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Appendix A collects all proofs and extensions. Appendix B discusses the connection
between our contamination bias characterization and that in the difference-in-differences (DiD)
literature. Details on the applications and additional exhibits are given in Appendices C
and D.

Appendix A Proofs and Additional Results

A.1 Proof of Proposition 1

We prove a generalization of the Proposition 1 which allows any vector of treatments Xi

(which may not be binary or mutually exclusive). We continue to consider the partially linear
model in eq. (8), and maintain Assumption 2, as well as conditional mean-independence of
the potential outcomes E[Yi(x) | Xi,Wi] = E[Yi(x) | Wi], which extends Assumption 1. We
also assume that the potential outcomes Yi(x) are linear in x, conditional on Wi:

E[Yi(x) |Wi = w] = E[Yi(0) |Wi = w] + x′τ(w),

for some function τ . This condition holds trivially in the main-text discussion of mutually ex-
clusive binary treatments. More generally, τk(w) corresponds to the conditional average effect
of increasing Xik by one unit among observations with Wi = w. Although this assumption is
not essential, it considerably simplifies the derivations. We continue to define τ = E[τ(Wi)]

as the average vector of per-unit effects.
We now prove that under these assumptions βk is given by the expression in eq. (15). We

further prove that E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0 for ℓ ̸= k in general, and give a more
detailed characterization of the weights in the case of mutually exclusive treatment indicators.

First note that by iterated expectations and conditional mean-independence, E[
≈
XikYi] =
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E[E[
≈
XikYi | Xi,Wi]] = E[

≈
XikE[Yi(0) | Wi]] + E[

≈
XikX

′
iτ(Wi)]. By definition of projection,

E[X̃ig(Wi)] = 0 for all g ∈ G (van der Vaart, 1998, Theorem 11.1); thus if eq. (13) holds
E[

≈
XikE[Yi(0) | Wi]] = 0. Similarly, under eq. (12), E[

≈
Xik | Wi] = 0, so by iterated expecta-

tions, E[
≈
XikE[Yi(0) |Wi]] = E[E[

≈
Xik |Wi]E[Yi(0) |Wi]] = 0. Thus,

βk =
E[

≈
XikX

′
iτ(Wi)]

E[
≈
X2

ik]
=
E[

≈
XikXikτk(Wi)]

E[
≈
X2

ik]
+

∑
ℓ̸=k E[

≈
XikXiℓτℓ(Wi)]

E[
≈
X2

ik]
.

This proves eq. (15).
To show that E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0 for ℓ ̸= k in general, note that

E[λkk(Wi)] =
E[

≈
XikXik]

E[
≈
X2

ik]
= 1,

since
≈
Xi,k is a residual from projecting Xik onto the space spanned by functions of the form

g̃(Wi) +X ′
i,−kβ̃−k, so that E[

≈
XikXik] = E[

≈
X2

ik]. Furthermore,
≈
Xi,k must also be orthogonal

to Xi,−k by definition of projection, so that E[λkℓ(Wi)] = E[
≈
XikXiℓ]/E[

≈
X2

ik] = 0.
Finally, if Xi are mutually exclusive treatment indicators, write E∗[Xik | Xi,−k,Wi] =

X ′
i,−kδ̃k + g̃k(Wi). Since XikXi,−k = 0, we may write

λkk(Wi) =
pk(Wi)(1− g̃k(Wi))

E[
≈
X2

ik]
=
pk(Wi)(1− E∗[Xik | Xi,−k = 0,Wi])

E[
≈
X2

ik]
,

and, by similar arguments, λkℓ(Wi) = −pℓ(Wi)E
∗[Xik | Xiℓ = 1,Wi]/E[

≈
X2

ik], which yields the
second expression for the weights. It remains to show that λkk(Wi) ≥ 0 if eq. (12) holds and
Xi consists of mutually exclusive indicators. To that end, observe that λkℓ(Wi) is given by
the (k, ℓ) element of

Λ(Wi) = E[X̃iX̃
′
i]
−1E[X̃iX

′
i |Wi]

If eq. (12) holds, then we can write this as Λ(Wi) = E[v(Wi)]
−1v(Wi) where v(Wi) = E[X̃iX̃

′
i |

Wi]. IfX is a vector of mutually exclusive indicators, then v(Wi) = diag(p(Wi))−p(Wi)p(Wi)
′.

Let v−k(Wi) denote the submatrix with the kth row and column removed, and let p−k(Wi)

denote subvector with the kth row removed. Then by the block matrix inverse formula,

λkk(Wi) =
pk(Wi)(1− pk(Wi))− E[pk(Wi)p−k(Wi)

′]E[v−k(Wi)]
−1p−k(Wi)pk(Wi)

E[pk(Wi)(1− pk(Wi))]− E[pk(Wi)p−k(Wi)′]E[v−k(Wi)]−1E[pk(Wi)p−k(Wi)]

Note p0(Wi) = 1 −
∑K

k=1 pk(Wi) and pk(Wi)p−k(Wi) = v−k(Wi)ι − p0(Wi)p−k(Wi), where ι
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denotes a (K − 1)-vector of ones. Thus, the numerator can be written as

pk(Wi)(1− pk(Wi))− ι′p−k(Wi)pk(Wi)

+ E[p0(Wi)p−k(Wi)
′]E[v−k(Wi)]

−1p−k(Wi)pk(Wi)

= pk(Wi)p0(Wi) + E[p0(Wi)p−k(Wi)
′]E[v−k(Wi)]

−1p−k(Wi)pk(Wi).

The eigenvalues of E[v−k(Wi)] are positive because it is a covariance matrix. Furthermore,
the off-diagonal elements of E[v(Wi)] are negative, and hence the off-diagonal elements of
E[v−k(Wi)] are also negative. It therefore follows that E[v−k(Wi)] is an M -matrix (Berman
& Plemmons, 1994, property D16, p. 135). Hence, all elements of E[v−k(Wi)]

−1 are positive
(Berman & Plemmons, 1994, property N38, p. 137). Thus, both summands in the above
expression are positive, so that λkk(Wi) ≥ 0.

A.2 Proof of Proposition 2

The parameter of interest θλ,c depends on the realizations of the controls. We therefore derive
the semiparametric efficiency bound conditional on the controls; i.e. we show that eq. (18) is
almost-surely the variance bound for estimators that are regular conditional on the controls.
Relative to the earlier results in Hahn (1998) and Hirano et al. (2003), we need to account
for the fact that the data are no longer i.i.d. once we condition on the controls.

To that end, we use the notion of semiparametric efficiency based on the convolution
theorem of van der Vaart and Wellner (1989, Theorem 2.1) (see also van der Vaart & Wellner,
1996, Chapter 3.11). We first review the result for convenience. Consider a model {Pn,θ : θ ∈
Θ} parametrized by (a possibly infinite-dimensional) parameter θ. Let Ṗ denote a tangent
space, a linear subspace of some Hilbert space with an inner product ⟨·, ·⟩. Suppose that
the model is locally asymptotically normal (LAN) at θ relative to a tangent space Ṗ: for
each g ∈ Ṗ, there exists a sequence θn(g) such that the likelihood ratios are asymptotically
quadratic, dPn,θn(g)/dPn,θ = ∆n,g − ⟨g, g⟩/2 + oPn,θ

(1), where (∆n,g)g∈Ṗ converges under
Pn,θ to a Gaussian process with covariance kernel ⟨g1, g2⟩. Suppose also that the parameter
βn(Pn,θ) is differentiable: for each g,

√
n(βn(Pn,θn(g)) − βn(Pn,θ)) → ⟨ψ, g⟩ for some ψ that

lies in the completion of Ṗ. Then the semiparametric efficiency bound is given by ⟨ψ,ψ⟩:
the asymptotic distribution of any regular estimator of this parameter, based on a sample
Sn ∼ Pn,θ, is given by the convolution of a random variable Z ∼ N (0, ⟨ψ,ψ⟩) and some other
random variable U that is independent of Z.

To apply this result in our setting, we proceed in three steps. First, we define the tangent
space and the probability-one set over which we will prove the efficiency bound. Next, we
verify that the model is LAN. Finally, we verify differentiability and derive the efficient
influence function ψ.
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Step 1 By the conditional independence assumption in eq. (11), we can write the density
of the vector (Yi(0), . . . , Yi(K), Di) (with respect to some σ-finite measure) conditional on
Wi = w as f(y0, . . . , yK | w) ·

∏K
k=0 pk(w)

1{d=k}, where f denotes the conditional density of
the potential outcomes, conditional on the controls. The density of the observed data SN =

{(Yi, Di)}Ni=1 conditional on (W1, . . . ,WN ) = (w1, . . . , wN ) is given by
∏N

i=1

∏K
k=0(fk(yi |

wi)pk(wi))
1{di=k}, where fk(y | w) =

∫
f(yk, y−k | w)dy−k.

Since the propensity scores are known, the model is parametrized by θ = f . Consider
one-dimensional submodels of the form fk(y | w; t) = fk(y | w)(1 + t × sk(y | w)), where
the function sk is bounded and satisfies

∫
sk(y | w)fk(y | w)dy = 0 for all w ∈ W with W

denoting the support of Wi. For small enough t, we have fk(y | w; t) ≥ 0 by boundedness
of sk; hence fk(y | w; t) is a well-defined density for t small enough. The joint log-likelihood,
conditional on the controls, is given by

N∑
i=1

K∑
k=0

1{Di = k}(log fk(Yi | wi; t) + log pk(wi)).

The score at t = 0 is
∑N

i=1 s(Yi, Di | wi), with s(Yi, Di | wi) =
∑K

k=0 1{Di = k}sk(Yi | wi).
This result suggests defining the tangent space to consist of functions s(y, d | w) =∑K

k=0 1{d = k}sk(y | Wi = w), such that sk is bounded and satisfies
∫
sk(y | w)fk(y |

w)dy = 0 for all w ∈ W. Define the inner product on this space by ⟨s1, s2⟩ = E[s1(Yi, Di |
Wi)s2(Yi, Di |Wi)]. Note this is a marginal (rather than a conditional) expectation, over the
unconditional distribution (Yi, Di,Wi) of the observed data.

We will prove the efficiency bound on the event E that (i) 1
N

∑N
i=1E[s(Yi, Di | Wi)

2 |
Wi] → E[s(Y,Di | Wi)

2], (ii) 1
N

∑N
i=1 λ(Wi) → E[λ(Wi)], and (iii) 1

N

∑N
i=1 λ(Wi)

∑K
k=0 ck ·

E[Yi(k)sk(Yi(k) | Wi) | Wi] →
∑K

k=0 ckE[λ(Wi)Yi(k)sk(Yi(k) | Wi)]. By assumptions of the
proposition, these are all averages of functions of Wi with finite absolute moments. Hence, by
the law of large numbers, E is a probability one set.

Step 2 We verify that the conditions (3.7–12) of Theorem 3.1 in McNeney and Wellner
(2000) hold on the set E conditional on the controls, with θN (s) = f(· | ·; 1/

√
N). Let

αNi =
∏K

k=0(fk(Yi | wi; 1/
√
N)/fk(Yi | wi))

1{Di=k} =
∏K

k=0(1 + sk(Yi | w)/
√
N)1{Di=k}

denote the likelihood ratio associated with the ith observation. Since this is bounded by the
boundedness of sk, condition (3.7) holds. Also since (1+ tsk)

1/2 is continuously differentiable
for t small enough, with derivative sk/2

√
1 + tsk, it follows from Lemma 7.6 in van der

Vaart (1998) that N−1
∑N

i=1E[
√
N(α

1/2
Ni − 1) − s(Yi, Di | wi)/2 | Wi = wi]

2 → 0 such
that the quadratic mean differentiability condition (3.8) holds. Since sk is bounded, the
Lindeberg condition (3.9) also holds. Next, 1

N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] converges to
E[s(Y,Di | Wi)

2] = ⟨s, s⟩ on E by assumption. Hence, conditions (3.10) and (3.11) also hold.
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Since the scores ∆N,s = 1√
N

∑N
i=1 s(Yi, Di | wi) are exactly linear in s, condition (3.12) also

holds. It follows that the model is LAN on E .

Step 3 Write the parameter of interest θλ,c as βN (f) =
∑N

i=1 λ(wi)
∫
y
∑K

k=0 ckfk(y |
wi)dy/

∑N
i=1 λ(wi). It follows that

√
N(βN (f(· | ·; 1/

√
N))− βN (f))

=
1

N−1
∑N

i=1 λ(wi)

1√
N

N∑
i=1

λ(wi)

∫
y

K∑
k=0

ck(fk(y | wi; 1/
√
N)− fk(y | wi))dy

=
1

N−1
∑N

i=1 λ(wi)

1

N

N∑
i=1

λ(wi)
K∑
k=0

ck

∫
ysk(y | wi)fk(y | wi)dy,

which converges to
∑K

k=0 ckE[λ(Wi)Yi(k)sk(Yi(k) | Wi)]/E[λ(Wi)] on E by assumption. We
can write this as ⟨ψ, s⟩, where

ψ(Yi, Di,Wi) =
K∑
k=0

1{Di = k}λ(Wi)ck
(Yi − µk(Wi)).

pk(Wi)E[λ(Wi)]
.

Observe that ψ is in the model tangent space, with the summands playing the role of sk(y | w)
(more precisely, since ψ is unbounded, it lies in the completion of the tangent space). Hence,
the semiparametric efficiency bound is given by E[ψ2].

A.3 Efficiency of the CW estimator

The next result shows that the estimator in eq. (26) is efficient. We defer its proof to Ap-
pendix A.4.

Proposition A.1. Suppose eq. (11) holds in an i.i.d. sample of size N , with known non-
degenerate propensity scores pk(Wi). Let β∗

λCW,k
= E[λCW(Wi)τk(Wi)]/E[λCW(Wi)], and

α∗
k = β∗

λCW,k
+E[λCW(Wi)µ0(Wi)]/E[λCW(Wi)]. Suppose that the fourth moments of λCW(Wi)

and µ(Wi) are bounded, and that pk ∈ G, (µk(Wi) − α∗
k)

λCW(Wi)
2

pk′ (Wi)2
∈ G, and (µk(Wi) −

α∗
k)

λCW(Wi)
pk(Wi)

∈ G for all k, k′. Then, provided it is asymptotically linear and regular, β̂λ̂CW

achieves the semiparametric efficiency bound for estimating βλCW, with diagonal elements of
its asymptotic variance of:

1

E[λCW(Wi)]2
E

[
λCW(Wi)

2σ20(Wi)

p0(Wi)
+
λCW(Wi)

2σ2k(Wi)

pk(Wi)

+λCW(Wi)
2(τk(Wi)− β∗λCW,k)

2

(
K∑

k′=0

λCW(Wi)
2

pk(Wi)3
− 1

)]
.
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This efficiency result doesn’t rely on homoskedasticity: under heteroskedasticity, the estimator
β̂λ̂CW is still efficient for βλCW (although the weighting λCW(Wi) need not be optimal under
heteroskedasticity). It is stated under the high-level condition that β̂λ̂CW is regular; the proof
uses calculations from Newey (1994) to verify the estimator achieves the efficiency bound.
Primitive regularity conditions will depend on the form of G and are omitted for brevity.

Remark A.1. The asymptotic variance of the estimator β̂λCW is larger than the asymptotic
variance of the infeasible estimator that replaces the estimated weights λ̂CW(Wi)/p̂Di(Wi) in
eq. (26) with the infeasible weights λCW(Wi)/pDi(Wi). The latter achieves the asymptotic
variance implied by Corollary 2,

1

E[λCW(Wi)]2
E

[
λCW(Wi)

2σ20(Wi)

p0(Wi)
+
λCW(Wi)

2σ2k(Wi)

pk(Wi)

]
. (A.1)

The extra term of the asymptotic variance in Proposition A.1 relative to eq. (A.1) reflects the
cost of having to estimate the weights.A.1 Analogous term is present in the expression for the
asymptotic variance of the one-treatment-at-a-time estimator implementing the weights from
Corollary 1.

A.4 Proof of Proposition A.1

We first derive the semiparametric efficiency bound for estimating βλCW when the propensity
scores are not known, using the same steps, notation, and setup as in the proof of Proposition 1.
We then verify that the estimator β̂λ̂CW achieves this bound.

Step 1 Since the propensity scores are not known, the model is now parametrized by θ =

(f, p). Consider one-dimensional submodels of the form fk(y | w; t) = fk(y | w)(1 + tsy,k(y |
w)), and pk(w; t) = pk(w)(1+ tsp,k(x)), where the functions sy,k, sp,k are bounded and satisfy∫
sy,k(y | w)fk(y | w)dy = 0 and

∑K
k=0 pk(w)sp,k(w) = 0 for all w ∈ W. These conditions

ensure that fk(y | w; t) and pk(w; t) are positive for t small enough and that
∑K

k=0 pk(w; t) =∑K
k=0 pk(w) = 1, so that the submodel is well-defined. The joint log-likelihood, conditional

on the controls, is given by

N∑
i=1

K∑
k=0

1{Di = k}(log fk(Yi | wi; t) + log pk(wi; t)).

A.1The extra term shows this cost is zero if either there is no treatment effect heterogeneity, so that τk(Wi) =
β∗
λCW,k, or if the treatment assignment is completely randomized so that pk(Wi) = 1/(K + 1). In the latter

case λ∗(Wi) = 1/(K + 1)2 so
∑K

k=0 λ
CW(Wi)

2/p(Wi)
3 = 1. The extra term can be avoided altogether if we

interpret β̂λ̂CW as an estimator of βλ̂CW . This follows from arguments in Crump et al. (2006, Lemma B.6).
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The score at t = 0 is given by
∑N

i=1 s(Yi, Di | wi), with s(Yi, Di | wi) =
∑K

k=0 1{Di =

k}(sy,k(Yi | wi) + sp,k(wi)).
In line with this result, we define the tangent space to consist of all functions s(y, d |

w) =
∑K

k=0 1{d = k}(sy,k(y | w) + sp,k(w)) such that sy,k and sp,k satisfy the above re-
strictions. Define the inner product on this space by the marginal expectation ⟨s1, s2⟩ =

E[s1(Yi, Di | Wi)s2(Yi, Di | Wi)]. We will prove the efficiency bound on the event E that (i)
1
N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] → E[s(Y,Di | Wi)
2]; (ii) N−1

∑
i λ

CW(Wi) → E[λCW(Wi)];
(iii) N−1

∑
i λ

CW(Wi)
∑K

k=0 ckE[Yi(k) · sy,k(Yi | Wi) | Wi] →
∑K

k=0 ckE[λCW(Wi)Yi(k) ·
sy,k(Yi(k) |Wi)]; (iv)N−1

∑N
i=1 λ

CW(Wi)
2
∑

k,k′ ck′µk′(Wi)
sp,k(Wi)
pk(Wi)

→ E[λCW(Wi)
2·
∑

k,k′ ck′ ·

µk′(Wi)
sp,k(Wi)
pk(Wi)

]; (v) N−1
∑N

i=1 λ
CW(Wi)

2
∑K

k=0
sp,k(Wi)
pk(Wi)

→ E[λCW(Wi)
2
∑K

k=0
sp,k(Wi)
pk(Wi)

]; and
(vi) βλCW → β∗

λCW . Under the proposition assumptions and the law of large numbers, E is a
probability-one set.

Step 2 We verify that the conditions (3.7–3.12) of Theorem 3.1 in McNeney and Wellner
(2000) hold on the set E conditional on the controls, with θN (s) = (f(· | ·; 1/

√
N), p(·; 1/

√
N)).

Let αNi =
∏K

k=0(fk(Yi | wi; 1/
√
N)pk(wi; 1/

√
N)/fk(Yi | wi)pk(wi))

1{Di=k} =
∏K

k=0((1 +

N−1/2sy,k(Yi | Wi;N
−1/2))(1 + N−1/2sp,k(wi; 1/

√
N)))1{Di=k} denote the likelihood ratio

associated with the ith observation. Since this is bounded by the boundedness of sy,k, sp,k,
condition (3.7) holds. Also, since (1+tsp,k)1/2 and (1+tsy,k)

1/2 are continuously differentiable
for t small enough, it follows from Lemma 7.6 in van der Vaart (1998) that the quadratic mean
differentiability condition (3.8) holds. Since sk is bounded, the Lindeberg condition (3.9) also
holds. Next, 1

N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] converges to E[s(Y,Di | Wi)
2] = ⟨s, s⟩ on

E by assumption. Hence, conditions (3.10) and (3.11) also hold. Since the scores ∆N,s =
1√
N

∑N
i=1 s(Yi, Di | wi) are exactly linear in s, condition (3.12) also holds. It follows that the

model is LAN on E .

Step 3 Write the parameter of interest, βλCW , as βN (θ) =
∑N

i=1 λ
CW(wi)

∫
y
∑K

k=0 ckfk(y |
wi)dy/

∑N
i=1 λ

CW(wi), where λCW(wi) = 1/
∑K

k=0 pk(wi)
−1. Letting β̇N (θ) denote the deriva-

tive of βN (θ(· | ·; t)) at t = 0, we have

√
N(βN (θ(· | ·; 1/

√
N))− βN (θ)) = β̇N (θ) + o(1).
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Let h(w) = λCW(w)
∑K

k=0 ck
∫
ysy,k(y | w)fk(y | w)dy, and h̃(Wi) =

∑K
k′=0 ck′µk′(Wi)−β∗λCW .

The derivative may then be written as

β̇N (θ) =
1∑N

i=1 λ
CW(wi)

N∑
i=1

(
h(wi) + λCW(wi)

2
K∑
k=0

sp,k(wi)

pk(wi)

(
K∑

k′=0

ck′µk′(wi)− βN (θ)

))

→ 1

E[λCW
i ]

E

[
h(Wi) + (λCW

i )2
K∑
k=0

sp,k(Wi)

pk(Wi)

(
K∑

k′=0

ck′µk′(Wi)− β∗λCW

)]

=
1

E[λCW
i ]

E

[
λCW
i

K∑
k=0

Xki

(
ck
Yi − µk(Wi)

pk(Wi)
+
λCW
i h̃(Wi)

pk(Wi)2

)
s(Yi, Di |Wi)

]
,

where λCW
i = λCW(Wi), the limit on the second line holds on the event E , and the third

line uses E[Xki(Yi − µk(Wi))s(Yi, Di | Wi) | Wi] = pk(Wi)E[Yi(k)sy,k(Yi(k) | Wi) | Wi] and
E[Xkis(Yi, Di | Wi) | Wi] = pk(Wi)sp,k(Wi). Since for any function a(Wi), E[a(Wi)s(Yi, Di |
Wi)] = 0, subtracting 1

E[λCW
i ]

∑K
k=0E[(λCW

i )2 h̃(Wi)
pk(Wi)

s(Yi, Di | Wi)] = 0 from the preceding

display implies
√
N(βN (θ(· | ·; 1/

√
N)) − βN (θ)) = E[ψ(Yi, Di,Wi)s(Yi, Di | Wi)] + o(1),

where

ψ(Yi, Di,Wi) =
K∑
k=0

Xki ·
(

λCW
i

E[λCW
i ]

ck
Yi − µk(Wi)

pk(Wi)
+

λCW
i

E[λCW
i ]

h̃(Wi)

(
λCW
i

p2k
− 1

))
.

Observe that ψ lies in the completion of the tangent space, with the expression in parentheses
playing the role of sy,k(Yi | Wi) + sp,k(Wi). Hence, the semiparametric efficiency bound is
given by E[ψ2], which yields the expression in the statement of the Proposition.

Attainment of the bound We derive the result in two steps. First, we show that

√
N(βλCW −β∗λCW) =

1√
N

N∑
i=1

ψ∗(Wi)+op(1)whereψ∗(Wi) =
λCW
i

E[λCW
i ]

(τ(Wi)−β∗λCW). (A.2)

Second, we show that

√
N(β̂λ̂CW − β∗λCW) =

1√
N

N∑
i=1

ψ(Yi, Di,Wi) + op(1), (A.3)

where, letting ϵki = Yi − µk(Wi),

ψk(Yi, Di,Wi) =
λCW
i

E[λCW
i ]

(
Xkiϵki
pk(Wi)

− X0iϵ0i
pk(Wi)

+ (τk(Wi)− β∗λCW,k)λ
CW
i

∑
k′

Xk′i

pk′(Wi)2

)
.
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Together, these results imply that the asymptotic variance of β̂λ̂CW as an estimator of βλCW

is given by var(ψ − ψ∗), which coincides with the semiparametric efficiency bound.
Equation (A.2) follows directly under the assumptions of the proposition by the law of

large numbers and the fact that the variance of λCW
i (τ(Wi) − β∗

λCW) is bounded. To show
eq. (A.3), write β̂λ̂CW,k = α̂k − α̂0, where α̂ is a two-step method of moments estimator based
on the (K + 1) dimensional moment condition E[m(Yi, Di,Wi, α

∗, p)] = 0 with elements
mk(Yi, Di,Wi, α

∗, p) = λCW
i

Xki
pk(Wi)

(Yi − α∗
k), and α∗ is a (K + 1) dimensional vector with

elements α∗
k = E[λCW

i µk(Wi)]/E[λCW
i ].

Consider a one-dimensional path Ft such that the distribution of the data is given by F0.
Let pk,t(Wi) = EFt [Xki | Wi] denote the propensity score along this path. The derivative of
E[mk(Yi, Di,Wi, α

∗, pt)] with respect to t evaluated at t = 0 is

E

[
λCW
i Xki

pk(Wi)
(Yi − α∗

k)

(
λCW
i

K∑
k′=0

ṗk′(Wi)

pk′(Wi)2
− ṗk(Wi)

pk(Wi)

)]
=

K∑
k′=0

E[δkk′(Wi)
′ṗk′(Wi)],

where ṗk denotes the derivative of pk,t at t = 0, and

δk,k′(Wi) = λCW
i (µk(Wi)− α∗

k)

(
λCW
i

pk′(Wi)2
− 1{k = k′}

pk(Wi)

)
.

Under the assumptions of the proposition, δk,k′ ∈ G. It therefore follows by Proposition 4 in
Newey (1994) that the influence function for α̂k is given by

1

E[λCW
i ]

(
λCW
i Xki

pk(Wi)
(Yi − α∗

k) +
∑
k′

δkk′(Wi)(Xk′i − pk′(Wi))

)

=
λCW
i

E[λCW
i ]

(
Xkiϵki
pk(Wi)

+ (µk(Wi)− α∗
k)λ

CW
i

∑
k′

Xk′i

pk′(Wi)2

)
,

which yields eq. (A.3).

Appendix B Connections to the DiD Literature

In this appendix we elaborate on the connections between Proposition 1 and the recent liter-
ature studying potential biases from heterogeneous treatment effects in DiD regressions and
related specifications (e.g. Goodman-Bacon, 2021; Sun & Abraham, 2021; Hull, 2018; de
Chaisemartin & D’Haultfœuille, 2020; De Chaisemartin & D’Haultfœuille, 2023; Callaway &
Sant’Anna, 2021; Borusyak et al., 2024; Wooldridge, 2021). We first show how our framework
fits a two-way fixed effects (TWFE) regression with a general treatment specification. We then
show how Proposition 1 applies to three particular specifications: a static binary treatment, a
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dynamic “event study” treatment, and a static multivalued treatment (or “movers regression”).
In each case we discuss whether there is a potential for bias—either contamination bias or
own-treatment negative weighting—and give a numerical illustration.

Consider a panel of units indexed by j = 1, . . . , n which are observed over time periods
t = 1, . . . , T . For simplicity, we assume the panel is balanced such that the sample size is
N = nT . For an observation i = (j, t), let Ji = j and Ti = t denote the corresponding unit
and time period, respectively. In a TWFE specification, the controls only comprise these two
variables, Wi = (Ji, Ti), and they enter the control function as dummies, g(Wi) = α+(1{Ji =
2}, . . . ,1{Ji = n},1{Ti = 2}, . . . ,1{Ti = T})′γ, with the indicators 1{Ji = 1} and 1{Ti = 1}
omitted to avoid perfect collinearity.

To study these specifications, we follow de Chaisemartin and D’Haultfœuille (2020) and
Borusyak et al. (2024) in considering the n observed units as fixed, and we condition on their
treatment status (results when the units are sampled from a large population are analogous).
For each unit j, we observe a random T -vector of outcomes Yj = (Yj1, . . . , YjT ) and a fixed
T -vector of (K + 1)-valued treatments Dj = (Dj1, . . . ,DjT ). These treatments are used to
construct a vector of (K + 1)-valued “treatments states” Dj = (Dj1, . . . , DjT ), with Djt ∈
{0, . . . ,K}. Setting Dj = Dj covers scenarios with static treatments; as we show below, other
choices of Dj allows us to cover scenarios with dynamic treatment effects. As in the main
text, Xjt denotes a K-vector of treatment status indicators derived from Djt.

We make two assumptions. First, we assume that potential outcomes Yjt(dt) depend on
the T -vector of treatments only through the current value dt of the treatment state, such that
Yjt = Yjt(Djt).B.1 Second, we make a parallel trends assumption by writing the untreated
potential outcomes as

Yjt(0) = αj + λt + ηjt,

for fixed αj and λt, and assuming
E[ηjt] = 0. (B.1)

Together these expressions imply E[Yjt(0)] = αj+λt, which is how parallel trends is sometimes
formalized (c.f. Assumption 1 in Borusyak et al. (2024); weaker versions of the parallel trends
assumption yield analogous results). We do not restrict the dependence of ηjt across units
or time, nor do we make restrictions on the potentially random treatment effects τjt,k =

Yjt(k)− Yjt(0). Collecting these effects in a vector τjt, we have

Yjt = X ′
jtτjt + αj + λt + ηjt. (B.2)

This outcome model reduces to a conventional TWFE model under the assumption of constant
B.1This assumption rules out misspecification of the treatment states, such as when there are dynamic effects

but Djt = Djt only indexes contemporaneous treatment status, as noted in footnote 9.
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treatment effects: τjt = β for all (j, t).
Since the only source of randomness are the shocks ηjt and the treatment effects τjt,

this setup fits into the framework of Section II if we interpret the expectation in eq. (8) as
averaging over the joint distribution of {τjt, ηjt}n,Tj=1,t=1. Specifically, (β, g) are the minimizers
of N−1

∑n
j=1

∑T
t=1Eτ,η[(Yjt−X ′

jtβ̃− g̃(Wjt))
2], where the subscript on the expectation makes

explicit that we only integrate over the joint distribution of {τjt, ηjt}n,Tj=1,t=1. The parallel
trends assumption implies µ0(Wi) = αJi + λTi , so that eq. (13) in Assumption 2 holds. In
other words, the parallel trend assumption implies that our controls g(Wi) correctly specify
the untreated potential outcome mean. Additionally, Assumption 1 holds trivially because
the treatment vector is non-random.

To make the link to Proposition 1, note that X̃jt = Xjt − X̄j − X̄t + X̄ coincides with
the sample residual from regressing Xi onto unit and time effects. Here X̄j = 1

T

∑T
t=1Xjt,

X̄t =
1
n

∑n
j=1Xjt, and X̄ = 1

n

∑n
j=1 X̄j . We may then write eq. (10) as

β =

 n∑
j=1

T∑
t=1

Eτ,η[X̃jtX̃
′
jt]

−1
n∑

j=1

T∑
t=1

Eτ,η[X̃jtYjt]

=

 n∑
j=1

T∑
t=1

X̃jtX̃
′
jt

−1
n∑

j=1

T∑
t=1

X̃jtX
′
jtE[τjt],

(B.3)

where the second equality uses eqs. (B.1) and (B.2), and the fact that only ηjt and τjt are
stochastic. Proposition 1 implies that the coefficient on the kth element on Xjt is given by

βk =
∑
j,t

λkk(j, t)E[τjt,k] +
∑
ℓ̸=k

∑
j,t

λkℓ(j, t)E[τjt,ℓ] (B.4)

where

λkk(j, t) =

≈
Xjt,kXjt,k∑

j,t

≈
X2

jt,k

, and λkℓ(j, t) =

≈
Xjt,kXjt,ℓ∑

j,t

≈
X2

jt,k

,

and
≈
Xjt,k is the sample residual from regressing X̃jt,k onto the remaining elements of X̃jt.

Recall that since we do not assume that eq. (12) holds, it is not guaranteed that λkk(j, t) ≥ 0.
To unpack this result, we now consider four special cases from the literature.

Static binary treatment Consider a DiD setting where units adopt (and potentially
drop) a binary treatment at different time periods—as studied by de Chaisemartin and
D’Haultfœuille (2020) and Goodman-Bacon (2021). For example, different states j may
choose to roll out a policy in different years and a researcher wishes to estimate the aver-
age effect of this policy using this staggered adoption. We assume that the treatment is static,
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setting Djt = Djt, with K = K = 1. Since the treatment is binary, Xjt = Djt is a scalar with
≈
Xjt,1 = X̃jt, and the second term in eq. (B.4) drops; the weights on the first term simplify to

λ11(j, t) =
X̃jtXjt∑
j′,t′ X̃

2
j′t′

=
(1−Xj −Xt +X)Xjt∑

j′,t′ X̃
2
j′t′

,

which coincides with the expression in Theorem 1 of de Chaisemartin and D’Haultfœuille
(2020). These treatment weights are not guaranteed to be convex since eq. (12) does not
hold.B.2 In contrast, Athey and Imbens (2022) consider staggered DiD regressions where
eq. (12) holds because intervention timing is assumed to be random (in place of the parallel
trends assumption). Under this design-based assumption, Proposition 1 shows the treatment
weights (corresponding to those in Theorem 1(iv) of Athey and Imbens (2022)) are convex.

The above expression for λ11 yields a simple necessary and sufficient condition for convex
weights, which is that for units j that are treated in period t, 1 − Xj − Xt + X ≥ 0. In
staggered adoption designs, Xt is increasing with t. Thus, in staggered adoption designs, it
suffices to check this condition for t = T , and for unit j that adopts the treatment first—that
is, to check whether

1−max
j
Xj −XT +X ≥ 0. (B.5)

Condition (B.5) holds in the canonical DiD case with a single intervention date, where
the first n1 < n units treated in the last T1 < T periods and untreated in the earlier periods
1, . . . , T − T1. The remaining units are never treated, so that Djt = Djt = 1{j ≤ n1, t ≥
T − T1}. This nests the simplest DiD specification where T = 2 and T1 = 1. In this case,
when units in the treatment group are treated, 1−Xj −Xt +X = (1− n1/n)(1− T1/T ) so
that the weights λ11(j, t) are non-negative, and eq. (B.4) simplifies to:

β1 =
∑
j,t

λ11(j, t)E[τjt,1], λ11(j, t) =
(1− n1

n )(1− T1
T )Xjt

(1− n1
n )(1− T1

T )n1T1
nT

=
Xjt

n1T1/N
,

which is simply the average treatment effect for the n1T1 treated observations.
However, in presence of multiple treatment adoption dates, eq. (B.5) may fail. To illustrate,

consider a case with three time periods (T = 3) and three groups of units: E , L, and N , with
respective sizes nE , nL, and nN . Units j ∈ E are “early adopters”, and are treated beginning
in period 2. Units j ∈ L are “late adopters”, and are treated only in period 3. Units in the
last group are never treated.B.3 In this case, eq. (B.5) simplifies to 1− 2/3− (nE + nL)/n+

(2/3nE + 1/3nL)/n = (nN − nL)/3n, which is negative if there are more late adopters than
B.2Since E[Xjt | Wjt] = Xjt ∈ {0, 1}, if eq. (12) held, then the residual X̃jt must be zero (this is true if,

e.g., all units have the same treatment adoption date). But that would generate a multicollinearity issue,
precluding the researcher from including unit and time effects in the regression.

B.3This example is a special case of the example discussed in Figure 2 of Goodman-Bacon (2021).
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never adopters; otherwise, if nL < nN , all weights are positive. Indeed, some algebra shows

λ11(j, 3) =
nE + 2nN

κ
j ∈ L,

λ11(j, 2) =
nN + 2nL

κ
j ∈ E ,

λ11(j, 3) =
nN − nL

κ
j ∈ E ,

where κ = 2(nEnL + nEnN + nNnL) and λ11(j, t) = 0 otherwise.
Condition (B.5) is generally quite restrictive. Consider, for instance, a setting in which no

units are treated in the first period and a fraction 1/T of observations adopts the treatment
in period t = 2, . . . , T . Then for the group adopting treatment in period 2, eq. (B.5) becomes
(3 − T )/2T , which is negative if T ≥ 4. Similarly, condition (B.5) fails if there exists an
always-treated group, or if everyone is treated in the last period.

Dynamic binary treatment with staggered adoption Next, consider an “event study”
setting in which each unit j starts being treated in period A(j) ∈ {1, 2, . . . , T} ∪ ∞ and
remains treated thereafter, with A(j) = ∞ denoting a unit that is never treated. Thus,
Djt = 1{t > A(j)}, with K = 1. Unlike in previous cases, we allow for dynamic effects
by letting Djt = t − A(j) index the number of periods since the treatment adoption date
(breaking with our usual indexing convention of Djt ≥ 0), assuming no anticipation effect
one period before adoption, and correspondingly normalizing Djt = −1 for the never-treated
group. Xjt then consists of indicators for all leads and lags relative to the adoption date:
Xjt = (1{Djt = −(T − 1)}, . . . ,1{Djt = −2},1{Djt = 0}, . . . ,1{Djt = T − 1})′, with the
indicator for the period just prior to adoption (Djt = −1) excluded. This specification avoids
perfect collinearity when all treatment adoption dates are represented in the data (including
the never-treated group). Sun and Abraham (2021) and Borusyak et al. (2024) study such
“fully-dynamic” event study specifications.

Since Xjt is now a vector with K = 2(T − 1), the second contamination bias term in
eq. (B.4) will generally be present. As such, Sun and Abraham (2021) and Borusyak et al.
(2024) study the potential for contamination across estimates of post- and pre-treatment ef-
fects (with the latter used in conventional pre-trend specification tests). Furthermore, like in
the previous case with static treatment, the own-treatment weights in the first term are poten-
tially negative. While random treatment timing assumptions may solve the issue of negative
own treatment weights, contamination bias remains a concern even under such assumptions.

To illustrate the potential for contamination bias, consider again the example with early,
late, and never adopters and T = 3, except we now allow the treatment effect to be dynamic.
Let τjts = Yjt(s) − Yjt(−∞), s ∈ {−2, 1, 0, 1} denote the effect on unit j in time period t of
adopting the treatment s periods ago. If s is negative, we interpret this as the anticipation
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effect of adopting the treatment −s periods from now. Under our assumptions τjt,−1 = 0, such
that there is no anticipation effect immediately before treatment adoption. To test whether
the two-period-ahead anticipation effect is zero, and whether the effect of the treatment
fades out over time, we let Xjt = (1{Djt = −2},1{Djt = 0},1{Djt = T − 1})′. Thus,
for instance, Xj1 = (1, 0, 0)′ for late adopters while Xj2 = (0, 1, 0)′ for early adopters. Let
τE,ts = n−1

E

∑
j∈E E[τjts] denote the average effect among early adopters, and define τL,ts

similarly. Then some rather tedious algebra shows that

β =


τL,1,−2

0

τE,3,1

+ λE,0τE,2,0 + λL,0τL,3,0,

where

λE,0 =
1

ζ


3nLnE + nNnE

3nLnE + 2nNnE

−nLnN

 , λL,0 =
1

ζ


−3nLnE − nNnE

3nEnL + 2nNnL

nNnL

 ,

and ζ = 2(3nLnE + nEnN + nLnN ). In other words, the estimand for the two-period-ahead
anticipation effect β1 equals the anticipation effect for late adopters in period 1 (this is the
only group we ever observe two periods before treatment) plus a contamination bias term
coming from the effect of the treatment on impact. Similarly, the estimand for the effect of
the treatment one period since adoption, β3, equals the effect for early adopters in period 3
(this is the only group we ever observe one period after treatment) plus a contamination bias
term coming from the effect of the treatment on impact. The estimand for the effect of the
treatment upon adoption, β0, has no contamination bias, and equals a weighted average of
the effect for early and late adopters. In this example, the own treatment weights are always
positive, but the contamination weights can be large. For instance, with equal-sized groups,
λE,0 = (2/5, 1/2,−1/10)′ and λL,0 = (−2/5, 1/2, 1/10)′, so the contamination weights in the
estimand β1 are almost as large as the own treatment weights for β2.

It is worth noting that if all treated units share a single adoption date then contamination
bias disappears and a TWFE regression recovers a vector of average dynamic treatment effects
for the treated, in analogy to the static case discussed above. To show this result, let us set
A(j) = T1 for the first n1 units, with A(j) = ∞ for the remaining n0 = n−n1 units. Excluding
the indicator just prior to the adoption date, as well as leads and lags that are always zero
for all units, the treatment vector has length T − 1: Xjt = (1{Djt = −(T1− 1)}, . . . ,1{Djt =

−2},1{Djt = 0}, . . . ,1{Djt = T − T1}). For the control units, this vector is always zero. For
the adopters, Xjt = et (the tth unit vector) if t ≤ T1 − 2, Xj,T−1 is zero, and Xjt = et−1 for
t ≥ T1. We may write this compactly as Xjt = et 1{t < T1 − 1}+ et−1 1{t ≥ T1} for j ≤ n1.
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Partialling out the unit and time effects therefore yields

X̃jt = (1{j ≤ n1} − n1/n)(et 1{t < T1 − 1}+ et−1 1{t ≥ T1} − ιT−1/T ),

where ιT−1 is a T − 1 vector of ones. Hence,
∑n

j=1

∑n
t=1 X̃jtX̃

′
jt =

n1n0
n

(
IT−1 − ιT−1ι

′
T−1/T

)
.

By the Woodbury identity, we therefore obtain

Λ(j, t) =
( n∑

j=1

n∑
t=1

X̃jtX̃
′
jt

)−1
X̃jtX

′
jt =

n

n1n0
(IT−1 + ιT−1ι

′
T−1)X̃jtX

′
jt

=
1

n1
(IT−1 + ιT−1ι

′
T−1)(Xjt − ιT−1/T )X

′
jt =

1

n1
XjtX

′
jt.

Hence, by eq. (B.3), TWFE regression identifies the average treatment for the treated, β =
1
n1

∑n1
j=1(τj1,−(T−1), . . . , τj,T1−2,−2, τjT1,1, . . . , τjT,T−T1). Intuitively, since the contamination

weights sum to zero and there is only one group of adopters, the contamination weights must
be identically zero.

Mover regressions: multiple treatments with multiple transitions. Finally, consider
a “mover regression” in a setting with a static multivalued treatment Djt ∈ {0, . . . ,K} with
multiple transitions of units between treatment states, leading to multiple treatment paths.
We focus on the static treatment case, setting Djt = Djt. This setting has been studied
by Hull (2018) and De Chaisemartin and D’Haultfœuille (2023). Our Proposition 1 shows
that such specifications can suffer from two distinct sources of bias: own-treatment negative
weighting from multiple transitions and contamination bias from the multiple treatments. As
before the former bias disappears under random treatment timing (as in Athey and Imbens
(2022)), or other assumptions which make eq. (12) hold.

To illustrate this case, consider a setting with T = 3 periods, K = 3 treatments, and three
groups of units, E , L, and N . Units in the first group start out untreated, move to treatment 2
in period 1, and move to treatment 3 in period 3. Units in the second group start in treatment
1, move to being untreated in period 2, and move to treatment 2 in period 3. Units in group
N are never treated. This example is isomorphic to the previous event study example, in
that it leads to the same regression specification and the same eq. (B.4) characterization of
regression coefficients. Thus, there are no negative own-treatment weights in this example,
but there are potentially large contamination weights depending on the relative group sizes.

Appendix C Details on the Further Applications

This appendix details our procedure for selecting the additional empirical examples in Sec-
tion IV.B. We also discuss the implementation details and provide the full set of results.
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C.1 Article Search Protocol

We scraped the American Economic Association (AEA) website for a list of all published
articles across all AEA journals over 2013–2022. This search included all articles from the
following journals: American Economic Review, American Economic Review: Insights, Amer-
ican Economic Journal: Applied Economics, American Economic Journal: Economic Pol-
icy, American Economic Journal: Macroeconomics, American Economic Journal: Microe-
conomics, Journal of Economic Literature (excluding articles with “review” in the title and
articles labeled as Front Matter, Doctoral Dissertations, and Annotated Listings), Journal
of Economic Perspectives, and AER/AEA Papers and Proceedings (excluding articles with
“report” or “minutes” in the title). We limited this search to articles with online replication
packages which include at least one data file.C.1

We next filtered articles by two keyword searches of titles, abstracts, and main texts:

• Experiments (keywords: stratified, random, RCT, experiment).

• Racial disparities (keywords: racial/ethnic differences, discrimination, disparities, gaps).

We focused on racial disparities as a set of possible examples because these papers typically
have three or more categories, and they were easily identifiable based on keywords, giving us
a systematic way to identify them. These searches yielded a total of 1,848 experiments and 67
observational studies on race. To further narrow down experiments, we restricted attention to
papers where one of the keywords appears in the paper’s title, abstract, or associated tweet.

For each search, we then manually reviewed papers in reverse citation order (as measured
by Google Scholar) keeping those which include in the main text a linear regression of some
outcome on multiple treatments or race indicators and controls. We ignored specifications
where a single treatment or race indicator is interacted with some set of fixed effects or controls,
such as event study specifications. We stopped the review when five papers were identified
with such a specification, or when we exhausted all papers in the search.

C.2 Overlap Sample and Propensity Score Variation

For each main specification, we identify a subset of the analysis sample with full treatment
overlap using the following procedure. First, we define a primary strata variable (when not
otherwise obvious from the paper) as the discrete variable with the greatest number of unique
levels. In the experimental applications this is always the randomization strata; in the obser-
vational applications this is the “finest” fixed effect. We then drop observations for the levels

C.1Here “data files” refers to those with any of the following extensions: Stata (‘dta’), Excel (‘xls’ or
‘xlsx’), Matlab (‘mat’), R (‘rdata’, ‘rda’, ‘rds’), HDFS (‘h5‘, ‘hdf5’), Apache (‘parquet’, ‘arrow’),
SAS (‘sas7bdat’), and delimited files (‘csv’, ‘tsv’).
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Wald LM

Statistic (d.f.) p-value Statistic (d.f.) p-value

Project STAR 309.8 (155) 0.000 336.6 (156) 0.000
Benhassine et al. 207.2 (159) 0.006 217.2 (194) 0.121
Cole et al. 22.7 (39) 0.983 70.3 (54) 0.067
de Mel et al. 0.9 (392) 1.000 1.1 (392) 1.000
Drexler et al. 12.4 (14) 0.574 12.6 (14) 0.555
Duflo et al. 109.6 (254) 1.000 94.5 (258) 1.000
Fryer and Levitt 3947.6 (630) 0.000 4164.0 (681) 0.000
Rim et al. 1403.5 (88) 0.000 233.0 (234) 0.506
Weisburst 2350.0 (69) 0.000 223.2 (48) 0.000

Notes: This table summarizes Wald and Lagrange multiplier tests of the null hypothesis
that the coefficients on the controls in a multinomial logit regression of the treatment on
the controls all equal zero. The tests allow for clustering in Benhassine et al., Duflo et
al., Rim et al., and Weisburst, and for heteroskedasticity in the remaining applications.

Table C.1: Tests of Propensity Score Variation

of this variable which do not exhibit all levels of the treatment. Finally, in the remaining
sample, we drop any additional controls which have no within-treatment variation.

We check for meaningful propensity score variation in each specification with two tests,
summarized in Table C.1. Specifically, we compute the Wald and LM tests of the null hypoth-
esis that, in a multinomial logit regression of the treatment on the controls, all coefficients on
the controls equal zero. The table gives evidence for statistically significant propensity score
variation (at 10% level) in the Project STAR application, two of the additional experimental
applications (Cole et al. and Benhassine et al.), and all three observational studies.

C.3 Full Results

In Tables C.2–C.10, we report the estimated effects for each application. Panel A of each
table first reports the β̂ estimates from the multiple-treatment regression as reported in the
original paper and corresponding standard errors. We also report the own-treatment effect
component from the decomposition in eq. (23) along with three alternative estimators: the
average treatment effect (ATE) estimator, easiest-to-estimate weighting (EW) and the easiest-
to-estimate common weighting (CW) estimator. Panel B reports the difference between β̂ and
these 4 alternative estimators. The β̂, EW and CW estimators are consistent even without
overlap. However, if full overlap fails in the full sample, the own-treatment effect component
from the decomposition in eq. (23) may not be identified for all treatments, and the ATE
is not identified. If identification of the decomposition fails for the full treatment vector, we
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subset to the overlap sample, as described in Appendix C.2 above, and report the full set of
estimates from the different estimators.
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Small class size 5.267 5.248 5.530 5.311 5.156 5.515 5.248 5.529

(0.773) (0.771) (0.760) (0.774) (0.773) (0.758) (0.771) (0.760)

[0.739] [0.738] [0.740] [0.739] [0.738]

Teaching aide 0.242 0.292 0.040 0.205 0.388 0.099 0.292 0.040

(0.716) (0.711) (0.708) (0.716) (0.710) (0.705) (0.711) (0.708)

[0.688] [0.691] [0.691] [0.688] [0.691]

Number of controls 78 77
Sample size 5,902 5,868

B. Bias
Small class size 0.020 −0.262 0.155 −0.204 0.063 −0.219

(0.139) (0.196) (0.160) (0.219) (0.134) (0.192)

Teaching aide −0.050 0.202 −0.184 0.106 −0.087 0.165

(0.128) (0.195) (0.149) (0.187) (0.124) (0.192)

Notes: This table reports estimates from the STAR application, as described in Appendix C.3. Robust standard errors are reported in
parentheses. Standard errors assuming known propensity scores are reported in square brackets.

Table C.2: Full results: STAR
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

LCT to fathers 0.074 0.089 0.056 0.067 0.084 0.078 0.076 0.061

(0.016) (0.017) (0.018) (0.019) (0.024) (0.015) (0.020) (0.020)

[0.012] [0.011] [0.014] [0.014] [0.012]

LCT to mothers 0.078 0.067 0.071 0.081 0.075 0.079 0.074 0.068

(0.014) (0.013) (0.017) (0.017) (0.017) (0.014) (0.015) (0.017)

[0.009] [0.011] [0.012] [0.011] [0.012]

CCTs to fathers 0.055 0.062 0.041 0.047 0.038 0.033 0.039 0.038

(0.014) (0.013) (0.018) (0.016) (0.015) (0.014) (0.016) (0.017)

[0.009] [0.012] [0.012] [0.012] [0.012]

CCTs to mothers 0.053 0.045 0.040 0.039 0.033 0.042 0.041 0.040

(0.013) (0.013) (0.018) (0.017) (0.016) (0.015) (0.017) (0.018)

[0.011] [0.013] [0.014] [0.013] [0.013]

Number of controls 57 26
Sample size 11,074 6,996

B. Bias
LCT to fathers −0.016 0.018 −0.018 −0.011 −0.009 0.006

(0.010) (0.018) (0.015) (0.016) (0.010) (0.019)

LCT to mothers 0.012 0.007 0.007 0.002 0.007 0.014

(0.009) (0.016) (0.013) (0.011) (0.010) (0.015)

CCTs to fathers −0.007 0.014 0.009 0.013 0.007 0.009

(0.005) (0.015) (0.009) (0.010) (0.006) (0.015)

CCTs to mothers 0.008 0.013 0.006 −0.003 −0.002 −0.001

(0.007) (0.015) (0.009) (0.009) (0.006) (0.015)

Notes: This table reports estimates from the Benhassine et al. application, as described in Appendix C.3. The regression specification comes
from column 1 of Table 5 in Benhassine et al. (2015). Standard errors clustered by school sector are reported in parentheses. Standard errors
assuming known propensity scores are reported in square brackets.

Table C.3: Full results: Benhassine et al. (2015)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Muslim only 0.160 0.095 0.033 0.001 0.038 −0.012 −0.036 0.010

(0.086) (0.086) (0.094) (0.111) (0.138) (0.109) (0.120) (0.093)

[0.079] [0.098] [0.109] [0.121] [0.104]

Hindu only 0.121 0.058 0.062 0.006 0.075 0.080 0.060 0.076

(0.089) (0.088) (0.101) (0.116) (0.123) (0.106) (0.116) (0.096)

[0.062] [0.100] [0.097] [0.080] [0.092]

Group only 0.239 0.229 0.103 0.107 0.140 0.158 0.093 0.071

(0.097) (0.098) (0.112) (0.115) (0.130) (0.086) (0.106) (0.108)

[0.076] [0.097] [0.082] [0.099] [0.091]

Muslim & Group 0.169 0.092 −0.094 −0.109 −0.075 −0.096 −0.075 −0.088

(0.087) (0.083) (0.079) (0.082) (0.074) (0.080) (0.070) (0.075)

[0.038] [0.076] [0.078] [0.062] [0.072]

Hindu & Group 0.018 −0.052 −0.027 −0.004 0.000 −0.034 0.000 −0.021

(0.080) (0.075) (0.096) (0.094) (0.093) (0.094) (0.087) (0.094)

[0.056] [0.089] [0.090] [0.075] [0.086]

Number of controls 13 3
Sample size 132 73

B. Bias
Muslim only 0.065 0.127 −0.037 0.014 0.038 −0.009

(0.044) (0.073) (0.066) (0.060) (0.061) (0.061)

Hindu only 0.063 0.059 −0.069 −0.075 −0.054 −0.071

(0.050) (0.083) (0.044) (0.085) (0.041) (0.081)

Group only 0.010 0.136 −0.033 −0.050 0.014 0.036

(0.060) (0.103) (0.060) (0.081) (0.064) (0.102)

Muslim & Group 0.077 0.263 −0.033 −0.013 −0.033 −0.021

(0.056) (0.091) (0.048) (0.063) (0.047) (0.060)

Hindu & Group 0.071 0.046 −0.004 0.030 −0.004 0.016

(0.048) (0.080) (0.028) (0.056) (0.036) (0.061)

Notes: This table reports estimates from the Cole et a. application, as described in Appendix C.3. The regression specification
comes from column 6 of Table 7 in Cole et al. (2013). Robust standard errors are reported in parentheses. Standard errors
assuming known propensity scores are reported in square brackets.

Table C.4: Full results: Cole et al. (2013)
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Full sample

A. Estimates β̂ Own ATE EW CW

Info and Reimburse −0.010 −0.010 −0.010 −0.010 −0.010

(0.023) (0.014) (0.007) (0.012) (0.007)

[0.000] [0.000] [0.000]

Rs 10,000 0.134 0.134 0.135 0.134 0.135

(0.034) (0.032) (0.017) (0.027) (0.017)

[0.000] [0.000] [0.000]

Rs 20,000 0.105 0.105 0.104 0.105 0.104

(0.035) (0.030) (0.017) (0.026) (0.017)

[0.008] [0.009] [0.007]

Rs 40,000 0.273 0.273 0.269 0.272 0.270

(0.041) (0.038) (0.020) (0.033) (0.020)

[0.000] [0.000] [0.000]

Number of controls 98
Sample size 520

B. Bias
Info and Reimburse −0.001 −0.001 −0.001 0.000

(0.022) (0.022) (0.020) (0.022)

Rs 10,000 0.000 −0.001 0.000 −0.001

(0.019) (0.029) (0.020) (0.029)

Rs 20,000 0.000 0.000 0.000 0.000

(0.021) (0.030) (0.023) (0.030)

Rs 40,000 0.000 0.004 0.001 0.003

(0.019) (0.035) (0.024) (0.035)

Notes: This table reports all results from the de Mel et al. (2013) application, as described
in Appendix C.3. The regression specification comes from column 2 of Table 2 in de Mel et al.
(2013). Robust standard errors are reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.5: Full results: de Mel et al. (2013)
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Full sample

A. Estimates β̂ Own ATE EW CW

Standard Accounting 0.036 0.038 0.040 0.037 0.040

(0.041) (0.041) (0.040) (0.041) (0.040)

[0.040] [0.040] [0.040]

Rule-of-Thumb 0.109 0.114 0.113 0.112 0.113

(0.039) (0.039) (0.039) (0.039) (0.039)

[0.039] [0.039] [0.039]

Number of controls 7
Sample size 796

B. Bias
Standard Accounting −0.002 −0.004 −0.001 −0.004

(0.004) (0.005) (0.003) (0.005)

Rule-of-Thumb −0.005 −0.004 −0.004 −0.004

(0.004) (0.005) (0.003) (0.005)

Notes: This table reports estimates from the Drexler et al. (2014) application, as described
in Appendix C.3. The regression specification comes from row 2 of Table 2 in Drexler et al.
(2014). Robust standard errors are reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.6: Full results: Drexler et al. (2014)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Educ. subsity −0.031 −0.036 −0.029 −0.024 −0.029 −0.025 −0.032 −0.027

(0.012) (0.011) (0.011) (0.013) (0.012) (0.007) (0.011) (0.010)

[0.000] [0.000] [0.001] [0.001] [0.001]

HIV education 0.003 0.009 0.002 0.000 0.005 0.003 0.005 0.000

(0.011) (0.009) (0.012) (0.011) (0.010) (0.007) (0.010) (0.011)

[0.000] [0.001] [0.001] [0.001] [0.001]

Both −0.016 −0.019 −0.020 −0.012 −0.010 −0.007 −0.009 −0.012

(0.012) (0.010) (0.011) (0.012) (0.010) (0.007) (0.010) (0.010)

[0.000] [0.000] [0.001] [0.001] [0.001]

Number of controls 86 79
Sample size 9,116 8,664

B. Bias
Educ. subsity 0.005 −0.002 0.005 0.001 0.008 0.003

(0.008) (0.012) (0.008) (0.011) (0.007) (0.011)

HIV education −0.006 0.001 −0.005 −0.003 −0.006 0.000

(0.007) (0.011) (0.008) (0.010) (0.007) (0.011)

Both 0.003 0.004 −0.002 −0.005 −0.003 0.000

(0.008) (0.013) (0.008) (0.011) (0.008) (0.012)

Notes: This table reports estimates from the Duflo et al. (2015) application, as described in Appendix C.3. The regression specification comes from
column 1 of Table 2, panel A in Duflo et al. (2015). Standard errors clustered by school reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.7: Full results: Duflo et al. (2015)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Black −0.213 −0.182 −0.193 −0.202 −0.191 −0.150 −0.231 −0.171 −0.195

(0.032) (0.035) (0.034) (0.065) (0.037) (0.041) (0.038) (0.040) (0.059)

[0.031] [0.045] [0.037] [0.035] [0.043]

Hispanic −0.249 −0.257 −0.171 −0.209 −0.212 −0.196 −0.220 −0.171

(0.028) (0.030) (0.046) (0.032) (0.035) (0.033) (0.034) (0.045)

[0.028] [0.039] [0.033] [0.031] [0.039]

Asian −0.294 −0.324 −0.330 −0.275 −0.276 −0.150 −0.283 −0.317

(0.035) (0.038) (0.085) (0.039) (0.043) (0.058) (0.043) (0.082)

[0.033] [0.057] [0.056] [0.036] [0.055]

Other −0.132 −0.116 −0.127 −0.127 −0.104 −0.084 −0.105 −0.105

(0.038) (0.039) (0.046) (0.043) (0.045) (0.035) (0.044) (0.047)

[0.029] [0.035] [0.034] [0.031] [0.035]

Number of controls 176 127
Sample size 8,806 6,623

B. Bias
Black −0.031 −0.020 −0.011 −0.042 0.040 −0.020 0.004

(0.016) (0.013) (0.056) (0.017) (0.028) (0.014) (0.048)

Hispanic 0.008 −0.077 0.003 −0.013 0.011 −0.038

(0.009) (0.038) (0.013) (0.021) (0.011) (0.035)

Asian 0.030 0.036 0.001 −0.124 0.009 0.043

(0.018) (0.074) (0.018) (0.057) (0.016) (0.068)

Other −0.015 −0.005 −0.023 −0.043 −0.023 −0.022

(0.013) (0.048) (0.015) (0.038) (0.014) (0.049)

Notes: This table reports estimates from the Fryer and Levitt (2013) application, as described in Appendix C.3. The regression
specification comes from column 4 of Table 3 in Fryer and Levitt (2013). Robust standard errors are reported in parentheses.
Standard errors assuming known propensity scores are reported in square brackets.

Table C.8: Full results: Fryer and Levitt (2013)
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Full sample Overlap

A. Estimates β̂ Own ATE EW CW β̂ Own ATE EW CW

Black −4.059 −3.907 −3.786 −4.441 −3.969 8.071 −3.199 −3.266

(1.107) (1.210) (1.597) (1.149) (1.059) (11.922) (1.039) (1.403)

[0.393] [0.747] [3.991] [0.537] [0.628]

Hispanic −1.119 −0.837 1.290 −0.658 −0.908 2.927 −0.879 −1.099

(0.731) (0.698) (3.949) (1.603) (1.461) (3.403) (1.446) (2.460)

[0.142] [0.637] [2.150] [0.305] [0.620]

Asian −2.536 −2.117 −4.375 −3.383 −3.110 −8.439 −3.633 −3.685

(0.978) (1.206) (2.896) (1.440) (1.114) (3.606) (0.930) (1.824)

[0.314] [0.384] [1.685] [0.351] [0.638]

Number of controls 268 35
Sample size 4,037 620

B. Bias
Black −0.152 −0.274 −0.472 −12.513 −1.243 −1.175

(0.406) (1.902) (1.117) (12.089) (1.277) (1.210)

Hispanic −0.282 −2.409 0.250 −3.584 0.222 0.442

(0.212) (3.813) (0.446) (3.269) (0.344) (1.154)

Asian −0.418 1.839 −0.273 5.056 0.249 0.302

(0.632) (2.804) (0.713) (3.259) (0.842) (1.445)

Notes: This table reports estimates from the Rim et al. (2020) application, as described in Appendix C.3. The regression specification comes
from column 3 of Table 2 in Rim et al. (2020). Standard errors clustered by cohort are reported in parentheses. Standard errors assuming known
propensity scores are reported in square brackets.

Table C.9: Full results: Rim et al. (2020)
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Full sample

A. Estimates β̂ Own ATE EW CW

Black 0.172 −0.037 0.342 0.109 0.246

(0.274) (0.305) (0.396) (0.267) (0.292)

[0.323] [0.152] [0.178]

Hispanic 0.043 −0.754 −0.330 −0.496 −0.466

(0.394) (0.404) (0.395) (0.341) (0.289)

[0.312] [0.221] [0.169]

Other 1.130 1.130 0.223 1.244 0.106

(0.652) (0.654) (0.622) (0.679) (0.712)

[0.394] [0.347] [0.566]

Number of controls 256
Sample size 7,488

B. Bias
Black 0.209 −0.169 0.063 −0.074

(0.218) (0.337) (0.190) (0.264)

Hispanic 0.797 0.373 0.539 0.508

(0.356) (0.390) (0.310) (0.330)

Other 0.001 0.907 −0.113 1.025

(0.125) (0.340) (0.120) (0.578)

Notes: This table reports all results from the Weisburst (2019) application, as described in
Appendix C.3. The regression specification comes from Table 2, panel A in Weisburst (2019).
Standard errors clustered by police beat are reported in parentheses. Standard errors that
assume the propensity scores are known are reported in square brackets.

Table C.10: Full results: Weisburst (2019)
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Appendix D Additional Figures

Figure D.1: Regression of Small Classroom Treatment on Class Aide Treatment

Note: This figure plots values of the demeaned class aide treatment (X̃2i, the x-axis) against values of the
demeaned small classroom treatment (X̃1i, the y-axis) in our numerical example from Section I.C. The size
of the points corresponds to the density of observations. The solid red and blue lines mark the within-school
regression of the two residualized treatments, while the dashed black line is the overall regression line. The
residuals from this line give

≈
Xi1.
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Figure D.2: Project STAR contamination weights.

Notes: This figure shows correlations between estimated school-specific treatment effects and contamination
weights. Panel A depicts the correlation between the estimated teaching aide treatment effects by school
against the estimated contamination weight for the small class estimate. Panel B gives the correlation between
the estimated small class treatment effects by school against the estimated contamination weight for the
teaching aide estimate. Correlations are reported on each panel. The size of the points is proportional to the
number of students enrolled in each school.
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Figure D.3: Project STAR treatment weights

Notes: This figure shows correlations between estimated school-specific treatment effects and the weights used
by different estimators. Panel A gives the correlations for the small class treatment, and Panel B gives them
for the teaching aide treatment. The first row plots the own treatment weights from the contamination bias
decomposition in eq. (23). The second row gives plots the EW scheme from Corollary 1, and the third row
gives the CW scheme from Corollary 2. Correlations are reported on each panel. The size of the points is
proportional to the number of students enrolled in each school.
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