j=1

ωjeje
′
j

 ,

it follows that

P−1DPH′ (B1ΩµB
′
1) +H′ (B2ΩεB

′
2) = (IJ − Φ)

J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 + P−1DPκ̂a′ΩµB

′
1.

Left multiplying by P , then, implies

DPH′ (B1ΩµB
′
1) + PH′ (B2ΩεB

′
2) = P (IJ − Φ)

J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 +DPκ̂a′ΩµB

′
1.

Next, define
X ′ ≡ PH′,

so that we can rewrite the equation as

DX ′ (B1ΩµB
′
1) + X ′ (B2ΩεB

′
2) = P

J∑
j=1

ej (1− αj) κ̂ja
′ (r̂jΩµ)B

′
1 +DPκ̂a′ΩµB

′
1.

Next, using the definition of D, we obtain

e′jX ′ (B1ωjΩµB
′
1 +B2ΩεB

′
2) = e′j

(
P

J∑
i=1

ei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 +DPκ̂a′ΩµB

′
1

)
.
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Right multiplying by (B1ωjΩµB
′
1 +B2ΩεB

′
2)

−1, then, yields

e′jX ′ = e′j

(
P

J∑
i=1

ei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 +DPκ̂a′ΩµB

′
1

)
(B1ωjΩµB

′
1 +B2ΩεB

′
2)

−1
.

Notice that

e′j

(
P

J∑
i=1

ei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 +DPκ̂a′ΩµB

′
1

)
=

J∑
i=1

e′jPei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 + e′jDPκ̂a

′ΩµB
′
1

=

J∑
i=1

Pji ((1− αi) r̂i + ωj) κ̂ia
′ΩµB

′
1,

so that we can further rewrite the expression as

e′jX ′ =

(
J∑

i=1

Pji

(
(1− αi) r̂i + ωj

ωj

)
κ̂ia

′ωjΩµB
′
1

)
(B1ωjΩµB

′
1 +B2ΩεB

′
2)

−1

=

(
J∑

i=1

Pji

(
(1− αi) r̂i + ωj

ωj

)
κ̂ia

′ ωj

(1− αj)
ΩµB

′
1

)(
B1

ωj

(1− αj)
ΩµB

′
1 +B2

1

(1− αj)
ΩεB

′
2

)−1

.

Finally, using the definition of ∆̄j , we get

e′jX ′ =

J∑
i=1

Pji

(
1 +

(1− αi) r̂i
ωj

)
κ̂i
(
A∆̄jB

′) (B∆̄jB
′)−1

,

and the definition of X ′ implies
H′ = P−1X ′.

Parts 1 and 2 of Proposition 7. Given the result in Lemma B.4, we are left with taking the limit, as
T → ∞, of the truncated problem. Define wj ≡ τµωj

1−αj
− 1, then, in particular, we have that

lim
T→∞

A∆̄jB
′ (B∆̄jB

′)−1
= p (L;wj , αj) , lim

T→∞
AK′ΩηKA′ = V(ξt),

lim
T→∞

(
A−H′B

)
K′ΩηK

(
A−H′B

)′
= V(κ̂ξt − K̂t), lim

T→∞
(A−H′B)K′ΩµKA′ = COV

(
κ̂ξt − K̂t, ξt

)
.
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Next, let W ≡ limT→∞ τµW̄ , rj ≡ limT→∞
τµ

1+wj
r̂j , and xj ≡ limT→∞ x̂j , for j ∈ {1, . . . , J}. Then, it follows

that

W = lim
T→∞

(
τ−1
µ IJ + λτ−1

µ

(
A−H′B

)
K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′

)
K
(
A−H′B

)′
Ψ̂k

)−1

= lim
T→∞

(
τ−1
µ IJ + λ

((
A−H′B

)
K′ΩηK

(
A−H′B

)′
+

λγ(A−H′B)K′(ΩηKA′AK′Ωη)K(A−H′B)
′

τ−1
µ −λγAK′ΩηKA′

)
Ψ̂k

)−1

=

τ−1
µ IJ + λ

V
(
κ̂1ξt − K̂t

)
+
λγCOV

(
κ̂ξt − K̂t, ξt

)
COV

(
κ̂ξt − K̂t, ξt

)′
τ−1
µ − λγV (ξt)

 Ψ̂k


−1

W =

(
τ−1
µ IJ + λQ

(
V (κξt −Kt) +

λγCOV (κξt −Kt, ξt)COV (κξt −Kt, ξt)
′

τ−1
µ − λγV (ξt)

)
ΨkQ

−1

)−1

,

and

rj = lim
T→∞

τµ
1 + wj

λγ

1− λγAK′ΩµKA′
e′jτ

−1
µ τµW̄ (A−H′B)K′ΩµKA′

κ̂j

=
τµ

1 + wj

λγ

1− λτµγV (ξt)

e′jWCOV
(
κ̂ξt − K̂t, ξt

)
κ̂j

= γ
λτµ

1− λτµγV (ξt)

e′jWQCOV (κξt −Kt, ξt)

e′jQκj(1 + wj)
,

and

xj = lim
T→∞

J∑
i=1

Pji

(
1 +

(1− αi) r̂i
ωj

)
κ̂i =

J∑
i=1

Pji

(
1 +

(1− αi)

(1− αj)
rj

)
Qκi.

Part 3 of Proposition 7. Next, we characterize the bias term, B ≡ limT→∞Q−1Q. From equation (B.6),
we have that

(IJ − Φ)Q = [(I− Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
.

There exists a unique Q that satisfies this equation. We postulate that there exists Y such that

(IJ − Φ)Q = [(IJ − Φ)A+ΦH′BΛ−H′B]K′Y,

so that solving for Y pins down the unique Q. To proceed, first replace the guess for Q on the RHS of equation
(B.6),

RHS ≡ [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
(
−λK (H′B −A)

′
Ψ̂k (IJ − Φ)

−1
(IJ − Φ)Q− λχKA′

)
= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×
(
−λK (H′B −A)

′
Ψ̂k (IJ − Φ)

−1
[(IJ − Φ)A+ΦH′BΛ−H′B]K′Y − λχKA′

)
.
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Next, for the LHS of the equation, we have that

LHS ≡ (IJ − Φ)Q = [(IJ − Φ)A+ΦH′BΛ−H′B]K′Y,

and, substituting the last H′ using equation (B.5), it follows that

LHS = [(IJ − Φ) (A− T B) + ΦH′ (BΛ−HB)]
[
Im −K′SKB′ (BΩB′)

−1
B
]
K′Y

= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
[
S−1 −KB′ (BΩB′)

−1
BK′

]
Y

= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×
{
Ω−1

µ + λ
(
K (H′B −A)

′
Ψ̂k (H′B −A)K′ − γKA′AK′

)}
Y,

where the last equality uses the definition of S. Putting these results together, we have that

LHS − RHS = [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×

{
λK (H′B −A)

′
Ψ̂k

{
(H′B −A)K′ + (IJ − Φ)

−1
[(IJ − Φ)A+ΦH′BΛ−H′B]K′

}
Y

Ω−1
µ Y − λγKA′AK′Y − λχKA′

}
= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×
{
Ω−1

µ Y + λK (H′B −A)
′
Ψ̂k (IJ − Φ)

−1
ΦH′B (Λ− Im)K′Y − λγKA′AK′Y − λχKA′

}
.

Since (Λ− Im)K′ = 0, a sufficient condition for LHS − RHS = 0 is

Ω−1
µ Y − λγKA′AK′Y − λχKA′ = 0,

which, using the Sherman-Morrison formula, implies that

Y = λχ
(
Ω−1

µ − λγKA′AK′)−1 KA′ = λχ

(
Ωµ +

λγ

1− λγAK′ΩµKA′ΩµKA′AK′Ωµ

)
KA′.

Therefore, we have that

Q = (IJ − Φ)
−1

[(IJ − Φ)A+ΦH′BΛ−H′B]K′Y

= (IJ − Φ)
−1 [

(IJ − Φ)
(
A−H′B

)
K′ +ΦH′B (Λ− Im)K′]Y

=
(
A−H′B

)
K′Y

=
(
A−H′B

)
K′λχ

(
Ωµ +

λγ

1− λγAK′ΩµKA′ΩµKA′AK′Ωµ

)
KA′

= λτµχ

(
1 +

λγτµAK′ΩηKA′

1− λγτµAK′ΩηKA′

)(
A−H′B

)
K′ΩηKA′.

Taking the limit we obtain

B = lim
T→∞

Q−1Q =
λτµχ

1− λγτµV(ξt)
COV(κξt −Kt, ξt),
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which completes the proof of part 3 of the proposition.

B.2 Inefficient economies

The economy in our baseline setup is assumed to be efficient under both complete and incomplete information.
We now consider a generalized utility in the vein of Angeletos and Pavan (2007),

u (kit, kt, ξt) = −1

2

[
(1− α) (kit − ξt)

2
+ α (kit −Kt)

2
]
− 1

2
γξ2t − χξt −

1

2
ψ (Kt − ξt)

2 − ϕKtξt − φKt, (B.8)

which allows inefficiencies under both complete and incomplete information. Specifically, it can be shown that:

• Under complete information, the equilibrium allocation is such that kit = Kt = ξt, whereas the efficient
allocation is such that kit = Kt = κ∗1ξt + κ∗0 with (κ∗1, κ

∗
0) being given by

κ∗1 =
1− (α− ψ)− ϕ

1− (α− ψ)
, , and κ∗0 =

φ

1− (α− ψ)
.

• Under incomplete information, the equilibrium degree of coordination is α, while the efficient degree of
coordination is α∗ = α− ψ.

The following proposition generalizes our equivalence result to the utility function in equation (B.8). The
equilibrium strategy still features the simple form, which results in additional sensitivity and bias.

Proposition B.3. The linear strategy in equilibrium takes the following form

g(xti) = (1 + r)p(L;w,α)xit + B. (B.9)

1. The polynomial matrix p(L;w,α) is the Bayesian forecasting rule with the (w,α)-modified signal process
and w satisfies

w =
τµ

(1 + ν1)− λ (1− α+ ψ) τµ

(
V (ξt −Kt) +

λγτµ(1+ν2)V(ξt)2(1−S)2

1−λγτµ(1+ν3)V(ξt)

) ;
2. The additional amplification, r, satisfies

r =
γλτµV (ξt) (1 + ν2)

1− γλτµV (ξt) (1 + ν3)

w

1 + w
(1− S) ;

3. The level of bias, B, satisfies

B =
χλτµV (ξt) (1− S) + ν4
1− γλτµV (ξt) + ν5

;
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4. Relative to Proposition 4, the inefficiencies imply the following correction terms

ν1 ≡
λ2ϕ2τ2µ

(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
− λϕτµV (ξt) (1− S)

1− λτµV (ξt) (2γ − ϕ (1 + S))
,

ν2 ≡ 1− ϕ

γ

(
2− V (ξt −Kt)

V (ξt) (1− S)

)
,

ν3 ≡ 1− ϕ

γ
(1 + S) ,

ν4 ≡ λφτµ (V (ξt) (1− S)− V (ξt −Kt))

− λ2τ2µ (ϕ (χ− φ) + 2γφ)
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
ν5 ≡ λτµV (ξt) (2ϕS − γ) + λ2τ2µϕ

2
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
.

It is easy to see that without inefficiencies, that is if ψ = ϕ = φ = 0, we have that ν1 = ν2 = ν3 = ν4 = ν5 = 0,
and the formulas reduce to the ones in Proposition 4.

Proof of Proposition B.3. Consider the same truncated version of the model described in the proof of
Proposition 4. For the utility in equation (B.8), we have that

p̂ (µ|xi) ∝ exp

(
−1

2
µ′S−1µ+

1

2
µ′S−1 (Mxi + π) +

1

2
(Mxi + π)

′
S−1µ

)
,

where matrices M , π, and S are such that

M ≡ SK (BΩB′)
−1
, π ≡ S [−λ (1− α∗)h0K (A′ −B′h) + λχKA′ + λφKB′h] ,

and

S ≡
(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ − λ [(1− α∗)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]

− λϕK (ΛB′hA+A′h′BΛ)K′
)−1

,

which, using ϕ = (1− α∗)(1− κ∗1), can be rearranged into

S =
(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ − λγ∗KA′AK′ − λ (1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′

)−1

,

where
γ∗ ≡ γ + (1− α∗)(1− (κ∗1)

2).

We have the same equilibrium conditions for h and h0 as in Proposition 4, equations (A.4) and (A.5), and the
proof proceeds analogously and we keep the same structure to facilitate comparison.

Lemma B.5. Define

Ω̂ ≡ Ω+K′WK, T̂ ≡ AΩ̂B′
(
BΩ̂B′

)−1

, Ĥ ≡ BΛΩ̂B′
(
BΩ̂B′

)−1

,
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and
W ≡

(
Ω−1

µ − λγ∗KA′AK′ − λ (1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′

)−1

.

Then, the equilibrium h solves the following fixed-point problem

h′ = (1− α) T̂ + αh′Ĥ.

Proof. This proof is exactly analogous to the proof of Lemma A.1. In particular, notice that W and S are
still such that

S =
(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

.

Lemma B.6. Define

ΩΓ ≡ Γ Ω̂, with Γ ≡

[
Iu 0u,m−u

0m−u,u
Im−u

1−α

]
.

Then, the equilibrium h satisfies

h′ = AΩΓB
′ (BΩΓB

′)
−1
.

Proof. This lemma is exactly the same as Lemma A.2, and is repeated here just for convenience.

Lemma B.7. Define
∆ ≡ ΓΩ + ŵτ−1

µ K′Ω̃µK,

and

Ω̃µ ≡
(
Ω−1

µ − λγ∗KA′AK′ − λ (1− α∗)K [(κ∗1A
′ −B′h) (κ∗1A− h′B)− (A′ −B′h) (A− h′B)]K′)−1

,

with the scalar ŵ given by

ŵ ≡ τµ

1− λ(1− α∗) (A− h′B)K′Ω̃µK (A′ −B′h)
.

Then, the equilibrium h satisfies
h′ = A∆B′ (B∆B′)

−1
.

Proof. It follows from Lemma B.6 that
(A− h′B)ΩΓB

′ = 0,

and from the definition of ΩΓ and Ω̃µ we have that

ΩΓ = ΓΩ+K′
(
Ω̃−1

µ − λ(1− α∗)K (A′ −B′h) (A− h′B)K′
)−1

K.
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It is then sufficient to show that

(A− h′B)
(
ΓΩ + ŵτ−1

µ K′Ω̃µK
)
= (A− h′B)

(
ΓΩ +K′

(
Ω̃−1

µ − λ (1− α∗)K (A′ −B′h) (A− h′B)K′
)−1

K
)
,

or, equivalently,

ŵτ−1
µ (A− h′B)K′Ω̃µK =(A− h′B)K′

(
Ω̃−1

µ − λ (1− α∗)K (A′ −B′h) (A− h′B)K′
)−1

K

=(A− h′B)K′
(
Iu − λ (1− α∗) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

Ω̃µK.

Thus, it is sufficient to establish that

ŵτ−1
µ (A− h′B)K′ =(A− h′B)K′

(
Iu − λ (1− α∗) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

.

It follows that

ŵτ−1
µ (A− h′B)K′

(
Iu − λ (1− α∗) Ω̃µK (A′ −B′h) (A− h′B)K′

)
=(A− h′B)K′,

which can be rewritten as

ŵτ−1
µ

(
1− λ (1− α∗) (A− h′B)K′Ω̃µK (A′ −B′h)

)
(A− h′B)K′ =(A− h′B)K′.

The definition of ŵ then yields the result.

Lemma B.8. Let

ω ≡ − γ

(1− α∗) (1− κ∗1)
, v1 ≡ −γλ

ω
KA′, v2 ≡ K (ωA′ −B′h) ,

and
cij ≡ v′iΩµvj , for i, j ∈ {1, 2}, and si ≡ (A− h′B)K′Ωµvi, for i ∈ {1, 2}.

Further, define
∆̃ ≡ ΓΩ + w̃τ−1

µ K′ΩµK,

with the scalar w̃ given by

w̃ =

(
1 +

c11s2 − (1 + c12) s1
(1 + c12) (1 + c21)− c11c22

)
ŵ,

and let the scalar r̃ be given by

r̃ = −
λγ
ω (c22s1 − (1 + c21) s2) + (1− ω) (c11s2 − (1 + c12) s1)

(1 + c12) (1 + c21)− c11c22 + c11s2 − (1 + c12) s1

w̃

1 + w̃
.

Then, the equilibrium h satisfies
h′ = (1 + r̃)A∆̃B′

(
B∆̃B′

)−1

.
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Proof. From the definition of Ω̃µ in Lemma B.7, we have that

Ω̃µ =
(
Ω−1

µ + λ (1− α∗) (1− κ∗1)K [A′ (ωA− h′B) + (ωA′ −B′h)A]K′
)−1

,

with
ω ≡

(1− α∗)
(
1− (κ∗1)

2
)
− γ∗

(1− α∗) (1− κ∗1)
= − γ

(1− α∗) (1− κ∗1)
.

Thus, defining
v1 ≡ −γλ

ω
KA′, and v2 ≡ K (ωA′ −B′h) ,

we can write
Ω̃µ = (Ω−1

µ + v1v
′
2 + v2v

′
1)

−1,

and applying the Sherman-Morrison formula twice, we obtain

Ω̃µ = Ωµ +
c11Ωµv2v

′
2Ωµ + c22Ωµv1v

′
1Ωµ − (1 + c12)Ωµv1v

′
2Ωµ − (1 + c21)Ωµv2v

′
1Ωµ

(1 + c12) (1 + c21)− c11c22
,

with
cij ≡ v′iΩµvj , for i, j ∈ {1, 2}.

Thus, from the definition of ∆ in Lemma B.7 and defining

∆̄ ≡ ΓΩ + ŵτ−1
µ K′ΩµK,

we have that
∆ = ΓΩ+ ŵτ−1

µ K′Ω̃µK = ∆̄ + ŵτ−1
µ K′ΩµV ΩµK,

with
V ≡ c11v2v

′
2 + c22v1v

′
1 − (1 + c12) v1v

′
2 − (1 + c21) v2v

′
1

(1 + c12) (1 + c21)− c11c22
.

Hence, it follows from the result in Lemma B.7 that

h′ = A
(
∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′ [B (∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′]−1

,

and, therefore,
h′
[
B
(
∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′] = A

(
∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′.

Rearranging, we get

h′B∆̄B′ + ŵτ−1
µ h′BK′ΩµV ΩµKB′ = A∆̄B′ + ŵτ−1

µ AK′ΩµV ΩµKB′,

and right-multiplying both side by
(
B∆̄B′)−1 yields

h′ = A∆̄B′ (B∆̄B′)−1
+ ŵτ−1

µ (A− h′B)K′ΩµV ΩµKB′ (B∆̄B′)−1
.
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Defining
si ≡ (A− h′B)K′Ωµvi, for i ∈ {1, 2},

we obtain

h′ = A∆̄B′ (B∆̄B′)−1
+ ŵτ−1

µ

(c22s1 − (1 + c21) s2) v
′
1 + (c11s2 − (1 + c12) s1) v

′
2

(1 + c12) (1 + c21)− c11c22
ΩµKB′ (B∆̄B′)−1

= A∆̄B′ (B∆̄B′)−1
+ ŵτ−1

µ α1AK′ΩµKB′ (B∆̄B′)−1
+ ŵτ−1

µ α2h
′BK′ΩµKB′ (B∆̄B′)−1

with

α1 ≡
− (c22s1 − (1 + c21) s2)

γλ
ω + (c11s2 − (1 + c12) s1)ω

(1 + c12) (1 + c21)− c11c22
, and α2 ≡ − (c11s2 − (1 + c12) s1)

(1 + c12) (1 + c21)− c11c22
.

Next, notice that
K′ΩµK = τµK′KΩ,

and
∆̄ =

(
(1 + ŵ)K′K + (1− α)

−1
(Im −K′K)

)
Ω,

so we have
K′ΩµK =

τµ
1 + ŵ

K′K∆̄.

Thus, it follows that

h′ =

(
1 + α1

ŵ

1 + ŵ

)
A∆̄B′ (B∆̄B′)−1

+ α2
ŵ

1 + ŵ
h′BK′K∆̄B′ (B∆̄B′)−1

,

or
h′ = β1A∆̄B

′ (B∆̄B′)−1
+ β2h

′BK′K∆̄B′ (B∆̄B′)−1

with
β1 ≡ 1 + α1

ŵ

1 + ŵ
, and β2 = α2

ŵ

1 + ŵ

Define
∆̃ ≡ (Im − β2K′K) ∆̄,

and guess that
h′ =

β1
1− β2

A∆̃B′
(
B∆̃B′

)−1

.

It follows that

β1
1− β2

A∆̃B′
(
B∆̃B′

)−1

B∆̄B′ = β1A∆̄B
′ +

β1
1− β2

β2A∆̃B
′
(
B∆̃B′

)−1

BK′K∆̄B′

β1
1− β2

A∆̃B′
(
B∆̃B′

)−1

B (Im − β2K′K) ∆̄B′ = β1A∆̄B
′

β1A∆̃B
′ = β1 (1− β2)A∆̄B

′,
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which verifies the guess, since A∆̃ = (1− β2)A∆̄. Finally, we have that

∆̃ = (Im − β2K′K)
(
(1 + ŵ)K′K + (1− α)

−1
(Im −K′K)

)
Ω

=
(
(1− β2) (1 + ŵ)K′K + (1− α)

−1
(Im −K′K)

)
Ω

= ΓΩ + w̃τ−1
µ K′ΩµK,

with
w̃ = (1− β2) (1 + ŵ)− 1 =

(
1− α2

ŵ

1 + ŵ

)
(1 + ŵ)− 1 = (1− α2)ŵ.

and

r̃ =
β1

1− β2
− 1 =

1 + α1
ŵ

1+ŵ

1− α2
ŵ

1+ŵ

− 1 =
α1 + α2

1− α2

w̃

1 + w̃
.

Substituting the definitions of α1 and α2 yields the result.

Parts 1 and 2 of Proposition B.3. Given the result in Lemma B.8, we are left with taking the limit as
T → ∞ of the truncated problem. In particular, we have that

lim
T→∞

c11 = τµ

(
γλ

ω

)2

V (ξt) , lim
T→∞

c12 = lim
T→∞

c21 = −τµ
γλ

ω
COV (ωξt −Kt, ξt) ,

lim
T→∞

c22 = τµV (ωξt −Kt) , lim
T→∞

s1 = −τµ
γλ

ω
COV (ξt −Kt, ξt) , and

lim
T→∞

s2 = τµCOV (ωξt −Kt, ξt −Kt) .

Notice that

ŵ =
τµ

1− λ(1− α∗)
{
(A− h′B)K′ΩµK (A′ −B′h) +

c11s22+c22s21−(2+c12+c21)s1s2
(1+c12)(1+c21)−c11c22

} .
Let w ≡ limT→∞ w̃, and r ≡ limT→∞ r̃. Using equations ω = γ

(1−α∗)(1−κ∗
1)

, α∗ = α−ψ, and (1− α∗) (1− κ∗1) =

ϕ, in order to return to primitive parameters, it follows that

w =
τµ (1 + λ (1− α+ ψ) rV (ξt) (1− S))

1− λ (1− α+ ψ) τµ (V (ξt −Kt) + rV (ξt) (1− S)) + ν1
,

and
r =

γλτµV (ξt) (1 + ν2)

1− γλτµV (ξt) (1 + ν3)

w

1 + w
(1− S) ,
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with

ν1 ≡
λ2ϕ2τ2µ

(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
− λϕτµV (ξt) (1− S)

1− λτµV (ξt) (2γ − ϕ (1 + S))
,

ν2 ≡ 1− ϕ

γ

(
2− V (ξt −Kt)

V (ξt) (1− S)

)
,

ν3 ≡ 1− ϕ

γ
(1 + S) .

This completes the proof of parts 1 and 2 of Proposition B.3.

Part 3 of Proposition B.3. Next, we switch focus to the level of the B ≡ limT→∞ h0. From equation
(A.5) and the definition of π, we have that

(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]

×K′S [−λ (1− α∗)h0K (A′ −B′h) + λχKA′ + λφKB′h] ,

which, using φ = (1− α∗)κ∗0 and defining χ∗ ≡ χ+ (1− α∗)κ∗0, can be rewritten as

(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]

×K′S [−λ (1− α∗) (h0 + κ∗0)K (A′ −B′h) + λχ∗KA′] . (B.10)

It is straightforward to see there exists a unique h0 that satisfies this equation. We postulate that there exists
µ̃ such that

(1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,

so that solving for µ̃ pins down the unique h0. To proceed, first replace the guess for h0 on the RHS of equation
(B.10),

RHS ≡ [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S [−λ (1− α∗) (h0 + κ∗0)K (A′ −B′h) + λχ∗KA′]

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{
−λK (A′ −B′h) (1− α∗)

{
[(1− α) (A− h′B) + αh′B (Λ− Im)]K′µ̃

1− α
+ κ∗0

}
+ λχ∗KA′

}
Next, for the LHS of the equation, we have that

LHS ≡ (1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,
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and, substituting the last h using equation (A.4), it follows that

LHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]
[
Im −K′SKB′ (BΩB′)

−1
B
]
K′µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S
[
S−1 −KB′ (BΩB′)

−1
BK′

]
µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{
Ω−1

µ − λ [(1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′ + γ∗KA′AK′]

}
µ̃,

where the last equality uses the definition of S. Putting these results together, we have that

LHS − RHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{{

Ω−1
µ − λ [(1− α∗)K (κ∗1A

′ −B′h) (κ∗1A− h′B)K′ + γ∗KA′AK′]
}
µ̃

+ λ(1− α∗)K (A′ −B′h) (A− h′B)K′µ̃+ λ (1− α∗)κ∗0K (A′ −B′h)− λχ∗KA′
}
,

where we used the fact that K (A′ −B′h)h′B (Λ− Im)K′ = 0. Thus, a sufficient condition for LHS−RHS = 0

is {
Ω−1

µ − λ [(1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′ + γ∗KA′AK′]

}
µ̃

+λ(1− α∗)K (A′ −B′h) (A− h′B)K′µ̃+ λ (1− α∗)κ∗0K (A′ −B′h)− λχ∗KA′ = 0.

Notice that, using the definitions from Lemma B.8, this equation can be rewritten as{
Ω−1

µ + v1v
′
1 + v2v

′
2

}
µ̃ = −λ (1− α∗)κ∗0K (A′ −B′h) + λχ∗KA′.

It follows that
µ̃ = {Ωµ +ΩµV Ωµ} {−λ (1− α∗)κ∗0K (A′ −B′h) + λχ∗KA′},

and, therefore,

h0 = (1− α)
−1

[(1− α)A+ αh′BΛ− h′B]K′µ̃

= (A− h′B)K′µ̃

= (A− h′B)K′ {Ωµ +ΩµV Ωµ} {−λ (1− α∗)κ∗0K (A′ −B′h) + λχ∗KA′}

= −λ (1− α∗)κ∗0

{
(A− h′B)K′ΩµK (A′ −B′h) +

c11s
2
2 + c22s

2
1 − (2 + c12 + c21) s1s2

(1 + c12) (1 + c21)− c11c22

}
+ λχ∗

{
(A− h′B)K′ΩµKA′ +

c11s2z2 + c22s1z1 − (1 + c12) s1z2 − (1 + c21) s2z1
(1 + c12) (1 + c21)− c11c22

}
,

with
zi ≡ AK′Ωµvi, for i ∈ {1, 2}.

Notice that we have the following limits

lim
T→∞

z1 = −τµ
γλ

ω
V (ξt) , and lim

T→∞
z2 = τµCOV (ωξt −Kt, ξt) .
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Therefore, using χ∗ = χ+ φ, and (1− α∗)κ∗0 = φ, we obtain the bias as a function of primitive parameters,

B =
χλτµV (ξt) (1− S) + ν4
1− γλτµV (ξt) + ν5

,

with

ν4 ≡ λφτµ (V (ξt) (1− S)− V (ξt −Kt))

− λ2τ2µ (ϕ (χ− φ) + 2γφ)
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
ν5 ≡ λτµV (ξt) (2ϕS − γ) + λ2τ2µϕ

2
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
,

which completes the proof of part 3 of the proposition.

B.3 Multiple aggregate shocks

Consider the same setup described in Section II, but suppose that the common fundamental, ξt, is now driven
by a Z × 1 vector of shocks, ηt according to the following stochastic process:

ξt = a(L)ηt, with ηt ∼ N (0,Ση),

where a(L) is a polynomial in the lag operator L. In the objective environment, ηt is normally distributed
with mean zero: µt = 0. Subjectively, agents believe that ηt is drawn from a Gaussian distribution with the
same covariance matrix, Ση, but there is uncertainty about its prior mean, denoted by the Z × 1 vector µt.
Ambiguity about ξt is then captured by the perception that

ηt ∼ N (µt,Ση), and µt ∼ N (0,Σµ).

In Section II, the degree of ambiguity is captured by the σ2
µ. Here, the covariance matrix Σµ plays this role.

Without loss of generality, we assume that Ση and Σµ are diagonal matrices, that is Ση = diag(σ2
η,1, . . . , σ

2
η,Z)

and Σµ = diag(σ2
µ,1, . . . , σ

2
µ,Z).

Auxiliary forecasting problem Consider the following pure forecasting problem, which we later link back
to the economy with ambiguity.

Definition B.3. The (w,α, {ri}Zi=1)-modified signal process is given by

ξ̃t = a(L) diag(1 + r1, . . . , 1 + rq)η̃t, with η̃t ∼ N (0,Ση + wΣµ),

x̃it = m(L)η̃t + n(L)ϵ̃it, with ϵ̃it ∼ N (0, (1− α)−1Σ),

where w is a non-negative scalar and α is the degree of complementarity. Let the optimal Bayesian forecast be
given by

Ẽit[ξ̃t] = p(L;w,α, {ri}Zi=1)x̃it.

This modified signal process is analogous to the baseline. The adjustment w to the volatility of ηt is the
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counterpart to w̃ = wτ−1
µ in the univariate baseline, that is Ση + wΣµ is the counterpart of (1 + w)σ2

η =

(1 + w̃τµ)σ
2
η = σ2

η + w̃σ2
µ. Further, the amplification factor, (1 + r) in the univariate case, has now been

incorporated into this modified signal process since in the multivariate case each shock requires a potentially
different adjustment, before being put together into a modified fundamental. So, p(L;w,α, {ri}Zi=1) here is the
counterpart of (1+r)p(L;w,α) in the univariate case. To proceed we need the additional following definitions.

Definition B.4. Define the µ-modified fundamental and (unbiased) aggregate action as

ξµt = a(L)µt, and Kµ
t = p(L;w,α, {ri}Zi=1)µt,

and the µ-modified aggregate sensitivity to signals as

Sµ ≡ 1− COV (ξµt −Kµ
t , ξ

µ
t )

V (ξµt )
.

We can then prove the following proposition.

Proposition B.4. The linear strategy in equilibrium takes the following form

g(xti) = p(L;w,α, {ri}Zi=1)xit + B.

1. The polynomial matrix p(L;w,α, {ri}Zi=1) is the Bayesian forecasting rule with the (w,α, {ri}Zi=1)-
modified signal process and w satisfies

w =
1

1− λ(1− α)
(
V (ξµt −Kµ

t ) +
λγV(ξµt )

2(1−Sµ)2

1−λγV(ξµt )

) ;
2. For all i ∈ {1, . . . , Z}, the additional amplification, ri, satisfies

ri = γ
λV (ξµt )

1− λγV (ξµt )

wτµ,i
1 + wτµ,i

(1− Sµ);

3. The level of bias, B, satisfies

B = χ
λV (ξµt )

1− λγV (ξµt )
(1− Sµ) .

Proof of Proposition B.4. The truncated version of the problem is analogous to the case with one common
shock, with the following adjustments: (1) the size of the vector of aggregate common shocks must be set to
u ≡ Z(T + 1); (2) the size of the vector of all shocks becomes m ≡ (Z +N)(T + 1); (3) instead of Ωη = Iu σ

2
η

and Ωµ = Iu σ
2
µ, we now have Ωη = IT+1 ⊗Ση and Ωµ = IT+1 ⊗Σµ. These modifications do not affect in any

way the results in Lemmas A.1, A.2, and A.3. However, Lemma A.4 relies on the fact that Ωη = Iu σ
2
η and

Ωµ = Iu σ
2
µ. The following lemma provides the relevant analogous result.

Lemma B.9. Define
∆̄ ≡ ΓΩ + ŵK′ΩµK,
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with the scalar ŵ given by

ŵ =
1

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

.

Also, let the diagonal matrix R̂ be given by

R̂ ≡ IT+1 ⊗ diag (r̂1, . . . , r̂Z) ,

with the scalars r̂i, for i ∈ {1, . . . , Z}, given by

r̂i ≡
ŵτµ,i

1 + ŵτµ,i

(
λγ

1− λγAK′ΩµKA′

)
(A− h′B)K′ΩµKA′, with τµ,i ≡

σ2
µ,i

σ2
η,i

.

Then, the equilibrium h satisfies
h′ = A (Im + R̂) ∆̄B′ (B∆̄B′)−1

.

Proof. From the definition of Ω̃µ and ∆ in Lemma A.3, we have that

Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
= Ωµ +

λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′ .

Thus, it follows that

∆ ≡ ΓΩ + ŵK′Ω̃µK = ∆̄ + ŵK′
(
λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′

)
K = ∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K,

with s ≡ λγ/(1− λγAK′ΩµKA′). Hence, it follows from the result in Lemma A.3 that

h′ = A
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′ [B (∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′]−1

,

and, therefore,

h′
[
B
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′] = A

(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′.

Rearranging, we get

h′B∆̄B′ + sŵh′BK′ (ΩµKA′AK′Ωµ)KB′ = A∆̄B′ + sŵAK′ (ΩµKA′AK′Ωµ)KB′,

and right-multiplying both sides by
(
B∆̄B′)−1 yields

h′ = A∆̄B′ (B∆̄B′)−1
+ sŵ (A− h′B)K′ΩµKA′AK′ΩµKB′ (B∆̄B′)−1

= A∆̄B′ (B∆̄B′)−1
+ ẑŵAK′ΩµKB′ (B∆̄B′)−1

.

Next, notice that
K′ΩµK = K′ΩµΩ

−1
η KΩ,
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and
∆̄ =

(
K′(Iu + ŵΩµΩ

−1
η )K + (1− α)

−1
(Im −K′K)

)
Ω,

so we have
K′ΩµK = K′ (Ωµ(Ωη + ŵΩµ)

−1
)
K∆̄.

Thus, it follows that

h′ = A∆̄B′ (B∆̄B′)−1
+ ẑŵAK′ (Ωµ(Ωη + ŵΩµ)

−1
)
K∆̄B′ (B∆̄B′)−1

,

with the scalar ẑ given by

ẑ ≡
(

λγ

1− λγAK′ΩµKA′

)
(A− h′B)K′ΩµKA′.

Further, we can write
h′ = A (Im + R̂) ∆̄B′ (B∆̄B′)−1

,

with

R̂ = K′ (ẑŵΩµ(Ωη + ŵΩµ)
−1
)
K

= K′ (ẑŵ(IT+1 ⊗ Σµ)((IT+1 ⊗ Ση) + ŵ(IT+1 ⊗ Σµ))
−1
)
K

= K′ (IT+1 ⊗ (ẑŵΣµ(Ση + ŵΣµ)
−1)
)
K

= K′ (IT+1 ⊗ diag
(
ẑŵσ2

µ,1(σ
2
η,1 + ŵσ2

µ,1)
−1, . . . , ŵσ2

µ,Z(σ
2
η,Z + ŵσ2

µ,Z)
−1
))

K

= K′ (IT+1 ⊗ diag (r̂1, . . . , r̂Z))K,

which concludes the proof.

Parts 1 and 2 of Proposition B.4. Given the result in Lemma B.9, we are left with taking the limit as
T → ∞ of the truncated problem. In particular, we have that

lim
T→∞

A (Im + R̂) ∆̄B′ (B∆̄B′)−1
= p

(
L;w,α, {ri}Zi=1

)
, lim

T→∞
AK′ΩµKA′ = V(ξµt ),

lim
T→∞

(A− h′B)K′ΩµK(A′ −Bh′) = V(ξµt −Kµ
t ), lim

T→∞
(A− h′B)K′ΩµKA′ = COV (ξµt −Kµ

t , ξ
µ
t ) ,

lim
T→∞

(A− h′B)K′ΩµKA′

AK′ΩµKA′ = 1− Sµ.

Let w ≡ limT→∞ ŵ, and ri ≡ limT→∞ r̂i, for i ∈ {1, . . . , Z}. Then, we can show that

ri = lim
T→∞

ŵτµ,i
1 + ŵτµ,i

λγAK′ΩµKA′

1− λγAK′ΩµKA′
(A− h′B)K′ΩµKA′

AK′ΩµKA′

=
wτµ,i

1 + wτµ,i

λγV (ξµt )

1− λγV (ξµt )
(1− Sµ) ,
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and

w = lim
T→∞

1

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

= lim
T→∞

1

1− λ (1− α)
(
(A− h′B)K′ΩµK (A′ −B′h) +

λγ((A−h′B)K′ΩµKA′)(AK′ΩµK(A′−B′h))
1−λγAK′ΩµKA′

)
=

1

1− λ(1− α)
(
V (ξµt −Kµ

t ) +
λγV(ξµt )

2(1−Sµ)2

1−λγV(ξµt )

) .
Part 3 of Proposition B.4. All the steps used in the proof of part 3 of Proposition 4 hold without change
except for the last step. From those derivations we have that

h0 = χλ (A− h′B)K′ΩµKA′
(
Iu +

λγAK′ΩµKA′

1− λγAK′ΩµKA′

)
Taking the limit we get

B = lim
T→∞

h0 = χλτµCOV(ξµt −Kµ
t , ξ

µ
t )

(
1 +

λγV(ξµt )
1− λγV(ξµt )

)
=

χλV (ξµt )

1− λγV (ξµt )
(1− Sµ) ,

which completes the proof of part 3 of the proposition.
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C Proofs of Other Results

Proof of Proposition 1. Following the same arguments used in the proof of Proposition 3, the optimal
linear strategy, g (xi) ≡ s∗xi + B, solves the following fixed point problem

s∗xi + B =

∫
µ

Eµ [ξ|xi] p̂ (µ|xi) dµ =
σ2
ξ

σ2
ξ + σ2

ϵ

xi +
σ2
ϵ

σ2
ξ + σ2

ϵ

∫
µ

µ p̂ (µ|xi) dµ,

with

p̂ (µ|xi) ∝ exp
(
λEµ

[
(s∗xi + B − ξ)

2 − χξ
])
p (xi|µ) p (µ)

∝ exp

λ (1− s∗)
2
µ2 + 2λ (s∗ − 1)Bµ− χµ− (xi − µ)

2

2
(
σ2
ξ + σ2

ϵ

) − 1

2σ2
µ

µ2

 .

Mapping it into the kernel of a normal distribution yields

µ ∼ N

 1
σ2
ξ+σ2

ϵ
xi + 2λ (s∗ − 1)B − λχ

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 ,
1

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2

 ,

which implies that

∫
µ

µ p̂ (µ|xi) dµ =

1
σ2
ξ+σ2

ϵ
xi + 2λ (s∗ − 1)B − λχ

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 .

Matching coefficients leads to the following conditions

s∗ =
σ2
ξ

σ2
ξ + σ2

ϵ

+
σ2
ϵ

σ2
ξ + σ2

ϵ

1
σ2
ξ+σ2

ϵ

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 ,

and

B =
σ2
ϵ

σ2
ξ + σ2

ϵ

2λ (s∗ − 1)B − λχ
1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 .

Solving for s∗ and B leads to the expressions stated in the proposition.

Proof of Corollary 1. Aggregating the individual best response in equation (14) leads to

Kt = (1− α)F1

t [ξt] + αF1

t [Kt] .
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Iterating forward using the definitions of subjective higher-order expectations, it follows that

Kt = (1− α)F1

t [ξt] + α (1− α)F2

t [ξt] + α2F2

t [Kt]

= · · ·

= (1− α)

N∑
j=0

αjFj+1

t [ξt] + αN+1FN+1

t [Kt]

= · · ·

= (1− α)

∞∑
j=0

αjFj+1

t [ξt] ,

which completes the proof.

Proof of Corollary 2. This result follows directly from the fact that p (L;w,α) permits a finite state repre-
sentation.

Proof of Proposition 5. Applying Proposition 4, we obtain

Fi [ξ] = ςxi − (1− ς)λχσ2
µ, with ς ≡

(1 + w)σ2
ξ

(1 + w)σ2
ξ + σ2

ϵ

.

Aggregating over i, it follows that
F [ξ] = ςξ − (1− ς)λχσ2

µ.

Applying the operator Fi to both sides and aggregating again yields,

F2
[ξ] = ς2ξ − (1− ς) (1 + ς)λχσ2

µ.

Iterating forward, it follows that

Fm
[ξ] = ςmξ − (1− ς)

m−1∑
k=0

ςkλχσ2
µ = κmξ + βm,

with

κm ≡ ςm, and βm ≡ − (1− ς)

m−1∑
k=0

ςkλχσ2
µ.

Therefore, we have that

βm = βm−1 − (1− ς)κm−1λχσ
2
µ = βm−1 + (κm − κm−1)λχσ

2
µ,

which completes the proof of Part 1. Moreover, combing equation (15) with the fact that Fm
[ξ] = κmξ + βm

leads to

K = (1− α)

∞∑
m=0

αmκm ξ + (1− α)

∞∑
m=0

αmβm,
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which completes the proof of Part 3.

To establish Part 2 notice that, from Proposition 4, we have

w =

[
1

τµ
− λ (1− α)V (ξ −K)

]−1

,

which, differentiating with respect to α, yields

dw

dα
= λw2

[
(1− α)

dV (ξ −K)

dα
− V (ξ −K)

]
.

Since

V (ξ −K) =

(
σ2
ϵ

(1 + w) (1− α)σ2
ξ + σ2

ϵ

)2

σ2
ξ ,

it follows that

dV (ξ −K)

α
= 2

(
σ2
ξ

(1 + w) (1− α)σ2
ξ + σ2

ϵ

)
V (ξ −K)

(
w − (1− α)

dw

dα

)
,

and, therefore,

dw

dα
= λw2V (ξ −K)

[
2 (1− α)

(
σ2
ξ

(1 + w) (1− α)σ2
ξ + σ2

ϵ

)(
w − (1− α)

dw

dα

)
− 1

]

=
λw2V (ξ −K)

(
(w − 1) (1− α)σ2

ξ − σ2
ϵ

)
[1 + w + 2λ (1− α)w2V (ξ −K)] (1− α)σ2

ξ + σ2
ϵ

.

Then, since, in the limit as α increases to 1, we have that w → τµ, and V(ξ −K) → V(ξ), it follows that

lim
α→1−

dw

dα
= −λτ2µV(ξ) < 0.

On the other hand, notice that

sgn
[
lim

α→0+

dw

dα

]
= sgn

[
(w − 1)σ2

ξ − σ2
ϵ

]
,

so that, since w ≥ τµ, we have that

τµ >
σ2
ξ + σ2

ϵ

σ2
ξ

⇒ lim
α→0+

dw

dα
> 0.

Hence, w is non-monotonic in α if τµ is large enough.
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Proof of Proposition 6. It follows from Proposition 4 that, when γ = 0,

B = χλτµV (ξt) (1− S) .

Therefore, to prove that |B| is increasing in α, it is sufficient to prove that the sensitivity S is decreasing in
α. Since, by definition

S =
COV (Kt, ξt)

V (ξt)
,

with V (ξt) independent of α, it is sufficient to show that

dCOV (Kt, ξt)

dα
< 0.

Following the notation of the truncated economy introduced in the proof of Proposition 4, we have that

COV (Kt, ξt) = h′BΛΩA′,

with h denoting the optimal forecasting rule

h = AΩ̄B′ (BΩ̄B′)−1
, with Ω̄ = (1 + w) ΛΩ + (1− α)

−1
(Im − Λ)Ω.

Since Ω is diagonal, we can rewrite h as

h = AΩ̂B′
(
BΩ̂B′

)−1

, with Ω̂ = ΛΩ +mα (Im − Λ)Ω, and mα ≡ [(1− α) (1 + w)]
−1
.

It follows that

dCOV (Kt, ξt)

dα
= AΩΛB′

d
(
BΩ̂B′

)−1

dα
BΛΩA′

= −AΩΛB′
(
BΩ̂B′

)−1

B
dΩ̂

dα
B′
(
BΩ̂B′

)−1

BΛΩA′

= − (z′ (Im − Λ)Ω z)m2
α

[
(1 + w)− (1− α)

dw

dα

]
,

where z is a column vector,
z ≡ B′

(
BΩ̂B′

)−1

BΛΩA′.

Since (Im − Λ)Ω is positive semi-definite, it follows that

sgn
[
dCOV (Kt, ξt)

dα

]
= −sgn

[
(1 + w)− (1− α)

dw

dα

]
.

Further, notice that since w ≥ τµ and limα→1− w = τµ, we have that the limα→1− dw/dα is bounded and,
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therefore,

lim
α→1−

dCOV (Kt, ξt)

dα
< 0.

Finally, for a contradiction, suppose there exists some α ∈ [0, 1) such that dCOV (Kt, ξt) /dα > 0. It follows
from the intermediate value theorem and the continuity of dCOV (Kt, ξt) /dα that there must exist some α†

such that

dCOV (Kt, ξt)

dα

∣∣∣∣
α=α†

= 0 ⇒ dw

dα

∣∣∣∣
α=α†

=
1 + w†

1− α†
> 0,

where w† denotes w evaluated at α†. With γ = 0, Proposition 4 implies that

w =

[
1

τµ
− λ (1− α)V (ξt −Kt)

]−1

,

and it follows that

dw

dα
= −λw2

[
V (ξt −Kt)− (1− α)

dV (ξt −Kt)

dα

]
.

Using the fact that, similarly to COV (ξt,Kt), V (ξt −Kt) depends on α only through mα, we have that

dV (ξt −Kt)

dα

∣∣∣∣
α=α†

=
dV (ξt −Kt)

dmα

dmα

dα

∣∣∣∣
α=α†

=
dV (ξt −Kt)

dmα
m2

α

[
(1 + w)− (1− α)

dw

dα

]∣∣∣∣
α=α†

= 0,

and, therefore,

dw

dα

∣∣∣∣
α=α†

= −λw2V (ξt −Kt) < 0,

which yields the desired contradiction.

Proof of Lemma 2. We start by characterizing the zero-inflation steady state. From the budget constraint
of household i, we have that

Ci,g,t+1 =
Yg − Ci,g,t

1 + πt+1
.

Substituting Ci,g,t+1 into the utility function U (Ci,g,t, Ci,g,t+1) yields

U (Ci,g,t, πt+1) =
C1−ν

i,g,t

1− ν
+ β

(
Yg−Ci,g,t

1+πt+1

)1−ν

1− ν
.

The Euler equation in the zero-inflation steady state implies that

C̄−ν
g − β

(
Yg − C̄g

)−ν
= 0. (C.1)
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Let ci,g,t be the log-deviation from the zero-inflation steady state, that is

ci,g,t ≡ logCi,g,t − log C̄g.

The quadratic approximation of U (Ci,g,t, πt+1) around the zero-inflation steady state leads to

U (Ci,g,t, πt+1) ≈ Q (ĉt, πt+1)

≡ const− C̄1−ν
g

(
Y − C̄g

C̄g

)
πt+1 + (1− ν) C̄1−ν

g ci,g,tπt+1

+
1

2
(1− ν) C̄1−ν

g

(
Yg − C̄g

C̄g

)
π2
t+1 −

1

2
νC̄1−ν

g

[
1 +

(
Yg − C̄g

C̄g

)−1
]
c2i,g,t

= const− C̄1−ν
g

(
Yg − C̄g

C̄g

)
πt+1 +

1

2
(1− ν) C̄1−ν

g

(
Yg − C̄g

C̄g
+

1− ν

ν

Yg − C̄g

Yg

)
π2
t+1

− 1

2
νC̄1−ν

g

Yg
Yg − C̄g

(
ci,g,t −

1− ν

ν

Yg − C̄g

Yg
πt+1

)2

.

Given subjective beliefs Fi,g,t [·], the optimal consumption must be proportional to the households subjective
expectation about inflation:

ci,g,t =
1− ν

ν

Yg − C̄g

Yg
Fi,g,t [πt+1]

=
β1/ν

1 + β1/ν
Fi,g,t [πt+1] ,

where the last equality directly follows equation (C.1).

In the smooth model of ambiguity, similarly to the proof of Proposition 3, it can be shown that

ci,g,t =
1− ν

ν

Yg − C̄g

Yg

∫
µt

Eµt

[πt+1|Ii,g,t] p̂
(
µt|Ii,g,t

)
dµt,

where the distorted posterior p̂ (µt|Ii,g,t) is such that

p̂
(
µt|Ii,g,t

)
∝ exp

(
−λEµt

[Q (ĉt, πt+1)]
)
.

Let the subjective belief of the household be such that

Fi,g,t [·] ≡
∫
µt

Eµt

[·|Ii,g,t] p̂
(
µt|Ii,g,t

)
dµt,

then, it follows that

ci,g,t =
β1/ν

1 + β1/ν
Fi,g,t [πt+1] ,
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which yields equation (28). Substituting ci,g,t into Q (ĉt, πt+1), leads to equation (29) with

χg ≡ Y 1−ν
g

β1/ν(
1 + β1/ν

)1−ν

γg ≡ 1

2
Y 1−ν
g

(ν − 1)β1/ν(
1 + β1/ν

)1−ν

1 + νβ1/ν

ν
(
1 + β1/ν

)
δg ≡ 1

2
Y 1−ν
g

(1− ν)
2
β1/ν

ν
(
1 + β1/ν

)2−ν .

Notice that δg, χg, and γg are all proportional to Y ν−1
g . Moreover, when ν > 1, they are all positive and

decreasing in Yg.

The following lemma is used in the proof of the next propositions.

Lemma C.1 (Kalman filter for AR(1)). Given a state equation

ξt = ρξt−1 + νt, with νt ∼ N
(
0, σ2

ν

)
,

and an observation equation
xt = ξt + ut, with ut ∼ N

(
0, σ2

u

)
,

the steady-state Kalman gain is given by

κ =
1

2ρ

ρ− σ2
u + σ2

ν

ρσ2
u

−

√(
ρ− σ2

u + σ2
ν

ρσ2
u

)2

+ 4
σ2
ν

σ2
u

 ,

and the updating rule for the Bayesian forecast follows

Et [ξt+1] = ρ (1− κ)Et−1 [ξt] + ρκxt.

Proof of Proposition 8. Cosider Lemma C.1 with ξt = πt, σ2
ν = σ2

η, and σ2
u = σ2

ε , and define ω ≡ ρ (1− κ).
Since every agent i in every group g has the same information structure with signals given by

xi,g,t = πt + εi,g,t, with εi,g,t ∼ N
(
0, σ2

ε

)
,

it immediately follows from Lemma C.1 that

Ei,g,t [πt+1] = ωEi,g,t−1 [πt] + (ρ− ω)xi,g,t,

and

ω =
1

2

ρ+ σ2
ε + σ2

η

ρσ2
ε

−

√(
ρ+

σ2
ε + σ2

η

ρσ2
ε

)2

− 4

 .

54



Integrating the updating rule for the forecast, we have that∫
Ei,g,t [πt+1] = ω

∫
Ei,g,t−1 [πt] + (ρ− ω)

∫
xi,g,t

and, therefore,
Eg,t [πt+1] = ωEg,t−1 [πt] + (ρ− ω)πt,

which can be rewritten as
Eg,t [πt+1] =

ρ− ω

1− ωL
πt.

The average forecast error is, then, given by

πt+1 − Eg,t [πt+1] = πt+1 −
ρ− ω

1− ωL
πt

=
ηt+1

1− ρL
− ρ− ω

1− ωL

Lηt+1

1− ρL

=
ηt+1

1− ωL
,

which concludes the proof.

Proof of Proposition 9. It follows from Proposition 4 that

Fi,g,t [πt+1] = (1 + rg)Ei,g,t [πt+1] + Bg

where Ei,g,t [πt+1] denotes the periot-t Bayesian forecast of πt+1 of agent i in group g given the (wg, 0)-modified
information structure (notice that here α = 0). Thus, setting ξt = πt, σ2

ν = (1 + w)σ2
η, and σ2

u = σ2
ε , it follows

from Lemma C.1 that
Ei,g,t [πt+1] = ρ (1− κg)Ei,g,t−1 [πt] + ρκgxi,g,t,

with

κg =
1

2ρ

(ρ− σ2
ε + (1 + wg)σ

2
η

ρσ2
ε

)
−

√(
ρ−

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

+ 4
(1 + wg)σ2

η

σ2
ε

 .

It follows that

(1 + rg)Ei,g,t [πt+1] + Bg = ρ (1− κg) ((1 + rg)Ei,g,t−1 [πt] + Bg) + (1 + rg) ρκgxi,g,t − ρ (1− κg)Bg + Bg

and, therefore,

Fi,g,t [πt+1] = ρ (1− κg)Fi,g,t−1 [πt] + (1 + rg) ρκgxi,g,t + (1− ρ (1− κg))Bg.

Defining ϑg ≡ ρ (1− κg), we obtain

Fi,g,t [πt+1] = ϑgFi,g,t−1 [πt] + (1 + rg) (ρ− ϑg)xi,g,t + (1− ϑg)Bg,
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with

ϑg =
1

2

ρ+ σ2
ε + (1 + wg)σ

2
η

ρσ2
ε

−

√(
ρ+

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

− 4

 .

Integrating the updating rule for the forecast, we have that∫
Fi,g,t [πt+1] = ϑg

∫
Fi,g,t−1 [πt] + (1 + rg) (ρ− ϑg)

∫
xi,g,t + (1− ϑg)Bg

and, therefore,
Fg,t [πt+1] = ϑgFg,t−1 [πt] + (1 + rg) (ρ− ϑg)πt + (1− ϑg)Bg,

which can be rewritten as
Fg,t [πt+1] =

(1 + rg) (ρ− ϑg)πt
1− ϑgL

+ Bg.

The average forecast error is, then, given by

πt+1 −Fg,t [πt+1] = πt+1 −
(1 + rg) (ρ− ϑg)πt

1− ϑgL
− Bg

=
(1 + rg) ηt+1

1− ϑgL
− rg

1− ρL
ηt+1 − Bg.

The fact that rg > 0, wg > 0, and Bg > 0 follows immediately from Proposition 4 together with the fact that
δg > 0, χg > 0, and γg > 0 established in Lemma 2 and that, by assumption, λ > 0 and σ2

µ > 0. Finally, to
see that ϑg < ω notice that, from the triangle inequality, we have that√(

ρ+
σ2
ε + σ2

η

ρσ2
ε

)2

− 4 +

√(
wgσ2

η

ρσ2
ε

)2

<

√(
ρ+

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

− 4,

so that
wgσ

2
η

ρσ2
ε

−

√(
ρ+

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

− 4 < −

√(
ρ+

σ2
ε + σ2

η

ρσ2
ε

)2

− 4.

Adding ρ+ σ2
ε+σ2

η

ρσ2
ε

and dividing by 2 yields the result.

Proof of Proposition 10. Under rational expectations, the optimal inflation forecast is such that

Fi [π] = Ei

[
(1− α)π∗ + αF [π]

]
.

It follows from the the equivalence result in Huo and Pedroni (2020), that the optimal forecast is given by

Fi [π] =
σ2
π

σ2
π + (1− α)

−1
σ2
ϵ

xi.
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Aggregating, we obtain

F [π] =
σ2
π

σ2
π + (1− α)

−1
σ2
ϵ

π∗.

Plugging this into the time-invariant inflation policy rule (34) completes the proof.

Proof of Proposition 11. To ease notation, let

ki ≡ Fi [π] , and K = F [π] .

Plugging (34) into the utility function of the agent results in

u (ki,K, π
∗) =− (ki − (1− α)π∗ − αK)

2 − χ ((1− α)π∗ + αK)

=−
[
(1− α) (ki − π∗)

2
+ α (ki −K)

2
]
− (1− α)χπ∗ + α (1− α) (K − π∗)

2 − αχK.

This is an inefficient economy, so we use Proposition B.3 to characterize the optimal forecasts. Let

λineff. ≡ 2λ, αineff. ≡ α, γineff. ≡ 0, χineff. ≡
1

2
(1− α)χ,

ψineff. ≡ −α (1− α) , ϕineff. ≡ 0, and φineff. ≡
1

2
αχ,

where parameters with a subscript “ineff.” correspond to the ones in the setup of Proposition B.3. It follows
that

w =
τµ

1− 2λ (1− α)
2
τµV (π −K)

, and r = 0,

where τµ ≡ σ2
µ/σ

2
π is the normalized amount of ambiguity. Moreover, the bias is given by

B = λ (1− α)χτµV (π) (1− S) + λαχτµ [V (π) (1− S)− V (π −K)] .

Using V (π) = σ2
π and V (π −K) = (1− S)2 σ2

π, we obtain the desired expressions for sensitivity S and bias
B. Finally, the implied inflation policy directly follows from equation (34), which completes the proof.

Proof of Proposition 12. Since the loss function is continuous in σ2
µ, it is sufficient to show that

dL
dσ2

µ

∣∣∣∣
σ2
µ=0

< 0.

Fist notice that

L =
ω

α

[
(1−R)

2
σ2
π + C2

]
⇒ dL

dσ2
µ

=
2ω

α

[
− (1−R)σ2

π

dR
dσ2

µ

+ C dC
dσ2

µ

]
.
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If σ2
µ = 0, it is optimal to set R < 1 and C = 0, so that it is sufficient to show that

dR
dσ2

µ

∣∣∣∣
σ2
µ=0

> 0,

or, equivalently,

dS
dσ2

µ

∣∣∣∣
σ2
µ=0

> 0,

since R = 1− α+ αS. Further, notice that sensitivity S depends on σ2
µ only through w and is monotonically

increasing in w, it is then sufficient to show that

dw

dσ2
µ

∣∣∣∣
σ2
µ=0

> 0.

This, in turn, follows from the fact that w = 0 if σ2
µ = 0, and w > 0 for any σ2

µ > 0.

Proof of Proposition 13. The optimal inflation forecast must satisfy

Fi [π] = (1− α)Fi [π
∗] + αFi

[
F [π]

]
.

With heterogeneous priors, the belief system of agent i is such that

Fi [π
∗] = Ei [π

∗] =

(
σ2
π

σ2
π + σ2

ϵ

)
xi, and

Fi [Fj [π
∗]] = Fi

[
σ2
π

σ2
π + σ2

ϵ

xj +
σ2
ϵ

σ2
π + σ2

ϵ

B
]
=

(
σ2
π

σ2
π + σ2

ϵ

)2

xi +

(
σ2
ϵ

σ2
π + σ2

ϵ

)
B.

It follows that

Fi

[
F [π∗]

]
=

(
σ2
π

σ2
π + σ2

ϵ

)2

xi +

(
σ2
ϵ

σ2
π + σ2

ϵ

)
B, and

Fi

[
Fj

[
F [π∗]

]]
= Fi

[(
σ2
π

σ2
π + σ2

ϵ

)2

xj +

(
σ2
π

σ2
π + σ2

ϵ

)(
σ2
ϵ

σ2
π + σ2

ϵ

)
B +

(
σ2
ϵ

σ2
π + σ2

ϵ

)
B

]
,

and, therefore,

Fi

[
F2

[π∗]
]
=

(
σ2
π

σ2
π + σ2

ϵ

)3

xi +

(
1∑

s=0

(
σ2
π

σ2
π + σ2

ϵ

)s
)(

σ2
ϵ

σ2
π + σ2

ϵ

)
B.
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Continuing to iterate forwards, we obtain that, for all k ≥ 1,

Fi

[
Fk

[π∗]
]
=

(
σ2
π

σ2
π + σ2

ϵ

)k (
σ2
π

σ2
π + σ2

ϵ

)
xi +

(
k−1∑
s=0

(
σ2
π

σ2
π + σ2

ϵ

)s
)(

σ2
ϵ

σ2
π + σ2

ϵ

)
B

=

(
σ2
π

σ2
π + σ2

ϵ

)k (
σ2
π

σ2
π + σ2

ϵ

)
xi +

(
1−

(
σ2
π

σ2
π + σ2

ϵ

)k
)

B.

Notice that the optimal forecast of agent i can be expressed as a weighted sum of higher-order beliefs,

Fi [π] = (1− α)Fi [π
∗] + (1− α)

∞∑
k=1

αkFi

[
Fk

[π∗]
]

= (1− α)

( ∞∑
k=0

αk

(
σ2
π

σ2
π + σ2

ϵ

)k
)(

σ2
π

σ2
π + σ2

ϵ

)
xi + (1− α)

∞∑
k=1

αk

(
1−

(
σ2
π

σ2
π + σ2

ϵ

)k
)

B

= SRE xi + α
(
1− SRE)B,

where SRE ≡ σ2
π

σ2
π+(1−α)−1σ2

ϵ
denotes the sensitivity under rational expectations.

From the inflation policy in equation (34), it follows that

R = 1− α+ αSRE = RRE, and C = α
(
α− αSRE)B = α

(
1−RRE)B.

Finally, the social loss function is given by

L =
ω

α

[
(1−R)

2
σ2
π + C2

]
,

which is increasing in B since C = α
(
1−RRE)B.
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D Uniqueness and Linearity of Optimal Strategies without Strategic Interactions

In this Appendix, we prove that in the absence of strategic interactions, the optimal strategy is unique and
linear in signals. It is worth noting that the uniqueness of the optimal strategy only requires concavity of the
utility function u(·) and the ϕ(·) function (Lemma D.1). Linearity, on the other hand, requires u (·) to be
quadratic, ϕ (·) to be of CAAA form, and the information structure to be Gaussian (Lemma D.2).

We base our analysis on the truncated economy outlined in the proof of Proposition 4, while shutting down
strategic interactions by suppressing the dependence of the utility function on the aggregate action K:

max
{k(xi)}

∫
µ

ϕ (Eµ [u (k(xi), θ)]) p(µ)dµ.

Agent i must choose an ex-ante strategy k(xi), a function of their entire history of private information, xi.

Lemma D.1. Without strategic interactions, there is a unique optimal strategy ki = g (xi).

Proof. To simplify notation, denote

W (f) =

∫
µ

ϕ (Eµ [u (f, θ)]) p (µ) dµ, and W̄ = max
f

W (f) .

Suppose there are at least two strategies g1 (xi) and g2 (xi) with g1 ̸= g2 both achieving the optimum, that is,
W (g1) = W (g2) = W̄. Consider an alternative strategy h = g1+g2

2 . It follows that

W (h) >

∫
µ

ϕ

(
Eµ

[
1

2
u (g1, θ) +

1

2
u (g2, θ)

])
p (µ) dµ

=

∫
µ

ϕ

(
1

2
Eµ [u (g1, θ)] +

1

2
Eµ [u (g2, θ)]

)
p (µ) dµ

>

∫
µ

(
1

2
ϕ (Eµ [u (g1, θ)]) +

1

2
ϕ (Eµ [u (g1, θ)])

)
p (µ) dµ

=
1

2
W (g1) +

1

2
W (g2) = W̄,

where the first and second inequalities use the concavity of u and ϕ, respectively. The condition W (h) > W̄
contradicts the assumption that g1 and g2 are both optimal strategies. As a result, it must be the case that
there exists a unique optimal strategy g.

Lemma D.2. If u (·) is quadratic, ϕ (·) takes the CAAA form, and the information structure is Gaussian,
the optimal strategy is unique and linear in signals, i.e., there exist unique h′ and h0 such that

ki = g (xi) = h′xi + h0.

Proof. Notice that the economy under consideration is a special case of our model in Section II in which there
are no strategic interactions, i.e., α = 0. Then, invoking Proposition 2, we know that a linear optimal strategy
exists. Combining this with the uniqueness result of Lemma D.1 completes the proof.
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E Robust Preferences: Derivations and Proofs

Lemma E.1. Taking the law of motion of Kt as given, individual i’s best response satisfies

kit = (1− α)Fit [ξt] + αFit [Kt] ,

where Fit [·] denotes agent i’s subjective expectation, such that for any random variable X,

Fit[X] ≡
∫
X p̃it(X)dX, with p̃it(X) ∝ exp (−ϖu(kit,Kt, ξt)) p(X | xti).

Proof of Lemma E.1. The first-order-condition for the minimization with respect to mit is given by

u (kit,Kt, ξt) +
1

ϖ
logmit +

1

ϖ
= 0.

Together with the fact that Eit [mit] = 1, it follows that

mit =
exp (−ϖu (kit,Kt, ξt))

Eit [exp (−ϖu (kit,Kt, ξt))]
.

Thus, problem (35) can be rewritten as the following problem with risk sensitivity:

max
kit

− 1

ϖ
log (Eit [exp (−ϖu (kit,Kt, ξt))]) .

The first-order-condition for this problem with respect to kit is given by

Eit

[
exp (−ϖu (kit,Kt, ξt))

∂u(kit,Kt,ξt)
∂kit

]
Eit [exp (−ϖu (kit,Kt, ξt))]

= 0.

Since

∂u(kit,Kt, ξt)

∂kit
= kit − (1− α) ξt − αKt,

it follows that

kit = (1− α)Eit

[
ξt

exp (−ϖu (kit,Kt, ξt))

Eit [exp (−ϖu (kit,Kt, ξt))]

]
+ αEit

[
Kt

exp (−ϖu (kit,Kt, ξt))

Eit [exp (−ϖu (kit,Kt, ξt))]

]
.

Letting exp(−ϖu(kit,Kt,ξt))
Eit[exp(−ϖu(kit,Kt,ξt))]

be the Radon-Nikodym derivative completes the proof.

Proof of Proposition 14. Consider the same truncated version of the model used in the proof of Proposition
4. From Lemma E.1 we have that the optimal strategy then satisfies that

ki = (1− α)F [θ | xi] + αF [K | xi] , (E.1)
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with the distorted posterior given by

p̃ (η|xi) ∝ exp (−ϖu (ki,K, θ)) p (η | xi) .

We proceed with a guess-and-verify strategy. First we guess that

ki = h′Bνi + h0.

Substituting this into equation (E.1), it follows that

ki = ((1− α)AK′ + αh′BK′)F [η | Bνi] + αh0.

Thus, we need to determine the subjective conditional expectation F [η | Bνi]. We proceed to characterize the
distorted posterior p̃ (η | Bνi) by the following three steps:

1. First, the Bayesian posterior p (η | Bνi) is such that

p (η | Bνi) ∝ exp

(
−1

2

(
η − µη|Bνi

)′
Σ−1

η|Bνi

(
η − µη|Bνi

))
,

with the conditional mean and variance of given by

µη|Bνi
= KΩB′ (BΩB′)

−1
Bνi, and Ση|Bνi

= KΩK′ −KΩB′ (BΩB′)
−1
BΩK′.

2. Second, notice that

u (k,K, θ) = − 1

2

[
(1− α) (h′Bνi + h0 −AK′η)

2
+ α (h′Bνi − h′BK′η)

2
]
− χAK′η − 1

2
γη′KA′AK′η

= constant − 1

2
γη′KA′AK′η − 1

2
[(1− α) η′KA′AK′η + αη′KB′hh′BK′η]

+
1

2
[(1− α) (h0 + ν′iB

′h)A+ αν′iB
′hh′B − χA]K′η

+ η′K1

2
[(1− α)A′ (h0 + h′Bνi) + αB′hh′Bνi − χA′] ,

with the constant independent of η.

3. Finally, putting these results together, the distorted posterior must be such that

p̃ (η | Bνi) ∝ exp

(
−1

2
η′Σ̃−1

η|Bνi
η +

1

2
µ̃′
η|Bνi

Σ̃−1
η|Bνi

η +
1

2
η′Σ̃−1

η|Bνi
µ̃η|Bνi

)
where the distorted posterior variance and mean are given by

Σ̃−1
η|Bνi

≡ Σ−1
η|Bνi

+Q and µ̃η|Bνi
≡ Σ̃η|Bνi

(
Σ−1

η|Bνi
µη|Bνi

+RBνi

)
+ πµ,
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with the matrices Q and R and the vector πµ given by

Q ≡ −ϖγKA′AK′ −ϖ [(1− α)KA′AK′ + αKB′hh′BK′] , (E.2)

R ≡ −ϖK [(1− α)A′ + αB′h]h′, (E.3)

πµ ≡ −ϖ
(
Σ−1

η|Bνi
+Q

)−1

K [(1− α)A′h0 − χA′] . (E.4)

The distorted expectation under robust preferences can, then, be written as

Ẽ [η | Bνi] = µ̃η|Bνi
= MBνi + πµ,

with the matrix M given by

M ≡
(
Σ−1

η|Bνi
+Q

)−1 (
Σ−1

η|Bνi
KΩB′ (BΩB′)

−1
+R

)
. (E.5)

Thus, we that that
ki = ((1− α)AK′ + αh′BK′) (MBνi + πµ) + αh0.

and for the initial guess to be correct the following fixed-point conditions must be satisfied:

h′ = [(1− α)A+ αh′B]K′M, (E.6)

h0 = [(1− α)A+ αh′B]K′πµ + αh0. (E.7)

In what follows, we first characterize the responsiveness to signals h that solves equation (E.6) and then
characterize the bias h0 that solves equation (E.7).

Characterization of the responsiveness, h. We start by rewriting the equation for the matrix M. Sub-
stituting h′ from equation (E.6) into equation (E.3), we obtain

R = −ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′M

Plugging this expression for R into the definition of M, equation (E.5), it follows that(
Σ−1

η|Bνi
+Q

)
M =

(
Σ−1

η|Bνi
KΩB′ (BΩB′)

−1 −ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′M
)
.

Solving for M we get

M =
(
Iu +Ση|Bνi

Q̃
)−1

KΩB′ (BΩB′)
−1
,

where the Iu is the identity matrix of dimension u and the matrix Q̃ is given by

Q̃ ≡ Q+ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′ (E.8)

= −ϖγKA′AK′ −ϖα (1− α)K (B′h−A′) (h′B −A)K′.
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To ease notation, we define matrices

Z1 ≡ −ϖγKA′ −ϖα (1− α)K (A′ −B′h) , and Z2 ≡ −ϖα (1− α)K (B′h−A′) ,

so that
Q̃ = Z1AK′ + Z2h

′BK′.

The fixed-point condition (E.6) can, then, be rewritten as

h′ = [(1− α)A+ αh′B]K′
(
Iu +Ση|Bνi

Q̃
)−1

ΩηKB′ (BΩB′)
−1
,

where we used the fact that KΩ = ΩηK. Using the Woodbury matrix identity, we obtain(
Iu +Ση|Bνi

Q̃
)−1

Ωη = Ωη −
(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Q̃Ωη,

so, we can further rewrite the fixed-point condition as

h′ = [(1− α)A+ αh′B]K′
(
Ωη −

(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Q̃Ωη

)
KB′ (BΩB′)

−1

= [(1− α)A+ αh′B]K′
(
Ωη −

(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
(Z1AK′ + Z2h

′BK′)Ωη

)
KB′ (BΩB′)

−1

=(1− α+ κ1)AΛΩB
′ + (α− κ2)h

′BΛΩB′,

where Λ = K′K and the endogenous scalars κ1 and κ2 are given by

κ1 ≡ − [(1− α)A+ αh′B]K′
(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Z1,

κ2 ≡ [(1− α)A+ αh′B]K′
(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Z2.

Solving for h′ we obtain
h′ =

1− α+ κ1

1− α+ κ2
AΛΩ̂B′

(
BΩ̂B′

)−1

, (E.9)

where the transformed variance-covariance matrix Ω̂ is given by

Ω̂ ≡ 1− α+ κ2

1− α
ΛΩ+

1

1− α
(Im − Λ)Ω, (E.10)

with Im denoting the identity matrix of dimension m.

In what follows, we provide expressions for the two endogenous scalars (κ1,κ2) such that we can take the
limit as T → ∞ and obtain the formulas in Proposition 14. For this purpose, it is useful to define

X ≡ [(1− α)A+ αh′B]K′
(
Σ−1

η|Bνi
+ Q̃

)−1

.
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Notice that (κ1,κ2) can then be written as

κ1 = −XZ1 = ϖγXKA′ + κ2, and κ2 = −XZ2 = ϖα (1− α)XK (A′ −B′h) .

Therefore, it follows that

X = [(1− α)A+ αh′B]K′
(
Ση|Bνi

−
(
Σ−1

η|Bνi
+ Q̃

)−1

Q̃Ση|Bνi

)
= [(1− α)A+ αh′B]K′Ση|Bνi

−XQ̃Ση|Bνi

= [(1− α)A+ αh′B]K′Ση|Bνi
−X(Z1AK′ + Z2h

′BK′)Ση|Bνi

= [(1− α)A+ αh′B]K′Ση|Bνi
+ (κ1AK′ − κ2h

′BK′)Ση|Bνi

= (1− α+ κ1)AK′Ση|Bνi
+ (α− κ2)h

′BK′Ση|Bνi
.

Thus, since κ1 − κ2 = ϖγXKA′, we have that,

κ1 − κ2 = ϖγ (1− α+ κ1)AK′Ση|Bνi
KA′ +ϖγ (α− κ2)h

′BK′Ση|Bνi
KA′. (E.11)

Next, notice that

X = XΣ−1
η|Bνi

Ση|Bνi
= XΣ−1

η|Bνi
KΩK′ −XΣ−1

η|Bνi
KΩB′ (BΩB′)

−1
BΩK′ = XΣ−1

η|Bνi
KΩK′ − h′BΩK′,

where the second equality uses the definition of Ση|Bνi
and the last equality uses the fact that

h′ = XΣ−1
η|Bνi

KΩB′ (BΩB′)
−1
.

Rearranging terms and right-multiplying (KΩK′)
−1 KΩB′ to both sides of the equation, we obtain

XΣ−1
η|Bνi

KΩB′ = X(KΩK′)
−1 KΩB′ + h′BΩK′ (KΩK′)

−1 KΩB′ = XKB′ + h′BΛΩB′.

Further, since XΣ−1
η|Bνi

KΩB′ = h′BΩB′, it follows that

XKB′h = h′B (Im − Λ)ΩB′h.

Hence, we have that

κ2 = ϖα (1− α)XKA′ −ϖα (1− α)XKB′h (E.12)

=
α (1− α)

γ
(κ1 − κ2)−ϖα (1− α)h′B (Im − Λ)ΩB′h, (E.13)

where we use the fact that ϖγXKA′ = κ1 − κ2.

Given the above results, we are left with taking the limit as T → ∞ of the truncated problem. In particular,
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we have that

lim
T→∞

AΛΩ̂B′
(
BΩ̂B′

)−1

= p (L;w,α) lim
T→∞

AK′Ση|Bνi
KA′ = Vit (ξt)

lim
T→∞

h′BK′Ση|Bνi
KA′ = COVit (Kt, ξt) lim

T→∞
h′B (Im − Λ)ΩB′h = DISP (kit)

which, together with equations (E.9), (E.10), (E.11), and (E.13), completes the characterization of the respon-
siveness to signals.

Characterization of the bias, h0. From the fixed-point condition (E.7) and the definition of πµ in equa-
tion (E.4), it follows that

(1− α)h0 = ϖ [(1− α)A+ αh′B]K′
(
Σ−1

η|Bνi
+Q

)−1

K [χA′ − (1− α)A′h0] ,

which can be solved for h0 implying
h0 =

χϖY

(1− α) (1 +ϖY)
,

with Y given by
Y ≡ [(1− α)A+ αh′B]K′

(
Σ−1

η|Bνi
+Q

)−1

KA′.

Using the definition of Q̃ in equation (E.8) and the Woodbury matrix identity, it follows that(
Σ−1

η|Bνi
+Q

)−1

=
(
Σ−1

η|Bνi
+ Q̃−ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′

)−1

=
(
Σ−1

η|Bνi
+ Q̃

)−1

+

ϖ
(
Σ−1

η|Bνi
+ Q̃

)−1

K ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′
(
Σ−1

η|Bνi
+ Q̃

)−1

1−ϖ ((1− α)A+ αh′B)K′
(
Σ−1

η|Bνi
+ Q̃

)−1

K ((1− α)A′ + αB′h)

=
(
Σ−1

η|Bνi
+ Q̃

)−1

+
ϖX′X

1−ϖXK ((1− α)A′ + αB′h)
.

Therefore,

Y = XKA′ +
ϖ [(1− α)A+ αh′B]K′X′XKA′

1−ϖXK ((1− α)A′ + αB′h)

=
XKA′

1−ϖXK ((1− α)A′ + αB′h)

=

κ1−κ2

ϖγ

1−
(

1−α
γ

)
(κ1 − κ2)−ϖαh′B (Im − Λ)ΩB′h

,

where the last equality uses the fact that

κ1 − κ2 = ϖγXKA′, and XKB′h = h′B (Im − Λ)ΩB′h.
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Therefore, we have that

h0 =
χ(κ1 − κ2)

(1− α) (γ + α (κ1 − κ2)− γϖαh′B (Im − Λ)ΩB′h)
.

Finally, taking the limit as T → ∞ leads to

B = lim
T→∞

h0 =
χ(κ1 − κ2)

(1− α) (γ + α (κ1 − κ2)− γϖαDISP (kit))
.

Proof of Corollary 3. Observe that, by using (24), the expression of w under smooth model (23) can be
transformed into

w =

[
1

τµ
− λ (1− α)

(
V (ξt −Kt) + r

1 + w

w
(1− S)V (ξt)

)]−1

(E.14)

Take any pair (w, r) and the associated sensitivity S that would arise from robust preferences. We may solve(
λ, σ2

µ

)
from (24) and (E.14). Note that the first condition w ≥ 0, r ≥ 0,S ≤ 1 ensures that Assumption 2

can be satisfied and the second condition(1 − S)
(

γw
(1+w)r − (1−α)(1+w)r

w

)
+ γ > (1 − α)V(ξt−Kt)

V(ξt) ensures that
the resulted τµ > 0.
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F Value of Information

In this appendix, we demonstrate that the value of information increases with the amount of ambiguity. To
start with, as a simplification, we restrict our attention to the situation where the idiosyncratic noises share
a common variance σ2

ϵ . Specifically, we investigate the sign of the following cross-derivative for agent i:

D ≡ −
d2V

(
σ2
ϵ ; ḡ

(
xt−i

))
dσ2

ϵdτµ
,

where
V
(
σ2
ϵ ; ḡ

(
xt−i

))
≡ ϕ−1

(∫
µt

ϕ
(
Eµt

[u (kit,Kt, ξt)]
)
p
(
µt
)
dµt

)
,

and ḡ
(
xt−i

)
denotes the strategies taken by all other agents. The derivative −dV

(
σ2
ϵ ; ḡ

(
xt−i

))
/dσ2

ϵ captures
the effect on the agent’s objective function of an increase in signal precision, thereby quantifying the value of
extra information. As a result, a positive sign of the cross-derivative D reflects that a higher level of ambiguity
increases the value of information.

We allow D to depend on the strategies of the other agents ḡ
(
xt−i

)
. This approach focuses our analysis on

the value of information from the perspective of agent i, without imposing a symmetric equilibrium a priori.
As a result, this notion of the value of information is ready to be incorporated into a rational inattention
framework with some information acquisition cost function. This way of measuring the value of information
is also consistent with our framework of persistent learning, where all private information shares the same
precision so that a marginal change in σ2

ϵ changes the precision of all private information. In a generic
environment where the precision of different sources of private information can differ substantially, our notion
of the value of information can be equivalently understood as increasing the precision of all private information
by the same amount.

In what follows, through the lens of a set of lemmas, we demonstrate that D > 0, i.e., the value of information
increases with the amount of ambiguity. We begin with Lemma F.1, which analytically characterizes the value
of information.

Lemma F.1. If ϕ(·) takes the CAAA form, i.e., ϕ(x) = − 1
λ exp(−λx), the value of information equals the

equilibrium cross-sectional dispersion of actions:

−
dV(σ2

ϵ ; ḡ(x
t
−i))

dσ2
ϵ

=
1

2σ2
ϵ

E[(kit −Kt)
2].

Proof. We start the proof with the truncated economy as in the proof of Proposition 4. As a result, the
strategies of individual agent i and of the other agents are respectively given by

ki = h′Bνi + h0, and K = h̄′BΛνi + h̄0.
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When ϕ(·) takes the CAAA form, the ex-ante value of agent i is such that

V(σ2
ϵ ; h̄, h0) ≡ − 1

λ
ln

(∫
µ

exp (−λEµ[u(ki,K, θ)]) p(µ)dµ

)
s.t. ki = h′Bνi + h0 and K = h̄′BΛνi + h0.

Taking derivative with respect to σ2
ϵ leads to

dV(σ2
ϵ ; h̄, h0)

dσ2
ϵ

=

∫
µ
exp (−λEµ[u(ki,K, θ)])

(
∂Eµ[u(ki,K,θ)]

∂h
dh
dσ2

ϵ
+ ∂Eµ[u(ki,K,θ)]

∂h0

dh0

dσ2
ϵ
+ ∂Eµ[u(ki,K,θ)]

∂σ2
ϵ

)
p(µ)dµ∫

µ
exp (−λEµ[u(ki,K, θ)]) p(µ)dµ

=

∫
µ

∂Eµ[u(ki,K, θ)]

∂σ2
ϵ

p̂(µ)dµ+
dh

dσ2
ϵ

∫
µ

∂Eµ[u(ki,K, θ)]

∂h
p̂(µ)dµ+

dh0
dσ2

ϵ

∫
µ

∂Eµ[u(ki,K, θ)]

∂h0
p̂(µ)dµ,

where p̂(µ) is the (ex-ante) distorted subjective belief given by

p̂(µ) ∝ exp (−λEµ[u(ki,K, θ)]) p(µ).

Note that the first-order conditions that pin down the optimal sensitivity h and bias h0 are such that∫
µ

∂Eµ[u(ki,K, θ)]

∂h
p̂(µ)dµ =

∫
µ

∂Eµ[u(ki,K, θ)]

∂h0
p̂(µ)dµ = 0.

Denote K and G by
K ≡ [Iu, 0u,m−u] , and G ≡ [0m−u,u, Im−u] .

It can then be shown that

Eµ[u(ki,K, θ)] =− 1

2
(1− α)Eµ[(h′B(K′η + G′ϵi) + h0 − a′η)2]

− 1

2
αEµ[(h′B(K′η + G′ϵi) + h0 − h̄′BK′η − h̄0)

2]− Eµ[χa′η +
1

2
γa′ηη′a]

=− 1

2
h′B(I − Λ)B′hσ2

ϵ + Z(µ, σ2
η, h, h0, h̄, h̄0),

where Λ = K′K, and Z(µ, σ2
η, h, h0, h̄, h̄0) are independent of σϵ. Therefore, we have

−dV(σ2
ϵ ; h̄, h0)

dσ2
ϵ

=−
∫
µ

∂Eµ[u(ki,K, θ)]

∂σ2
ϵ

p̂(µ)dµ =
1

2
h′B(I − Λ)B′h =

1

2σ2
ϵ

h′B(I − Λ)ΩB′h.

Taking the limit as T → ∞ of the truncated problem yields

lim
T→+∞

−dV(σ2
ϵ ; h̄, h0)

dσ2
ϵ

= −
dV(σ2

ϵ ; ḡ(x
t
−i))

dσ2
ϵ

, and lim
T→+∞

h′B(I − Λ)ΩB′h = E[(kit −Kt)
2].

Thus, the value of information equals the equilibrium cross-sectional dispersion of actions.

Does higher ambiguity increase the value of information? Providing an answer to this question is equivalent
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to analyzing whether the cross-sectional dispersion of actions increases with the amount of ambiguity τµ. Our
equivalence result suggests that τµ shapes cross-sectional dispersion by affecting the two endogenous scalars
w and r. In what follows, we first characterize how w and r affect the cross-sectional dispersion of actions
(Lemma F.2). Intuitively, increases in either w or r should increase the cross-sectional dispersion, given that
both higher w and r contribute to more overreactions. Lemma F.2 confirms this intuition.

Lemma F.2. The cross-sectional dispersion of actions is increasing in both w and r:

∂E
[
(kit −Kt)

2
]

∂w
> 0, and

∂E
[
(kit −Kt)

2
]

∂r
> 0.

Proof. Again, we start the proof with the truncated economy, in which h(w, r)′B(I − Λ)ΩB′h(w, r) denotes
cross-sectional dispersion. Further, denote ĥ′(w) as the truncated version of p(L;w,α), namely the forecasting
rule of the (w,α)-modified signal process in Section 3.3. Then, we have that

h′(w, r) = (1 + r)ĥ′(w),

which implies that

h(w, r)′B(I − Λ)ΩB′h(w, r) = (1 + r)2ĥ(w)′B(I − Λ)ΩB′ĥ(w).

It is then straightforward to see that

∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂r
> 0.

In what follows, we proceed to prove that ĥ(w)′B(I−Λ)ΩB′ĥ(w) is increasing in w. Utilizing our equivalence
results, it can be shown that

ĥ′(w) =A
(
(1 + w)ΛΩ + (1− α)−1(I − Λ)Ω

)
B′ (B ((1 + w)ΛΩ + (1− α)−1(I − Λ)Ω

)
B′)−1

=A
(
ΛΩ+ (1 + w)−1(1− α)−1(I − Λ)Ω

)
B′ (B (ΛΩ+ (1 + w)−1(1− α)−1(I − Λ)Ω

)
B′)−1

=AΩB′ (B (ΛΩ+ (1 + w)−1(I − Λ)Ω
)
B′)−1

=AΩB′ (B (ΛΩα + (1 + w)−1(I − Λ)Ωα

)
B′)−1

,

where Ωα ≡ ΛΩ+ (1− α)−1(I − Λ)Ω. As a result, taking the derivative with respect to w leads to

dĥ′(w)

dw
=(1 + w)

−2
ĥ′(w)B(I − Λ)ΩαB

′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

.
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Therefore, we have that

(1 + w)2
dĥ(w)′B(I − Λ)ΩB′ĥ(w)

dw

= ĥ′(w)B(I − Λ)ΩαB
′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B

′)−1
B(I − Λ)ΩB′ĥ(w)

+ ĥ(w)′B(I − Λ)ΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

B(I − Λ)ΩαB
′ĥ(w)

= (1− α)−1ĥ′(w)B(I − Λ)ΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

B(I − Λ)ΩB′ĥ(w)

+ (1− α)−1ĥ(w)′B(I − Λ)ΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

B(I − Λ)ΩB′ĥ(w)

= 2(1− α)−1ϖΠ−1ϖ′,

where ϖ ≡ ĥ′(w)B(I − Λ)ΩB′ and Π ≡ B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′. Notice that the matrix Π−1 is

symmetric and positive semi-definite, hence so is Π. We then conclude that

dĥ(w)′B(I − Λ)ΩB′ĥ(w)

dw
> 0 ⇔ ∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂w
> 0.

Finally, taking the limit as T → ∞ of the truncated problem results in

dE[(kit −Kt)
2]

dr
= lim

T→∞

∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂r
> 0,

and

dE[(kit −Kt)
2]

dw
= lim

T→∞

∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂w
> 0.

In the last step, we analyze how changes in τµ affect w and r directly. To enjoy an analytical result, we
abstract out r by setting γ = 0.

Lemma F.3. The endogenous scaler w is increasing in τµ if γ = 0.

Proof. When γ = 0, it can be shown that

w =
1

1
τµ

− λ(1− α)(A− h′B)ΛΩ(A− h′B)′
. (F.1)

Similar to the proof of Lemma F.2 and using the same notation, it can be shown that

h = AΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

,

which implies that

dh

dw
=(1 + w)−2h′B(I − Λ)ΩαB

′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

.
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Therefore, we can show that

d(A− h′B)ΛΩ(A− h′B)′

dw

= − 2(1 + w)−1(A− h′B)ΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h

= 2(1 + w)−1(h′BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h− h′B(I − Λ)Ω̂B′h)

= 2(1 + w)−1h′(BΛΩ̂B′ −BΛΩ̂B′
(
BΩ̂B′

)−1

BΛΩ̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

− I)B(I − Λ)Ω̂B′h

= − 2(1 + w)−1(h′B(I − Λ)Ω̂B′)
(
BΩ̂B′

)−1

(B(I − Λ)Ω̂B′h) < 0,

where we denote Ω̂ = ΛΩα + (1 + w)−1(I − Λ)Ωα. It can be further shown that

d(A− h′B)ΛΩ(A− h′B)′

dw
= 2(1 + w)−1(h′BΛΩ̂B′

(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h

= 2(1 + w)−1(h′BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h− h′B(I − Λ)Ω̂B′h)

= 2(1 + w)−1h′(BΛΩ̂B′ −BΛΩ̂B′
(
BΩ̂B′

)−1

BΛΩ̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

− I)B(I − Λ)Ω̂B′h

= − 2(1 + w)−1(h′B(I − Λ)Ω̂B′)
(
BΩ̂B′

)−1

(B(I − Λ)Ω̂B′h) < 0.

Denote the right-hand side of equation (F.1) by RHS(τµ, w) and the left-hand side by LHS(w). It is then
straightforward to demonstrate that

dLHS(w)
dw

> 0,
∂RHS(τµ, w)

∂w
< 0, and ∂RHS(τµ, w)

∂τµ
< 0,

which jointly proves that

dw

dτµ
> 0.

Lemma F.1, Lemma F.3, and Lemma F.2 combined establish the desired result, that the value of information
increases with the amount of ambiguity if γ = 0:

D > 0 if γ = 0.
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In the general case where γ > 0, proving that D > 0 turns out to be challenging. However, extensive numerical
exercises suggest that the value of information continues to increase with the level of ambiguity in this more
complex scenario. Intuitively, with γ > 0, there is an additional channel of overreaction, namely, the scalar
r > 0, which leads to a higher utilization of information. It is the intricate interaction between w and r,
however, that complicates the analytical analysis.
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G Ambiguity about Variance

In this section, we explore the cases in which there is ambiguity about the variance of the fundamental and
about the variance of the noise, respectively.

G.1 Ambiguity about the variance of the fundamental

We start with the case that agents perceive ambiguity about the variance of the fundamental. Specifically, we
assume that the fundamental ξ follows a normal distribution with mean 0 and variance σ2

ξ,∗: ξ ∼ N
(
0, σ2

ξ,∗

)
.

Agents exhibit ambiguity regarding the true variance of the fundamental, σ2
ξ,∗. We let Γξ be the the range

of possible values for the variance of the fundamental, σ2
ξ . Analysts believe that σ2

ξ ∈ Γξ and have some
prior belief about Γξ with density distribution given by p

(
σ2
ξ

)
. To ensure that strategies based on Bayesian

inference and ambiguity neutrality coincide, we impose the following assumption on the agents’ prior belief:

Assumption 1. The prior belief of the agent is such that∫
Γξ

σ2
ξ p
(
σ2
ξ

)
dσ2

ξ = σ2
ξ,∗ .

Similar to the setup of ambiguity about the mean of the fundamental, each agent receives a private signal

xi = ξ + εi, with εi ∼ N
(
0, σ2

ϵ

)
.

Agents are ambiguity-averse and select a strategy g(xi) to minimize the following objective:

L(g) = ϕ−1

(∫
Γξ

ϕ

(
Eσ2

ξ
[
(g(xi)− ξ)2 − χξ

])
p(σ2

ξ )dσ
2
ξ

)
,

where ϕ (x) = 1
λ exp (λx) takes the CAAA form with λ representing the degree of ambiguity aversion. Finally,

we restrict our analysis to linear strategies such that

g (xi) = sxi + b, (G.1)

which facilitates a direct comparison with our baseline setup, where ambiguity pertains to the mean of the
fundamental.

The following proposition suggests that ambiguity has a more limited effect, leading to an optimal linear
strategy that exhibits higher sensitivity compared to the rational RE benchmark, but no bias.

Proposition G.1. When agents are ambiguity-averse, λ > 0, the optimal linear strategy exhibits higher
sensitivity than the RE benchmark and features no bias:

s∗ > sRE ≡
σ2
ξ,∗

σ2
ξ,∗ + σ2

ϵ

, and b∗ = 0.
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Proof. Given the restriction to linear strategies, the objective function of the agents can be written as a
function of the sensitivity, s, and bias, b, as follows

L (s, b) =
1

λ
ln

(∫
Γξ

exp
(
λ
(
(s− 1)

2
σ2
ξ + s2σ2

ϵ

))
p
(
σ2
ξ

)
dσ2

ξ

)
+

1

2
b2.

The zero-bias result is straight-forward: the FOC with respect to bias b is such that

∂L (s, b)

∂b
= b = 0.

To characterize the optimal of sensitivity, s, we consider the corresponding FOC,

∂L (s, b)

∂s
=

∫
Γξ

exp
(
λ
(
(s− 1)

2
σ2
ξ + s2σ2

ϵ

)) [
(s− 1)σ2

ξ + sσ2
ε

]
p
(
σ2
ξ

)
dσ2

ξ∫
Γξ

exp
(
λ
(
(s− 1)

2
σ2
ξ + s2σ2

ϵ

))
p
(
σ2
ξ

)
dσ2

ξ

= 0,

which is equivalent to
s σ2

ε = (1− s)

∫
Γξ

σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ ,

where the distorted belief p̂(σ2
ξ ) is such that

p̂ (τξ) ∝ exp
(
λ (s− 1)

2
σ2
ξ

)
p
(
σ2
ξ

)
.

Notice that, relative to the agents’ prior p(σ2
ξ ), the distorted belief p̂(σ2

ξ ) puts higher weights on the larger σ2
ξ

in Γξ: p̂(σ2
ξ ) first-order stochastically dominates p(σ2

ξ ). It follows that∫
Γξ

σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ ≥
∫
Γξ

σ2
ξ p
(
σ2
ξ

)
dσ2

ξ = σ2
ξ,∗ ,

and, therefore,

s∗ =

∫
Γξ
σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ∫
Γξ
σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ + σ2
ϵ

>
σ2
ξ,∗

σ2
ξ,∗ + σ2

ϵ

= sRE.

G.2 Ambiguity about the variance of signal noise

We proceed to analyze the effect of ambiguity about the variance of the noise instead. Similar to the setup of
Section G.1, we assume that the fundamental ξ follows a normal distribution with mean 0 and variance σ2

ξ ,
ξ ∼ N

(
0, σ2

ξ

)
. Moreover, each agent receives a private signal

xi = ξ + εi, with εi ∼ N
(
0, σ2

ϵ,∗
)
.
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Agents face ambiguity regarding the true variance of the noise, denoted as σ2
ϵ,∗. We let Γϵ represent the range

of possible values for this variance. Agents maintain a belief that σ2
ϵ lies within Γϵ and hold a prior distribution

over this range, represented by p(σ2
ϵ ). To ensure that strategies based on Bayesian inference and ambiguity

neutrality coincide, we impose the following assumption on the agents’ prior belief:

Assumption 2. The prior belief of the agent is such that∫
Γϵ

σ2
ϵ p(σ

2
ϵ )dσ

2
ϵ = σ2

ϵ,∗ .

Agents are ambiguity averse and select a strategy g(xi) to minimize the following objective:

L(g) = ϕ−1

(∫
Γϵ

ϕ

(
Eσ2

ϵ [(g(xi)− ξ)2 − χξ]

)
p(σ2

ϵ )dσ
2
ϵ

)
,

where ϕ(x) = 1
λ exp(λx) takes the CAAA form with λ representing the degree of ambiguity aversion. Finally,

we restrict our analysis to linear strategies as in equation (G.1).

The following proposition states that ambiguity has not only a more limited effect but an opposite one on
sensitivity when ambiguity is on the variance of noise: the optimal linear strategy exhibits lower sensitivity
compared to the rational RE benchmark, while featuring no bias.

Proposition G.2. When agents are ambiguity averse, λ > 0, the optimal linear strategy exhibits higher
sensitivity than the RE benchmark and features no bias:

s∗ < sRE ≡
σ2
ξ

σ2
ξ + σ2

ϵ∗
, and b∗ = 0.

Proof. Given the restriction to linear strategies, the objective function of the agents can be written as a
function of the sensitivity, s, and bias, b, as follows:

L(s, b) = 1

λ
ln

(∫
Γϵ

exp
(
λ
(
(s− 1)2σ2

ξ + s2σ2
ϵ

))
p(σ2

ϵ )dσ
2
ϵ

)
+

1

2
b2.

The zero-bias result is straightforward: the first-order condition with respect to bias b is such that

∂L(s, b)
∂b

= b = 0.

To characterize the optimal sensitivity, s, we consider the corresponding first-order condition,

∂L(s, b)
∂s

=

∫
Γϵ

exp
(
λ
(
(s− 1)2σ2

ξ + s2σ2
ϵ

)) [
(s− 1)σ2

ξ + sσ2
ε

]
p(σ2

ϵ )dσ
2
ϵ∫

Γϵ
exp

(
λ
(
(s− 1)2σ2

ξ + s2σ2
ϵ

))
p(σ2

ϵ )dσ
2
ϵ

= 0,

which is equivalent to
s

∫
Γϵ

σ2
ε p̂(σ

2
ϵ )dσ

2
ϵ = (1− s)σ2

ξ ,
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where the distorted belief p̂(σ2
ϵ ) is such that

p̂(τϵ) ∝ exp
(
λs2σ2

ϵ

)
p(σ2

ϵ ).

Notice that, relative to the agents’ prior p(σ2
ϵ ), the distorted belief p̂(σ2

ϵ ) assigns higher weights to larger σ2
ϵ

in Γϵ: p̂(σ2
ϵ ) first-order stochastically dominates p(σ2

ϵ ). It follows that∫
Γϵ

σ2
ϵ p̂(σ

2
ϵ )dσ

2
ϵ ≥

∫
Γϵ

σ2
ϵ p(σ

2
ϵ )dσ

2
ϵ = σ2

ϵ,∗ ,

and, therefore,

s∗ =
σ2
ξ

σ2
ξ +

∫
Γϵ
σ2
ϵ p̂(σ

2
ϵ )dσ

2
ϵ

<
σ2
ξ

σ2
ξ + σ2

ϵ,∗
= sRE.
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H Evidence on Inflation Expectations by Income Group

H.1 Forecast error bias and persistence

We investigate the joint behaviors of bias and persistence in forecast errors using both the Michigan Survey of
Consumers (MSC) and the Survey of Consumer Expectations (SCE). We examine two regression equations:

FEg,t =

N∑
g=1

βgIg + ωg,t,

FEg,t =

N∑
g=1

βgIg +
N∑

g=1

αgFEg,t−1 + ωg,t,

where FEg,t represents the average forecast errors for group g at year-quarter t and Ig is the group dummy.
For the MSC dataset, we divide individuals into N = 7 income groups, while for the SCE dataset, we divide
individuals into N = 5 income groups. Table H.1 provides the results of our analysis. We use the poorest
group (Group 1) as the reference group when reporting the results. The overall patterns of bias and persistence
are similar in both the MSC and SCE datasets: as the income level increases, the amount of bias decreases,
while the persistence of forecast errors increases. Similar to Figure 3 that displays the empirical patterns in
MSC, Figure H.1 plot the point estimates of the biases and the persistence across different income groups in
SCE.

Figure H.1: Bias and Persistence of Forecast Error in the Survey Data (NYSCE)

(A) Bias in forecast (B) Persistence of forecast error

Note: This figure reports bias (Panel A) and persistence (Panel B) of households’ inflation forecasts in the cross-
section of the income distribution. Bias and persistence of each income percentile are calculated by the mean and serial
correlation of forecast errors of households’ inflation expectations for the next 12 months. Data are obtained from
FRBNY Survey of Consumer Expectations (2013:II-2022:I) and U.S. Consumer Price Index (2013:I-2022:IV).
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Table H.1: Bias and Persistence of Forecast Errors: MSC and SCE

MSC SCE

Bias Persistence Bias Persistence

Constant −2.297∗∗∗ −1.055∗∗∗ −6.403∗∗∗ −2.187∗∗∗
(0.072) (0.081) (0.164) (0.204)

Group 2 0.235∗∗∗ 0.366∗∗ 2.488∗∗∗ 0.760∗∗
(0.060) (0.085) (0.110) (0.155)

Group 3 0.766∗∗∗ 0.564∗∗∗ 3.514∗∗∗ 1.650∗∗∗
(0.053) (0.053) (0.142) (0.150)

Group 4 1.103∗∗∗ 0.713∗∗∗ 4.734∗∗∗ 1.980∗∗∗
(0.057) (0.032) (0.142) (0.092)

Group 5 1.258∗∗∗ 0.810∗∗∗ 5.539∗∗∗ 2.105∗∗∗
(0.054) (0.025) (0.163) (0.143)

Group 6 1.535∗∗∗ 0.876∗∗∗
(0.051) (0.030)

Group 7 1.924∗∗∗ 0.959∗∗∗
(0.044) (0.055)

FEt−1 0.537∗∗∗ 0.663∗∗∗
(0.044) (0.031)

FEt−1× Group 2 0.125∗∗ -0.017
(0.034) (0.069)

FEt−1× Group 3 0.142∗∗ 0.150
(0.038) (0.084)

FEt−1× Group 4 0.171∗∗∗ 0.205∗∗
(0.023) (0.049)

FEt−1× Group 5 0.217∗∗∗ 0.221∗∗
(0.040) (0.063)

FEt−1× Group 6 0.218∗∗∗
(0.041)

FEt−1× Group 7 0.192∗∗∗
(0.042)

Obs. 952 945 180 175
* p<0.1, ** p<0.05, *** p<0.01.
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To address the concern that bias may be influenced by other observed individual characteristics, such as age
and resident state, we introduce the following empirical specification at the individual level for both the MSC
and the SCE:

FEi,t =

N∑
g=1

βgIi,g,t + γ′Xi,t + δt + ωi,t,

where Ii,g,t is a dummy variable that equals to 1 if individual i belongs to income group g at year-month t,
and Xi,t is a vector of observed individual characteristics. For the MSC dataset, we control for age, gender,
education, birth cohort, marital status, region, and the number of kids and adults in the household. It is
worth noting that controlling for the birth cohort helps address concerns regarding the impact of inflation
experiences on households’ inflation expectations (Malmendier and Nagel, 2016). For the SCE dataset, we
control for age group, numeracy, education, and region. Table H.2 reports the results. Again, we use the
poorest group (Group 1) as the base group for both the MSC and SCE datasets. Even after controlling for
additional individual characteristics, the biases in forecasts persist and exhibit a negative correlation with
households’ income levels.

Table H.2: Bias of Forecast Errors Controlling Individual Characteristics: MSC and SCE

MSC SCE

Constant −2.370∗∗∗ −5.255∗∗∗
(0.288) (0.246)

Group 2 0.162∗∗∗ 1.834∗∗∗
(0.036) (0.108)

Group 3 0.573∗∗∗ 2.446∗∗∗
(0.030) (0.126)

Group 4 0.856∗∗∗ 3.212∗∗∗
(0.032) (0.183)

Group 5 0.989∗∗∗ 3.754∗∗∗
(0.034) (0.245)

Group 6 1.223∗∗∗
(0.024)

Group 7 1.510∗∗∗
(0.031)

Demographics Yes Yes
Birth Cohort Yes No
Age Yes Yes
Region Yes Yes
Time fixed effects Yes Yes
Obs. 146,622 135,434
* p<0.1, ** p<0.05, *** p<0.01.
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H.2 CG and BGMS regressions

As a comparison to the group-specific CG and BGMS coefficients derived from our model, we run the cor-
responding CG and BGMS regressions using data from the Michigan Survey of Consumers and the Survey
of Consumer Expectations. The term structure of the forecasts is not available in these datasets, preventing
us from constructing exact forecast revisions. As a compromise, we consider the following closely related
regressions instead:

CG: πt+1 − Ēt [πt+1] = α+ βCG
(
Ēt [πt+1]− Ēt−1 [πt]

)
+ ϵt+1, (H.1)

BGMS: πt+1 − Eit [πt+1] = α+ βBGMS (Eit [πt+1]− Eit−1 [πt]) + ϵit+1. (H.2)

Columns (1)-(2) in Table H.3 display the results for the MSC, and columns (5)-(6) display the results for the
SCE. At the individual level, the BGMS regression coefficients are more negative for poorer households, while
the CG regression coefficients are larger for richer households. These results are broadly consistent with our
model’s predictions.

Table H.3: CG and BGMS Estimates: MSC and SCE

MSC SCE

(1) (2) (3) (4) (5) (6) (7) (8)
BGMS CG CG (IV) F-Stat BGMS CG CG (IV) F-Stat

Group 1 −0.546∗∗∗ −0.411∗∗∗ 0.600∗ 14.08 −0.510∗∗∗ −0.372∗∗∗ −0.455 6.50
(0.048) (0.101) (0.349) (0.184) (0.127) (0.760)

Group 2 −0.435∗∗∗ −0.314∗∗ 2.033∗∗ 5.13 −0.440∗∗∗ −0.289∗∗ 0.624 2.97
(0.040) (0.145) (0.920) (0.014) (0.136) (0.786)

Group 3 −0.395∗∗∗ −0.207 1.080∗∗ 9.04 −0.422∗∗∗ −0.295∗ 2.777 0.62
(0.025) (0.266) (0.489) (0.015) (0.175) (3.588)

Group 4 −0.393∗∗∗ −0.169 0.493∗ 24.87 −0.408∗∗∗ 0.202 2.590 4.90
(0.031) (0.230) (0.285) (0.019) (0.333) (2.334)

Group 5 −0.375∗∗∗ −0.147 0.984∗∗ 10.67 −0.384∗∗∗ 0.281 2.888∗ 15.24
(0.028) (0.260) (0.383) (0.035) (0.331) (1.628)

Group 6 −0.394∗∗∗ 0.054 0.797∗∗ 17.56
(0.018) (0.370) (0.340)

Group 7 −0.418∗∗∗ 0.011 0.982∗∗ 9.85
(0.018) (0.301) (0.483)

* p<0.1, ** p<0.05, *** p<0.01.

However, due to the previously mentioned data limitations, the approximating regressions (H.1) and (H.2)
may suffer from an endogeneity issue.4 We follow Coibion and Gorodnichenko (2015) and use Spot Crude

4The error term ϵt+1 in the CG specification above contains not only the rational expectations forecast errors ϵ̂t+1

but also the expected change in inflation βCG
(
Ēt−1 [πt+1]− Ēt−1 [πt]

)
. Under rational expectations, ϵ̂t+1 is uncorrelated
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Oil Price (1987-2022) as the instrumental variable. Unfortunately, while the instrumental variable is strong
enough for the entire sample, it tends to be weak when segmenting the sample by different income groups
(see the F -statistics in Columns (4) and (8)). Bearing in mind the weak IV issue, the CG coefficient generally
increases with income, a trend that is more pronounced in the SCE data.

H.3 Balance-sheet effects

This section addresses the concern that balance-sheet effects may overturn the effects of inflation on labor
income. We argue that this is unlikely to be the case.

First, notice that balance-sheet effects are primarily relevant for capital income, which constitutes a relatively
small share of total income, especially for the income-poor. In Table H.4, we document the shares of different
sources of income using the Survey of Consumer Finances, since this data is not available in the Michigan
Survey.5 For all households, capital and business income represent a relatively small share of total income,
and this is especially true for the bottom four quintiles of income. The table also shows that the bottom
quintiles of income have relatively low levels of net worth. With this in mind, one would expect that even the
large proportional effects documented by Doepke and Schneider (2006) would be dominated by the effects of
inflation on labor and transfer incomes.

Table H.4: Income Sources (%) by Quintiles of Income

Quintiles of Income

1st 2nd 3rd 4th 5th

Labor 48.9 77.3 83.4 85.8 64.3
Capital 0.1 0.4 0.3 0.8 10.8
Business 6.2 5.4 5.9 5.6 18.7
Transfer 37.3 15.0 9.2 7.1 2.4
Other 7.5 1.8 1.2 0.7 3.7

Total Income 2.7 6.5 11.0 16.9 63.0
Net Worth 1.4 2.7 5.5 9.8 80.6

Notes: Calculated using data from the Survey of Consumer Finances (2016). We use the definitions from Kuhn and
Ríos-Rull (2016) and limit the sample to heads of households aged 18 to 65, for comparability with the results in the
paper. We also choose the 2016 wave of the survey as it is roughly in the middle of the time sample we use in the
paper.

with the consensus forecast error πt+1 − Ēt [πt+1]. However, the covariance between the expected change in inflation
βCG

(
Ēt−1 [πt+1]− Ēt−1 [πt]

)
and the consensus forecast error πt+1 − Ēt [πt+1] is correlated as long as the inflation

process is not a random walk. Therefore, the error term ϵt+1 will be correlated with the forecast error on the left-hand
side. Note that the reason for this endogeneity issue arises from the fact that neither the MSC nor the SCE provides
the term structure of forecasts. As a result, forecasts are imperfectly overlapped.

5The seven groups from the MSC sample have average incomes, in thousands of 2016 dollars, of
{12.9, 24.5, 40.5, 59.8, 74.5, 104.9, 216.8}, while the quintiles of income from the SCF show averages of
{13.9, 33.0, 56.4, 90.3, 331.2}. Although the top income levels from the SCF are higher, reflecting its detailed ap-
proach to top-coding issues, the bottom four quintiles align relatively well with the MSC groups. The net worth levels
for these income quintiles in the SCF, again in thousands of 2016 dollars, are {39.2, 75.0, 156.2, 287.0, 2322.3}.
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Table H.5: Concern About Inflation (%) by Income Levels

Income Levels (thousands of dollars)

<25 25–35 35–50 50–75 75–100 100–150 150–200 >200

Very concerned 66.5 62.2 60.9 57.3 53.9 46.1 38.7 24.0
Somewhat concerned 17.9 20.6 21.7 23.0 21.9 26.2 27.3 28.2
A little concerned 10.4 12.6 13.1 14.4 16.7 19.1 22.2 29.5
Not at all concerned 5.2 4.5 4.2 5.3 7.5 8.6 11.8 18.3

Notes: Calculated using data from Household Pulse Survey (2024). This survey started in 2020, so we selected the
most recent wave to try to mitigate the impact of Covid-related concerns. Similar results are reported, using data from
2021, by Jayashankar and Murphy (2023).

One way to assess the overall effect of inflation on different households is to estimate a quantitative structural
model incorporating the relevant mechanisms and heterogeneity, and then compute the conditional welfare
effects for different groups. This approach is pursued by Cao, Meh, Ríos-Rull, and Terajima (2021). They
find that poorer households are more negatively affected by inflation:

“An increase in inflation from 2% to 5% costs 13% of one-year consumption. [...] From the point of
view of consumption class, the poor lose a lot more than the rich: 37.0% of 2010 consumption versus
5.6% for the poorest and richest quintiles.”

The same conclusions can be drawn from the Census Bureau’s Household Pulse Survey data, which includes
the question, “In the area where you live and shop, how concerned are you, if at all, that prices will increase
in the next six months?” In Table H.5, we present the results categorized by income brackets. A clear pattern
can be observed, with the inflation concern monotonically decreasing as income levels increase.
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