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PROOFS

B1. General properties of PT assessments and PT equilibria

PROPERTIES OF PT ASSESSMENTS

In this section, we present some properties of PT assessments and the induced
probability of success π∆(N , D , u ) that we will use for the construction of PT equi-
libria.

Lemma 1. Consider a PT assessment with donation threshold D∆
∗ (N , u ). If the cam-

paign reaches a state (N , D , u ) with D <D∆
∗ (N , u +∆), it has failed with probability

one.

Proof. Assume that a state (Nt , Dt , T − (t +∆)) with Dt < D∆
∗ (Nt , T − t ) is reached.

Then Dt =w , because the donor is playing a PT strategy and w <D∆
∗ (Nt , T −t ′) for all

t ′ ≥ t by Condition i) in Definition 2 of PT assessments. Thus, Nt ′ =Nt for all t ′ > t ,
given the investor strategy in Equation PT-investor. All in all, (Nt ′ , Dt ′ ) = (Nt , w ) for
all t ′ > t , where Nt p +w < Nt p +D∆

∗ (Nt , T − t ) < Nt p +G − (Nt + 1)p < G . This
concludes the proof. ■

Lemma 1 implies that beliefs in a PT assessment are consistent and that the in-
duced probability of success π∆ can be written in a recursive manner, as we show in
Lemma 2. We also derive some other properties of π∆. For the proof, we use that for
a PT assessment, cumulative donations at time t must satisfy

Dt =max
t ′≤t

min{D∆
∗ (Nt ′ , T − t ′), w }.(B1)

Lemma 2. A PT assessment (b∆, D∆
+ , F ∆)with donation threshold D∆

∗ (N , u ) satisfies
the following properties:

i) Beliefs F ∆ are consistent with the strategies b∆, D∆
+ ;

ii) The induced probability π∆(N , D , u ) satisfies the following:

• N +1≥M (D ) if and only if π∆(N , D , u ) = 1;

• If N +1<M (D ) and D ≥D∆
∗ (N , u +∆), then π∆(N , D , 0) = 1−F0(G−p (N+1))

1−F0(D )
,



2 THE AMERICAN ECONOMIC REVIEW

and for u > 0,

π∆(N , D , u ) = EF0

� u
∆
∑

i=1
(1−∆λ)i−1∆λ

π∆
�

N +1, max
�

D , D∆
∗
�

N +1, u − (i −1)∆
�	

, u − i∆
�

1
�

W ≥D∆
∗
�

N +1, u − (i −1)∆
�

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�

�W ≥D

�

;

• If N +1<M (D ) and D <D∆
∗ (N , u +∆), π∆(N , D , 0) = 0, and for u > 0,

(B2)
π∆(N , D , u ) =P(D ≥ max

N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N )),

where τu
n is the time of the n-th arrival after time t = T −u.16

iii) π∆(N , D , u ) is continuous and strictly increasing in D for G − (N + 1)p ≥ D ≥
D∆
∗ (N , u +∆), and π∆(N , D , u ) is weakly increasing in D otherwise;

iv) π∆(N , D , u )≤π∆(N +1, D , u −∆)≤π∆(N +1, D , u ), and π∆(N , D , u ) is strictly
increasing in N , u, if 0<π∆(N , D , u )< 1.

Proof. i) Consider an investor in an on-path state (N , D , u ). By (B1) this state is
reached with zero probability by donors with w <D , and if D <D∆

∗ (N , u +∆), then
D =w . Further, if D ≥D∆

∗ (N , u +∆), any donor with w ≥D must have followed the
same donation strategy on any equilibrium path history that led to (N , D , u ). Hence,
by Bayes’ rule, the distribution of donor types in state (N , D , u ) is a truncation of F0

at D .

ii) For N +1≥M (D ), π∆(N , D , u ) = 1 as the goal is reached if the (N +1)th investor
pledges. For N +1<M (D ), absent additional donations, at least one more investor
must arrive for the project to reach the goal G after the (N + 1)th investor pledges,
because D∆

∗ (N , u )<G−(N +1)p , soπ∆(N , D , u )< 1. The probability of success must

satisfy the following recursive property: First,π∆(N , D , 0) = 1−F0(G−(N+1)p )
1−F0(D )

1(D ≥D∆
∗ (N ,∆)),

16Note thatπ∆(N , D , u ) is defined even if the corresponding purchase is not consistent with the investor strategy.
If D <D∆∗ (N , u +∆) and the investor pledges, this deviation is not observed by an investor in period u ′ < u . Thus,
she pledges if D ≥D∆∗ (N +1, u ′ +∆). The probability is with respect to the random arrival time τu

N ′−N .
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given F ∆ defined in Equation PT-belief. For u > 0 and D ≥D∆
∗ (N , u +∆),

π∆(N , D , u ) =

EF0

� u
∆
∑

i=1
(1−∆λ)i−1∆λ
︸ ︷︷ ︸

next investor arrives
at u − i∆

π∆
�

N +1, max{D , D∆
∗ (N +1, u − (i −1)∆)}, u − i∆

�

︸ ︷︷ ︸

probability of success if the N +2nd investor pledges

1
�

W ≥D∆
∗ (N +1, u − (i −1)∆)

�

︸ ︷︷ ︸

wealth exceeds donation threshold

+(1−∆λ)u/∆
︸ ︷︷ ︸

no investor

1(W ≥G − (N +1)p )
�

� W ≥D
︸ ︷︷ ︸

beliefs are
truncation of

F0 at D

�

,

because by Lemma 1 the campaign fails with probability one if W < D∆
∗ (N + 1, u −

(i −1)∆).
For D < D∆

∗ (N , u +∆), the investor believes that W = D with probability one.
Hence, in the last period (u = 0), the campaign cannot succeed, since D∆

∗ (N , u+∆)<
G − (N + 1)p even if the N + 1th investor pledges. If u > 0 and the N + 1th investor
pledges, then a subsequent investor arriving in state (N ′, D , u ′)with N ′ ≥N +1 and
u ′ < u pledges if D ≥D∆

∗ (N
′, u ′+∆).

iii) We first show that π∆(N , D , u ) is strictly increasing and continuous in D for
D∆
∗ (N , u +∆)≤D ≤G − (N +1)p by induction in u .

Induction start (u = 0): π∆(N , D , 0) = 1−F0(G−(N+1)p )
1−F0(D )

1(D ≥ D∆
∗ (N ,∆)) is continuous

and strictly increasing in D for D∆
∗ (N ,∆)≤D ≤G − (N +1)p .

Induction hypothesis for u : π∆(N , D , u ) is continuous and strictly increasing in D
for D∆

∗ (N , u +∆)≤D ≤G − (N +1)p .
Induction step (u⇝ u +∆): For D∆

∗ (N , u +2∆)≤D ≤G − (N +1)p we have by ii)

π∆(N , D , u +∆) =
u+∆
∆
∑

i=1
(1−∆λ)i−1∆λπ∆

�

N +1, max{D , D∆
∗ (N +1, u +∆− (i −1)∆)}, u +∆− i∆

�

·

1− F0(max{D , D∆
∗ (N +1, u +∆− (i −1)∆)})
1− F0(D )

+ (1−∆λ)u/∆
1− F0(G − (N +1)p )

1− F0(D )
,

which is continuous in D by the induction hypothesis because D∆
∗ (N +1, u+∆−(i −

1)∆)≤max{D , D∆
∗ (N +1, u+∆− (i −1)∆)} ≤G − (N +1)p and also strictly increasing

because
1−F0(max{D ,D∆∗ (N+1,u+∆−(i−1)∆)})

1−F0(D )
is equal to 1 if D ≥D∆

∗ (N +1, u +∆− (i −1)∆)
and 1

1−F0(D )
is strictly increasing in D .

Finally, if D >G − (N +1)p , then π∆(N , D , u ) = 1, and if D <D∆
∗ (N , u +∆), then it

follows that π∆(N , D , u ) is weakly increasing in D directly from (B2).
iv) By Condition i) in Definition 2 of PT assessments, D∆

∗ (N , u )≥D∆
∗ (N +1, u−∆)≥

D∆
∗ (N + 1, u ). Hence, a donor w , who can incentivize the next investor to pledge in

a state (N , D , u ), can incentivize the next investor to pledge in state (N +1, D , u −∆)
in the next period. Thus, more future investors are incentivized to pledge after state
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(N +1, D , u−∆) than after (N , D , u ), soπ∆(N +1, D , u−∆)≥π∆(N , D , u ). Similarly, a
donor w , who can incentivize the next investor to pledge in a state (N +1, D , u −∆),
can incentivize the next investor to pledge in state (N +1, D , u ) in the period before.
Thus, more future investors are incentivized to pledge after state (N + 1, D , u ) than
after (N +1, D , u −∆), so π∆(N +1, D , u )≥π∆(N +1, D , u −∆).

Next, we show by induction in N that if 0<π∆(N , D , u )< 1, thenπ∆(N +1, D , u )>
π∆(N , D , u ). To this end, note that for N + 1 <M (D ) and D ≥D∆

∗ (N , u +∆) we can
write by ii) for u > 0

π∆(N , D , u ) = E
��

∆λπ∆
�

N +1, max{D , D∆
∗ (N +1, u )}, u −∆

�

+

(1−∆λ)π∆(N , max{D , D∆
∗ (N +1, u )}, u −∆)

�

1
�

W ≥D∆
∗ (N +1, u )

�

�

�

�W ≥D
�

because if no investor arrives in period u −∆, then the probability of success is the
same as if the investor in period u arrived a period later but with a new donation
threshold, i.e., it is π∆(N , max{D , D∆

∗ (N +1, u )}, u −∆).
Induction start (N =M (D )−1): π∆(N +1, D , u ) = 1>π∆(N , D , u ).
Induction hypothesis for N < M (D )− 1: Assume π∆(N + 1, D , u ) > π∆(N , D , u ) if
0<π∆(N , D , u )< 1.
Induction step (N ⇝N −1): Let 0<π∆(N −1, D , u )< 1. If D ≥D∆

∗ (N , u +∆), then

(B3)

π∆(N , D , u ) =E
��

∆λ π∆
�

N +1, max{D , D∆
∗ (N +1, u )}, u −∆

�

︸ ︷︷ ︸

>π∆(N , D , u −∆) by induction hypothesis
and monotonicity in D

+

(1−∆λ)π∆(N , max{D , D∆
∗ (N , u )}, u −∆)

︸ ︷︷ ︸

>π∆(N , D , u −∆)
by monotonicity in D

�

1
�

W ≥D∆
∗ (N +1, u )

�

�

�

�W ≥D
�

>π∆(N , D , u −∆)P(W ≥D∆
∗ (N +1, u )

︸ ︷︷ ︸

<D∆
∗ (N , u )

|W ≥D )≥π∆(N −1, D , u )

because P(W ≥ D∆
∗ (N , u )|W ≥ D ) = 1 for D ≥ D∆

∗ (N , u ). If D < D∆
∗ (N , u +∆), then

for π∆(N −1, D , u )> 0,

π∆(N , D , u ) =P(D ≥ max
N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N ))

︸ ︷︷ ︸

< max
N−1<N ′≤M (D )
τu

N ′−N+1
<T

D∆
∗ (N

′, T −τu
N ′−N+1)

>π∆(N −1, D , u ).

Finally, we consider strict monotonicity in u . Consider N + 1 < M (D ). If D ≥
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D∆
∗ (N , u +∆), then (B3) implies π∆(N , D , u ) > π∆(N , D , u −∆), where we use the

strict monotonicity ofπ∆ in N . If D <D∆
∗ (N , u+∆), then since τu−∆

N ′−N and τu
N ′−N +1

are equally distributed by the Markov property, and since D∆
∗ (N , u ) is decreasing u

for D∆
∗ (N , u )> 0,

P(D ≥ max
N<N ′≤M (D )
τu−∆

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N ))>P(D ≥ max

N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu−∆
N ′−N )).

Hence, π∆(N , D , u )>π∆(N , D , u −∆) as long as π∆(N , D , u ) ∈ (0, 1). ■

For the construction of the donation thresholds, it is useful to consider the aux-
iliary probability of success in a state (N , D , u ) if the investor believed that donor
wealth was distributed according to F0 truncated at D for all D :

(B4)

π̃∆(N , D , u ) :=
u
∆
∑

i=1
(1−∆λ)i−1∆λ

1− F0(max{D , D∆
∗ (N +1, u − (i −1)∆)})

1− F0(D )
π∆

�

N +1, max{D , D∆
∗ (N +1, u − (i −1)∆)}, u − i∆

�

+(1−∆λ)u/∆
1− F0(G − (N +1)p )

1− F0(D )
.

The following is a corollary of Lemma 2. We use it in the proof of Proposition 1 to
define the donation threshold D (N , u ).

Corollary 1. The auxiliary probability of success π̃∆(N , D , u ) is continuous and (strictly)
increasing in D (as long as π̃∆(N , D , u ) ∈ (0, 1)).

Finally, Lemma 3 shows that the donor strategy specified in any PT assessment is
a best response to the specified investor strategy.

Lemma 3. For any PT assessment with donation threshold D∆
∗ (N , u ), the donor PT

strategy is a best response to the investor strategy.

Proof. We argue by backwards induction in t .
Induction start (t = T ): First, consider histories in the last period h D ,∆

T with cu-
mulative contributions NT and DT−∆. Ignoring the constraint imposed by previous
donations, the donor would want to donate min{w ,G −NT p}, because he would
want to give just enough for the campaign to succeed without exceeding his valu-
ation. However, the donor cannot take out funds. Thus, a cumulative donation of
max{DT−∆, min{w ,G −NT p}} is a best response. Hence, in all histories that corre-
spond to a state (N , D , 0), a Markov strategy of D̃∆

+ (h
D ,∆
T ; w ) =D∆

+ (NT , DT−∆, 0; w ) =
max{DT−∆, min{w ,G −NT p}} is optimal.
Induction hypothesis for s ≥ t : Next, we assume that for all s ≥ t and all h D ,∆

s with
corresponding cumulative contributions Ns and Ds−∆, the donor payoff is maxi-
mized by D̃∆

+ (h
D ,∆
s ; w ) =D∆

+ (Ns , Ds−∆, T −s ; w ) =max{Ds−∆, min{w , D∆
∗ (Ns , T −s )}}.

Induction step (t ⇝ t −∆): Consider an arbitrary donor strategy D̃∆
+ where for

all s ≥ t , D̃∆
+ (h

D ,∆
s ; w ) = D∆

+ (Ns , Ds−∆, T − s ; w ) = max{Ds−∆, min{w , D∆
∗ (Ns , T −
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s )}}. Consider an on-path history h D ,∆
t−∆ with corresponding cumulative contribu-

tions Nt−∆, Dt−2∆ and a donor valuation w ≥max{Dt−2∆, D∆
∗ (Nt−∆, T −(t −∆))} such

that

D̃∆
+

�

h D ,∆
t−∆ ; w

�

<D∆
∗ (Nt−∆, T − (t −∆)).

According to the PT assessment, if an investor arrives in period t , the investor does
not pledge. Since D∆

∗ (Nt−∆, T − (t −∆)) < D∆
∗ (Nt−∆, u ) for all u < T − (t −∆), the

donor needs to donate at least D∆
∗ (Nt−∆, T − (t −∆)) in order to make a future in-

vestor pledge and to prevent the campaign from failing. Furthermore, D∆
∗ (Nt−∆, u )>

D∆
∗ (N

′, u ) for all N ′ >Nt−∆. Hence, a donor with valuation w is strictly better off by

donating D∆
∗ (Nt−∆, T −(t −∆)) after history h D ,∆

t−∆ , so an optimal donor strategy must
be to give at least D∆

∗ (Nt−∆, T −(t −∆)). Similarly, monotonicity of D∆
∗ in N , u implies

that it cannot be optimal that the donor gives more than max{Dt−2∆, D∆
∗ (Nt−∆, T −

(t −∆))}. If w < max{Dt−2∆, D∆
∗ (Nt−∆, T − (t −∆))}, the campaign succeeds with

probability zero, because cumulative donations are below w . Thus, a best-response
donor strategy is given by

D̃∆
+

�

h D ,∆
t−∆ ; w

�

=max{Dt−2∆, min{w , D∆
∗ (Nt−∆, T − (t −∆))}}.

■

PROPERTIES OF PT EQUILIBRIA

Recall that a PT equilibrium is a PT assessment (b∆, D∆
+ , F ∆) such that given the in-

duced probability of success π∆(x), we have buyer optimality: π(x)> v0
v−p ⇒ b∆(x) =

1 and π(x) < v0
v−p ⇒ b∆(x) = 0. Donor optimality is guaranteed automatically by

Lemma 3. The buyer optimality condition allows us to define cutoff times ξ∆j (w ) as

in Equation CT for each j , w , with j ≤M (w ). We can show that ξ∆j (w ) is monotone
in j .

Lemma 4. In any PT equilibrium, the cutoff time ξ∆j (w ) is strictly increasing in j .

Proof. By Lemma 2 iv), we have for j ′ > j that if π∆(M (w )− j ′, w , u ) ≥ v0
v−p , then

π∆(M (w )− j , w , u −∆)≥π∆(M (w )− j ′, w , u )≥ v0
v−p , so

π∆(M (w )− j , w ,ξ∆j ′ (w )−∆)≥π
∆(M (w )− j ′, w ,ξ∆j ′ (w ))≥

v0

v −p
.

Hence, ξ∆j (w )≤ ξ
∆
j ′ (w )−∆<ξ

∆
j ′ (w ). ■

As a result, in a PT equilibrium, after ξ∆j (w ) is reached, no buyer pledges, i.e.,

(B5)

�

π∆
�

M (w )− j , w , u
�

≥ v0
v−p for u ≥ ξ∆j (w )

π∆
�

M (w )− j , w , u
�

< v0
v−p for u <ξ∆j (w )
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ξ∆j (w ) > ξ
∆
j ′ (w ) for any j > j ′ if ξ∆j (w ) > 0. Furthermore, w ≥ D∆

∗ (N , u +∆)⇔ u ≥
ξ∆M (w )−N (w ). This allows us to rewrite the probability of success in a different way.
For N <M (D )−1 and u > 0, the probability of success is given by

(B6)

π∆(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆
�

N +1, max{D , D∆
∗ (N +1, u −∆(i −1))}, u −∆i

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�

�W ≥D

�

if D ≥D∆
∗ (N , u +∆). If D <D∆

∗ (N , u +∆), π∆(N , D , u )< v0
v−p .

B2. Proof of Proposition 1 (Success-Maximizing Equilibrium)

In Subsection B.B2, we first construct a PT equilibrium. Subsection B.B2 states
that the limit of these equilibria as∆→ 0 exists and is as specified in Proposition 1.
The limit is formally derived in the Online Appendix. Finally, in Subsection B.B2, we
show that for any ∆ > 0, the constructed equilibrium maximizes the probability of
success and that the outcomes of any sequence of success-maximizing PBE converge
to the same limit.

CONSTRUCTION OF A PT EQUILIBRIUM

The following lemma specifies a PT equilibrium with a donation threshold that
makes the next investor just indifferent between pledging and not.

Lemma 5 (Success-maximizing equilibrium). Given any∆> 0, there exists a PT equi-
librium (b∆, D∆

+ , F ∆) with donation threshold D∆(N , u ) and induced probability of
success π∆(x), x ∈X∆ such that for u > 0

�

D∆(N , u ) = 0 if π∆(N , 0, u −∆)> v0
v−p ,

π∆
�

N , D∆(N , u ), u −∆
�

= v0
v−p if π∆(N , 0, u −∆)≤ v0

v−p .

We denote by π(N , D , u ) the corresponding probability of success from the in-
vestor’s perspective in state (N , D , u ) if the investor contributes.

Proof. We construct the equilibrium strategies and beliefs for every state (N , D , u )
by induction in j = M (D )−N . In order to define the donation threshold D (N , u )
such that investors are indifferent between pledging and not, we need to know the
probability of success π∆(N , D , u ) induced by the assessment for arbitrary D . We
tackle this issue by constructing a sequence of PT assessments (b∆j , D∆

+, j , F ∆j ) for j =
1, . . . , M0 = M (0) such that (b∆M0

, D∆
+,M0

, F ∆M0
) is a PBE and satisfies the properties in

Lemma 5. We start with an arbitrary PT assessment (b∆1 , D∆
+,1, F ∆1 ). The induction

hypothesis assumes that for each 1≤ j ′ ≤ j−1 there is a PT assessment (b∆j ′ , D∆
+, j ′ , F ∆j ′ )
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Table B1—: List of Notation

Notation Description
(b∆j , D∆

+, j , F ∆j ) assessment in the j -th induction step
ξ∆j (w ) time threshold defined for all w in the j -th induction step
D∆
∗, j (N , u ) donation threshold corresponding to (b∆j , D∆

+, j , F ∆j )
D∆(N , u ) donation threshold that is defined inductively for N =M0− j , and

N <M0− j and u ≤ ξ∆j (G − (N + j )p )

such that in states (N , D , u ) with M (D )−N ≤ j ′ investor strategies are optimal, i.e.,
in the continuation games after such states, the assessment specifies a PBE. Donor
strategies are automatically optimal in a PT assessment, by Lemma 3. Then, in the
induction step j − 1⇝ j , we construct a PT assessment (b∆j , D∆

+, j , F ∆j ) such that for
states (N , D , u )with M (D )−N ≤ j , investor strategies are optimal, and

b∆j (N , D , u ) = b∆j−1(N , D , u ),
D∆
+, j (N , D , u ) =D∆

+, j−1(N , D , u ),
F ∆j (N , D , u ) = F ∆j−1(N , D , u ),







for all states (N , D , u )with M (D )−N ≤ j −1,

which implies that for the corresponding probabilities of success we have

π∆j (N , D , u ) =π∆j−1(N , D , u ) for M (D )−N ≤ j −1.

Figure B1 depicts pairs of (N , D ) such that j =M (D )−N for j = 0, 2, 3 and the shaded
region including the orange line captures all j ≤ 1, which is our induction start for
the equilibrium construction. The induction ends at j =M0, when the entire state
space is covered. Importantly, if the game is in state (N , D , u ), then N and D increase
only in the continuation game, i.e., j is decreasing over time.

While we denote by D∆
∗, j (N , u ) the donation threshold corresponding to (b∆j , D∆

+, j , F ∆j ),
we also construct ξ∆j (·) and parts of the threshold function D∆(N , u ) in each step. In

particular, in step j , we define D∆(N , u ) for (N , u ) such that N =M0− j , or such that
N <M0− j and u ≤ ξ∆j (G −(N + j )p ). After the last step ( j =M0), D∆(N , u ) is defined

for all N and u and D∆(N , u ) = D∆
∗,M0
(N , u ). Figure B2 illustrates this construction

schematically. For a cleaner illustration that avoids drawing step functions, we as-
sume∆→ 0 in this figure.

Finally, Table B1 summarizes the relevant notation.

(a) Induction start ( j ≤ 1⇔D ≥G − (N + 1)p ): We set (b∆1 , D∆
+,1, F ∆1 ) to be an arbi-

trary PT assessment (which trivially exists). Further, for j ≤ 1, we set ξ∆j (w ) := 0 for
all w , which is consistent with Equation CT. We also set D (N , u ) := 0 for N ≥M0−1.
Finally, consider states (N , D , u ) with M (D )−N ≤ 1. The probability of success is
π∆1 (N , D , u ) = 1, so it is a best response for investors to pledge. Trivially, π∆1 (N , D , u )
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Figure B1. : Schematic illustration of induction in j =M (D )−N

0
D

N

p 2p 3p G− 2p G− p G

M0

M0 − 1

M0 − 2

M0 − 3

M0 − 4

j = 0
j ≤ 1
j = 2
j = 3

Note: The figure depicts pairs of (N , D ) such that j = M (D )−N for j = 0, j ≤ 1, j = 2, j = 3. The induction start
considers states j ≤ 1, and each j > 1 corresponds to one induction step.

is weakly increasing in N , D , u for D ≥G − (N +1)p .

(b) Induction hypothesis ( j ′ ≤ j − 1): For the induction hypothesis, we suppose
that we have constructed PT assessments (b∆j ′ , D∆

+, j ′ , F ∆j ′ ) with a donation threshold

D∆
∗, j ′ (N , u ) for j ′ = 1, . . . , j −1 with the following properties:

i) Time threshold ξ∆j ′ (w ): For w < G − ( j ′ − 1)p , we define ξ∆j ′ (w ) by (B5). For

w ≥G − ( j ′−1)p , we set ξ∆j ′ (w ) = 0. ξ∆j ′ (w )>ξ
∆
j ′−1(w ) if ξ∆j ′ (w )> 0.

ii) Donation threshold D∆(N , u ): Donation threshold D∆(N , u ) is defined for (N , u )
such that either N ≥M0− ( j −1) or N <M0− ( j −1) and u ≤ ξ∆j−1(G − (N + j −1)p ).
For (N , u )with N ≤M0− j ′ and u ≤ ξ∆j ′ (G − (N + j ′)p ),

(B7) π∆j−1

�

N , D∆(N , u ), u −∆
�

=
v0

v −p
.
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Figure B2. : Schematic illustration of construction of D∆(N , u ) and ξ j (D ) (for small
∆)

0
ξ
2 (D

)

ξ
3 (D

)

ξ
4 (D

)

ξ
5 (D

)
D(M

0 − 5, u)

D(M
0 − 4, u)

D(M
0 − 3, u)

D(M
0 − 2, u)

u

D

ξ2(0) ξ3(0) ξ4(0) ξ5(0)

G− (M0 − 1)p

G− (M0 − 2)p

G− (M0 − 3)p

G− (M0 − 4)p

j = 2
j = 3
j = 4
j = 5

Note: The figure depicts the donation thresholds D (M0 − j , u ) as a function of u in the limit ∆→ 0. In step j , the
portion between ξ j−1(G − (N + j −1)p ) and ξ j (G − (N + j )p ) of each D (N , u ) is constructed.

Note that in that case, D∆(N , u )<G−(N+1)p . For N =M0− j ′, u >ξ∆j ′ (0), D∆(N , u ) =
0. D∆(N , u ) is strictly decreasing in N , u when it satisfies (B7).

In Figure B3, the blue step functions represent the portion of D∆ at N and N + 1
that are defined in the induction hypothesis, and black dotted lines show the corre-
sponding ξ∆j−1

�

G − (N + j −1)
�

and ξ∆j−1

�

G − (N +1+ j −1)p
�

= ξ∆j−1

�

G − (N + j )p
�

.

iii) PT assessment: Here (b∆j ′ , D∆
+, j ′ , F ∆j ′ )are PT assessments (as in Definition 2) with

donation thresholds D∆
∗, j ′ (N , u ) satisfying

D∆
∗, j ′ (N , u ) =D∆(N , u ) for u ≤ ξ∆j ′ (G − (N + j ′)p ), and

for N =M0− j ′, u >ξ∆j ′ (0).

iv) Probability of success: For all N ≥M (D )− j ′, π∆j ′ (N , D , u ) satisfies (B6) if D ≥
D∆
∗, j ′ (N , u +∆) and π∆j ′ (N , D , u )< v0

v−p if D <D∆
∗, j ′ (N , u +∆).
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Figure B3. : Schematic illustration of construction of D∆(N , u ) for N and N +1

0 u

D

ξ∆
j−1

(
G− (N + j)p

)

ξ∆
j−1

(
G− (N + j − 1)p

)ξ∆
j

(
G− (N + 1 + j)p

)
ξ∆
j

(
G− (N + j)p

)

G− (N + 1 + j)p

G− (N + j)p

G− (N + j − 1)p

D∆(N + 1, u)

D∆(N, u)

π∆
j−1(N + 1, D, u) ≥ v0

v−p

0 ∆ 2∆

Note: The figure depicts the donation thresholds for cumulative purchases N and N +1 with N <M0− j . In step j−1
only the blue portion of D∆ is constructed, while in step j the orange portion is added. For example, we construct
D∆(N + 1, u ) for u ≤ ξ∆j−1(G − (N + 1+ j − 1)p ) in step j − 1 and extend it to u ≤ ξ∆j−1(G − (N + 1+ j )p ) in step j .

With D ≥G − (N + j )p , and N +1 purchases, the campaign is active until ξ∆j−1

�

G − (N + j )p
�

+∆ or longer, even if no

additional donations are being made (shaded area). For such states, strategies of the assessment (b∆j−1, D∆+, j−1, F ∆j−1)

are not optimal and π∆j−1 might not be increasing and continuous in D . We only assume π∆j−1 ≥ 0. Hence, the

donation threshold cannot be constructed for (N +1, u )with u >ξ∆j−1(G − (N + j )p ) in step j −1.

Note that by monotonicity of π∆j ′ (N , D , u ) in N , u (Lemma 2 iii),

π∆j ′ (N , D , u )≥
v0

v −p
for u >ξ∆j ′ (G − (N + j ′)p ), D ≥G − (N + j ′)p .

This is illustrated in Figure B3 in the shaded area. Similarly, it implies that u ≤
ξ∆j ′ (D )⇔D <D∆

∗, j ′ (M (D )− j ′, u +∆) =D∆(M (D )− j ′, u +∆).

v) Best response: For the PT assessments (b∆j ′ , D∆
+, j ′ , F ∆j ′ ), investors best respond by
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pledging if and only if D ≥D∆
∗, j ′ (N , u +∆) in states all (N , D , u )with N ≥M (D )− j .

(c) Induction step ( j − 1 ⇝ j , j ≥ 2): In this step, we assume the induction hy-
pothesis (b) is true and construct a PT assessment (b∆j , D∆

+, j , F ∆j ) such that the same
statements are true for states (N , D , u ) with N =M (D )− j , i.e., G − (N + j )p ≤ D <
G −

�

N + ( j −1)
�

p .

i) Time threshold ξ∆j (w ): First, note that for w ≥G − (N + j )p , there is a j ′ ≤ j −1

such that M (w )− j ′ =N +1. Then, we know by the induction hypothesis that















for u ′ <ξ∆j ′ (w ) : w <D∆
∗, j−1(N +1, u ′) =D∆(N +1, u ′)

for ξ∆j ′ (w )≤ u ′ ≤ ξ∆j−1

�

G − (N + j )p
�

: w ≥D∆(N +1, u ′) =D∆
∗, j−1(N +1, u ′)

for u ′ >ξ∆j−1

�

G − (N + j )p
�

w ≥D∆
�

N +1,ξ∆j−1

�

G − (N + j )p
�

�

>D∆
∗, j−1(N +1, u ′)

Hence, w ≥ D∆
∗, j−1(N + 1, u ′)⇔ u ′ ≥ ξ∆j ′ (w ). Therefore, letting π̃∆j−1(N , D , u ) be the

auxiliary probability corresponding to the assessment (b∆j−1, D∆
+, j−1, F ∆j−1) as defined

in Equation B4, we can write

π̃∆j−1(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆j−1

�

N +1, max{D , D∆
∗, j−1(N +1, u −∆(i −1))}, u −∆i

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D

�

.

Next, note that the above also implies that for u− i∆<ξ∆j−1(D ), then D <D∆
∗, j−1(N +

1, u − (i − 1)∆) = D∆(N + 1, u − (i − 1)∆) and for u − i∆ ≥ ξ∆j−1(D ), D ≥ D∆
∗, j−1(N +

1, u − (i −1)∆). Hence, for j =M (D )−N

π̃∆j−1(N , D , u ) =EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

�

π∆j−1

�

N +1, D , u −∆i
�

1
�

u −∆i ≥ ξ∆j−1(D )
�

+ v0
v−p 1

�

u −∆i <ξ∆j−1(D )
�

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D

�

.

This expression depends only on ξ∆j ′ (·), j ′ ≤ j − 1, and π∆j−1(N + 1, D , u ′), where
M (D )−(N+1)≤ j−1, which are defined in the induction hypothesis. Sinceπ j−1(N , D , u )
is strictly increasing in u and π∆j−1

�

N + 1, D , u −∆i
�

≥ v0
v−p for u −∆i ≥ ξ∆j−1(D ),

π̃ j−1(N , D , u )< 1 is strictly increasing in u . Hence, for any j ≤M (D ) there is a unique

ξ∆j (D ) = arg min
§

u |π̃∆j−1

�

M (D )− j , D , u
�

≥
v0

v −p

ª

.
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Recall thatπ∆j−1

�

M (D )−( j−1), D , u
�

= π̃∆j−1

�

M (D )−( j−1), D , u
�

for D ≥D∆
∗, j−1(M (D )−

( j −1), u +∆), and by the induction hypothesis, π∆j−1

�

M (D )− ( j −1), D , u
�

< v0
v−p and

π̃∆j−1

�

M (D )− ( j −1), D , u
�

< v0
v−p for D <D∆

∗, j−1(M (D )− ( j −1), u +∆). Hence,

�

π̃∆j−1

�

M (D )− ( j −1), D , u
�

≥ v0
v−p for u ≥ ξ∆j−1(D )

π̃∆j−1

�

M (D )− ( j −1), D , u
�

< v0
v−p for u <ξ∆j−1(D )

,

and we have ξ∆j (w )>ξ
∆
j−1(w ) if ξ∆j (w )> 0.

ii) Donation threshold D∆(N , u ): Since (b∆j−1, D∆
+, j−1, F ∆j−1) is a PT assessment by

the induction hypothesis, π̃∆j−1

�

N , D , u
�

is strictly increasing in D by Corollary 1. For

N ≥M0− j and u <ξ∆j (G − (N + j )p ), we define D∆(N , u+∆) to be the unique value
satisfying

π̃∆j−1

�

N , D∆(N , u +∆), u
�

=
v0

v −p
,

which must also be satisfied for u < ξ j ′ (G − (N + j ′)p ), N ≥M0− j ′, j ′ ≤ j −1 by the
induction hypothesis ii). Since π̃∆j−1 is increasing in N , D , and u , D∆ is decreasing

in N and u . Further, for N =M0− j , we set D∆(N , u +∆) = 0 for u >ξ∆j (0).
iii) PT assessment: We set

D∆
∗, j (N , u ) :=D∆(N , u ) for u ≤ ξ∆j

�

G − (N + j )p
�

, and

for N =M0− j , u >ξ∆j (0),

and, otherwise, define D∆
∗, j (N , u ) arbitrarily so that it is overall decreasing in N and u .

This defines a PT assessment (b∆j , D∆
+, j , F ∆j ). Note that (b∆j , D∆

+, j , F ∆j ) = (b
∆
j−1, D∆

+, j−1, F ∆j−1)
for states (N , D , u ) with M (D )−N ≤ j − 1 because for all such states D∆

∗, j−1(N , u ) =
D∆
∗, j (N , u ).
iv) Probability of success: The corresponding probability of success has the fol-

lowing properties:

• First,π∆j (N , D , u ) =π∆j−1(N , D , u ) for M (D )−N ≤ j −1 by definition of the cor-

responding donation thresholds, because (b∆j , D∆
+, j , F ∆j ) = (b

∆
j−1, D∆

+, j−1, F ∆j−1)
for these states and all states (N ′, D ′, u ′) with N ′ ≥ N , D ′ ≥ D that can be
reached in a continuation game, as they satisfy M (D ′)−N ′ ≤ j −1.

• For D ≥D∆
∗, j (N , u+∆),π∆j (N , D , u ) = π̃∆j−1(N , D , u )by Lemma 2 ii), and for D <

D∆
∗, j (N , u +∆), π∆j (N , D , u )< v0

v−p and π̃∆j−1(N , D , u )< v0
v−p by monotonicity of

the probabilities in D . Hence, ξ∆j (D ) satisfies (B5). Further, this implies that

π∆j (N , D , u ) is strictly increasing in u for D ≥ D∆
∗, j (N , u +∆), N + 1 < M (D ).

Otherwise, π∆j (N , D , u ) = 1 or π∆j (N , D , u ) is given by (B2), which is strictly
increasing in u or equal to zero.
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v) Best response: It is immediate from the construction and becauseπ∆j is increas-

ing in D that for all (N , D , u ) with N ≥ M (D )− j , π∆j (N , D , u ) ≥ v0
v−p if and only if

D ≥D∆
∗, j (N , u +∆). ■

TAKING THE CONTINUOUS TIME LIMIT

The following lemma implies Proposition 1 ii):

Lemma 6 (Success-maximizing equilibrium limit). i) The pointwise limit of the do-
nation threshold D (N , u ) := lim

∆→0
D∆(N ,

�

u
∆

�

∆) exists, where
�

u
∆

�

∆ is the smallest mul-

tiple of∆ that is larger than u. Further, for any x = (N , D , u ) the following pointwise
limits exist:

(B8)
b (x) := lim

∆→0
b∆

�

N , D ,
�

u
∆

�

∆
�

, D+(x; w ) := lim
∆→0

D∆
+ (N , D ,

�

u
∆

�

∆; w ),

ξ j (w ) := lim
∆→0
ξ∆j (w ), F (w ; x) := lim

∆→0
F ∆

�

w ;
�

N , D ,
�

u
∆

�

∆
�

�

Finally,

(B9) π(N , D , u ) := lim
∆→0
π∆(N , D ,

�

u
∆

�

∆) uniformly in u and D .

ii) Proposition 1 ii) holds for this limit.

The proof of this lemma is in the Online Appendix.

OPTIMALITY OF CONSTRUCTED EQUILIBRIUM

PROOF OUTLINE:

Next, we show that the equilibrium constructed in Section B.B2 maximizes the
probability of success and that for any success-maximizing sequence of PT equilib-
ria, the outcome converges pointwise to the same limit as specified in Proposition 1.
The proof proceeds in four steps. In Step 1, we formulate a relaxed version of the
success-maximization problem. In Step 2, we solve the relaxed problem. In Step 3
we show that the outcome of the solution is attained by the equilibrium constructed
in Section B.B2. In Step 4 we show convergence as∆→ 0.

The key idea of the proof stems from the observation that the donor will always
donate enough to reach the goal at the deadline if it is needed and feasible. Hence,
to maximize the probability of success, the exact amount the donor donates during
the campaign before the deadline is not important as long as investors keep pledg-
ing. To find the PBE outcomes that maximize the probability of success, we consider
reduced histories that ignore donation amounts and keep track of only whether a do-
nation incentivizes the next potential investor to pledge or not. This idea allows us to
recast the success-maximization problem into one in which we choose probabilities
of reaching these reduced histories, rather than choosing over the set of PBEs.



AIMING FOR THE GOAL 15

Proof:
Step 1: The relaxed success-maximization problem

Consider a particular assessment
�

D̃∆
+ , b̃∆, F̃ ∆

�

. Given this assessment, any in-

vestor history h B ,∆
t =

∏

s∈T∆,s≤t

�

Ns−∆, Ds−∆
�

corresponds to a reduced investor history

h̃ B
t :=

∏

s∈T∆,s≤t

�

Ns−∆, bs−∆
�

, where bs−∆ := b̃∆

 

∏

s ′∈T∆,s ′≤s

(Ns ′−∆, Ds ′−∆)

!

,

so that instead of recording the donation Ds−∆, the history records the probability
bs−∆ ∈ [0, 1]with which an investor arriving in period s pledges on observing cumu-
lative donation amount Ds−∆, and the entire history of donations and pledges. We
omit the ∆-superscipts for the reduced histories, to simplify notation. Let Rb̃∆ be
the mapping so that

Rb̃∆ : h B ,∆
t 7→ h̃ B

t

as defined above. We will use this mapping in the proof of Proposition 3.

In a platform-optimal equilibrium, the investor always pledges when she is indif-
ferent between pledging and not pledging, so henceforth we assume bs−∆ ∈ {0, 1}.
Let the set of such reduced investor histories in period t be H̃ B

t . Further, let us de-
note the corresponding set of reduced donor histories in period t by

H̃ D
t :=

�

h̃ D
t =

�

h̃ B
t , Nt

�

�

�

�

�

h̃ B
t ∈ H̃

B
t , Nt ∈ {Nt−∆, Nt−∆+1}

�

.

The assessment, the arrival process, and distributions of donor valuation define a
probability measure P on the space of outcomes

∏

t ∈T∆
(Nt , Dt ) and hence on H̃ B

t and

H̃ D
t . Given this probability space, we define the following probabilities:

i) κ(h̃ B
t ; w ) is the probability that h̃ B

t ∈ H̃
B

t is reached if the donor’s valuation is
w ;

ii) P(h̃ D
t ; w ) is the probability that h̃ D

t ∈ H̃
D

t is reached if the donor’s valuation is
w .

Note that this implies that for each w and t ∈T∆, we have
∑

h̃ B
t ∈H̃ B

t

κ(h̃ B
t ; w ) =

∑

h̃ D
t ∈H̃ D

t

P(h̃ D
t ; w ) = 1 and P(h̃ D

t ; w ) = κ(h̃ D
t , 1; w ) +κ(h̃ D

t , 0; w ),

and, in particular,

(P) κ(h̃ D
t , 1; w )≤P(h̃ D

t ; w ) for all h̃ D
t ∈ H̃

D
t .
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Figure B4. : Transitions between reduced histories

h̃Dt

P(h̃Dt ;w)

Donor history
at t

Donation
induces pledge

bt+∆

1 − bt+∆

∆λ

1 − ∆λ

1

(h̃Dt , 1)

κ(h̃Dt , 1;w)

(h̃Dt , 0)

κ(h̃Dt , 0;w) =
P(h̃Dt ;w) − κ(h̃Dt , 1;w)

Investor history
at t+ ∆

Donor history
at t+ ∆

(h̃Dt , 1, Nt + 1)

P(h̃Dt , 1, Nt + 1;w)

(h̃Dt , 1, Nt)

P(h̃Dt , 1, Nt;w)

(h̃Dt , 0, Nt)

P(h̃Dt , 0, Nt;w)

Note: The blue brackets represent reduced histories, and the orange expressions below, the probability of reaching
the corresponding reduced history.

Further, the following intertemporal link between reduced histories must hold:

(P− t )
P(h̃ D

t , 1, Nt +1; w ) = ∆λκ(h̃ D
t , 1; w )

P(h̃ D
t , 1, Nt ; w ) = (1−∆λ) κ(h̃ D

t , 1; w )
P(h̃ D

t , 0, Nt ; w ) = P(h̃ D
t ; w )−κ(h̃ D

t , 1; w )







for all h̃ D
t ∈ H̃

D
t .

The reduced histories and probabilities are illustrated in Figure B4. The probabilities
of reaching investor histories after which an investor pledges uniquely determine all
other probabilities, so we define

H̃ 1
t :=

�

h̃ B
t =

�

h̃ D
t−∆, 1

�

�

�

�

�

h̃ D
t−∆ ∈ H̃

D
t−∆

�

⊂ H̃ B
t .

Formally, P(0; w ) = 1 and the sequence κ∆(0; w ) :=
�

(κ(h̃ B
t ; w ))h̃ B

t ∈H̃ 1
t

�

t≥∆
uniquely

define
�

�

P(h̃ D
t ; w )

�

h̃ D
t ∈H̃ D

t

�

t≥0
and

�

�

κ(h̃ D
t , 0; w )

�

h̃ D
t ∈H̃ B

t

�

t≥0
. Thus, (κ∆(0; w ))w∈[0,∞)

determines the outcome of the game and will be the choice variable in the relaxed
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problem. In order to be able to formulate investor IC constraints after reaching an
arbitrary donor history h̃ D

t−∆, we define continuation donor histories at times t ′ ≥ t
by

H̃ D
t ′

�

h̃ D
t−∆

�

:=
�

h̃ D
t ′ ∈ H̃

D
t ′ : the first entries of h̃ D

t ′ are h̃ D
t−∆

	

.

The problem of maximizing the probability of success can be written as

max
(κ∆(0;w ))w∈[0,∞]

∑

h̃ D
T−∆∈H̃

D
T−∆

∆λEF0
�

κ(h̃ D
T−∆, 1; W )1

�

G − (NT−∆+1)p ≤W
��

+

(1−∆λ)EF0
�

κ(h̃ D
T−∆, 1; W )1

�

G −NT−∆p ≤W
��

+

EF0
��

P(h̃ D
T−∆; W )−κ(h̃ D

T−∆, 1; W )
�

1
�

G −NT−∆p ≤W
��

,

subject to P(0; w ) = 1, Equation P, Equation P− t , and for all h̃ D
t ∈ H̃

D
t , t ∈T∆, Nt ∈

N, w ∈ [0,∞),

(Investor IC)

∫

prob. of success if
period-t investor pledges

︷ ︸︸ ︷

qt+∆(h̃
D
t , 1, Nt−∆+1; W ) d F0(W )

∫

κ(h̃ D
t , 1; W ) d F0(W )

≥
v0

v −p
,

where the unconditional probability of success if a period-t investor pledges after
history h̃ D

t is given by

qt+∆(h̃
D
t+∆; w ) =

∑

h̃ D
T−∆∈H̃

D
T−∆(h̃

D
t+∆)

∆λκ(h̃ D
T−∆, 1; w )1

�

G − (NT−∆+1)p ≤w
�

+

(1−∆λ) κ(h̃ D
T−∆, 1; w )1

�

G −NT−∆p ≤w
�

+
�

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤w
�

].

This is a relaxed problem because the vectors (κ∆(0; w ))w∈[0,∞) that satisfy the
above constraints do not necessarily correspond to a PBE. Further, we are ignoring
donor incentives by considering reduced histories.

Finally, note that for a PT equilibrium, it must be that for any investor history
(h̃ D

t−∆, 1) ∈ H̃ 1
t there exists D̃ ∗

��

P(h̃ D
t−∆; w )

�

w

�

≥ 0 such that

(PT-κ) κ(h̃ D
t−∆, 1; w ) =

�

P(h̃ D
t−∆; w ) for w ≥ D̃ ∗

�

(P(h̃ D
t−∆; w ))w

�

0 otherwise
.

Step 2: Solution to the relaxed problem

In the following, we show any solution satisfies Equation PT-κ. Suchκ∆with D̃ ∗
�

(P(h̃ D
t−∆; w ))w

�

=
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W
�

(P(h̃ D
t−∆; w ))w

�

where

(W )
W

�

(P(h̃ D
t−∆; w ))w

�

:=
min

�

w
�

�(Investor IC) is satisfied for κ(h̃ D
t−∆, 1; w ) =P(h̃ D

t−∆; w )1(w ≥w )
	

is always a solution. We set W
�

(P(h̃ D
t ; w ))w

�

=∞ if the set on the right-hand side
is empty. Further, to establish uniqueness in the limit ∆→ 0, we show that for any
solution satisfying Equation PT-κ, it must be that

(D̃ ∗)

D̃ ∗
�

(P
�

h̃ D
t−∆; w )

�

w

�

∈
�

W
�

(P(h̃ D
t−∆; w ))w

�

, max
¦

G −
�

Nt−∆+
T−(t−∆)
∆

�

p , W
�

(P(h̃ D
t−∆; w ))w

�

©

�

,

where G −
�

Nt−∆ +
T−(t−∆)
∆

�

p is the amount that the donor needs to donate even if

an investor arrives and pledges in every future period. Note that as∆→ 0, G −
�

Nt +
T−t
∆

�

p →−∞.

We show that the solution must satisfy Equation PT-κwith (D̃ ∗) by contradiction.
Consider an arbitrary solution κ∗∆ and corresponding P∗ such that there is at least
one history in which it does not satisfy Equation PT-κwith (D̃ ∗). Consider the latest
period t̄ in time after which Equation PT-κwith (D̃ ∗) is satisfied for all histories, and
consider a period t̄ −∆ history h̃ D

t̄−∆ such that κ(h̃ D
t̄−∆, 1; w ) does not satisfy Equa-

tion PT-κwith (D̃ ∗). Then, the probability of success conditional on reaching history

h̃ B
t̄ = (h̃

D
t̄−∆, 1) given by

qt (h̃ D
t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w and is independent of the

choice of κ(h̃ D
t̄−∆, 1; w ). Let

c (h̃ D
t̄−∆) :=

∫

κ∗(h̃ D
t̄−∆, 1; W ) d F0(W ).

We now construct a κ′∆ such that the objective function is higher than with κ∗∆ while
keeping

∫

κ′(h̃ D
t̄−∆, 1; W ) d F0(W )≤ c (h̃ D

t̄−∆) in all histories. To this end, let W c (h̃
D
t̄−∆)

be the uniquely defined by17

∞
∫

W c (h̃
D
t̄−∆)

P∗(h̃ D
t̄−∆; W ) d F0(W ) = c (h̃ D

t̄−∆).

Since
qt (ĥ D

t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w ,κ(h̃ D
t̄−∆, 1; w ) =P∗(h̃ D

t̄−∆; w )1(w ≥W c (h̃
D
t̄−∆))

satisfies Equation Investor IC. We set κ′(ĥ D
t ; w ) := κ∗(ĥ D

t ; w ) for all histories ĥ D
t at

17Uniqueness follows because for all t ≥ t̄ , κ(h̃ D
t̄ , 1; w ) satisfies Equation PT-κ.
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t < t̄ −∆ and all histories ĥ D
t ̸∈ H̃

1
t (h̃

D
t̄−∆), t ≥ t̄ −∆. Further, let

κ′(h̃ D
t̄−∆, 1; w ) :=

�

P∗(h̃ D
t−∆; w ) for w ≥W c (h̃

D
t̄−∆)

0 otherwise,

and for histories ĥt ∈ H̃ 1
t (h̃

D
t̄−∆)where t > t̄ −∆, we setκ′(ĥ D

t ; w ) :=P′(ĥ D
t ; w )κ

∗(ĥ D
t ;w )

P∗(ĥ D
t ;w )

so that all constraints remain satisfied and the transition probabilities remain un-
changed. Figure B5 illustrates the transitions. In the objective function, thisκ′ achieves

Figure B5. : Schematic illustration of transition probabilities

Probability
of reaching
h̃Dt̄−∆ given w

Period t̄−∆
reduced

donor history

Period t̄
reduced

investor history

Period t̄
reduced

donor history

Probability
of reaching

donor history in
period t̄ given w

P∗(h̃Dt̄−∆;w)
h̃Dt̄−∆ =

(h̃Bt̄−∆, Nt̄−∆)

h̃Bt̄ = (h̃Dt̄−∆, 1)

h̃Bt̄ = (h̃Dt̄−∆, 0)

h̃Dt̄ =
(h̃Dt̄−∆, 1, Nt̄−∆ + 1)

h̃Dt̄ =
(h̃Dt̄−∆, t, Nt̄−∆)

h̃Dt̄−∆ =
(h̃Dt̄−∆, 0, Nt̄−∆)

P′(h̃Dt̄−∆, 1, Nt̄−∆ + 1;w) =
P∗(h̃D

t̄−∆
,1,Nt̄−∆+1;w)

κ∗(h̃D
t̄−∆

,1;w)
κ′(h̃Dt̄−∆, 1;w)

P′(h̃Dt̄−∆, 1, Nt̄−∆;w)=
P∗(h̃D

t̄−∆
,1,Nt̄−∆;w)

κ∗(h̃D
t̄−∆

,1;w)
κ′(h̃Dt̄−∆, 1;w)

P′(h̃Dt̄−∆, 0, Nt̄−∆;w) =

P∗(h̃Dt̄−∆;w)− κ′(h̃Dt̄−∆, 1;w)

κ
′ (h̃

D
t̄−

∆
,1
;w
)

P∗
(h̃

D
t̄−

∆
;w
)

1−
κ ′(̃h D

t̄−
∆ ,1;w

)

P ∗
(̃h D

t̄−
∆ ;w

)

∆
λ

(1−
∆
λ)

1

Constructed from
κ∗(h̃Dt′ , 1;w), t

′ < t̄−∆

such that
h̃Dt̄−∆ ∈ HD

t̄−∆(h̃
D
t′ )

Find better
κ′(h̃Dt̄−∆, 1;w)

Note: The blue brackets represent reduced histories, and the orange expressions, the probability of reaching the
corresponding reduced histories given a realized w .

states with higher NT−∆ more frequently, so κ′ yields strictly higher profits than κ∗

does. Thus, any solution κ∗∆ must satisfy Equation PT-κwith (D̃ ∗) almost surely.

Step 3: Implementation by equilibrium

Finally, we show that the optimal solution is achieved by the PBE constructed in
Proposition 1. To this end, it is useful to write the probability of success for donor
type w after a history h̃ D

t−∆ recursively as a function ofκt

�

h̃ D
t−∆; w

�

andP
�

h̃ D
t−∆; w

�

>
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0:
(W-Π)
Πt−∆

�

κt

�

h̃ D
t−∆; w

�

,P
�

h̃ D
t−∆; w

�

; w
�

=

∆λ
︸︷︷︸

arrival

κ
�

h̃ D
t−∆, 1; w

�

P
�

h̃ D
t−∆; w

�

︸ ︷︷ ︸

investor pledges

Πt

�

κt+∆(h̃ D
t−∆, 1, Nt−∆+1; w ),P(h̃ D

t−∆, 1, Nt−∆+1; w ); w
�

+(1−∆λ)
︸ ︷︷ ︸

no arrival

κ
�

h̃ D
t−∆, 1; w

�

P
�

h̃ D
t−∆; w

�

︸ ︷︷ ︸

investor pledges

Πt

�

κt+∆(h̃ D
t−∆, 1, Nt−∆; w ),P(h̃ D

t−∆, 1, Nt−∆; w ); w
�

+

�

1−
κ(h̃ D

t−∆, 1; w )

P
�

h̃ D
t−∆; w

�

�

︸ ︷︷ ︸

investor does not pledge

Πt

�

κt+∆(h̃ D
t−∆, 0, Nt−∆; w ),P(h̃ D

t−∆, 0, Nt−∆; w ); w
�

,

and for P(h̃ D
t−∆; w ) = 0, we set Πt−∆(κt (h̃ D

t−∆; w ),P(h̃ D
t−∆; w ); w ) = 0 without loss.

Then, we can write the Investor IC constraint as follows:
(Investor IC’)

∫

prob. of
reaching h̃B

t
︷ ︸︸ ︷

κ(h̃ B
t ; W )

prob. of success if
period-t investor pledges

︷ ︸︸ ︷

Πt (κt+∆(h̃
B
t , Nt−∆+1; W ),P(h̃ B

t ; W ); W ) d F0(W )
∫

κ(h̃ B
t ; W ) d F0(W )

≥
v0

v −p
.

Consider the PT equilibrium (D∆
+ , b∆, (F ∆(·|x))x) from the proof of Proposition 1. This

assessment induces a probability measure P on outcomes and a corresponding sys-
tem of probabilities κ(h̃ D

t , 1; w ) and P(h̃ D
t , ; w ) over reduced histories, as defined in

Step 1. Consider any on-path investor history in the last period h B ,∆
T =

∏

s∈T∆,s≤T
(Ns−∆, Ds−∆).

The PBE specifies that investors pledge if and only if the probability of success is at
least v0

v−p . In addition, in the preceding period, unless success is already guaranteed,

donors with w ≥ D∆(NT−∆,∆) donate max{DT−2∆, D∆(NT−∆,∆)}. This makes the
next investor just indifferent between pledging and not pledging if such a donation
amount exists and D∆(NT−∆,∆) =W otherwise.

Therefore, for any on-path history h D ,∆
T−∆ =

�

∏

s∈T∆,s≤T−∆
(NT−∆, Ds−∆), NT−∆

�

, the in-

duced probabilities over reduced histories satisfy

κ(h̃ D
T−∆, 1; w ) =P(h̃ D

T−∆; w ) if and only if w ≥D∆(NT−∆,∆).

Notice that since D∆(NT−∆,∆) is calculated using the indifference condition for in-
vestors,π∆(N , D , u ) is increasing in D , and F ∆ is a truncation given by Equation PT-
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belief, this D∆(NT−∆,∆) is exactly W ((P(h̃ D
T−∆; w ))w , NT−∆) defined in Equation W

in the solution to the relaxed problem when we write the expression for the indif-
ference condition as in Equation Investor IC’. Analogous arguments apply to any

history h D ,∆
t =

�

∏

s∈T∆,s≤t
(Ns−∆, Ds−∆), Nt

�

. Therefore, the PBE assessment from the

proof of Proposition 1 induces exactly (κ∗∆(0; w ))w , and it achieves the optimum in
the relaxed problem. Hence, (κ∗∆(0; w ))w is platform-optimal in the full class of PBEs.
Step 4: Uniqueness of limits

We have shown in Step 2 that solutions to the reduced problem satisfy Equation PT-
κwith Equation D̃ ∗. Now, for a given t if∆ is sufficiently small, then G −

�

N + T−t
∆

�

p <
0, so any sequence of outcomes converges pointwise to the equilibrium outcome at-
tained by the Markov equilibrium constructed in Step 1.

B3. Proof of Proposition 2 (Success-Minimizing Equilibrium)

First, in Section B.B3, we characterize a PT equilibrium for each ∆. Then, in Sec-
tion B.B3, we show that the limit of these equilibria as∆→ 0 exists and is as specified
in Proposition 2. Finally, in Section B.B3 we establish that this PBE minimizes the
probability of success.

CHARACTERIZATION OF PT EQUILIBRIUM

Lemma 7 (Success-minimizing equilibrium). Given any∆> 0, a PT assessment (b∆, D∆
+ , F ∆)

with donation threshold D
∆
(N , u ) ∈ [0,G − (N +1)p ) constitutes a PT equilibrium.

We denote by π(N , D , u ) the corresponding probability of success from the in-
vestor’s perspective in state (N , D , u ) if the investor contributes.

Proof. Note that the donation threshold is well-defined in Section II.D (unlike in

the construction of the success-maximizing equilibrium): D
∆
(N , u +∆) :=max{G −

( j − 1)p −N p , 0} for u ∈
�

ξ
∆

j−1,ξ
∆

j

�

. This defines strategies and beliefs of the PT as-

sessment. It is immediate that D
∆
(N , u ) is strictly decreasing in N and u as long

as D
∆
(N , u ) > 0, weakly decreasing otherwise, D

∆
(N , u ) ∈ [0,G − (N + 1)p ), and

D
∆
(N , u ) = 0 for (N + 1)p ≥ G . It only remains to show that the investor strategies

are optimal in every state (N , D , u ), since the donor is best-responding by Lemma 3.
We show this by induction in j =M (D )−N and for each j by backward-induction
in u .
(a) Induction start ( j ≤ 1 ⇔ D ≥ G − (N + 1)p ): For N ≥ M (D ) − 1, the cam-
paign is either already successful or an investor can complete the campaign. Hence
π∆(N , D , u ) = 1 and b∆(N , D , u ) = 1 for all u ∈U∆, and D ∈ [0, W ] in any equilibrium.

Note that ξ
∆

1 = 0 and D∆
+ (N , D , u ; w ) =D .

(b) Induction hypothesis ( j ′ ≤ j − 1): Assume that we have shown that the above
strategy profiles are best responses for investors for all states (N , D , u ) with N =
M (D )− j ′ with j ′ ≤ j −1.
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(c) Induction step ( j − 1 ⇝ j , j ≥ 2): Consider an investor in state (N , D , u ) with

N =M (D )− j . If D <D
∆
(N , u +∆), then u <ξ

∆

j , and the belief system dictates that
an investor assigns a probability of success equal to

π∆(M (D )− j , D , u ) = P(τu
1 ≤ T −ξ

∆

j−1, . . . ,τu
j−2 ≤ T −ξ

∆

2 ,τu
j−1 ≤ T )<

v0

v −p
,

whereτu
i is the arrival time of the i -th investor after period u . The inequality follows

directly from the definition of ξ
∆

j . Hence, b∆(M (D )− j , D , u ) = 0 is optimal for the
investor.

If D ≥D
∆
(N , u +∆), then u ≥ ξ

∆

j ; by the induction hypothesis, we have

π∆(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆(N +1, max{D , D
∆
(N +1, u −∆(i −1))}, u −∆i )

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D
�

>P(τu
1 ≤ T −ξ

∆

j−1, . . . ,τu
j−2 ≤ T −ξ

∆

2 ,τu
j−1 ≤ T )≥ v0

v−p ,

where the last inequality follows because u ≥ ξ
∆

j and the definition of ξ
∆

j via Propo-

sition 1. Hence, indeed b∆(M (D )− j , D , u ) = 1. ■

TAKING THE CONTINUOUS TIME LIMIT

We know from Proposition 1 that the pointwise limits ξ̄ j := lim
∆→0
ξ̄∆j and

D (N , u ) := lim
∆→0

D
∆�

N ,
lu

∆

m

∆
�

=max{G − ( j −1)p −N p , 0} for u ∈ (ξ̄ j , ξ̄ j−1]

exist. This implies that the pointwise limits D+(N , D , , u ; w ) := lim
∆→0

D∆
+

�

N , D ,
�

u
∆

�

∆; w
�

,

b (N , D , u ) = lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

, and F (w ; (N , D , u )) = lim
∆→0

F ∆
�

w ;
�

N , D ,
�

u
∆

�

∆
�

�

ex-

ist. This concludes the proof of Proposition 2 ii).

MINIMIZATION OF PROBABILITY OF SUCCESS

Next, we show that the equilibrium just constructed minimizes the probability of
success in the class of PBE. To this end, we consider an arbitrary PBE (b̃∆, D̃∆

+ , F̃ ∆).
We show by backward induction in t that for any investor history h B ,∆

t =
∏

s∈T∆,s≤t
(Ns−∆, Ds−∆)

an equilibrium investor history must satisfy

Dt−∆ >D
∆
(Nt−∆, T − (t −∆))⇒ b̃∆(h B ,∆

t ) = 1.(B10)
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(a) Induction start (t = T ): D
∆
(N ,∆) =G − (N −1)p , so Equation B10 is satisfied for

any PBE.
(b) Induction hypothesis (s ≥ t ): Assume that Equation B10 is satisfied for any his-
tory h B ,∆

s with s ≥ t .

(c) Induction step (t ⇝ t −∆): For an arbitrary history h B ,∆
t−∆, from an investor’s per-

spective in period t −∆, the probability of success after a contribution is bounded
from below byπ(Nt−2∆, Dt−2∆, T −(t −∆)) by the induction hypothesis. Thus, the in-
vestor must contribute ifπ(Nt−2∆, Dt−2∆, T −(t −∆))≥ v0

v−p . Since for the constructed
PT equilibrium,

D >D
∆
(N , T −2t )⇒π(N , D , T − (t −∆))≥

v0

v −p
,

we have Dt−2∆ >D
∆
(Nt−2∆, T − (t −2∆))⇒ b̃∆(h B ,∆

t−∆) = 1.
Finally, if Equation B10 is satisfied, then the probability of success in the PBE must

be at least as in the constructed PT equilibrium, since investors contribute whenever
they contribute in the PT equilibrium and the donor contributes up to his wealth at
the deadline in any PBE whenever necessary for success.

B4. Proof of Proposition 3 (Donor-Preferred Equilibrium)

PROOF OUTLINE:

Given any assessment, we use the same class of reduced histories and systems of
probabilitiesκ(h̃ B

t ; w ) andP(h̃ D
t , Nt ; w ) as in the proof of Proposition 1. Just as in the

equilibrium that maximizes the probability of success, in a donor-preferred equilib-
rium, the investor always pledges when she is indifferent between pledging and not
pledging, so we can assume that bs ∈ {0, 1} for all histories. The induced probabil-
ity measure P allows us to define (κ∆(0; w ))w , which determines the outcome of the
game except for the donation amount.

The proof proceeds in four steps. Step 1 establishes that donor-preferred equilib-
rium outcomes can be attained by PBE in a smaller class of assessments. In Step 2,
we formulate a relaxed donor problem (analogously to Proposition 1). In Step 3, we
solve the donor’s problem and show that the success-maximizing solution also cor-
responds to a solution of the donor’s problem. We also prove that all solutions that
are PT equilibria converge to the same limit as∆→ 0. Finally, in Step 4, we verify that
the donor strategy constructed in Step 3 of the proof of Proposition 1 is consistent
with the donor-preferred solution.

Proof:
Step 1: Limiting the class of assessments

To find a donor-preferred equilibrium, we first show (in Lemmata 8 and 9 below)
that donor-preferred equilibrium outcomes can be attained by PBE in a smaller class
of assessments. First, at histories at which investors are induced to pledge, all donor
types that donate positive amounts make the same cumulative donation. Second,
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if a donor does not incentivize pledging, he donates nothing. Within the class of
assessments satisfying these two properties, the mapping from reduced histories to
donations becomes unique, a fact we use when we formulate the donor’s maximiza-
tion problem.

Lemma 8. For any donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆), there exists a donor-preferred

PBE (b̂∆, D̂∆
+ , F̂ ∆) such that

i) both assessments generate the same probability measures (κ∆(0; w ))w ,

ii) for each h D ,∆
t , there exists a D∗(h

D ,∆
t ) ∈R such that

(B11)

D̂∆
+ (h

D ,∆
t ; w ) =

�

D̃+(h
D ,∆
t ; w ) if b̃∆(h D ,∆

t , D̃+(h
D ,∆
t ; w )) = 0

D∗(h
D ,∆
t ) if b̃∆(h D ,∆

t , D̃+(h
D ,∆
t ; w )) = 1

, and

b̂∆(h D ,∆
t−∆ , Dt−∆) =

�

1 if Dt−∆ =D∗(h
D ,∆
t−∆)

0 otherwise
.

Proof of Lemma 8. Given a donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆), define

D∗(h
D ,∆
t ) := inf

�

D̃∆
+ (h

D ,∆
t ; w )

�

� b̃∆(h D ,∆
t , D̃+(h

D ,∆
t ; w )) = 1

	

,

which is the smallest donation amount that incentivizes pledging at a history h D ,∆
t .

Donating this amount is feasible for all donor types w ≥ D∗(h
D ,∆
t ). Moreover, it is

consistent with play on the equilibrium path. In particular, donating this amount is
feasible for all types that incentivize pledging after h D ,∆

t in (b̃∆, D̃∆
+ , F̃ ∆).

Then, define a new assessment (b̂∆, D̂∆
+ , F̂ ∆), where b̂∆ and D̂∆

+ are given by Equa-

tion B11. On the equilibrium path, F̂ (w ; h D ,∆
t−∆ , Dt−∆) is derived by Bayes’ rule. Off

path, if Dt−∆ >D∗(h
D ,∆
t−∆), then let F̂ (w ; h D ,∆

t−∆ , Dt−∆) be such that it is optimal for the

investor not to pledge (e.g., F̂ (w ; h D ,∆
t−∆ , Dt−∆) = 1(w = 0)), and let F̂ (w ; h D ,∆

t−∆ , Dt−∆) =
F̃ (w ; h D ,∆

t−∆ , Dt−∆) otherwise.

Note that the strategies are such that (b̂∆, D̂∆
+ , F̂ ∆) and (b̃∆, D̃∆

+ , F̃ ∆) result in the
same probability measures (κ∆(0; w ))w , i.e., the same purchasing outcome after any
realization of arrivals and donor type. The donation amount with (b̃∆, D̃∆

+ , F̃ ∆) is
by definition weakly lower after any arrival and donor type realization. Hence, if
(b̂∆, D̂∆

+ , F̂ ∆) is a PBE, then it must be donor-preferred. It remains to be shown that

(b̂∆, D̂∆
+ , F̂ ∆) is a PBE.

First, consider donor incentives. Given a PBE (b̃∆, D̃∆
+ , F̃ ∆), a donor type w with

b̃∆(h D ,∆
t , D̃+(h

D ,∆
t ; w )) = 0 does not find it profitable to incentivize pledging after a

history h D ,∆
t . Pledging can be incentivized by donations of at least D∗(h

D ,∆
t−∆). Hence,

also with assessment (b̂∆, D̂∆
+ , F̂ ∆), deviating to incentivize pledging cannot be prof-

itable. For a donor type w with b̃∆(h D ,∆
t , D̃+(h

D ,∆
t ; w )) = 1, it is optimal to donate

in the PBE (b̃∆, D̃∆
+ , F̃ ∆). Given the assessment (b̂∆, D̂∆

+ , F̂ ∆), the donor can donate
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weakly less and still incentivize pledging, but the donor has a larger set of feasible do-
nations in any future period. Thus, no donor type has an incentive to deviate given
the assessment (b̂∆, D̂∆

+ , F̂ ∆).
Next, consider investor incentives. Investors at a history (h D ,∆

t−∆ , Dt−∆), where Dt−∆ <

D∗(h
D ,∆
t−∆), have identical beliefs about donor types in both assessments, and the pur-

chasing outcome is also identical, as argued above. Hence, the probability of success
is the same across assessments and an investor with such a history must prefer not to
pledge given the assessment (b̂∆, D̂∆

+ , F̂ ∆) because (b̃∆, D̃∆
+ , F̃ ∆) is a PBE. Investors

at a history (h D ,∆
t−∆ , Dt−∆), where Dt−∆ =D∗(h

D ,∆
t−∆), believe that they face donor types

that they would face if they played a PBE (b̃∆, D̃∆
+ , F̃ ∆), and if they were at any of the

histories (h D ,∆
t−∆ , Dt−∆) after which an investor pledges. Hence, investors must pre-

fer to pledge at a history (h D ,∆
t−∆ , Dt−∆), where Dt−∆ =D∗(h

D ,∆
t−∆), given the assessment

(b̂∆, D̂∆
+ , F̂ ∆). A history (h D ,∆

t−∆ , Dt−∆)with Dt−∆ >D∗(h
D ,∆
t−∆) is now off the equilibrium

path for assessment (b̂∆, D̂∆
+ , F̂ ∆), and we assumed that F̂ is such that the investor

does not wish to pledge in this case.
It follows that (b̂∆, D̂∆

+ , F̂ ∆) is a PBE.

Hence, to find a donor-preferred equilibrium, it suffices to restrict attention to as-
sessments (b̃∆, D̃∆

+ , F̃ ∆) such that for any h D ,∆
t , there exists a D∗(h

D ,∆
t ) ∈Rwith

(B12) D̃∆
+ (h

D ,∆
t ; w ) =D∗(h

D ,∆
t ), whenever b̃∆(h D ,∆

t , D̃∆
+ (h

D ,∆
t ; w )) = 1,

and b̃∆ as is defined in Equation B11. Indeed, the success-maximizing equilibrium
constructed in Proposition 1 is in this class.

Lemma 9. For any donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆) for which the donor strategy

satisfies Equation B12 and the investor strategy satisfiesEquation B11, there exists a
donor-preferred PBE (b̂∆, D̂∆

+ , F̂ ∆) so that

i) both assessments generate the same probability measures (κ∆(0; w ))w ,

ii) b̂∆ = b̃∆ and for each h D ,∆
t ,

(B13) D̂∆
+ (h

D ,∆
t ; w ) =

�

Dt−∆ if b̃∆(h D ,∆
t , D̃+(h

D ,∆
t ; w )) = 0

D̃+(h
D ,∆
t ; w ) if b̃∆(h D ,∆

t , D̃+(h
D ,∆
t ; w )) = 1

.

Proof of Lemma 9. Given the donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆) satisfying Equation B12,

let (b̂∆, D̂∆
+ , F̂ ∆) be given by Equation B13, b̂∆ = b̃∆, and F̃ ∆(w ; h D ,∆

t−∆ , Dt−∆) so that

it is consistent with Bayes’ rule on the equilibrium path, and F̃ ∆(w ; h D ,∆
t−∆ , Dt−∆) =

F̂ ∆(w ; h D ,∆
t−∆ , Dt−∆) off the equilibrium path. Then, it follows immediately that the

two assessments generate the same outcomes and, hence, the same probability mea-
sures (κ∆(0; w ))w . It remains to show that (b̂∆, D̂∆

+ , F̂ ∆) constitutes a PBE. The donor
does not have a profitable deviation in histories after which the investor is incen-
tivized to pledge, because the donor plays exactly the same strategy as in (b̃∆, D̃∆

+ , F̃ ∆).
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Whenever the donor does not incentivize pledging, the donor cannot have a prof-
itable deviation, because incentivizing pledging is not profitable for (b̃∆, D̃∆

+ , F̃ ∆),
and, moreover, D̂∆

+ (h
D ,∆
t ; w ) =Dt−∆ ≤ D̃∆

+ (h
D ,∆
t ; w ) implies that every donor type w

has a weakly larger set of feasible donations in the future under D̂∆
+ than under D̃∆

+ .
Each investor is also best-responding, because she pledges after the same histories
in both assessments, and whenever she does not pledge, her belief is a mixture of
beliefs in histories after which she did not pledge in (b̃∆, D̃∆

+ , F̃ ∆).

Hence, in the following, we restrict attention to assessments (b̃∆, D̃∆
+ , F̃ ∆) that sat-

isfy Equation B13 and Equation B12. The donor strategy in such assessments de-
pends only on the reduced historyRb̃∆ (h

D ,∆
t ), so we can defineD(h̃ D ,∆

t ) :=D∗(h
D ,∆
t )

for h̃ D ,∆
t =Rb̃∆ (h

D ,∆
t ). Indeed, the platform-optimal equilibrium from Proposition

1 satisfies Equation B13.
Step 2: Relaxed donor problem

Consider an arbitrary assessment (b̃∆, D̃∆
+ , F̃ ∆) that satisfies Equation B13. Recall

that, analogously to Proposition 1, we can define reduced histories, systems of prob-
abilities κ(h̃ B

t ; w ), P(h̃ D
t , Nt ; w ), the mappingRb̃∆ that maps general histories to the

corresponding reduced history, andD(h̃ D ,∆
t ), the corresponding donation threshold

for reduced history h̃ D ,∆
t . In order to formulate the donor’s payoff, we write for t ′ ≤ t

that h̃ D
t ′ ⊆ h̃ D

t if h̃ D
t ′ is a sub-history that leads to h̃ D

t . Then, let

D̄(h̃ D
t ) := max

h̃ D
t ′⊂h̃ D

t ,
t ′≤t bt ′=1

D(h̃ D
t ′ )

be the cumulative donations after period t if the donor follows a donation strategy
as specified in Equation B13 so that he donates in all periods t ′ in which the reduced
history h̃ D

t dictates that bt ′ = 1.
The donor’s problem can be written as

max
(κ∆(0;w ))w ,

(D(h̃ D
t ))h̃D

t ∈H̃
D
t , t ∈T∆

∑

h̃ D
T−∆∈H̃

D
T−∆

∆λEF0
�

κ(h̃ D
T−∆, 1; w )1

�

G − (NT−∆+1)p ≤W
� �

W −D̄(h̃ D
T−∆)

��

+

(1−∆λ)EF0
�

κ(h̃ D
T−∆, 1; w )1

�

G −NT−∆p ≤W
� �

W −D̄(h̃ D
T−∆)

��

+

EF0
��

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤W
� �

W −D̄(h̃ D
T−2∆)

��

,

subject to P(0; w ) = 1, Equation P, Equation P− t , and for all h̃ D
t ∈ H̃

D
t , t ∈T∆, Nt ∈

N, w ∈ [0,∞) Equation Investor IC, and given

dt (h̃
D
t ; w ) :=

∑

h̃ D
T−∆∈H̃

D
T−∆(h̃

D
t )

∆λκ(h̃ D
T−∆, 1; w )1

�

G − (NT−∆+1)p ≤w
� �

w −D̄(h̃ D
T−∆)

�

+

(1−∆λ) κ(h̃ D
T−∆, 1; w )1

�

G −NT−∆p ≤w
� �

w −D̄(h̃ D
T−∆)

�

+
�

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤w
� �

w −D̄(h̃ D
T−2∆)

�

,
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we can formulate a donor incentive compatibility constraint for all h̃ D
t−∆ ∈ H̃

D
t

(Donor IC)
dt (h̃ D

t−∆, 0, Nt−∆; w ))<∆λdt (h̃ D
t−∆, 1, Nt−∆+1; w ))+ (1−∆λ)dt (h̃ D

t−∆, 1, Nt−∆; w ))
⇒ κ(h̃ D

t−∆, 1; w ) =P(h̃ D
t−∆; w ).

This donor IC constraint puts a lower bound on donations, because it imposes that
the donor must donate whenever it is optimal to do so, but does not impose that the
donor does not donate if it is optimal not to donate. Hence, this donor problem is a
relaxed maximization problem.

We denote a solution to the above problem byκ∗∗∆ and
�

(D∗∗(h̃ D
t , 1))h̃ D

t ∈H̃ D
t

�

t≥0
. Re-

call that the solution that we presented to the platform’s relaxed problem was de-
noted κ∗∆.

Step 3: Solution to the relaxed problem

Next, we show the following two statements are true:

i) Any solution of this relaxed problem must satisfyEquation PT-κ for D̃ ∗ such
that Equation D̃ ∗;

ii) κ∆ as in Equation PT-κ with D̃ ∗((P(h̃ D
t ; w ))w , Nt ) =W ((P(h̃ D

t ; w ))w ) is a solu-
tion.

Given these two statements, it follows immediately that in the limit as ∆ → 0, the
outcome is unique by the proof of Proposition 1.

Analogously to the proof of Proposition 1, we show that the solution must sat-
isfy Equation PT-κ with (D̃ ∗) by contradiction. Consider an arbitrary solution κ∗∗∆ ,

corresponding to P∗∗ and
�

(D∗∗(h̃ D
t , 1))h̃ D

t ∈H̃ D
t

�

t≥0
, that does not satisfy Equation PT-

κ with (D̃ ∗). Consider the latest period t̄ in time after which Equation PT-κ with
(D̃ ∗) is satisfied for all histories, and consider a period t̄ −∆ history h̃ D

t̄−∆ such that

κ∗∗(h̃ D
t̄−∆, 1; w ) does not satisfy Equation PT-κ with (D̃ ∗). Then, the probability of

success conditional on reaching history h̃ B
t̄ = (h̃

D
t̄−∆, 1) given by

qt (h̃ D
t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is

increasing in w and is independent of the choice of κ(h̃ D
t̄−∆, 1; w ). We can also again

define c (h̃ D
t̄−∆) :=

∫

κ∗∗(h̃ D
t̄−∆, 1; W ) d F0(W ). Note that by Equation Donor IC, it must

be that for t ≥ t̄ , D̃ ∗∗(h̃ D
t ) =W ((P(h̃ D

t ; w ))w ). Further, by Equation Donor IC,

D̃ ∗∗(h̃ D
t̄ ) =min{D̃ ∗(h̃ D

t̄ ) | d t̄+∆(h̃
D
t̄ , 0, Nt̄ ; w ))≥

∆λd t̄+∆(h̃
D
t̄ , 1, Nt̄ +1; w ))+ (1−∆λ)dt (h̃

D
t̄ , 1, Nt̄ ; w ))

for all w such that κ(h̃ D
t̄ , 1; w )<P(h̃ D

t̄ ; w )}.

We now construct aκ′∆ such that the donor’s objective function is higher than with
κ∗∆, while keeping

∫

κ′(h̃ D
t̄−∆, 1; W ) d F0(W )≤ c (h̃ D

t̄−∆) in all histories. Analogously to
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Proposition 1, we can uniquely define W c (h̃
D
t̄−∆) by

∞
∫

W c (h̃
D
t̄−∆)

P∗∗(h̃ D
t̄−∆; W ) d F0(W ) = c (h̃ D

t̄−∆).

Since
qt (ĥ D

t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w ,κ(h̃ D
t̄−∆, 1; w ) =P∗∗(h̃ D

t̄−∆; w )1(w ≥W c (h̃
D
t̄−∆))

satisfies Equation Investor IC. We set κ′(h̃ D
t ; w ) := κ∗∗(h̃ D

t ; w ) for all histories ĥ D
t at

t < t̄ −∆ and all histories ĥ D
t ̸∈ H̃

1
t (h̃

D
t̄−∆), t ≥ t̄ −∆. Further, let

κ′(h̃ D
t̄−∆, 1; w ) :=

�

P∗∗(ĥ D
t−∆; w ) for w ≥W c (h̃

D
t̄−∆)

0 otherwise,

and for histories ĥt ∈ H̃ 1
t (h̃

D
t̄−∆)where t > t̄ −∆, we setκ′(ĥ D

t ; w ) :=P′(ĥ D
t ; w )κ

∗(ĥ D
t ;w )

P∗(ĥ D
t ;w )

so that all constraints remain satisfied and the transition probabilities remain un-
changed. Further, the lowest donation amount by Equation Donor IC is then

D̃
′
(h̃ D

t̄ ) =W c (h̃
D
t̄−∆).

In the objective function, thisκ′ achieves states with higher NT−∆ more frequently
and D̃

′
(h̃ D

t̄ )< D̃ ∗∗(h̃ D
t̄ ), soκ′ yields strictly higher donor payoffs thanκ∗∗ does. Thus,

any solution κ∗∆ must satisfy Equation PT-κwith (D̃ ∗) almost surely.
Step 4: Implementation by equilibrium

We have already shown in Proposition 1 that (κ∗∆(0; w ))w is induced by the con-
structed assessment and established that the wealth threshold D∆(N , u ) corresponds

to W (h̃
D
t ) if there is a history h D ,∆

t withRb∆ (h
D ,∆
t ) = h̃ D

t and u = T − t , Nt =N . This
concludes the proof.

B5. Proof of Proposition 4 (Investor-Preferred Equilibrium)

Finding an equilibrium that maximizes the sum of investor surplus is a complex
problem since each investor’s decision has externalities both on past investors who
have pledged already and future investors. For a sufficiently small period length ∆,
we separately construct a PT equilibrium yielding higher investor surplus than the
success-maximizing equilibrium and one yielding higher surplus than the success-
minimizing equilibrium.

We start with the construction of a PT equilibrium with higher investor surplus
than the success-minimizing equilibrium for a general contribution game. First,
note that if the realized donor valuation was known to be w ∈ [G − 2p ,G −p ), then
the campaign would require exactly two investor pledges to succeed. Since the sec-
ond investor can always lead the campaign to succeed, the first investor pledges if
and only if (v −p )

�

1− (1−∆λ)u/∆
�

= v0. Conditional on such a W , investor surplus
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is maximized if the first investor pledges if

(v −p )
�

1− (1−∆λ)u/∆
�

︸ ︷︷ ︸

prob. of at least
one more arrival

−v0+ (v −p − v0)λu
︸ ︷︷ ︸

externality on
future investors

≥ 0 ⇔
(1−∆λ)u/∆

1+λu
≤ 1−

v0

v −p
,

because the expected number of arrivals time u is u
∆∆λ. Denote ū to be the smallest

u ∈U∆ such that the above inequality is satisfied, i.e., the inequality is equivalent to

u ≥ ū (noting that (1−∆λ)
u/∆

1+λu is decreasing in u). Note that ξ̄∆2 (G − 2p ) > ū because

ξ̄∆2 (G − 2p ) solves (v −p )
�

1− (1−∆λ)u/∆
�

= v0. We define a donation threshold D
∆

ε
as follows:

• D
∆

ε (N , u ) :=D
∆
(N , u ) for N > 0, and for N = 0 with u ∈ [0, ū )∪[ξ̄∆2 (G −2p ),∞),

• D
∆

ε (0, u ) :=D
∆
(0, u )−ε=G −p −ε for u ∈

�

ū , ξ̄∆2 (G −2p )
�

.

Consider a sufficiently small∆> 0. Then, the PT assessment with donation thresh-

old D
∆

ε (N , u ) for small ε > 0 still defines an equilibrium: All investors’ incentives to
pledge except the incentives of a first investor arriving at u ∈

�

ū , ξ̄∆2 (G −2p )
�

do not

change. If the first investor arrives at u ∈
�

ū , ξ̄∆2 (G −2p )
�

and the donor has wealth

W ≥G −p−ε, then the donor can contribute G −p−ε=D
∆

ε (0, u )−ε and incentivize
the investor to pledge. Indeed, the probability of success is simply a truncation of F0

at G −p −ε, which is close to 1 for small ε, so

�

1− (1−∆λ)u/∆
�

+ (1−∆λ)u/∆
1− F0(G −p )

1− F0(G −p −ε)
≥ v0.

If the donor has valuation W <G −p−ε, then the first investor does not want to con-
tribute, as she knows that W <G −p , by definition of ξ̄∆2 (G −p ) > ξ̄∆2 (G − 2p ). Fur-
thermore, by definition of ū , this PT equilibrium makes investors collectively better
off.

Next, we construct a PT equilibrium with higher investor surplus than the success-
maximizing equilibrium. We define a donation threshold D∆

ε,δ for small ε> 0, δ >∆
as follows:

• D∆
ε,δ(N , u ) :=D∆(N , u ) for N > 0 and (N , u ) = (0, u )with u ≥δ, and

• D∆
ε,δ(0, u ) :=D∆(0, u ) +ε for u <δ.

This defines a PT equilibrium because the incentive to pledge changes only if the first
investor arrives in [0,δ) and if the donor valuation is in W ∈ [D∆(0, u ), D∆(0, u ) +ε).
The probability of success in the success-maximizing equilibrium satisfies

π∆(0, D∆(0, u ), u ) =
v0

v −p
,
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so if investors knew W ∈ [D∆(0, u ), D∆(0, u ) + ε), then the probability of success
would be smaller than v0

v−p for sufficiently small ε, so it is optimal for the investor not

to pledge. If W ≥D∆(0, u ) +ε, the donor can keep incentivizing investors to pledge
in states (0, u ), u < δ. Furthermore, the equilibrium outcome of this PT equilib-
rium yields higher investor surplus than the success-maximizing equilibrium, since
if W ∈ [D∆(0, u ), D∆(0, u ) +ε), N = 0 and u <δ, then contributing creates collective
investor surplus of less than

(v −p )
�

1− (1−∆λ)δ/∆
�

+ (v −p )λδ −−→
∆→0

(v −p )(1− e −λδ +λδ)

and not contributing a surplus of v0(1+λδ). Hence, for δ sufficiently small (and ∆
sufficiently small), there is a PT equilibrium with higher investor surplus than the
surplus-maximizing equilibrium.

B6. Alternative Campaign Designs

Recall the relaxed problem in the optimality proof of Proposition 1. The control
variables are simply probabilities of reaching reduced histories given realized w that
ignore donation amounts and donor incentives. The objective is to maximize the
probability of success subject to investor participation. As a result, this relaxed prob-
lem can also be viewed as a constrained information or mechanism design problem
that maximizes the probability of success.

Formally, let an allocation be a sequence (at )t ∈T ∈ [0, 1]T
∆

that determines whether
a period-t investor (if she arrives) takes the outside option (at = 0) or stays in the
game (at = 1), and a variable ā that determines whether the project is successful.
An allocation is feasible if, given the realized arrival process At , ā = 1⇔

∑

t (At −
At−∆)at p +DT ≥G .

Let us first assume that the mechanism designer knows the donor’s type. Given her
beliefs, an investor in period t can decide whether to participate in the mechanism
or not. Additionally, beliefs are formed based on the chosen probabilities of reaching
reduced histories. Note that we cannot allow for transfers between investors. Then,
it follows that the relaxed problem in the proof of Proposition 1 corresponds to an
information design problem where the designer chooses an optimal dynamic sig-
nal structure representing the information released about W over time. This shows
that, for example, revealing the donor’s valuation prior to the campaign is not profit-
maximizing.

Alternatively, we can consider a mechanism design problem, assuming that the
donor’s valuation is private information. Consider direct mechanisms where the
donor sends a message m ∈ [0,∞) about his type. An investor in period t can decide
whether to participate in the mechanism or not. Then, a direct, donor-incentivizing
mechanism is given by a message strategy of the donor, a participation strategy of
investors, an allocation mapping that maps messages and participation decisions
to feasible allocations, and a donor transfer D ∈ [0,∞). Again, we cannot allow for
transfers between investors. Then, it follows that the relaxed problem in the proof
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of Proposition 1 is a relaxed problem of the mechanism design problem that finds
the success-maximizing, donor-incentivizing mechanism. This shows that, for ex-
ample, allowing the donor to donate only before or after the crowdfunding stage is
not profit-maximizing.

ADDITIONAL PROOFS AND EXAMPLES

C1. Proof of Lemma 6

(a) Induction start ( j ≤ 1⇔ D ≥ G − (N + 1)p ): For j ≤ 1 and x = (N , D , u ) with
M (D )−N ≤ 1, it is immediate that the pointwise limits in (B8) exist and are given by

b (x) := lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

≡ 1 D+(x; w ) := lim
∆→0

D∆+
�

N , D ,
�

u
∆

�

∆; w
�

=D

ξ j (w ) := lim
∆→0
ξ∆j (w )≡ 0 F (w ; x) := lim

∆→0
F ∆

�

w ;
�

N , D ,
�

u
∆

�

∆
�

�

= F0(w )−F0(D )
1−F0(D )

1(w ≥D ),

where
�

u
∆

�

∆ is the smallest multiple of ∆ that is larger than u . Further, π(x) :=
lim
∆→0
π∆(N , D ,

�

u
∆

�

∆) = 1 uniformly in D ≥G − (N +1)p and u .

(b) Induction hypothesis ( j − 1): We assume that the pointwise limits (B8) exist for
all x = (N , D , u )with N ≥M (D )− ( j −1) and j ′ ≤ j −1, where for w <G −p ,

π(M (w )− j ′, w ,ξ j ′ (w )) =
v0

v −p
.

Further, assume that the pointwise limit D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) exists for u ≤

ξ j−1(G − (N + j − 1)p ). If π(N , 0, u ) < v0
v−p , then D is strictly decreasing in N and u ,

and
π(N , D (N , u ), u ) =

v0

v −p
.

Further, the uniform limit in D ≥G−(N+ j−1)p and u ,π(N , D , u ) := lim
∆→0
π∆(N , D , u ),

exists and is equal to
(C1)

EF0







max{u−ξM (W )−(N+1)(W )}
∫

0

λe −λsπ
�

N +1, max{D , D (N +1, u − s )}, u − s
�

d s

�

�

�

�

W ≥D






.

Finally, π(N , D , u ) is strictly increasing in N , D , u .

(c) Induction step ( j − 1⇝ j , j ≥ 2): Consider a state (N , D , u ) with N ≥M (D )− j ,
i.e.,

G − (N + j )p ≤D .

L.1) Uniform convergence (in D and u) of π̃∆
�

N , D ,
�

u
∆

�

∆
�

for D ≥G − (N + j )p :
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Recall that the auxiliary probability of success is given by

lim
∆→0
π̃∆

�

N , D ,
�

u
∆

�

∆
�

=

lim
∆→0
EF0

�max
�

⌈ u∆ ⌉∆−ξ∆M (W )−(N+1)(W ),0
	

/∆
∑

i=1
(1−∆λ)i−1∆λ

�

π∆
�

N +1, D ,∆
��

u
∆

�

− i
��

1
�

∆
��

u
∆

�

− i
�

≥ ξ∆j ′−1(D )
�

+ v0
v−p 1

�

∆
��

u
∆

�

− i
�

<ξ∆j ′−1(D )
�

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D

�

,

where j ′ := M (D )−N ≤ j . The uniform convergence of π∆ (N +1, D , u ′) in
D (by the induction hypothesis) and the Arzelà-Ascoli theorem imply that the
family of functions D 7→ π∆ (N +1, D , u ) is equicontinuous with respect to ∆.
Hence, we may replace π∆ by π. Finally, because lim

∆→0
ξ∆j ′−1(w ) = ξ j ′−1(w ), the

dominated convergence theorem allows us to conclude that

π̃ j (N , D , u ) := lim
∆→0
π̃∆j (N , D ,

�

u
∆

�

∆) =EF0

� max{u−ξM (W )−(N+1)(W ),0}
∫

0

λe −λs ·
�

π
�

N +1, D , u − s
�

1
�

u − s ≥ ξ j ′−1(D )
�

+ v0
v−p 1

�

u − s <ξ j ′−1(D )
�

�

d s

+e −λu1(W ≥G − (N +1)p )

�

�

�

�

W ≥D

�

.

Note that π̃∆(N , D ,
�

u
∆

�

∆) indeed converges uniformly in D ≥G − (N + j )p for
fixed u because the sum is bounded by one, F0 is (uniformly) continuous on
[0,G ], and F0(G )< 1. Then, since

π
�

M (D )− ( j ′−1)
︸ ︷︷ ︸

N+1

, D ,ξ j ′−1(D )
�

=
v0

v −p
,

for u ′ < ξ j ′−1(D ), D < D (N + 1, u ′) π(N + 1, D (N + 1, u ′), u ′) = v0
v−p and for

u ′ ≥ ξ j ′−1(D ), D ≥D (N +1, u ′). Hence, we have

(C2)
π̃(N , D , u ) := lim

∆→0
π̃∆(N , D ,

�

u
∆

�

∆) =EF0

� max{u−ξM (W )−(N+1)(W ),0}
∫

0

λe −λs ·

π
�

N +1, max{D , D (N +1, u − s )}, u − s
�

d s + e −λu1(W ≥G − (N +1)p )

�

�

�

�

W ≥D

�

.

L.2) Continuity and strict monotonicity of π̃ in D ≥ G − (N + j )p and u: First,
π̃(N , D , u ) is continuous in D and u because π̃ j (N + 1, D , u ) is continuous in
D and u , D (N +1, u ) is continuous in u by the induction hypothesis, and F0 is
continuous.

Furthermore, π̃ j (N , D , u ) is strictly increasing in D ≥G − (N + j )p because

π̃(N +1, D , u ) is weakly increasing in D by the induction hypothesis and 1
1−F0(D )
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is strictly increasing.

Now the integrand is strictly positive as long as u >ξM (w )−(N+1)(w ). Hence,
π̃(N , D , u ) is strictly increasing in u >ξM (w )−(N+1)(w )because π̃ j (N +1, D , u ) is
weakly increasing in u by the induction hypothesis and because u−ξM (w )−(N+1)(w )
is strictly increasing in u .

L.3) Pointwise convergence of D∆(N ,
�

u
∆

�

∆)and D∆
+, j (N , D ,

�

u
∆

�

∆; W ): First, note that

if π̃∆j
�

N , 0,
�

u
∆

�

∆
�

≥ v0
v−p , then π̃ j (N , 0, u )≥ v0

v−p and, hence, D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) =

0. If π̃∆(N , 0, u )< v0
v−p , then π̃(N , 0, u )≤ v0

v−p . Then, since π̃(N , D , u ) is contin-
uous and strictly increasing in D , there is a unique solution D ′(N , u ) to

π̃ j (N , D ′(N , u ), u ) =
v0

v −p
.

Since π̃∆(N , D ,
�

u
∆

�

∆) converges uniformly, we have D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) =

D ′(N , u ). It follows immediately that for all u > 0,

D+(N , D , u ; w ) := lim
∆→0

D∆
+, j

�

N , D ,
�

u
∆

�

∆; w
�

= lim
∆→0

min
�

max
�

D , D∆
�

N ,
�

u
∆

�

∆
�	

, w
	

= min{max{D , D (N , u )}, w }.

L.4) Pointwise convergence of b∆j
�

N , D ,
�

u
∆

�

∆
�

: Note that b∆j
�

N , D ,
�

u
∆

�

∆
�

= 1 if D ≥

D∆

�

N ,
��

u
∆

�

∆+1
�

∆

�

, and b∆j

�

N , D ,
��

u
∆

�

∆+1
�

∆

�

= 0 otherwise. Since lim
∆→0

D∆

�

N ,
��

u
∆

�

∆+

1
�

∆

�

=D (N , u ), b∆j (N , D , u ) converges pointwise to

lim
∆→0

b∆j (N , D , u ) =
§

1 if D ≥D (M (D )− ( j −1), u )
0 if D <D (M (D )− ( j −1), u ) .

L.5) Pointwise convergence ofξ j (w )andπ(M (w )− j ′, w ,ξ j ′ (w )) =
v0

v−p : If π̃∆(M (w )−
j , w , 0)≥ v0

v−p , then it follows immediately thatξ∆j (w ) = 0. If π̃∆(M (w )− j , w , 0)<
v0

v−p , it follows that ξ∆j (w )> 0 and

�

π̃∆(M (w )− j , W ,ξ∆j (w ))≥
v0

v−p

π̂∆(M (w )− j , W ,ξ∆j (w )−∆)<
v0

v−p .

Furthermore, since π̂(M (w )− j , w , u ) is continuous and strictly increasing in
u for u ≥ ξ j−1(W ) and weakly increasing for u < ξ j−1(W ), there is a unique
solution ξ′(w ) to

π̂(M (w )− j , W ,ξ′(w )) =
v0

v −p
.
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Hence, as∆→ 0, it must be that lim
∆→0
ξ∆j (w ) = ξ

′(w ).

L.6) Pointwise convergence of F ∆
�

w ;
�

M (D )− j , D ,
�

u
∆

�

∆
�

�

: It follows immediately

from pointwise convergence of D∆
�

M (D )− j ,
�

u
∆

�

∆
�

that

F (w ; (M (D )− j , D , u )) := lim
∆→0

F ∆
�

w ;
�

M (D )− j , D ,
�

u
∆

�

∆
�

�

=

�

F0(w )−F0(D )
1−F0(D )

1(w ≥D ) if D ≥D (M (D )− j , u )
1(w ≥D ) otherwise

.

L.7) π(N , D , u ) is strictly increasing in N , D , and u, as long as G − (N + 1)p > D ≥
D (N , u ): By Definition 2, D (N , u )≥D (N+1, u−∆)≥D (N+1, u )and D (N , u )≥
D (N = 1, u ). An analogous argument to Lemma 2 iii) and iv) implies mono-
tonicity in N , D , u .

L.8) D (N , u ) is strictly decreasing in N and u, as long as π(N , 0, u ) < v0
v−p : Strict

monotonicity of D (N , u ) in N and u follows from the strict monotonicity prop-
erties in N , D , and u of π̃(N , D , u ) and because π̃(N , D (N , u ), u ) = v0

v−p for

π(N , 0, u )< v0
v−p .

L.9) ξ j (w ) is strictly increasing in j as long as ξ j (w )> 0.

Since π(N + 1, w ,ξ j−1w )) = v0
v−p and π(N , D , u ) is strictly increasing in N ,

ξ j (w )>ξ j−1(w ).

C2. Application: Crowdfunding

A widely mentioned benefit of crowdfunding is that it enables potential investors
to learn about product quality from the behavior of other investors. In this section,
we illustrate how social learning interacts with the signaling incentive of the donor,
by presenting a two-period example. We highlight two insights. First, in the presence
of social learning, the donor is less effective in solving the coordination problem.
Second, our analysis is robust to some amount of social learning.

Let q ∈ {0, 1}denote the unknown quality of the product. All players (i.e., the donor
and investors) share the prior that q = 1 with probability µ0 ∈ (0, 1). We view q as the
inherent quality of the product or an unknown common value component of de-
mand. In order to keep the example simple, we assume that the quality of the prod-
uct affects investors’ payoffs but not the donor’s payoff. Investors value a product
of quality q at v (q ) = v · q . So, if an investor pledges, she gets payoff v q − p if the
campaign is successful and zero otherwise. If she does not pledge, she receives the
outside option v0. As before, the donor values a successful campaign at w ∼ F0. He
receives a payoff w −DT if the campaign succeeds, and zero otherwise. In the fol-
lowing, we set v = 3, p = 1, v0 = 1, and 1− F0(0.5) = 0.3. For simplicity, let us define
φ := µ0

1−µ0
.
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In every period t = 1, 2, an investor arrives with probability ∆λ = 0.9. On arrival,
each investor privately observes a signal s ∈ {0, 1}. For simplicity, we consider a
“bad news" signal process: An investor who receives a bad signal s = 0 knows with
certainty that quality is low (q = 0). Specifically, we set Pr(s = 1|q = 1) = 1 and
Pr(s = 1|q = 0) = 0.5.

First, we consider G = 1.5 so that the campaign is successful if at least two investors
pledge or if one investor pledges and the donor valuation w is greater than or equal
to 0.5.18 An investor in period t = 2 can socially learn only if the period-1 investor’s
strategy is to pledge if s = 1 and not to pledge if s = 0. In that case, the posterior
belief of a period-2 investor if the period-1 investor has pledged is, by Bayes’ rule,

µ2(1) =
µ0

µ0+ (1−µ0) ·0.25
=

4

4+φ−1
,

and if no pledge occurred in period 1,

µ2(0) =
µ0 ·0.1

µ0 ·0.1+ (1−µ0)(0.1+0.9 ·0.5) ·0.5
=

4

4+11φ−1
.

Let us assume thatφ is such that 3µ2(1)≥ p+v0 = 2 so that the second investor with a
positive signal always pledges after a pledge in the first period. Let us further assume
that 3µ2(0)< 2 so that the second investor never pledges if no pledge occurred in the
first period. Hence, 2≥φ−1 > 2/11.

In the first period, an investor with a positive signal pledges if she believes that
given cumulative donations D , the donor valuations are distributed according to
w ∼ F (·|D ) if

4

4+2φ−1
(0.9+0.1(1− F (0.5|D ))) (3−1)−

2φ−1

4+2φ−1
(0.45+0.55(1− F (0.5|D )))≥ 1.

The left-hand side is decreasing in 1− F (0.5|D ) ifφ−1 > 8/11. Furthermore, let

φ−1 ≤
2((0.9+0.1(1− F0(0.5))2−1)

0.45+0.55(1− F0(0.5))+1
≈ 1.07(C3)

to make it worthwhile for the investor to pledge absent donations. Hence, for exam-
ple, forφ−1 = 0.8> 8/11, in the success-maximizing equilibrium the donor optimally
donates nothing until the deadline. The campaign succeeds if either w > 1.5 or if two
investors with a high signal realization arrive.

If the scope of social learning is small, e.g.,φ−1 = 0.5< 8/11, then a PT equilibrium
in which the donor donates just enough to make the next investor buy exists. Hence,
our analysis is robust to some amount of social learning.

The example highlights several new forces: First, increasing donations is less ef-

18The campaign can also succeed if no investor pledges and the donor valuation exceeds the goal amount, but
this case is irrelevant for the strategic pledging incentives of investors.
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fective in increasing the probability of success because it also increases the proba-
bility of buying the product when its quality is actually low. Second, the benefit from
pledging might even be decreasing in cumulative donations.

C3. Application: Industrial Policy

We first consider the setting in which the government’s payoff is given by (W −
DT )1(RT ≥G ). Because there is uncertainty about the goal, participants know if the
goal is reached only once D +N p +X ≥G . We can construct a PT equilibrium anal-
ogously to the success-maximizing PT equilibrium in Proposition 1 such that the
donation threshold makes investors just indifferent between pledging and not. All
expressions are analogous to the case where the inductive definition of the proba-
bility of success contains an additional integral:

π̃∆j−1(N , D , u ) =

EF0

�

∫

max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

�

1(D∆∗, j−1(N +1, u −∆(i −1))+N p ≥G +X )+

π∆j−1

�

N +1, max{D , D∆∗, j−1(N +1, u −∆(i −1))}, u −∆i
�

1(D∆∗, j−1(N +1, u −∆(i −1))+N p <G +X )
�

+(1−∆λ)u/∆1(W +X ≥G − (N +1)p )d H (X )
�

�W ≥D

�

.

Similarly, we can construct a PT equilibrium analogous to Proposition 2 using cut-
off times ξ that correspond to a game without a donor but an uncertain goal. In this
equilibrium, investors pledge even if they believed there were no additional dona-
tions. Hence, this equilibrium coincides with one in which investors know W . By
construction, the donation thresholds for this equilibrium are higher for any state
(N,u) than the threshold for the equilibrium that corresponds to Proposition 1. Thus,
the probability of success in this equilibrium yields a higher probability of success
than the equilibrium in which there was no signaling and W was made public. The
same equilibria could be supported if the donor was maximizing the probability of
success subject to a budget constraint.

Next, we consider alternative donor payoffs (W −γDT )1(RT ≥G )−(1−γ)DT , where
γ ∈ [0, 1] is the scrap value of investment if the goal is not reached. Solving a fully
dynamic game is beyond the scope of this paper, but we can highlight that there is
value in signaling, using a two-period example.

We assume t = 1, 2 and that G is uniformly distributed on {2, 3}. We also assume
that the arrival rate of investors isλ= 1, and each investment requires a contribution
of p = 1. We assume a cutoff probability of 0.5 (e.g., v = 2, v0 = 0.7, so v0

v−p = 0.5) and
W to be uniformly distributed on {0, 2}.

If W is announced ex-ante, then investors recognize that the donor will commit
up to W at t = 2 to ensure success. Thus, investors effectively face a goal of G −W .
If W = 2, one investment suffices for success, so investors always contribute. Con-
versely, if W = 0, the second-period investor never contributes, as the probability
of success is at most 0.5 < 0.7. Consequently, the first-period investor also refrains
from contributing even if G = 2.

If W remains private information, we can construct an equilibrium such that the
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project succeeds if the realized donor valuation is W = 0 and the realized goal is
G = 2. If an investment occurred in period 1, then the probability of success for an
investor at t = 2 is 0.5+ 0.5 · 0.5 = 0.75 ≥ 0.7, so she invests. A period-1 investor also
contributes, with a calculated success probability of 0.5+0.5 ·0.5 ·0.9= .725≥ 0.7. An
optimal strategy for the donor is to only contribute at t = 2 and only if it facilitates
success. Thus, the project succeeds if G = 2 and W = 0. Thus, the probability of
success is greater when W is undisclosed.

C4. Proof of Proposition 5 (Donation Dynamics of PT Equilibria)

i) Claim: P(NT p +DT−∆ <G |ST )> 1−∆λ and P(DT =G −NT p |ST )≥ 1−∆λ.

If the campaign has not succeeded by the beginning of the last period, then
DT−∆ + NT−∆p < G . Then, it can only be that NT p + DT−∆ ≥ G if a con-
sumer arrives in the last period, which occurs with probability ∆λ. Even if
a consumer arrives, the campaign remains unsuccessful without a donation.
If NT p +DT−∆ <G , then the donor donates exactly such that DT =G −NT p if
his valuation w is large enough. If w is smaller, the campaign fails.

ii) Claim: P(Dτ−∆ <G −Nτp ) = 1 if τ< T .

In any PT equilibrium with donation threshold D∆
∗ , the donor never donates

more than max{D , D∆
∗ (N , u )} at u >∆, where D∆

∗ (N , u )<G − (N +1)p . Thus,
if the campaign succeeds for u >∆, it must be due to a purchase.

iii) Claim: D∆
∗ (N , u +∆)≥D∆

∗ (N +1, u )

This is simply Condition i) in Definition 2 of PT assessments.

iv) Claim: Given donor realizations w > w ′, if a campaign is unsuccessful for
both w and w ′, then the failure time ι is larger for w than for w ′.

We can write the failure time of a campaign in a PT equilibrium as ι =min j

�

τ j ≥
0
�

� W <D∆
∗ ( j , T −τ j )

	

. Hence, it follows immediately that a donor with valu-
ation w fails later than a donor with valuation w ′.

v) Claim: In success-minimizing PT equilibria, all donations are at least p .

This follows immediately from the definition of the success-minimizing thresh-

old D
∆
(N , u ) in Section II.D.
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DATA APPENDIX

D1. Data Construction

We directly observe pledge counts for each reward level (buyer pledges) as well
as total revenues. Total revenues are inclusive of donations and shipping costs—on
Kickstarter, shipping costs are included in the progress towards the goal but are not
included in the prices for rewards. This means that we observe both left-hand-side
variables individually in the equation

Total Revenuet −Buyer Revenuet =Donor Revenuet +Shipping Costst ,

but we observe only the sum of the right-hand-side variables. In order to recover the
amount of donations, we need an estimate of shipping costs.

We collect shipping costs for every campaign-reward-country combination and
then assign a shipping cost to every observed pledge. Since donations are positive
contributions to campaigns, we also incorporate the constraint Shipping Costst ≤
Total Revenuet − Investor Revenuet .

In total, we collect more than 516,000 shipping quotes. The most frequently ob-
served shipping options are free shipping, single-rate shipping, or worldwide ship-
ping with region-specific or country-specific prices. We complete our analyses un-
der three shipping-cost assignments: (i) least-expensive shipping, (ii) assuming all
buyers are located in the United States, and (iii) most-expensive shipping. Specifi-
cations (i) and (iii) provide lower and upper bounds on the importance of donations.
We use (ii) as our main specification because most campaigns originate in the U.S.

We define a buyer to be an individual who pledges for any reward; however, some
rewards may be better classified as a donation. For example, if the lowest reward is
a thank-you card but the main reward is a novel product, the lowest reward may be
better treated as a donation. Another example may be the existence of an expen-
sive option that includes the main reward but also allows the buyer to meet with the
entrepreneur. We repeat all of our analyses treating the most-expensive, the least-
expensive rewards, or both the least- and most-expensive rewards as donations.

For our empirical analysis, we use the following cleaning criteria:

i) Some entrepreneurs request that buyers pledge in excess of the posted price
if they are interested in obtaining additional product features—called “add-
ons" or "optional buys." Other campaigns have “stretch goals,” which means
that the entrepreneur informally adjusts the goal and if met, adjusts the fi-
nal product. Unfortunately, we do not have access to individual-level data to
measure the prominence of buyers contributing in excess of the goal. We at-
tempt to minimize the presence of these contributions by removing any cam-
paigns whose HTML pages include words related to add-ons, optional buys,
and stretch goals.

ii) We winsorize the sample by dropping the bottom 0.5% and the top 0.5% of
campaigns in terms of the goal amount. This removes campaigns with low
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$1 goals and campaigns with several-million-dollar goals (one in the billions).
These extreme values impact some means, such as average goal, but medians
are unchanged.

iii) We drop campaigns that were removed by the creator, campaigns under copy-
right dispute, and campaigns with optional add-ons.

D2. Additional Tables and Figures

Table D1—: Top Category Summary Statistics

Design Film & Video Music Technology

Project Length 33.8 33.0 33.1 35.9
(10.9) (12.5) (12.3) (12.2)

Goal ($) 19185.6 18003.5 9849.1 36482.4
(32655.5) (44140.1) (27223.1) (61063.7)

Number of Rewards 8.1 7.4 7.1 6.2
(5.2) (5.6) (5.8) (4.6)

Donor Revenue 31.1 26.2 17.8 17.9
(per period) (525.8) (286.2) (160.6) (238.7)

Buyer Revenue 320.9 55.9 50.1 213.2
(per period) (2112.4) (488.7) (360.6) (1881.7)

Percentage Donations 17.3 40.9 37.8 29.5
at Deadline (25.1) (32.3) (31.5) (36.2)

Percentage Donations 18.5 22.6 24.5 8.3
of Goal (52.8) (51.6) (103.0) (28.6)

Percentage Successful 49.1 44.0 54.0 24.6

Number of Campaigns 4819 5176 4328 4804

Note: Summary statistics for the top four Kickstarter categories, based on the number of campaigns within a cat-
egory. Standard deviation reported in parentheses. Donor and buyer revenue are reported as 12-hour averages.
Rows involving percentages use final campaign outcomes.
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Figure D1. : Percentage of Campaigns that Receive Purchases or Donations over
Time

Note: These figures show the percentage of campaigns that have purchases or donations over time, for 30-day cam-
paigns; 30 denotes the campaign deadline. Four lines are shown: early finishers (campaigns that succeed within 3
days of launching), middle finishers (campaigns that succeed within 3–27 days of launching), late finishers (cam-
paigns that succeed in the last 3 days before the deadline), and unsuccessful campaigns. The lines are fitted values
of polynomial regressions.
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Figure D2. : Percentage of Revenue from Buyers at Success Time

Note: Histogram of the fraction of revenue from buyers in the period in which a campaign succeeds. Selected cam-
paigns finish at least one day before the deadline.
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Figure D3. : Logistic Regression: Probability of Success for Campaigns that Eventu-
ally Fail

Note: (a) Fitted values of a logistic regression of campaign success over time for campaigns that eventually fail.
Controls are fraction of total revenues over the goal amount (or 1 if greater) interacted with time. Plotted are the
mean project, the median campaign, and the 90th percentile of projects. The results suggest that more than half of
projects have a low probability of success at the start. (b) A histogram of the last time a campaign had a probability
of success greater than 10%. Time rounded to three-day bins.
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Figure D4. : “Projects We Love”, Timing, and Investor Contributions

Note: “Projects We Love” is a designation assigned to campaigns by Kickstarter staff. These campaigns may be fea-
tured on the site homepage as well as advertised in emails. Panel (a) presents a histogram of when the designation
is applied, as a function of time remaining in the campaign. Panel (b) presents average buyer revenue for three
scenarios: (1) campaigns that never receive the designation, (2) campaigns that receive the designation after 10%
of time has elapsed, and (3) campaigns that receive the designation within the first 10% of time.
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Table D2—: Dynamic Donation Regressions

(1) (2) (3) (4)

Lag1 Above Median 10.327 11.437 -9.401 -8.200
(2.415) (2.415) (2.452) (2.452)

Lag2 Above Median -2.147 -1.888 -6.387 -6.017
(3.001) (3.000) (2.937) (2.936)

Lag3 Above Median -0.304 -0.084 -4.471 -4.136
(2.875) (2.874) (2.814) (2.812)

Lag4 Above Median 3.428 4.110 -9.886 -8.853
(2.205) (2.205) (2.210) (2.211)

Time Fixed Effects − ✓ − ✓

Campaign Fixed Effects − − ✓ ✓

Note: Results of panel data regressions where the dependent variable is Dj ,t and the independent variables are

1
�

R j ,t−k /G j >median
�

R·,t−k /G·
��

, for k = 1, 2, 3, 4. That is, these variables mark if a campaign’s cumulative revenue
over the goal amount is above the median. We calculate the median at the time–category level for 30-day campaigns
that eventually succeed. We run regressions for 30-day campaigns that have not yet reached success. Therefore, the
interpretation of the model is donations as a function of whether or not a given campaign is above the median in
terms of reaching the goal. The number of observations in each regression is 907,183. Checkmarks denote variables
included in the regression. Dashes denote variables excluded from the regression.
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D3. Bounding Donations

Donations on Kickstarter can come either from contributors entering an amount
in the donation box or from contributors paying more than the reward price. How-
ever, some rewards may be interpreted as donations (e.g., low-priced rewards that
approximate a thank-you, or an expensive reward that includes the product but also
includes special recognition). The bias is in only one direction: we are possibly un-
derstating the magnitude of donations. This is not a problem per se, but we investi-
gate how it affects our results.

Given the number of projects and buckets per project, manually assigning a re-
ward or part of a reward as a donation is infeasible. There are over 500,000 rewards
in the data. Instead, we perform the following analyses. First, we assume the least
expensive bucket represents a donation. Next, we assume the most expensive bucket
represents a donation. Finally, we assume both the least and most expensive buckets
constitute donations.

We also conduct robustness to our calculation of shipping costs. This is important
because donations are determined after subtracting shipping costs. If we understate
shipping costs, we overstate donations. We reprocess all the data assuming all pur-
chases are made from the country with the lowest, and then the most expensive,
shipping costs.

In Figure D5 and Figure D6, we plot average contributions divided by total cam-
paign revenue over time for pledges and donations, respectively, under 12 scenarios.
In Figure D7 and Figure D8, we plot the percentage of campaigns that see pledges
and donations over time, respectively, under 12 scenarios. The labeling in the fig-
ures uses the legend in Table D3.

Table D3—: Robustness Analysis Figure Legend

US Assumes all rewards shipped under USA shipping costs
Min Cost Assumes all rewards shipped to least expensive country
Max Cost Assumes all rewards shipped to most expensive country

No Adjust Treats all rewards as products
Bottom Adjust Treats the least expensive reward as a donation
Top Adjust Treats the most expensive reward as a donation
All Adjust Treats both the least and most expensive reward as a donation
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Figure D5. : Robustness: Buyer Contributions over Time

Note: These figures show average buyer contributions over time (over total campaign revenue) for different assump-
tions on shipping costs and what constitutes a donation. See Table D3 for label descriptions.
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Figure D6. : Robustness: Donor Contributions over Time

Note: These figures show average donor contributions over time (over total campaign revenue) for different as-
sumptions on shipping costs and what constitutes a donation. See Table D3 for label descriptions.
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Figure D7. : Robustness: Percentage of Projects that Receive Purchases over Time

Note: These figures show the percentage of campaigns that receive pledges over time for different assumptions on
shipping costs and what constitutes a donation. See Table D3 for label descriptions.
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Figure D8. : Robustness: Percentage of Projects that Receive Donations over Time

Note: These figures show the percentage of campaigns that receive donor contributions over time for different as-
sumptions on shipping costs and what constitutes a donation. See Table D3 for label descriptions.
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Table D4—: Robustness: Donation Revenue per Period

Shipping Donation Adjust Mean
Median 5th % 95th %

(All) (Uns.) (Suc.)

US No Adjust 19.1 3.3 43.7 0.0 0.0 44.0

Min Cost No Adjust 20.7 3.5 47.4 0.0 0.0 50.0

Max Cost No Adjust 14.9 2.9 33.5 0.0 0.0 15.0

US Bottom Adjust 28.3 4.5 65.5 0.0 0.0 62.0

Min Cost Bottom Adjust 29.8 4.7 69.0 0.0 0.0 72.0

Max Cost Bottom Adjust 23.9 4.1 54.6 0.0 0.0 39.0

US Top Adjust 33.6 5.6 77.1 0.0 0.0 75.0

Min Cost Top Adjust 35.1 5.8 80.8 0.0 0.0 85.2

Max Cost Top Adjust 28.1 5.2 63.7 0.0 0.0 46.0

US All Adjust 42.1 6.7 97.2 0.0 0.0 100.0

Min Cost All Adjust 43.5 6.9 100.5 0.0 0.0 100.0

Max Cost All Adjust 36.9 6.3 84.5 0.0 0.0 70.0

Note: Summary statistics for the 42,462 campaigns in the sample. Means for all statistics are computed for all cam-
paigns (All), unsuccessful campaigns (Uns.), and successful campaigns (Suc.). Also reported are the 50th, 5th, and
95th percentiles.

Table D5—: Robustness: Pledge Revenue per Period

Shipping Donation Adjust Mean
Median 5th % 95th %

(All) (Uns.) (Suc.)

US No Adjust 119.5 14.0 283.8 0.0 0.0 391.0

Min Cost No Adjust 117.7 13.8 279.8 0.0 0.0 384.0

Max Cost No Adjust 123.9 14.4 294.6 0.0 0.0 408.5

US Bottom Adjust 113.2 13.0 269.3 0.0 0.0 368.2

Min Cost Bottom Adjust 111.5 12.8 265.4 0.0 0.0 360.0

Max Cost Bottom Adjust 118.4 13.5 282.0 0.0 0.0 389.0

US Top Adjust 107.7 11.9 257.0 0.0 0.0 347.1

Min Cost Top Adjust 105.9 11.7 252.9 0.0 0.0 339.4

Max Cost Top Adjust 113.6 12.4 271.4 0.0 0.0 369.5

US All Adjust 101.8 11.0 243.4 0.0 0.0 325.0

Min Cost All Adjust 100.1 10.8 239.5 0.0 0.0 316.6

Max Cost All Adjust 108.0 11.5 258.4 0.0 0.0 348.0

Note: Summary statistics for the 42,462 campaigns in the sample. Means for all statistics are computed for all cam-
paigns (All), unsuccessful campaigns (Uns.), and successful campaigns (Suc.). Also reported are the 50th, 5th, and
95th percentiles.
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Table D6—: Robustness: Percentage of Revenues from Donations

Shipping Donation Adjust Mean
Median 5th % 95th %

(All) (Uns.) (Suc.)

US No Adjust 29.2 33.1 24.6 15.8 0.0 100.0

Min Cost No Adjust 30.5 34.3 26.1 17.9 0.0 100.0

Max Cost No Adjust 26.9 31.5 21.5 11.4 0.0 100.0

US Bottom Adjust 36.9 43.3 29.4 25.5 0.0 100.0

Min Cost Bottom Adjust 38.2 44.4 30.9 27.1 0.3 100.0

Max Cost Bottom Adjust 34.5 41.7 26.1 21.9 0.0 100.0

US Top Adjust 41.1 43.8 38.0 33.7 0.0 100.0

Min Cost Top Adjust 42.5 44.9 39.6 35.4 0.0 100.0

Max Cost Top Adjust 38.4 42.0 34.2 29.8 0.0 100.0

US All Adjust 47.8 52.3 42.4 43.5 0.0 100.0

Min Cost All Adjust 49.0 53.3 43.8 44.8 1.0 100.0

Max Cost All Adjust 45.1 50.6 38.6 40.3 0.0 100.0

Note: Summary statistics for the 42,462 campaigns in the sample. Means for all statistics are computed for all cam-
paigns (All), unsuccessful campaigns (Uns.), and successful campaigns (Suc.). Also reported are the 50th, 5th, and
95th percentiles.
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D4. Equilibrium Construction using Kickstarter Data

Estimation Sample: We incorporate five selection criteria when estimating the
model:

i) Select projects that have a deadline of 30 days;

ii) Select projects in which the maximum number of pledges per period is below
the 95th percentile;

iii) Select projects in which the maximum amount of donations per period is be-
low the 95th percentile;

iv) Select projects in which the maximum ending revenue over the goal amount
is below the 75th percentile;

v) After implementing (i)–(iv), select the first quartile of projects by goal amount
for each category.

Estimation of Donor Valuations: We estimate the selection model (Heckman, 1979)
in a single step.
Estimation of Arrival Process: We estimate the selection model (Terza, 1998) in a
single step. We do not estimate the variance-covariance parameters directly. In-
stead, we estimate the variance as log(σ). We estimate the covariance term as tanh(ρ).
We approximate the integrals in the log-likelihood using the Gauss–Hermite quadra-
ture with 25 integration points.
Calibration of Investor Utility: We calibrate the model using the method of sim-
ulated moments (MSM). To calculate the success-maximizing equilibrium, we im-
plement the dual induction argument of Proposition II.C with the following adjust-
ments:

i) We discretize donations in increments of $1. The donor’s strategy is defined
over the estimated log-normal distribution up to the 99.9th percentile.

ii) We adjust the length of a time interval so that arrival rates are less than 1, i.e.,
we define λmax = ⌈maxt=0,...,T

bλt ⌉, and then define the length of a period to be
1/λmax for all t . Estimated arrival rates are multiplied by 1/λmax.

iii) The goal is set to be ⌈G ⌉ for each category and goal quartile. Donation thresh-
olds, time cutoffs, and beliefs are defined up to ⌈G ⌉.

We use derivative-free search over the parameter space, initially selecting candidate
solutions between v0 +p and v0 +p + 1. Our method searches over larger values of
v if the objective is minimized beyond v0 +p + 1. We also account for potential flat
spots in the objective function. For example, the probability of success may be equal
to zero over a range of potential solutions because beliefs are sufficiently low. We use
a stopping criterion of 1e-6 in our procedure.

We do not report results for the Dance category because the valuation distribution
and arrival process parameters are such that the objective is flat over all potential v .




