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PROOFS
B1. General properties of PT assessments and PT equilibria
PROPERTIES OF PT ASSESSMENTS

In this section, we present some properties of PT assessments and the induced
probability of success 72(N, D, u) that we will use for the construction of PT equi-
libria.

Lemma 1. Consider a PT assessment with donation threshold D*A(N , u). If the cam-
paign reaches a state (N, D, u) with D < D*A(N, u+A), it has failed with probability
one.

Proof. Assume that a state (N;, D;, T —(t + A)) with D, < D*A(Nt, T — t) is reached.
Then D; = w, because the donor is playing a PT strategy and w < D*A(Nt, T—t')forall
t’ > t by Condition i) in Definition 2 of PT assessments. Thus, N, = N, for all ¢’ > ¢,
given the investor strategy in Equation PT-investor. All in all, (N, D;/) = (IN;, w) for
all ¢/ > t, where N;p+ w < N;p + DA(N;, T —t) < N;p + G —(N; + 1)p < G. This
concludes the proof.

Lemma 1 implies that beliefs in a PT assessment are consistent and that the in-
duced probability of success 7> can be written in a recursive manner, as we show in
Lemma 2. We also derive some other properties of 7. For the proof, we use that for
a PT assessment, cumulative donations at time ¢ must satisfy

(B1) D, = mgxmin{D*A(Nt/, T—1t"), w}.
t'<t

Lemma 2. A PT assessment(b®, D2, F~) with donation threshold D2(N, u) satisfies
the following properties:

i) Beliefs F* are consistent with the strategies b, D2 ;
ii) The induced probability t®(N, D, u) satisfies the following:

e N+1>M(D)ifand only ift®(N,D, u)=1;

e IfN+1<M(D)and D > DA(N, u+A), then t(N, D,0) = &P +1)

e
X
S
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and for u>0,

(1—AA)TAL

M=

7®(N,D,u)= ]EFo[

(N+1 max{D, DA(N +1,u—(i—1)A)}, u—iA)
(WZD*A(N+1,L¢—(1—1)A))

+1=ANAU(W > G —(N +1)p) ‘W >D|;

e IfN+1<M(D)andD < DA(N,u+A), 8(N,D,0)=0, and for u>0,

A _ A / u
= (N,D,u)=P(D> max D>2N’',T-—71%, ,
(B2) ( )=F( N<N’<M(D) a n-n)

u
Tyn<T

where T is the time of the n-th arrival after time t = T — u.'®

iii) mA(N,D, u) is continuous and strictly increasing in D for G—(N +1)p > D >
DA(N,u+A), and n®(N, D, u) is weakly increasing in D otherwise;

iv) T™(N,D,u) < (N +1,D,u—A) < 2N +1,D, u), and t®(N, D, u) is strictly
increasing in N, u, if0 < (N, D, u) < 1.

Proof. i) Consider an investor in an on-path state (N, D, u). By (B1) this state is
reached with zero probability by donors with w < D, and if D < D*A(N ,u+A), then
D = w. Further, if D > D*A(N , u+A), any donor with w > D must have followed the
same donation strategy on any equilibrium path history thatled to (N, D, u). Hence,
by Bayes’ rule, the distribution of donor types in state (N, D, u) is a truncation of
atD.

ii) For N+1> M(D), n®(N, D, u) = 1 as the goal is reached if the (N + 1)th investor
pledges. For N +1 < M (D), absent additional donations, at least one more investor
must arrive for the project to reach the goal G after the (IV + 1)th investor pledges,

A A T
because D (N, u) < G—(N+1)p,son=(N, D, u) < 1. The pr(l)bs(tgh(t]z:)lfsuccess must
—‘0

satisfy the following recursive property: First, 72(N, D,0) = — Ry CUD 2 DA(N,A)),

16Note that 72(N, D, u) is defined even if the corresponding purchase is not consistent with the investor strategy.
If D < D*A(N, u + A) and the investor pledges, this deviation is not observed by an investor in period u’ < u. Thus,
she pledges if D > D*A(N +1,u’+ A). The probability is with respect to the random arrival time 7},_,;.
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given F2 defined in Equation PT-belief. For >0 and D > D*A(N ,u+A),
7®(N,D,u)=

X .
EB Y (1-AA)T'AA 7%(N +1, max{D, DA(N +1,u—(i—1)A)}, u—iA)
i=1 \—/_/

next ig;";sﬁ’l? arrives probability of success if the N +2nd investor pledges

1(W=DAN+1,u—(i—DA)+(1 AN 1(W >G—(N+1)p)| W=D |,

i no investor beliefs are
wealth exceeds donation threshold truncation of

FKatD

because by Lemma 1 the campaign fails with probability one if W < DA(N + 1, u—
(i—1)A).

For D < D*A(N ,u + A), the investor believes that W = D with probability one.
Hence, in the last period (u = 0), the campaign cannot succeed, since D*A(N ,u+A) <
G —(N +1)p even if the N + 1th investor pledges. If u > 0 and the N + 1th investor
pledges, then a subsequent investor arriving in state (N’, D, u’) with N’ > N + 1 and
u’ < u pledges if D > DA(N’, u’ + A).

iii) We first show that 72(N, D, u) is strictly increasing and continuous in D for
DA(N,u+A)< D <G—(N +1)p by induction in u.
Induction start (1 = 0): 72(N,D,0) = WH(D > DA(N,A)) is continuous
and strictly increasing in D for D*A(N, A)SDL<G—-(N+1)p.

Induction hypothesis for u: n2(N, D, u) is continuous and strictly increasing in D
for DA(N,u+A)<D <G—(N+1)p.
Induction step (¢ ~ u + A): For D*A(N, u+2A)<D <G—(N +1)p we have by ii)

7(N,D,u+A)=

ﬁ(1—A7L)HA/1nA(N+1,max{D,D*A(N+1,u+A—(i—1)A)},u+A—m)-

i=1

_ A (i— _ —
Fy(max{D,D>(N +1, u+A—(i I)A)})_I_(l_AMu/AI FE(G—(N+1)p)

1—Fy(D) 1-F(D)

)

which is continuous in D by the induction hypothesis because D*A(N +Lu+A—(i—
1)A) <max{D, D*A(N +1,u+A—(i—1)A)} £ G—(IN +1)p and also strictly increasing

_ A (i
because - MmaX{D’D*IBI\;B’)HA DA 4 equalto 1if D > D*A(N+ Lu+A—(i—1)A)
1

and =KD I8 strictly increasing in D.

Finally, if D > G —(N +1)p, then n2(N, D, u)=1, and if D < DA(N, u + A), then it
follows that 72(N, D, u) is weakly increasing in D directly from (B2).

iv) By Condition i) in Definition 2 of PT assessments, D2(N, u) > DA(N +1, u—A) >
D*A(N +1, u). Hence, a donor w, who can incentivize the next investor to pledge in
astate (N, D, u), can incentivize the next investor to pledge in state (N +1,D, u—A)
in the next period. Thus, more future investors are incentivized to pledge after state
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(N+1,D, u—A)than after (N, D, u), so t*(N+1,D, u—A) > (N, D, u). Similarly, a
donor w, who can incentivize the next investor to pledge in a state (N +1, D, u —A),
can incentivize the next investor to pledge in state (N + 1, D, u) in the period before.
Thus, more future investors are incentivized to pledge after state (N + 1, D, u) than
after (N+1,D,u—A),so T8N +1,D,u)> (N +1,D, u—A).

Next, we show by induction in N thatif 0 < 72(N, D, u) < 1, then (N +1,D, u)>
72(N, D, u). To this end, note that for N +1 < M(D)and D > D*A(N, u+ A) we can
write by ii) for u >0

m®(N,D,u) = ]E[(AMTA(N+1,max{D,D*A(N+1,u)},u—A)+
(1—AN)TA(N, max{D, DA (N +1, u)}, u—A))

ﬂ(WZD*A(N+1,u))’W2D]

because if no investor arrives in period u — A, then the probability of success is the
same as if the investor in period u arrived a period later but with a new donation
threshold, i.e., it is 72(N,max{D, D> (N + 1, u)}, u — A).

Induction start (N = M(D)—1): 7®(N +1,D,u)=1> (N, D, u).

Induction hypothesis for N < M(D)—1: Assume 72(N +1,D, u) > n(N, D, u) if
0<7m®(N,D,u)<1.

Induction step (N ~ N —1): Let 0 < (N —1,D, u) < 1. If D > DA(N, u + A), then

nA(N,D,u):]E[(AQL 7% (N +1,max{D,D*(N +1,u)}, u—A) +

> 72(N, D, u— A) by induction hypothesis
and monotonicity in D

©3) (1—AX) (N, max{D, D> (N, u)}, u—A))ﬂ (W>DA(N+1,u)) )W > D]

>nA(N,D,u—A)
by monotonicity in D
> AN, D, u—A)P(W = D2 (N +1,u)|W 2 D)2 (N —1,D, u)
N————’
<DA(N, u)

because P(W > DA(N, u)lW > D) =1 for D > DA(N, u). If D < DA(N, u+ A), then
for T2(N —1,D, u)> 0,

7A(N,D,u)=P(D > max DAN',T—tl, ) >nN-1,D,u).
N<N’<M(D)

u
Tyrn<T

AN/ _ S u
<N—121V§1§M(D)D* (N T =Ty

T <T

u
N/—N+1

Finally, we consider strict monotonicity in u. Consider N +1 < M(D). If D >
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DA(N, u+ A), then (B3) implies 72(N, D, u) > (N, D, u — A), where we use the
strict monotonicity of 72 in N. If D < DA(N, u+A), then since t%,%, and 7%, _, +1
are equally distributed by the Markov property, and since D*A(N , u) is decreasing u
for DA(N, u)> 0,

P(D> max DAN,T—7% )>P(D> max DN, T—1%5)).
( N<N’<M(D) * ( ne-n)) > B N<N’<M(D) * ( Nen)
TA T T, W<T

Hence, (N, D, u)> (N, D, u—A) aslong as m*(N, D, u) €(0,1). m

For the construction of the donation thresholds, it is useful to consider the aux-
iliary probability of success in a state (IV, D, u) if the investor believed that donor
wealth was distributed according to F, truncated at D for all D:

1— Fy(max{D,DA(N +1,u—(i—1)A)})
1—Fy(D)
(N +1,max{D,DAN + 1, u—(i—1)A)}, u—iA)
(1= AAA 1-K(G—-(N+1)p)
1—Fy(D)

(1—AL)TAL

Mb\z

7AN,D,u) =
(B4) .

>

The following is a corollary of Lemma 2. We use it in the proof of Proposition 1 to
define the donation threshold D(N, u).

Corollary 1. Theauxiliary probability of success (N, D, u) is continuous and (strictly)
increasing in D (as long as #*(N, D, u) €(0,1)).

Finally, Lemma 3 shows that the donor strategy specified in any PT assessment is
a best response to the specified investor strategy.

Lemma 3. For any PT assessment with donation threshold D*A(N , u), the donor PT
strategy is a best response to the investor strategy.

Proof. We argue by backwards induction in .

Induction start (¢+ = T): First, consider histories in the last period h? A with cu-
mulative contributions Ny and Dy_x. Ignoring the constraint imposed by previous
donations, the donor would want to donate min{w, G — Ny p}, because he would
want to give just enough for the campaign to succeed without exceeding his valu-
ation. However, the donor cannot take out funds. Thus, a cumulative donation of
max{Dr_x, min{w, G — Nyp}} is a best response. Hence, in all histories that corre-
spond to a state (N, D, 0), a Markov strategy of ﬁf(h?'A; w)=DA(Nr,Dr_a,0;w) =
max{Dr_a, min{w, G — Nyp}} is optimal.

Induction hypothesis for s > ¢: Next, we assume that for all s > ¢ and all hSD A with
corresponding cumulative contributions N; and Ds_x, the donor payoff is maxi-
mized by D2(hP4; w) = DA(N;, Dy_a, T—s; w) = max{D;_x, min{w, DA(N;, T—s)}}.
Induction step (¢t ~ t —A): Consider an arbitrary donor strategy D~+A where for
all s > ¢, D~+A(hSD'A; w) = Df(NS,DS_A, T—-s;w) = max{DS_A,min{w,D*A(Ns, T —
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s)}}. Consider an on-path history hD ~\ with correspondmg cumulative contribu-
tions N;_a, D;_»A and a donor valuatlon w = max{D;_,a, D* (Ny_a, T—(t—A))} such
that

D2 (B3 w) < DA(N_a, T— (£ —A)).

According to the PT assessment, if an investor arrives in period ¢, the investor does
not pledge. Since DA(N;_a, T —(t —A)) < DA(N;_p, u) for all u < T — (¢ —A), the
donor needs to donate at least D*A(Nt_A, T —(t — A)) in order to make a future in-
vestor pledge and to prevent the campaign from failing. Furthermore, D*A(Nt_A, u)>
D*A(N ’,u)for all N’ > N;_,. Hence, a donor with valuation w is strictly better off by
donating D*A(N[_A, —(t—A)) after history h =~ A, so an optimal donor strategy must
be to give at least D* (Ny_a, T—(t—=A)). Slmllarly, monotonicity of D*A in N, u implies
that it cannot be optimal that the donor gives more than max{D;_»x, D*A(Nt_A, T—
(t—A)}. Ifw < max{Dt_ZA,D*A(N[_A, T —(t — A))}, the campaign succeeds with
probability zero, because cumulative donations are below w. Thus, a best-response
donor strategy is given by

DA (h?%; w)=max{D;_p, min{w, DA(N;_a, T —(t —A))}}.

PROPERTIES OF PT EQUILIBRIA

Recall thata PT equilibrium is a PT assessment (b®, D, F2) such that given the in-
duced probability of success 72 (x), we have buyer optimality: 7(x) > Vi—op = bA(x)=
1 and 7(x) < Ui—op = b2(x) = 0. Donor optimality is guaranteed automatically by
Lemma 3. The buyer optimality condition allows us to define cutoff times & ?(w) as
in Equation CT for each j, w, with j < M(w). We can show that & ]A.(w) is monotone
in j.

Lemma 4. In any PT equilibrium, the cutoff time & ]4( w) is strictly increasing in j.

Proof. By Lemma 2 iv), we have for j’ > j that if n8(M(w)— j/, w, u) > ;2 p’ then
T M(w) = j, w, u—A)2 A (M(w)~ ', w, u) > 5%, s0
. . )
FEM(w) = w, E3w) = A) 2 T M) =y w, Epw) = 2.

Hence, ijA.(w) < 5?,(w)—A< 5]4,(w). n

As aresult, in a PT equilibrium, after & JA.(w) is reached, no buyer pledges, i.e.,

for u>§A( )

nA(M(w)—j,w,u)Z—p
(B5) { T <—pforu<§A( w)

AM(w)—j, w, u)
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é’A( )>§A( ) for any j > j’ ifé’A( )> 0. Furthermore, w > DA(N,u+A) & u >
5 A w) This allows us to rewrite the probability of success in a different way.
For N < M (D)—1 and u > 0, the probability of success is given by

max{(u—;’ﬁl(w)_wﬂ)(W))/A,O} )
m(N,D,u)= EbH D (1—AN)IAN
i=1
(B6) 7A(N +1, max{D,DA(N +1,u—A(i — 1))}, u—Ai)

+(1—=AN*21(W > G —(N + l)p)‘W > D]

if D> DA(N,u+A). If D < DAN, u+A), (N, D, u) < V”Tp.

B2. Proof of Proposition 1 (Success-Maximizing Equilibrium)

In Subsection B.B2, we first construct a PT equilibrium. Subsection B.B2 states
that the limit of these equilibria as A — 0 exists and is as specified in Proposition 1.
The limit is formally derived in the Online Appendix. Finally, in Subsection B.B2, we
show that for any A > 0, the constructed equilibrium maximizes the probability of
success and that the outcomes of any sequence of success-maximizing PBE converge
to the same limit.

CONSTRUCTION OF A PT EQUILIBRIUM

The following lemma specifies a PT equilibrium with a donation threshold that
makes the next investor just indifferent between pledging and not.

Lemma 5 (Success-maximizing equilibrium). Given anyA > 0, there exists a PT equi-
librium (b®, D2, F2) with donation threshold D*(N, u) and induced probability of
success T(x), x € X2 such that for u >0

DA(N,u)=0 ift®(N,0,u—A)> 2 p,
nA(N,QA(N,u),u—A):Ui—Op ift®(N,0,u—A)< ;2 o

We denote by (N, D, u) the corresponding probability of success from the in-
vestor’s perspective in state (N, D, u) if the investor contributes.

Proof. We construct the equilibrium strategies and beliefs for every state (N, D, u)
by induction in j = M(D)— N. In order to define the donation threshold D(N, u)
such that investors are indifferent between pledging and not, we need to know the
probability of success 72(N, D, u) induced by the assessment for arbitrary D. We
tackle this issue by constructing a sequence of PT assessments (b, D2 ., F A) for j =

+,j’
1,...,My = M(0) such that (bA DfM F A) is a PBE and satisfies the properties in

Lemma 5. We start with an arbltrary PT assessment (b2, D+A1’ EA). The induction

hypothesis assumes that foreach 1 < j’ < j—1I thereisaPT assessment (b]A,, Df],, FA)
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Table B1—: List of Notation

Notation Description
bf Df 5 F) | assessment in the j-th induction step
5 time threshold defined for all w in the j-th induction step
D*f‘] (N u) donation threshold corresponding to (bA DZ; P F A)
D2(N, u) donation threshold that is defined inductlvely for N =M;,—j,and

N <My~ jand u<&HG—(N+ j)p)

such that in states (N, D, u) with M(D)— N < j’ investor strategies are optimal, i.e.,
in the continuation games after such states, the assessment specifies a PBE. Donor
strategies are automatically optimal in a PT assessment, by Lemma 3. Then, in the
induction step j—1~» j, we construct a PT assessment (bA Df »F A) such that for
states (N, D, u) with M(D)— N < j, investor strategies are optlmal and

b*(N,D,u)=b2 (N, D, u),
DA (N,D,u)= Df _(N,D,u), } forallstates (N, D, u) with M(D)—N < j—1,
FA(N D,u)= FA (N D, u),

which implies that for the corresponding probabilities of success we have
(N, D,u)=n% (N, D,u)for M(D)=N < j—1.

Figure B1 depicts pairs of (IV, D) such that j = M(D)—N for j =0,2,3 and the shaded
region including the orange line captures all j < 1, which is our induction start for
the equilibrium construction. The induction ends at j = M, when the entire state
space is covered. Importantly, if the game isin state (N, D, u), then N and D increase
only in the continuation game, i.e., j is decreasing over time.

While we denote by D*,Aj (N, u) the donation threshold corresponding to (bA D f P F A)
we also construct & ]4(-) and parts of the threshold function D?(N, u) in each step. In
particular, in step j, we define D A(N, u)for (N, u) such that N = Mjy— j, or such that
N <My—jand u < 5?(G—(N+j)p). After the last step (j = M), D®(N, u)is defined
for all N and u and DA(N, u) = D*f‘MO(N , u). Figure B2 illustrates this construction
schematically. For a cleaner illustration that avoids drawing step functions, we as-
sume A — 0 in this figure.

Finally, Table B1 summarizes the relevant notation.

(a) Induction start (j <1¢> D > G—(N +1)p): We set (b, D{|, F*) to be an arbi-
trary PT assessment (which trivially exists). Further, for j <1, we set & ?(w) =0 for
all w, which is consistent with Equation CT. We also set D(N, u):=0for N > My—1.
Finally, consider states (N, D, u) with M(D)— N < 1. The probability of success is
ﬂlA(N ,D,u)=1, so it is a best response for investors to pledge. Trivially, 77:1A(N ,D,u)
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Figure B1. : Schematic illustration of induction in j = M(D)—N
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Note: The figure depicts pairs of (N, D) such that j = M(D)—N for j =0,j <1, j =2, j = 3. The induction start
considers states j <1, and each j > 1 corresponds to one induction step.

is weakly increasingin N, D, u for D > G —(N +1)p.
(b) Induction hypothesis (j° < j—1): For the induction hypothesis, we suppose
that we have constructed PT assessments (b2, Dﬁ i F2) with a donation threshold
D*f‘j/(N, u)for j=1,..., j — 1 with the following properties:

i) Time threshold 514,(w): For w < G —(j’ —1)p, we define @’]4,(w) by (B5). For
w>G—(j'—1)p, we set 5?,(14/) =0. ijA.,(w) > 514,_1(w) if é’]A.,(w) > 0.

ii) Donation threshold D”(N, u): Donation threshold D2(N, u)is defined for (N, u)
such that either N > My—(j—1)or N < My—(j—1)and u < ijA-_l(G —(N+j—1)p).
For (N, u) with N < My— j" and u < ?;']4,(G—(N+j’)p),

(B7) 3 (N, DAWN, u), u—A)= ——.
v—p
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Figure B2. : Schematic illustration of construction of DA(N,u)and & j(D) (for small
A)

G — (Mo —4)p

G — (Mo —3)p

G — (Mo —2)p

G — (Mo —1)p

Note: The figure depicts the donation thresholds D(M, — j, u) as a function of u in the limit A — 0. In step j, the
portion between & ;_(G—(N + j—1)p) and £ ;(G —(N + j)p) of each D(N, u) is constructed.

Note thatin that case, D*(N, u) < G—(N+1)p. For N = Mo—j’, u>£5(0), DA(N, u) =
0. DA(N, u)is strictly decreasing in N, u when it satisfies (B7).

In Figure B3, the blue step functions represent the portion of D® at N and N +1
that are defined in the induction hypothesis, and black dotted lines show the corre-
sponding 514_1(G —(N+j— 1)) and 5?_1(G —(N+1+j— 1)p) = ?_I(G —(N+ j)p).

iii) PT assessment: Here (b jA,, DA i F].,A) are PT assessments (as in Definition 2) with

donation thresholds D*f‘j,(N , u) satisfying

DN u)=D*N,u)  foru<Z3(G—(N+j)p) and
for N=My—j’, u> gf,m).

iv) Probability of success: For all N > M(D)— j/, 7'L']A-,(N ,D, u) satisfies (B6) if D >
DA (N, u+A)and n]%(N,D, u)< 2 if D<DA,(N,u+A).

%, j/ v—p *,J/
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Figure B3. : Schematic illustration of construction of QA(N ,u)for Nand N +1
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1
1
1

0 A 2A IT [
2.(G—(N+4)p)
1+

MG (N 14 o)l (G- (N + i)

J)
ﬁ1(é_(N+J—1)p)

Note: The figure depicts the donation thresholds for cumulative purchases N and N+1with N < My—j. Instep j—1
only the blue portion of D is constructed, while in step j the orange portion is added. For example, we construct
DAN+1,u) for u < 5?_1(G —(N+1+j—1)p)instep j—1 and extend it to u < 5?_1(G —(N+1+j)p)instep j.
With D > G—(N + j)p, and N +1 purchases, the campaign is active until 51471 (G=(N+j)p)+Aor longer even if no
additional donations are being made (shaded area). For such states, strategies of the assessment (b ]A v + -1 F A D
are not optimal and nf_l might not be increasing and continuous in D. We only assume n]A»_l > 0. Hence, the
donation threshold cannot be constructed for (N + 1, u) with u > & ]471(6 —(N+j)p)instep j—1.

Note that by monotonicity of n]A./(N ,D,u)in N, u (Lemma 2 iii),

0]

5N, D, u)z for u>E&5(G—(N +j)p), D= G—(N + j)p.

This is illustrated in Figure B3 in the shaded area. Similarly, it implies that u <
?,(D) <D< D*A],(M( )—j, u+A)=DAM(D)—j', u+A).

v) Best response: For the PT assessments (b ]A,, D +A inF A) investors best respond by



12 THE AMERICAN ECONOMIC REVIEW

pledging if and only if D > Dﬁj,(N, u+A)in states all (N, D, u) with N > M(D)—j.
(c) Induction step (j —1 ~ j, j > 2): In this step, we assume the induction hy-
pothesis (b) is true and construct a PT assessment (bA D?, i F A) such that the same
statements are true for states (N, D, u) with N = M(D) j,ie, G—(N+jljp<D<
G—(N+(j—D)p.

i) Time threshold ijA.(w): First, note that for w > G —(N + j)p, thereisa j' < j—1

such that M(w)— j’= N + 1. Then, we know by the induction hypothesis that

for u’<§]A.,(w): w<D*A] (N+1,u)=DAN+1,u)

for 514,(11)) <u'< 51471(G—(N+j)p): w>DA(N +1, u’)=Dﬁj71(N+ 1,u')

for u'> €% (G—(N + j)p) w>DA(N+1,82 (G—(N+j)p))
> DS (N +1,u)

Hence, w > DA (N+Lu )= u' > §A( ). Therefore, lettlng ' (N, D, u) be the
auxiliary probablhty corresponding to the assessment (b F Al) as defined

in Equation B4, we can write

j=r +] -1’
max{(u— M(W]—(N+1)(W))/A’0} )

ﬁj{l(N,D,u)z R Z (1—AL)TAL
(N+1 max{D D2 (N+1Lu—A(i—1)}, u— Ai)

+(1—A/1)M/A11(W >G—(N+1p)|w=D|.

Next, note that the above also implies that for u—iA < & ]4 (D), then D < D ] N+
L,u—(i—1)A)=D*N+1,u—(i —1)A) and for u —iA > §j_1(D), D> D*_]_ (N +
1,u—(i—1)A). Hence, for j =M(D)—N

max{(u— ﬁ(w)_( (W))/A 0}

ﬁjAfl(N,D, u)=E"H Z (1—AN)1AL
(n]A._l(N+1,D, u—Adi(u—Ai2 2 (D)) + 2 1(u—Ai < 514_1(D)))

H1—ANYAUW 2 G—(N +1)p)|W > D].

This expression depends only on 514,() j’ < j—1, and 71 * (N +1,D,u’), where
M(D)—(N+1) < j—1,which are defined in the 1nduct10nhypothe31s Since 7 ;_ 1(N D u)
is strictly increasing in u and 7r (N+1 D,u— Al) > 25 p for u—Ai > é’A
7Tj1(N, D, u) < 1isstrictly increasmg in u. Hence, for any j < M(D)thereis aumque

%)) }
v—p)’

gf(D) = argmm{umf_l(M(D)—j,D, u)>
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Recall that 7 | (M(D)—(j—1), D, u)= 75 ,(M(D)~(j—1), D, u)for D > DS 1(M(D)—
(j—1), u+A), and by the induction hypothesis, ﬂA_l(M(D)—( 1),D, u) <725 and

~]A1(M(D)—(] 1),D,u)< 32 forD<DA (M(D)—(j—1), u+A). Hence,

72, (M(D)=(j—1),D )zv”o for u>¢g3 (D)
5, (M(D)—(j—1),D, u) < 2 foru<§]A_1(D)’

and we have §A(w) > EA J(w) if §A(w) >0.
ii) Donation threshold DA( u) Since (bA + -1
the induction hypothesis, 7'C (N D, u) is strictly increasing in D by Corollary 1. For

N>My—jand u < 5]4(G (N+])p) we define D2(N, u+A) to be the unique value
satisfying

F{,) is a PT assessment by

7% (N, DAN, u+A),u)= —2,
v—p
which must also be satisfied for u < &;,(G —(N + j')p), N > My— j’,j’ < j—1by the
induction hypothesis ii). Since 7%]4_1 is increasing in N, D, and u, D is decreasing
in N and u. Further, for N = My— j, we set DA(N,u+A)=0for u> 5]4(0).

iii) PT assessment: We set

D*%j(N, u):=D?N,u) foru< 514(G —(N + j)p), and
forN=My—j,u> 5]4(0),

and, otherwise, define DA (N, u)arbitrarily so that it is overall decreasingin N and u.
This defines a PT assessment(bA, +],FA) Note that (b2, +],FA) (b] . +] 1,FAl)
for states (N, D, u) with M(D)— N < j—1 because for all such states D*A] (N, u) =
D*f‘j(N, u).

iv) Probability of success: The corresponding probability of success has the fol-
lowing properties:

e First, (N D,u)= 71' * (N, D, u)for M(D)—N < j—1 by definition of the cor-

respondmg donatlon thresholds, because (bA DA FA) (b]AI, Iyl 1,FA )
for these states and all states (N’, D/, u’) with N’ 2 N D’ > D that can be
reached in a continuation game, as they satisfy M(D’)— N’ < j—1.

e ForD > DA( N, u+A), A(N D, u)— ”A ' (N, D, u)byLemmaZii) and for D <
DA(N u+A) ur A(N,D, u)< andn (N, D, u)< -2 by monotonicity of
the probablhtles in D. Hence, §JA(D) satlsﬁes (B5). Further this implies that
n]A.(N,D, u) is strictly increasing in u for D > DA (N,u+A), N+1< M(D).
Otherwise, 7t]4(N ,D,u)=1or T A(N,D,u) is glven by (B2), which is strictly
increasing in u or equal to zero.
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v) Best response: It is immediate from the construction and because 7T]A. isincreas-

ing in D that for all (N, D, u) with N > M(D)—j, n?(N,D, u) > Vﬁ—"p if and only if
DzD*éj(N, u+A).m

TAKING THE CONTINUOUS TIME LIMIT

The following lemma implies Proposition 1 ii):

Lemma 6 (Success-maximizing equilibrium limit). #) The pointwise limit of the do-
nation threshold D(N, u) := Er%QA(N, [%]A) exists, where [%]A is the smallest mul-
tiple of A that is larger than u. Further, for anyx= (N, D, u) the following pointwise
limits exist:

b(x):=lim b2(N,D,[%]A), Di(x;w):= En})Df(N,D,[%]A; w),

(B8) A0

Q(w):iig})i?(w), F(w;Xx) ::EL%FA(LU;(N,D,[%]A))
Finally,
(B9) n(N,D,u):= iiln@nA(N,D, [%]A) uniformlyin u and D.

ii) Proposition 1 ii) holds for this limit.

The proof of this lemma is in the Online Appendix.
OPTIMALITY OF CONSTRUCTED EQUILIBRIUM
PROOF OUTLINE:

Next, we show that the equilibrium constructed in Section B.B2 maximizes the
probability of success and that for any success-maximizing sequence of PT equilib-
ria, the outcome converges pointwise to the same limit as specified in Proposition 1.
The proof proceeds in four steps. In Step 1, we formulate a relaxed version of the
success-maximization problem. In Step 2, we solve the relaxed problem. In Step 3
we show that the outcome of the solution is attained by the equilibrium constructed
in Section B.B2. In Step 4 we show convergence as A — 0.

The key idea of the proof stems from the observation that the donor will always
donate enough to reach the goal at the deadline if it is needed and feasible. Hence,
to maximize the probability of success, the exact amount the donor donates during
the campaign before the deadline is not important as long as investors keep pledg-
ing. To find the PBE outcomes that maximize the probability of success, we consider
reduced histories that ignore donation amounts and keep track of only whether a do-
nation incentivizes the next potential investor to pledge or not. This idea allows us to
recast the success-maximization problem into one in which we choose probabilities
of reaching these reduced histories, rather than choosing over the set of PBEs.
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Proof:
Step 1: The relaxed success-maximization problem

Consider a particular assessment (D2, b*, F2). Given this assessment, any in-

vestor history hf A= I (NS_A, DS_A) corresponds to a reduced investor history
s€TA s<t
7B ._ —5HA
hE = ]_[ (Ns_a, bs_p), where by_n:=b ( ]_[ (Ny_a, Ds/_A)),
s€TA,s<t $’€TA,s/<s

so that instead of recording the donation D,_, the history records the probability
b;_a €[0,1] with which an investor arriving in period s pledges on observing cumu-
lative donation amount D,_,, and the entire history of donations and pledges. We
omit the A-superscipts for the reduced histories, to simplify notation. Let 2;. be
the mapping so that

'%ZIA . htB’A — i:ltB
as defined above. We will use this mapping in the proof of Proposition 3.

In a platform-optimal equilibrium, the investor always pledges when she is indif-
ferent between pledging and not pledging, so henceforth we assume b;_» € {0, 1}.
Let the set of such reduced investor histories in period ¢t be %tB . Further, let us de-
note the corresponding set of reduced donor histories in period ¢ by

FP = {fl? =(hE,N,)| hf € ZP, N, € (Ni_p, Ni-a + 1}}.

The assessment, the arrival process, and distributions of donor valuation define a

probability measure P on the space of outcomes [ [ (N, D,) and hence on £ and
teTA
fftD. Given this probability space, we define the following probabilities:

i) k(hP;w)is the probability that h® € #P is reached if the donor’s valuation is
w;

i) P(hP;w)is the probability that h” € 7P is reached if the donor’s valuation is
w.

Note that this implies that for each w and t € T?, we have

Z K(RE; w)= Z P(h?; w)=1and P(h?; w) = k(hP, 1; w)+x(hD,0; w),
hbei? hPeseP

and, in particular,

(P) k(h",1;w)<P(h"; w)forall h] € 7#P.
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Figure B4. : Transitions between reduced histories

Donor history Investor history Donor history
att att + A att + A

(WP, 1, N, + 1)

- A
onation D - —
induces pledge (iL?, 1) P(hi’, 1, Ne + 1;w)
bia 2
k(hP, 1;w) N (D, 1, N))
hy D1 N
) P(h;”, 1, Ng;w)
P(hP
(h?, 0) : (AP, 0, Ny)
/w‘(i[/). 0;w) = P(fz,[), 0, N¢; w)

P(hP;w) — k(hP, 1;w)

Note: The blue brackets represent reduced histories, and the orange expressions below, the probability of reaching
the corresponding reduced history.

Further, the following intertemporal link between reduced histories must hold:

P(hP,1, N, + w) = AAk(hP,1;w)
P—1) P(hP,1,N; w) (1—AAN (AP, 1;w) forall b e 7).
P(hP,0,N; w) = P(hP;w)—k(hP,1;w)

The reduced histories and probabilities are illustrated in Figure B4. The probabilities
of reaching investor histories after which an investor pledges uniquely determine all
other probabilities, so we define

Jet = {ﬁf (kP 1) | AP ejf;zA} c b,

Formally, P(0; w) = 1 and the sequence kA (0; w) := ((K(iltB; W))fltBejfZI)t>A uniquely
define ((P(fztD; w)) ) . and ((K(fztD,O; w))

hPesP ;> fz?eiﬁf)tzo
determines the outcome of the game and will be the choice variable in the relaxed

. Thus, (kA(0; w))we[o,oo)
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problem. In order to be able to formulate investor IC constraints after reaching an

arbitrary donor history fztD_ A» We define continuation donor histories at times t' > t
by
~D s ~ ~ . ~ ~
A, (AP \)={h" € #P : the first entries of i) are h . }.

The problem of maximizing the probability of success can be written as

max D AAER[k(RE W)L (G —(Nr_a+1)p < W)]+

N ey S
(1—ANER k(AP , 1, W)1(G—Nr_ap < W)]+
Ef[(P(AE s W)—k(hE ,, 1, W))1(G—Nr_ap < W),
subject to P(0; w) = 1, Equation P, Equation P— ¢, and for all kP € 7P, t € T4, N, €
N, w €0, 00),

prob. of success if
period-t investor pledges

f Gra(nP 1L, N o + 1, W) d R(W)

(Investor IC)

J k(AP ,1; W) dR(W)

where the unconditional probability of success if a period-¢ investor pledges after
history h” is given by

N > AAK(RE 5, Lw)1 (G —(Nr_a+Dp <w)+
h?—Ae‘%f?—A(EziA)

A=A K(RY ., Lw)1(G—Nr_ap<w)+
(P(AY_;w)—xk(hD \,1;w))1(G —Nr_ap < w).

This is a relaxed problem because the vectors (kA (0; w)),e0,00) that satisfy the

above constraints do not necessarily correspond to a PBE. Further, we are ignoring
donor incentives by considering reduced histories.

_Finally, note that for a PT equilibrium, it must be that for any investor history
(hP \,1)€ ]} there exists D*((P(hP .; w))w) > 0 such that

-p . [ P(AP y;w) for w=D*(B(AP ;w)),)
(PT-K) K(ht—A’l’w)_{ 0 otherwise )

Step 2: Solution to the relaxed problem

In the following, we show any solution satisfies Equation PT-k. Such k5 with D* ((P(ﬁg Al w))w) =
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W ((®(RP ,; w)),, ) where

w) W ((P(RP \;w)),) = ) i
—  min {ﬂ((lnvestor IC) is satisfied for k(A" ,1; w)=P(hP ,; w)i(w > w)}

is always a solution. We set ﬂ((IP’(ﬁtD ; w))w) = oo if the set on the right-hand side
is empty. Further, to establish uniqueness in the limit A — 0, we show that for any
solution satisfying Equation PT-x, it must be that

Be(B(A2 i w), )<

(P [w((P(htD_A; w)), max{G —(Ny_a + T2)p, W ((B(RD 5 w)),) }],

where G —(N;_a + #) p is the amount that the donor needs to donate even if

an investor arrives and pledges in every future period. Note thatas A — 0, G — (Nt +
T—t

5t )p ——oo0.

We show that the solution must satisfy Equation PT-x with (D*) by contradiction.
Consider an arbitrary solution x, and corresponding P* such that there is at least
one history in which it does not satisfy Equation PT-x with (D*). Consider the latest
period f in time after which Equation PT-k with (D*) is satisfied for all histories, and
consider a period  — A history B?— A such that K(fziP_ A L; w) does not satisfy Equa-
tion PT-x with (D*). Then, the probability of success conditional on reaching history
LA lNeathw)

B _ (7D . qr(h;
hy =(h;_,,1) given by ’K(ﬁtgwl;w)

is increasing in w and is independent of the

choice of k(AP ,,1; w). Let

c(h? ) :=J K*hP W) dR(W).

e now construct a k', suc at the objective function is higher than with x* while
W truct a i’y such that the objective funct higher th th k% whil

keepingf K'(hP \, 1, W) dR(W)< ¢(h? ) in all histories. To this end, let W (kP ,)

be the uniquely defined by!”

[ PRP s W)dR(W)=c(hP ).

f—

q,(RP \ LN, _a+1;w)
K(RP 5 1;w)
satisfies Equation Investor IC. We set ’(h”; w) := k*(hP; w) for all histories 17 at

Since isincreasingin w, k(hP ,1; w)=P*(h? ; w)i(w>W (kP )

17Uniqueness follows because for all ¢ > 7, K(fziD, 1; w) satisfies Equation PT-«.
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t < 7—A and all histories 7” ¢ FMNRP ), t > f—A. Further, let

P*(hP y;w) forw>W (h? )
0

/c1.D
= olhw)= .
K (g L w) { otherwise,

ke B e gpl (D z WD 1)) e DD 1) K5 W)
and for histories h, € 7 (h;” ,)where t > i—A, wesetk’(h,”; w):=P'(h;; w)m
so that all constraints remain satisfied and the transition probabilities remain un-
changed. Figure B5 illustrates the transitions. In the objective function, this k” achieves

Figure B5. : Schematic illustration of transition probabilities

Probability Period 7 — A Period Period Probability
_of reaching reduced reduced reduced of reaching
hg A givenw  donor history investor history donor history donor history in

period £ given w

(7D
‘/// A

I, Ni_a + Lw) =

D P
(h A3 w) (iﬂiifﬁ
//“A 0, Ni_a;w)
Constructed from P*(hP ysw) = & (W2 A, 1;w)
(A2 Lw), ¢ <t—A .
(hiz, 1) Find better
such that

5 & (hP \,1;w)
hp 5 € HY A(h7) A

Note: The blue brackets represent reduced histories, and the orange expressions, the probability of reaching the
corresponding reduced histories given a realized w.

states with higher Ny_, more frequently, so x’ yields strictly higher profits than x*
does. Thus, any solution x* must satisfy Equation PT-x with (D*) almost surely.

Step 3: Implementation by equilibrium

Finally, we show that the optimal solution is achieved by the PBE constructed in
Proposition 1. To this end, it is useful to write the probability of success for donor
type w after a history 2" , recursively as a function of k., (AP ; w)and P(h? ,; w)>
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0:
(W-II) ~
Ht—A("'t(htDA’w) P(htD—A; w);w):
K(h ol

;i’v'; (hrD—A? )

Ht("'t+A(fltD_A»1 Nia+Lw), P(h, Al Nt—A+1;w);w)

investor pledges
h” o L;w
+(1— AA)+)
T~ P(ht A) )

noarrival e
investor pledges

Kk(hP 5,1 w) - o
+{1— w I, (K a(RP \,0,N,_p; w),P(RP ,0,N,_p; w); w),
1A

IT; (KI+A(iZtD_Ay L, Ni—a; W)»P(ht ‘Ao LN w w); w)

investor does not pledge

and for P(hD ;w) = 0, we set IT,_a(r, (AL ; w),P(hP ,; w); w) = 0 without loss.
Then, we can write the Investor IC constraint as follows:
(Investor IC’)

prob. of prob. of success if
reaching h? period- ¢ investor pledges
7,B 7B 7, B
k(h s W) (ke esn(h) Ne—a + LW),P(h, s W), W) d Fo(W)
Yo
= .
v—p

f k(R W) d Ry(W)

Consider the PT equilibrium (D2, b, (FA(-|x)),) from the proof of Proposition 1. This
assessment induces a probablhty measure P on outcomes and a corresponding sys-

tem of probabilities K(hD 1, w) and ]P’(h[D ,; w) over reduced histories, as defined in

Step 1. Consider any on-path investor history in the last period h? A= [T (Ny_a,Ds_p).
SETA,s<T
The PBE specifies that investors pledge if and only if the probability of success is at

donors with w > D?(Ny_a,A) donate max{D;_,x, D*(N7_a,A)}. This makes the
next investor just indifferent between pledging and not pledging if such a donation
amount exists and D®(Ny_a,A)= W otherwise.

Therefore, for any on-path history h?;AA = ( IT (Nr_a,Ds_p), NT_A), the in-
SETA,s<T—A
duced probabilities over reduced histories satisfy

k(h?_,,1;w)=P(hP_,;w)ifand only if w > D*(Ny_x, A).

Notice that since D*(Ny_a,A) is calculated using the indifference condition for in-
vestors, 72(N, D, u) is increasing in D, and F2 is a truncation given by Equation PT-
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belief, this D*(Ny_a,A) is exactly m((IP’(fz?_ A W))w, Nr—_p) defined in Equation W
in the solution to the relaxed problem when we write the expression for the indif-
ference condition as in Equation Investor IC’. Analogous arguments apply to any

history h? A= ( Il (NS_A,DS_A),NI). Therefore, the PBE assessment from the
SETA,s<t
proof of Proposition 1 induces exactly («% (0; w)),,, and it achieves the optimum in

the relaxed problem. Hence, (k% (0; w)),, is platform-optimal in the full class of PBEs.
Step 4: Uniqueness of limits

We have shown in Step 2 that solutions to the reduced problem satisfy Equation PT-
k with Equation D*. Now, for a given  if A is sufficiently small, then G —(N + %) p <
0, so any sequence of outcomes converges pointwise to the equilibrium outcome at-
tained by the Markov equilibrium constructed in Step 1.

B3. Proof of Proposition 2 (Success-Minimizing Equilibrium)

First, in Section B.B3, we characterize a PT equilibrium for each A. Then, in Sec-
tion B.B3, we show that the limit of these equilibria as A — 0 exists and is as specified
in Proposition 2. Finally, in Section B.B3 we establish that this PBE minimizes the
probability of success.

CHARACTERIZATION OF PT EQUILIBRIUM

Lemma 7 (Success-minimizing equilibrium). GivenanyA >0, aPTassessment(b>, D5, F2)
with donation threshold EA(N, u)€[0,G —(N +1)p) constitutes a PT equilibrium.

We denote by (N, D, u) the corresponding probability of success from the in-
vestor’s perspective in state (N, D, u) if the investor contributes.

Proof. Note that the donation threshold is well-defined in Section II.D (unlike in

the construction of the success-maximizing equilibrium): EA(N ,u+A):=max{G—
(j—1)p—Np,0}foru e (EJA._I,E?]. This defines strategies and beliefs of the PT as-

sessment. It is immediate that EA(N , u) is strictly decreasing in N and u as long
as BA(N, u) > 0, weakly decreasing otherwise, BA(N, u) € [0,G —(N + 1)p), and
EA(N ,u)=0for (N +1)p > G. It only remains to show that the investor strategies
are optimal in every state (N, D, u), since the donor is best-responding by Lemma 3.
We show this by induction in j = M(D)— N and for each j by backward-induction
in u.

(a) Induction start (j <1 < D > G— (N +1)p): For N > M(D)— 1, the cam-
paign is either already successful or an investor can complete the campaign. Hence
nA(N,D,u)=1and b*(N, D, u)=1forall u € U*, and D €[0, W]in any equilibrium.
Note that EIA =0and DA(N,D,u;w)=D.

(b) Induction hypothesis (j’ < j —1): Assume that we have shown that the above
strategy profiles are best responses for investors for all states (N, D, u) with N =
M(D)—j’ with j' < j—1.
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(c) Induction step (j —1 ~ j, j = 2): Consider an investor in state (N, D, u) with
_ —A
N=M(D)—j.IfD< DA(N, u+A), then u < Ej , and the belief system dictates that
an investor assigns a probability of success equal to
—=A 12

—=A
m(M(D)—j,D,u) = P(r;‘sT—gj_l,...,f;‘_zgT—gz,f;’_lgn<v_p,

where 77 is the arrival time of the i-th investor after period u. The inequality follows

directly from the definition of EJA Hence, b2(M(D)— j, D, u) = 0 is optimal for the
investor._A N
IfD>D (N,u+A),thenu>¢& i by the induction hypothesis, we have

73(N,D,u)= E® > (1—AX)TAN

i=1
AN + 1, max{D, D (N + 1, u—A(i —1))}, u— Ai)
H1—ANYALW 2 G—(N +1)p)|W > D]

>P(ri < T—§j_1,..

max{(u—Z ) vy (W)/A0}
l

—=A
u u 0]
wTip S T—<§2,7:j_1 <T)> =5

where the last inequality follows because u > EJA and the definition of EJA via Propo-
sition 1. Hence, indeed b*(M(D)—j,D,u)=1.m

TAKING THE CONTINUOUS TIME LIMIT

We know from Proposition 1 that the pointwise limits £ ; := lim 3 ]4 and
= . —=A u _ o
DN, u):=lim D*(N,| £ [4) =max{G —(j—Dp—Np,0} for ue(€;,&;]

exist. Thisimplies that the pointwise limits D, (N, D,, u; w) := Er% DA(N,D,[%]A;w),
b(N,D,u)=lim b4(N,D,[§]A), and F(w;(N, D, u))= lim FA(w;(N,D, [%M)) ex-
ist. This concludes the proof of Proposition 2 ii).

MINIMIZATION OF PROBABILITY OF SUCCESS

Next, we show that the equilibrium just constructed minimizes the probability of
success in the class of PBE. To this end, we consider an arbitrary PBE (b%, D2, F2).

We show by backward induction in ¢ that for any investor history hf A= [T (Ny—a,Ds—n)
sETA s<t
an equilibrium investor history must satisfy

_A -~
(B10) D _A>D"(Ni_a, T—(t—A)= b (hP%)=1.
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(a) Induction start (r = T): EA(N, A)=G—(N—1)p, so Equation B10 is satisfied for
any PBE.

(b) Induction hypothesis (s > ¢): Assume that Equation B10 is satisfied for any his-
tory h®4 with s > r.

(c) Induction step (¢ ~ t —A): For an arbitrary history htB_’ﬁ, from an investor’s per-
spective in period ¢ — A, the probability of success after a contribution is bounded
from below by 7T(N;_sa, D;_aa, T —(t —A)) by the induction hypothesis. Thus, the in-
vestor must contribute if T(N;_oa, D;_on, T—(t—A)) > Vi—"p. Since for the constructed
PT equilibrium,

D>D N, T—2t)=>7(N,D, T—(t—A) > -

we have D,_pp > D" (Ny_pa, T— (£ —2A))= bA(hPA) =1.

Finally, if Equation B10 is satisfied, then the probability of success in the PBE must
be atleast as in the constructed PT equilibrium, since investors contribute whenever
they contribute in the PT equilibrium and the donor contributes up to his wealth at
the deadline in any PBE whenever necessary for success.

B4. Proof of Proposition 3 (Donor-Preferred Equilibrium)
PROOF OUTLINE:

Given any assessment, we use the same class of reduced histories and systems of
probabilities K(iltB; w)and ]P’(fztD, N;; w) as in the proof of Proposition 1. Just as in the
equilibrium that maximizes the probability of success, in a donor-preferred equilib-
rium, the investor always pledges when she is indifferent between pledging and not
pledging, so we can assume that b, € {0, 1} for all histories. The induced probabil-
ity measure P allows us to define (x4 (0; w)),,, which determines the outcome of the
game except for the donation amount.

The proof proceeds in four steps. Step 1 establishes that donor-preferred equilib-
rium outcomes can be attained by PBE in a smaller class of assessments. In Step 2,
we formulate a relaxed donor problem (analogously to Proposition 1). In Step 3, we
solve the donor’s problem and show that the success-maximizing solution also cor-
responds to a solution of the donor’s problem. We also prove that all solutions that
are PT equilibria converge to the same limit as A — 0. Finally, in Step 4, we verify that
the donor strategy constructed in Step 3 of the proof of Proposition 1 is consistent
with the donor-preferred solution.

Proof:
Step 1: Limiting the class of assessments

To find a donor-preferred equilibrium, we first show (in Lemmata 8 and 9 below)
that donor-preferred equilibrium outcomes can be attained by PBE in a smaller class
of assessments. First, at histories at which investors are induced to pledge, all donor
types that donate positive amounts make the same cumulative donation. Second,
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if a donor does not incentivize pledging, he donates nothing. Within the class of
assessments satisfying these two properties, the mapping from reduced histories to
donations becomes unique, a fact we use when we formulate the donor’s maximiza-
tion problem.

Lemma 8. For any donor-preferred PBE (b®, D f, F?), there exists a donor-preferred
PBE(b*, DA, F®) such that

i) both assessments generate the same probability measures (kA(0; W)y,

D,A
h[

ii) foreach , there exists a D*(hf)'A) € R such that

(B11)
DA w) ={

Di(h%5w)  ifbA(h %, Dulh Y w)=0
1 )

D(hP®)  if AR, Dk w)
1 ifDi_p=Dy(h})
0 otherwise ’

bA(htD_’ﬁrDt—A) =

Proof of Lemma 8. Given a donor-preferred PBE (b2, D2, F2), define

Dy(h)):=inf{D2 (k% w) | bA(h)2, Di(h)%; w) =1},
which is the smallest donation amount that incentivizes pledging at a history hf) A,
Donating this amount is feasible for all donor types w > D*(h? 2). Moreover, it is
consistent with play on the equilibrium path. In particular, donating this amount is
feasible for all types that incentivize pledging after 1> in (b2, D2, F2).

Then, define a new assessment (b, D2, £'4), where b* and D2 are given by Equa-
tion B11. On the equilibrium path, F(w; htD_’ﬁ, D,_,) is derived by Bayes’ rule. Off
path, if D,_5 > D*(htD_’ﬁ), then let £ (w; htD_’ﬁ, D,_x) be such that it is optimal for the
investor not to pledge (e.g., F(w; h?_’ﬁ,Dt_A) =1(w =0)), and let F(w; htD_'ﬁ, D;_p)=
F(w; h?_’ﬁ, D,_,) otherwise.

Note that the strategies are such that (b4, D2, F2) and (b*, D2, F2) result in the
same probability measures (1A (0; w)),,, i.e., the same purchasing outcome after any
realization of arrivals and donor type. The donation amount with (b2, D2, F2) is
by definition weakly lower after any arrival and donor type realization. Hence, if
(b4, DA, F%)is a PBE, then it must be donor-preferred. It remains to be shown that
(b2, DA, F2)is a PBE.

First, consider donor incentives. Given a PBE (b%, D2, F2), a donor type w with
EA(hf) A D~+(hf) A w)) = 0 does not find it profitable to incentivize pledging after a
history htD A, Pledging can be incentivized by donations of at least D*(htD_’ﬁ). Hence,
also with assessment (b2, D2, F), deviating to incentivize pledging cannot be prof-
itable. For a donor type w with EA(htD'A,EJr(htD'A; w)) = 1, it is optimal to donate
in the PBE (b2, D2, F'®). Given the assessment (b*, D2, F2), the donor can donate
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weakly less and still incentivize pledging, but the donor has a larger set of feasible do-
nations in any future period. Thus, no donor type has an incentive to deviate given
the assessment (b2, DA, FA).

Next, consider investor incentives. Investors ata history(h?_’ﬁ, D;_p),where D;_x <
D*(hf)_’ﬁ), have identical beliefs about donor types in both assessments, and the pur-
chasing outcome is also identical, as argued above. Hence, the probability of success
is the same across assessments and an investor with such a history must prefer not to
pledge given the assessment (b2, D2, F~) because (b*, D2, F*) is a PBE. Investors
at a history (h?_’ﬁ, D;_A), where D;_p = D*(htD_'ﬁ), believe that they face donor types
that they would face if they played a PBE (b, D2, F2), and if they were at any of the
histories (hﬂﬁ,Dt_A) after which an investor pledges. Hence, investors must pre-
fer to pledge at a history (htD_’ﬁ, D;_A), where D;_p = D*(htD_'ﬁ), given the assessment
(b4, ljf, F2). Ahistory (h?_’ﬁ, D;_A)with D;_x > D*(h?_’ﬁ) is now off the equilibrium
path for assessment (b2, DA, FA), and we assumed that F is such that the investor
does not wish to pledge in this case.

It follows that (b*, D2, £2) is a PBE.

Hence, to find a donor-preferred equilibrium, it suffices to restrict attention to as-
sessments (b2, D2, F2) such that for any hP2, there exists a D,(h”*) € R with
(B12) DA(hP%; w)=D,(h®), whenever b2(h%, DA(hP%; w)) =1,
and b” as is defined in Equation B11. Indeed, the success-maximizing equilibrium
constructed in Proposition 1 is in this class.

Lemma 9. For any donor-preferred PBE (b®, D2, F*) for which the donor strategy
satisfies Equation B12 and the investor strategy satisfiesEquation Bl1, there exists a
donor-preferred PBE(b®, D2, F2) so that

i) both assessments generate the same probability measures (k A(0; w)),,,

i) b2 =Db” and for each h>*

0
(B13) L

580 )= [ Dia DA, Di(hy 5 w)
e Dy(h%w)  ifbA(hY®, Di(h™; w))

Proof of Lemma 9. Given the donor-preferred PBE (b*, D2, F4) satisfying Equation B12,
let (b, D2, F*) be given by Equation B13, b2 = b2, and F*(w; h[D_’ﬁ, D,_A) so that

it is consistent with Bayes’ rule on the equilibrium path, and F2(w; htD_’ﬁ,Dt_A) =
FA:w; h?_’ﬁ, D,_A) off the equilibrium path. Then, it follows immediately that the
two assessments generate the same outcomes and, hence, the same probability mea-
sures (kA (0; w)),,. It remains to show that (b*, D2, F2) constitutes a PBE. The donor
does not have a profitable deviation in histories after which the investor is incen-
tivized to pledge, because the donor plays exactly the same strategy asin (b2, D +A, F2).
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Whenever the donor does not incentivize pledging, the donor cannot have a prof-
itable deviation, because incentivizing pledging is not profitable for (b2, D2, F4),
and, moreover, Df(h?'A; w)=D;_A < ﬁf(htD’A; w) implies that every donor type w
has a weakly larger set of feasible donations in the future under D2 than under D2 .
Each investor is also best-responding, because she pledges after the same histories
in both assessments, and whenever she does not pledge, her belief is a mixture of
beliefs in histories after which she did not pledge in (b2, DA, F4).

Hence, in the following, we restrict attention to assessments (b2, D 2, F2) that sat-
isfy Equation B13 and Equation B12. The donor strategy in such assessments de-
pends only on the reduced history QZZ,A(htD’A), so we can define @(hD A) (hD A)
for fzf) A= ,%;,A(htD 2). Indeed, the platform-optimal equilibrium from Proposition
1 satisfies Equation B13.

Step 2: Relaxed donor problem

Consider an arbitrary assessment (b2, D2, F2) that satisfies Equation B13. Recall
that, analogously to Proposition 1, we can define reduced histories, systems of prob-
abilities K(hf s W), ]P’(h? , Ni; w), the mapping %;,, that maps general histories to the

corresponding reduced history, and (fzf) ), the corresponding donation threshold

for reduced history fztD ‘A In order to formulate the donor’s payoff, we write for t'<t
that h2 € b if A is a sub-history that leads to . Then, let

P(hP):= max 2(h]
thhD
l<l’bt/ 1

be the cumulative donations after period ¢ if the donor follows a donation strategy
as specified in Equation B13 so that he donates in all periods ¢’ in which the reduced
history i dictates that b, =1.

The donor’s problem can be written as

(Ki(ﬁlaw’)‘) > AAER[K(RP_ 1wl (G —(Np_a+1)p S W) (W —2(RP_,))]+

(L EEN G

(1—A7L)]EE’[ (A2 w1 (G—Nr_ap <W)(W—=2(h )]+
ER[(P(h7_p; w)=K(hp_p, 1;w))1(G—=Np_ap < W)(W =2(hi_,0))],

subject to P(0; w) = 1, Equation P, Equation P— ¢, and for all kP € 7P, t € TA N, €
N, w €0, 0o) Equation Investor IC, and given

d,(hP;w) = > Ark(RP, w)l (G—(Np_a+ Dp < w)(w—D(hf._ )+
R TP (D)
(1—AA) k(D A,l w)1(G—Nr_ap <w)(w—2(hy )+

( (hD A W)— K(hy T-ar s W)) (G —Nrap < )(w_@(fl?—m))’
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we can formulate a donor incentive compatibility constraint for all h” , € 7P
(Donor IC)
dt(leP_A,O, Ny_p;w))< Akd[(fztD_A, L, N, A+ Lw))+(1 —Ak)dt(fztD_A, 1, N;_p; w))

= k(hP ,, Lw)=P(hP ,; w).
This donor IC constraint puts a lower bound on donations, because it imposes that
the donor must donate whenever it is optimal to do so, but does not impose that the
donor does not donate if it is optimal not to donate. Hence, this donor problem is a
relaxed maximization problem.

We denote a solution to the above problem by k% and ((@**(fzf’, 1)) fiPe jftp)po. Re-
call that the solution that we presented to the platform’s relaxed problem was de-
noted k7.

Step 3: Solution to the relaxed problem

Next, we show the following two statements are true:

i) Any solution of this relaxed problem must satisfyEquation PT-k for D* such
that Equation D*;

i) Ka as in Equation PT-x with D¥((P(hP; w)),,, N;) = W((P(hP;w)),,) is a solu-
tion.

Given these two statements, it follows immediately that in the limit as A — 0, the
outcome is unique by the proof of Proposition 1.

Analogously to the proof of Proposition 1, we show that the solution must sat-
isfy Equation PT-x with (D*) by contradiction. Consider an arbitrary solution x**,
corresponding to P** and ((@**(ﬁtD , 1)) hDeseP )[>0, that does not satisfy Equation PT-
k with (D*). Consider the latest period 7 in time after which Equation PT-x with
(D*) is satisfied for all histories, and consider a period 7 — A history hg A such that
K**(fzg A 1; w) does not satisfy Equation PT-x with (D*). Then, the probability of

~ ~ P 1N, _A+1L;w) .
success conditional on reaching history th = (hg A 1) given by il ’}\‘(Ah,i N'I,;l v
~ (RN
increasing in w and is independent of the choice of K(th_ A L; w). We can also again
define c(h? ,):= f k**(h? ,,1; W) d F;(W). Note that by Equation Donor IC, it must
be that for ¢ > #, D*(hP)= W((P(h?; w)),,). Further, by Equation Donor IC,

D*(RP) =min{D*(hP)| d,a(hP,0, N5 w)>
AAdpip(RP,1,N; + 1;w)+(1—ANd, (hP, 1, Ni; w))
for all w such that K(fz?, Lw)< ]P’(fz?; w)}.

We now construct a k’, such that the donor’s objective function is higher than with
K%, while keepingf K'(hP , 1, W)dR(W)< ¢(h? ) in all histories. Analogously to
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Proposition 1, we can uniquely define W (kP ,) by

oo
[ Ph2 s W)dR(W)=c(h? ).
W (P )

q,(RP \ LN, _a+1;w)
K(RP \ T;w)

satisfies Equation Investor IC. We set k’(h”; w) := k**(hP; w) for all histories fz? at
t < f—A and all histories /” ¢ #)(h? \), t > T—A. Further, let

Since isincreasingin w, k(hP ,1;w)=P*(h? ;w)i(w > W (h? )

. . . P**(le_ ;w) forwzﬂ (flp_ )
K/(hf—A’]" LU):{ 0 4 OtherWise)C -

K*(hP;w)

and for histories h, € FM AP )where 1 > i—A, we set K'(hP; w):=P/(hP; w)]P*(ﬁD'w)
t

so that all constraints remain satisfied and the transition probabilities remain un-

changed. Further, the lowest donation amount by Equation Donor IC is then

D'(hP) =w (P ).

In the objective function, this k¥’ achieves states with higher N;_, more frequently
and D'(hP) < D**(hP), so k" yields strictly higher donor payoffs than x** does. Thus,
any solution x’, must satisfy Equation PT-x with (D*) almost surely.

Step 4: Implementation by equilibrium

We have already shown in Proposition 1 that (k’; (0; w)),, is induced by the con-
structed assessment and established that the wealth threshold D(N, u) corresponds
to m(fl?) if there is a history htD’A with ,%bA(htD’A) = fz? and u=T—t, N,=N. This
concludes the proof.

B5.  Proof of Proposition 4 (Investor-Preferred Equilibrium)

Finding an equilibrium that maximizes the sum of investor surplus is a complex
problem since each investor’s decision has externalities both on past investors who
have pledged already and future investors. For a sufficiently small period length A,
we separately construct a PT equilibrium yielding higher investor surplus than the
success-maximizing equilibrium and one yielding higher surplus than the success-
minimizing equilibrium.

We start with the construction of a PT equilibrium with higher investor surplus
than the success-minimizing equilibrium for a general contribution game. First,
note that if the realized donor valuation was known to be w € [G —2p, G — p), then
the campaign would require exactly two investor pledges to succeed. Since the sec-
ond investor can always lead the campaign to succeed, the first investor pledges if
and only if (v — p) (1 —(1—AN¥ A) = 1. Conditional on such a W, investor surplus
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is maximized if the first investor pledges if

(1—AQ)W/A v
(V_p)(l_(l_AA)u/A)—Vo‘i‘ (U—p— vo)lu >0 & W <l-— v—p’
prob. of at least externality on
one more arrival future investors

because the expected number of arrivals time u is x AA. Denote i to be the smallest
u € U such that the above inequality is satisfied, i.e., the inequality is equivalent to

— u/A -
u > il (noting that a ﬁ;)u is decreasing in u). Note that & ZA(G —2p) > i because

EXG —2p) solves (v —p)(1—(1—AL)“/A) = vy. We define a donation threshold BGA
as follows:

. BS(N, u):= EA(N, u)for N > 0, and for N =0 with u €]0, ﬂ)U[EZA(G—ZP), 00),

. 5?(0, u) ::EA(O, u)—e=G—p—efor ueli,E5(G—2p)).

Consider a sufficiently small A > 0. Then, the PT assessment with donation thresh-
old Eﬁ(N , u) for small € > 0 still defines an equilibrium: All investors’ incentives to
pledge except the incentives of a first investor arriving at u € [12, 3 MG—2 p)) do not
change. If the first investor arrives at u € [11, 13 ZA(G —2 p)) and the donor has wealth
W > G—p—e, then the donor can contribute G—p—€ = 5?(0, u)—e and incentivize

the investor to pledge. Indeed, the probability of success is simply a truncation of F;
at G —p —e€, which is close to 1 for small €, so

e u/A _ u/A 1—-FK(G—p)
(1-(1—AN“2)+(1—AN) l—FO(G—p—e)ZUO'

If the donor has valuation W < G—p—e¢, then the first investor does not want to con-
tribute, as she knows that W < G — p, by definition of £5(G — p) > £2(G —2p). Fur-
thermore, by definition of i, this PT equilibrium makes investors collectively better
off.

Next, we construct a PT equilibrium with higher investor surplus than the success-
maximizing equilibrium. We define a donation threshold Qﬁ s forsmalle >0,6>A
as follows:

. Qéé(N, u):=D?(N, u) for N >0 and (N, u)=(0, u) with u > &, and

¢ Q?,a(o’ u):=D?(0,u)+€for u<é.

This defines a PT equilibrium because the incentive to pledge changes only if the first
investor arrives in [0, §) and if the donor valuation is in W € [D?(0, u), D?(0, u) + €).
The probability of success in the success-maximizing equilibrium satisfies

1Y
72(0, D20, u), u)= ——,
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so if investors knew W € [D?(0, u), D?(0, u) + €), then the probability of success
would be smaller than Ui—"p for sufficiently small €, so it is optimal for the investor not

to pledge. If W > D?(0, u) + €, the donor can keep incentivizing investors to pledge
in states (0, u), u < 0. Furthermore, the equilibrium outcome of this PT equilib-
rium yields higher investor surplus than the success-maximizing equilibrium, since
if W € [D?(0, u), D*(0, u)+€), N =0 and u < &, then contributing creates collective
investor surplus of less than

(V_p)(l_(l—A)L)5/A)+(U_p)x5 E (U_p)(l_eflb'_'_)“s)

and not contributing a surplus of (1 + A6). Hence, for 6 sufficiently small (and A
sufficiently small), there is a PT equilibrium with higher investor surplus than the
surplus-maximizing equilibrium.

B6. Alternative Campaign Designs

Recall the relaxed problem in the optimality proof of Proposition 1. The control
variables are simply probabilities of reaching reduced histories given realized w that
ignore donation amounts and donor incentives. The objective is to maximize the
probability of success subject to investor participation. As a result, this relaxed prob-
lem can also be viewed as a constrained information or mechanism design problem
that maximizes the probability of success.

Formally, let an allocation be a sequence (a,);c €[0, 1 ]TA that determines whether
a period-t investor (if she arrives) takes the outside option (a, = 0) or stays in the
game (a, = 1), and a variable a that determines whether the project is successful.
An allocation is feasible if, given the realized arrival process A;, @ =1 & > (A, —
A;_A)a;p+Dr>G.

Let us first assume that the mechanism designer knows the donor’s type. Given her
beliefs, an investor in period ¢ can decide whether to participate in the mechanism
or not. Additionally, beliefs are formed based on the chosen probabilities of reaching
reduced histories. Note that we cannot allow for transfers between investors. Then,
it follows that the relaxed problem in the proof of Proposition 1 corresponds to an
information design problem where the designer chooses an optimal dynamic sig-
nal structure representing the information released about W over time. This shows
that, for example, revealing the donor’s valuation prior to the campaign is not profit-
maximizing.

Alternatively, we can consider a mechanism design problem, assuming that the
donor’s valuation is private information. Consider direct mechanisms where the
donor sends a message m € [0, ©0) about his type. An investor in period ¢ can decide
whether to participate in the mechanism or not. Then, a direct, donor-incentivizing
mechanism is given by a message strategy of the donor, a participation strategy of
investors, an allocation mapping that maps messages and participation decisions
to feasible allocations, and a donor transfer D € [0, c0). Again, we cannot allow for
transfers between investors. Then, it follows that the relaxed problem in the proof
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of Proposition 1 is a relaxed problem of the mechanism design problem that finds
the success-maximizing, donor-incentivizing mechanism. This shows that, for ex-
ample, allowing the donor to donate only before or after the crowdfunding stage is
not profit-maximizing.

ADDITIONAL PROOFS AND EXAMPLES

Cl. ProofofLemma 6

(a) Induction start (j <1< D > G—(N+1)p): For j <1 and x= (N, D, u) with
M(D)—N <1, itisimmediate that the pointwise limits in (B8) exist and are given by

b(x):= gmobA(N,D,[%]A) =1 Dilxw):= E%DE(N,D,[%]A; w)=D
0

F(w;x)::gin@FA(w;(N,D,['Ai]A)): Fy )_("g()D)n(w >D),

where [%]A is the smallest multiple of A that is larger than u. Further, n(x) :=
Er%nA(N,D,[%]A) =1 uniformlyin D > G—(N +1)p and u.

(b) Induction hypothesis (j —1): We assume that the pointwise limits (B8) exist for
allx =(N,D,u)with N > M(D)—(j—1)and j’ < j—1, where for w < G —p,
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nM(w)—j' w,&j(w)=

Further, assume that the pointwise limit D(N, u) := Er% DA(N, [%]A) exists for u <

&jm(G—=(N+j—1p). If n(N,0, u) < 32, then D is strictly decreasing in N and u,

v—p’
and
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v—p
Further, the uniform limitin D > 