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A Proofs of Section III.A

A.1 Proposition A.1

Proposition A.1. Under Assumptions 1 and 2, there exists a subgame-perfect equilibrium of the game that
satisfies Requirements 1 and 2.

Proof. Assumption 2 follows Kocherlakota (1996), who uses it in Proposition 4 to prove that a reconsideration-
proof equilibrium exists for the game whose period-t payoff is V (at, at+1, at+2, ...). The strategies of such a
game represent a subgame-perfect equilibrium of our game with a state variable: weak separability implies that
the state does not affect the preference ordering of each player over the sequence of future actions. Moreover,
these strategies satisfy Requirements 1 and 2 by the definition of a reconsideration-proof equilibrium.

A.2 Proof of Proposition 1

Proof. Let (aE0 , a
E
1 , . . .) be the outcome of a reconsideration-proof equilibrium for the game whose period-

t payoff is V (at, at+1, at+2, ...), and let V̄ be its associated value. This means that, for any period t and
any actions a ∈ A, there exists a continuation sequence (aĒt+1, a

Ē
t+2, . . .) which is also the outcome of a

reconsideration-proof equilibrium and is such that

V (aEt , a
E
t+1, a

E
t+2, . . .) ≥ V (a, aĒt+1, a

Ē
t+2, . . .). (1)

We then have
V (a, aĒt+1, a

Ē
t+2, . . .) = Ṽ (a, V̂ (aĒt+1, a

Ē
t+2, . . .)).

Acknowledging that the sequence (aĒt+1, a
Ē
t+2, . . .) is potentially a function of the deviation a (as well as of

time t, which we can hold fixed), define

V := inf
a∈A

V̂ (aĒt+1, a
Ē
t+2, . . .). (2)

By the compactness of A, Tychonoff’s theorem, and continuity of V̂ , we can find a sequence of actions
a∗0, a

∗
1, ... that attains the infimum in equation (2) above. Exploiting Assumption 3, this sequence ensures

subgame perfection and satisfies the no-restarting condition (Requirement 3):

V (a∗0, a
∗
1, a
∗
2, . . .) ≥ V (a, a∗0, a

∗
1, . . .).

This path attains the value V̄ , so that it continues to satisfy the optimality condition of Requirement 2. Hence,
playing (a∗0, a

∗
1, ....) followed by a restart after any deviation is an equilibrium that satisfies Requirements 1, 2,

and 3, and therefore (a∗0, a
∗
1, ....) is an organizational equilibrium.
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B Proofs and Details in Section III.B

The players in the game are nature, plus an infinity of players 0,1,... indexed by the time at which they act.
Nature moves first, choosing a time t̂, from which record keeping is possible. We assume that this distribution
has full support on N.1

Players take two actions:

• Player t chooses at ∈ A.

• In addition, a player may choose a record-keeping action ρt ∈ {S,C,H}, where S stands for starting
record keeping, C stands for continuing record keeping, and H for hiding past records. Whether these
actions are available at time t depends on the past in a way that we will soon make explicit.

We are now ready to define histories and information. The first history is ∅, at which stage nature moves.
In all periods t < t̂, players only choose the action at. While the history of play is (t̂, a0, ..., at−1), their only
information is that t < t̂, and the current level of the state kt: they do not observe any of the past players’
actions, and they only know that record keeping is not yet possible. In period t = t̂, the history of play is also
(t̂, a0, ..., at−1). Player t = t̂ observes kt, does not observe any of the actions taken by the past players, but it
knows that t ≥ t̂ and that either t = t̂ or ρt−1 = H: that is, it knows that it is either the first player with the
opportunity to set up record keeping, or the opportunity was available in the past, but player t− 1 chose not
to adopt it and to hide the previous history. Player t = t̂ is called to choose an action ρt ∈ {S,H} as well as at.
In period t̂+ 1 and all subsequent periods, the history of play is (t̂, a0, ..., at̂−1, ρt̂, at̂, ρt̂+1, at̂+1, ..., ρt−1, at−1).
In each of these periods, if ρt−1 = H, then player t only knows that record keeping is possible and the
level of kt; it does not know whether t = t̂ or ρt−1 = H. In this case, player t has the same options as
player t̂. Otherwise, let t̃ be the last time action S was taken; player t then knows that t̂ ≤ t̃ and it knows
(ρt̃, at̃, ρt̃+1, at̃+1, ..., ρt−1, at−1) (in addition to kt). Player t has 3 options for ρt: first, it can choose ρt = H,
in which the next player will start again with no record of the past; second, it can choose ρt = C, that is, to
continue record keeping: in this case, player t+ 1 will know (ρt̃, at̃, ρt̃+1, at̃+1, ..., ρt, at). Finally, it can restart
the history (ρt = S), disavowing the past, but recording its own actions, in which case player t + 1 will only
observe (ρt, at). In all cases player t+ 1 will observe kt+1.

A strategy σt for player t is a mapping from the set of time-t histories, Ht, to the set of actions A and (when
available) record-keeping choices ρt ∈ {H,S,C}, that is measurable with respect to the information available
at time t. As before, a strategy profile σ is a sequence of strategies, one for each player. It is useful to
distinguish between the two choices made by agents: accordingly, let σa t be the component of σt(ht) that
contains the prescribed action a ∈ A after history ht, and σρ t(ht) be the prescribed choice of record keeping.
Analogously, we define σa := {σa t}∞t=0 and σρ := {σρ t}∞t=0.

We restrict attention to equilibria that satisfy Requirement 1: that is, they involve strategies that are inde-
1It would be equivalent to assume that nature moves in each period up to t̂, as long as the conditional hazard rate

of the start of record keeping is the same. This is because nature’s choice is not fully observed by the agents anyway.
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pendent of kt.

We define a full-disclosure equilibrium to be an equilibrium in which σρ t(ht) = S for all histories for which
t ≥ t̂ and no previous record of play is known, and σρ t(ht) = C for all histories for which player t observes
a record of past actions. In a full-disclosure equilibrium, players introduce record keeping as soon as possible
and never erase any of the record available, independent of the actions of past players.

The proof of Proposition 2 relies on a sequence of lemmata:

Lemma 1. Let σ be a sequential equilibrium that satisfy Requirement 1 in the game defined above. Then:

1. There exists a full-disclosure sequential equilibrium σ̃ that also satisfies that satisfy Requirement 1 and
such that the same actions {at}∞t=0 are taken on the equilibrium path under σ and σ̃.

2. If σ satisfies Requirement 2 from period t̂ (whatever t̂ turns out to be), then σ̃ can be chosen to also
satisfy the same requirement.

Proof. Our proof only looks at pure-strategy equilibria. It could be extended to mixed-strategy equilibria,
in which players randomize over their choice of record keeping, using the same logic presented here, as long
as a public randomization device is present that allows coordination across players. We omit the case of
mixed-strategy equilibria for brevity.

1. Assumption 1 implies that, if future players do not condition their choices on the state k (but potentially
condition their choices on all their remaining information in any arbitrary way), the optimal choice for
a current player is independent of the current state. In looking at equilibria that satisfy Requirement 1,
we can therefore leave the state k in the background and focus only on the history of actions, disclosures,
and the time at which record keeping becomes available.

Let σ = {σt}∞t=0 be the strategy profile of the sequential equilibrium that contains the equilibrium action
path {at}∞t=0.

We need to construct an alternative strategy profile σ̃ that contains the same equilibrium action path,
but involves full disclosure. We will do so by creating a suitable mapping from the set of histories to
itself, and setting σ̃a t(ht) = σa t(η(ht)). η is constructed recursively as follows:

• For t ≤ t̂, η(ht) = ht.

• For t > t̂ and histories in which ρt−1 = H, η(ht) = ht.

• For t > t̂+ 1 and histories in which ρt−1 = S and σρ,t(ht−1) = S or σρ,t(ht−1) = C, η(ht) = ht.

• For t > t̂+1 and histories in which ρt−1 = S and σρ,t(ht−1) = H, η(ht) = (ht−1, H, at−1,ht), where
at−1,ht is the action taken in period t− 1 according to the history ht.

• For t > t̂ and histories in which ρt−1 = C, we define η recursively as η(ht) = (η(ht−1), σρ,t(h
t−1), at−1,ht).
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Furthermore, whenever t ≥ t̂, σ̃ρ t = S if no record keeping is currently in place, and σ̃ρ t = C otherwise,
in line with the definition of a full-disclosure equilibrium.

In words, σ̃ is constructed from σ by assuming that agents take the same actions under the two strategy
profiles whenever they do not observe the past. When past actions are observed from s̄ on, the strategy
profile σ̃ prescribes that the agents take the same actions they would have taken under σ when faced
with a history that has same choices for (a0, ..., at−1), but in which past players from s̄ on chose to hide,
start, or continue record-keeping according to the equilibrium profile σ. At the same time, σ̃ always
prescribes full disclosure. Next, we verify that σ̃ is a measurable strategy with respect to the information
sets available to the players at each point t. The choice of ρ only depends on whether record keeping is
possible and whether it is inherited from the past, which is observable to an agent at the time it makes
its choice. Furthermore, by construction, the mapping η is such that the prescribed action σ̃a t(ht) is
the same for all histories that share the same observable record.2

Next, we verify that σ̃ represents a sequential equilibrium. A player’s payoff only depends on the current
and future actions at ∈ A, and only indirectly on record keeping choices.

• In any period t < t̂, the current choice of at by player t is not known to future players and therefore
it has no impact on any future action. Furthermore, the two strategies σ and σ̃ imply the same
sequence of future actions (at+1, at+2, ...) along the equilibrium path.3 The optimality of σ̃t then
follows directly from that of σt.

• Consider next periods t ≥ t̂ and histories ht such that no record is available to player t. For such
histories, η(ht) = ht. There are two possibilities. First, suppose that σρ(ht) = S. Then, no matter
what choice of (ρt, at) player t takes, the equilibrium implies that future players will take the same
actions {as}∞s=t+1 under profiles σ and σ̃. Hence, σ̃t(ht) = σt(h

t) is an optimal choice. Suppose
instead that σρ t(ht) = H, that is, according to the equilibrium profile σ, player t should hide its
action. In this case, η is such that player t gets the same payoff whether it chooses ρt = S or
ρt = H, since η(ht, H, at) = η(ht, S, at): player t is indifferent between starting record keeping or
not, because in either case future players will ignore its play and behave as if no record had been
taken in t. Starting record keeping is thus weakly optimal, and taking the same action that would
have been taken under the profile σ is optimal as well.4

• Consider histories ht in which a record is present. The reasoning is similar. If σρ,t(η(ht)) = C,
then, no matter what choice of (ρt, at) player t takes, the equilibrium implies that future players
will take the same actions {as}∞s=t+1 under profiles σ̃ and history ht as they would under σ and
history η(ht). Hence, if σt(η(ht)) is optimal (taking as given that σ will be followed in the future),
then σ̃t(ht) is also optimal, if future players play according to σ̃. If σρ t(η(ht)) = H, then under
σ̃ future players will ignore past actions whether player t chooses ρt = H or ρt = C, and their
future actions will follow the course dictated by σ|(ht,H,at). By the measurability restriction,
σ|(ht,H,at) = σ|(η(ht),H,at). Hence, player t is indifferent between playing C or H. If player t

2This assumes that the property is true for σ, which must be the case for σ to be a valid strategy profile and
therefore a valid equilibrium, provided that σ does not condition on kt, which is guaranteed by Requirement 1.

3Notice that future actions are in general uncertain and depend on the realization of t̂, but their stochastic process
is identical in the two equilibria.

4Since future players will ignore the action at, player t will maximize its payoff assuming that its action does not
affect the future, as if no record were taken, just as it would under the strategy σ, which prescribes hiding the record.
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chooses to restart the record, then the future players’ actions will evolve according to σ|(ht,S,at).
Measurability implies again that σ|(ht,S,at) = σ|(η(ht),S,at). Since σ is an equilibrium profile,
playing σt(η(ht)) (which in this case involves hiding the record from future players) is weakly
better than playing S along with any of the possible actions, under the assumption that future
players will follow the same profile σ. It follows that the consequences of playing H vs. S and any
action at in period t under history ht when future players will follow σ̃ are the same as those of
playing the corresponding actions under history η(ht) when future players will follow σ. Hence, if
σ(η(ht)) = H, playing S is a (weakly) dominated choice. In sum, in this case player t is indifferent
between H and C, and it weakly prefers either to S, which ensures that it is optimal for its to
play C. Furthermore, choosing at = σ̃a t(h

t) = σa t(η(ht)) is optimal because it involves a static
optimization taking as given the future choices (that will be independent of the current at and
will be the same under ht and σ̃ as they are under η(ht) and σ). The last case to consider is one
in which σρ t(η(ht)) = S; this case is similar to the previous one. Specifically, the measurability
restriction implies σ|(ht,S,at) = σ|(η(ht),S,at). Furthermore, if player t chooses ρt = C, σ̃ is such
that future players will choose the same sequence of actions whether player t chooses ρt = S or
ρt = C: these actions will only depend on at, which is the only element of the record that is passed
to future players according to the strategy σt. If player t chooses ρt = H, the future equilibrium
path unfolds according to σ̃|(ht,H,at) = σ|ht,H,at = σ|(η(ht),H,at), where the last equality follows
the usual measurability restriction. If σt(η(ht)) = S, then playing ρt = S is weakly better than
playing ρt = C at η(ht) if σ will be followed in the future; this then implies that S (and the best
action at conditional on S) is weakly better than C (and the best at conditional on C) at history
ht if σ̃ will be played in the future. This establishes that, under σ̃, playing C yields the same
payoff as playing S, and a weakly better payoff than playing H. So, playing C is optimal. Finally,
the usual equivalence of future consequences implies that playing at = σ̃a t(h

t) = σa t(η(ht)) is
optimal.

2. Note that σ̃ is constructed so that the actions on the equilibrium path starting from any history ht

(whether the history itself is on or off equilibrium) are the same as the actions on the equilibrium path
starting from η(ht) when σ is played. The mapping η is such that histories with t ≥ t̂ are mapped
into histories with t ≥ t̂. If V is symmetric, then it achieves the same action payoff V following any
history that has t ≥ t̂; as a consequence, the same property is inherited by σ̃. This implies that the set
of values attainable by sequential equilibria satisfying Requirement 1 from period t̂ is the same as the
set of values attainable by full-disclosure sequential equilibria satisfying Requirement 1 from the same
period; the maxima of the two sets will thus coincide, completing the proof.5

Lemma 2. Let σ̃ be a full-disclosure state-independent sequential equilibrium for the game in which history
can be hidden. Then:

1. σ̃a|ht̂ ≡ σ is a subgame-perfect equilibrium for the game where record-keeping starts at time 0, and it

5The inability to keep records for periods before t̂ will in general imply that the payoff in previous periods is lower.
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also satisfies state independence (Requirement 1);6

2. If σ̃ is symmetric from period t̂ on, then σ̃a|ht̂ is also symmetric.

Proof. 1. In the game in which history can be hidden, in period t̂, player t̂ starts with no information
about the past, just as in period 0 of the game where record-keeping starts at time 0. Furthermore, σ̃
is such that records will be kept from t̂ on. Take as given the choice of ρt dictated by σ̃, and focus on
the choice of at. In order for σ̃ to represent a sequential equilibrium, at any time t ≥ t̂ and after any
history ht it must be the case that σa t(ht) (along with starting record keeping if no record is present or
continuing it otherwise) is optimal, conditional on the fact that future players will continue to play σ̃.
Let ht

a,t̂
represent the subcomponent of history ht that captures the history of actions (at̂, at̂+1, ...at).

Since σ̃ implies that future players will behave in such a way that the entire history of play from t̂ is
known, it then follows that σa t(ht) must be optimal in the game where record keeping starts in period
0 after history ht

a,t̂
, assuming that future players will play according to the strategy profile σ̃a|ht̂ .

2. Symmetry implies that the action payoff V on the equilibrium path conditional on attaining any history
ht with t ≥ t̂ is the same. This property is inherited by σ̃a|ht̂ in any subgame following a history ht

a,t̂
,

since the action paths coincide going forward.

Lemma 3. Let σ be a symmetric state-independent subgame-perfect equilibrium of the game where record-
keeping starts in period 0. Then, if and only if σ satisfies Requirement 3 as well, there exists a state-independent
full-disclosure sequential equilibrium σ̃ of the game where history can be hidden, which is symmetric from period
t̂ and is such that σ̃a|ht̂ ≡ σ.

Proof. Assume first that σ satisfies Requirement 3. The condition σ̃a|ht̂ ≡ σ fully characterizes σ̃a from period
t̂ on. To see this, let ht be an arbitrary history in which t > t̂+ s and player t observes (at−s, at+1−s, ..., at−1);
this implies that either player t− s− 1 chose to hide records, or player t− s chose to restart them, while all
subsequent players up to t chose to continue record keeping. This history is in the same information set as a
history with the same sequence of actions (at−s, at+1−s, ..., at−1) in which t̂ = t − s and players adopted full
disclosure; actions for such history are determined by σ̃a|ht̂ ≡ σ. This observation also implies that, following
any history, the sequence of actions a that are predicted to happen along a continuation equilibrium according
to σ̃ is the same as those in a corresponding history in the game where record-keeping starts in period 0 under
σ. If all histories under σ are followed by the same equilibrium action payoff V̄ , then the same value carries
over to σ̃. To verify that σ̃ is indeed optimal after any history ht, t ≥ t̂, we denote hta s = (as, ..., at) to be the
record available to player t after history ht and proceed as follows:7

6Note that, without further assumptions, σ̃a|ht̂ may depend on the precise realization of t̂. The property still holds:
in this case, each possible continuation strategy σ̃a|ht̂ is a subgame-perfect equilibrium of the game where record-keeping
starts at time 0.

7Along the equilibrium path, the record available should start from period t̂, but we need to verify optimality even
for histories that are not on the equilibrium path.
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• Player t does not have an incentive to choose ρt = C and any action a 6= σt(h
t
a,t̂

). Assuming that
future players will follow σ̃, the consequences of such a choice would be the same as those of choosing
a 6= σt(h

t
a,t̂

) after history ht
a,t̂

in the game where record-keeping starts in period 0 when future players
follow σ; since σ represents an equilibrium, choosing a 6= σt(h

t
a,t̂

) is weakly worse.

• Player t does not have an incentive to choose ρt = S and any action a ∈ A. Following such a choice,
player t + 1 will behave as if t̂ = t, and future actions will unfold according to the strategy profile σ.
Requirement 3 implies that, whatever action player t chooses, it would be (weakly) better off playing
ρt = S and a = σ(∅), that is, choosing to restart record keeping and playing the first action of the
strategy profile of the game where record-keeping starts in period 0. This latter choice gives an action
payoff of V̄ , which is the same as that obtained by continuing record keeping and following σ̃.

• Player t does not have an incentive to choose ρt = H and any action a ∈ A. Following such a choice,
player t + 1 and subsequent players will follow the strategy σ as if the game in which record-keeping
starts in period 0 took place from that point on. Requirement 3 implies that, faced with this prospect,
player t does not have any action that can guarantee a payoff higher than V̄ for herself.

To finish establishing the “if" part of the Lemma, the last step is to construct the strategy profile σ̃ in periods
t < t̂. In these periods, the actions taken by player t will not be observed by future players; as long as σ̃
is independent of the state, the actions of the current player will thus have no consequences on the actions
taken by future players. We thus need to prove existence of a sequence of actions (ã0, ã1, ...) that will be taken
by players in period t if t < t̂, and that are optimal given that the same sequence will be continued up to
the unknown time t̂ and given that starting in period t̂ actions will unfold according to the equilibrium path
dictated by σ. Given σ, consider a correspondence M : A∞ ⇒ A∞ that associates to a sequence (a0, a1, ...)

all the sequences such that player t is choosing optimally given that (a0, a1, ...) will be followed up to period
t̂ and σ will be followed from period t̂ on. By Assumptions 2 and 4 and the theorem of the maximum, M is
nonempty, compact- and convex-valued, upper hemicontinuous, and independent of the state. By Kakutani’s
fixed-point theorem, M has a fixed point, which can be used as our desired sequence (ã0, ã1, ...).

Conversely, suppose that σ does not satisfy Requirement 3. We know from the previous part of the proof that
player t ≥ t̂ can attain the action payoff V̄ by continuing record keeping and following the strategy σ̃, but also
by playing ρt = S and a = σ(∅), effectively starting the sequence (a0, a1, ...) of Requirement 3. However, if
player t hides the record and chooses ρt = H, then the strategy profile σ̃ implies that record keeping will start
in period t+ 1 and the actions (a0, a1, ...) will unfold from period t+ 1 instead. If Requirement 3 fails, there
exists an action ã such that V (ã, a0, a1., ...) > V (a0, a1, ...) = V̄ , which yields a higher payoff than following
σ̃; this would imply that σ̃ is not an equilibrium strategy profile.

We are now ready to prove Proposition 2.

Proof of Proposition 2. In the game in which record-keeping starts in period 0, let σ be a strategy profile whose
equilibrium path is an organizational equilibrium. By Lemma 3 we can find a state-independent strategy profile
σ̃ for the game in which history can be hidden that attains the same equilibrium path from t̂ on, whatever
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the realization of t̂; this equilibrium is also symmetric. To complete the proof, we need to show that there
is no other state-independent equilibrium which is symmetric from period t̂ on and attains a higher payoff
from that point onwards. By contradiction, suppose that such an equilibrium existed, let it be ¯̃σ. From
Lemma 1, we can assume without loss of generality that ¯̃σ involves full revelation. Lemma 2 implies that ¯̃σ|ht̂
is a symmetric state-independent equilibrium of the game in which history can be hidden, which would then
achieve a higher payoff than σ; however, this would imply that σ does not satisfy Requirement 2 and therefore
that its equilibrium path is not an organizational equilibrium, establishing a contradiction.

C Further Discussion of Assumptions 1, 3, 4, and 5.

Assumption 1 is central to our definition. By ensuring that the preference ordering over sequences of actions
is independent of the state, it provides a way of achieving a meaningful comparison across different periods of
time (or different histories) for which the state variable is different. Section III.E provides an example where
this assumption fails and illustrates a way we construct an approximating economy that satisfies it. Without
uncertainty, utility functions are only identified up to monotone transformations. In this case, it can be shown
that Assumptions 1 and 4 are equivalent. However, in the game of Section III.B, uncertainty is present, and
we need the separability property to apply to lotteries about future outcomes. In this case, utility functions
are identified up to affine transformations, and Assumption 4 is stronger than Assumption 1. Nonetheless,
all of the separable preferences that we use in practice satisfy it. A (contrived) example of preferences that
satisfies Assumption 1 but not Assumption 4 is one in which we amend the preferences of Section II to be

Et

[
u(ct) + δ

∞∑
τ=1

βτu (ct+τ )

]ξ
,

with ξ < 1: in addition to the standard risk aversion period by period (embedded in u), these preferences
exhibit risk aversion over the entire infinite sequence. When Assumption 1 holds but Assumption 4 fails, an
organizational equilibrium still exists, but the interpretation based on the alternative game of Section III.B
does not necessarily apply. An avenue to generalize the results to this case would be to study the limiting
behavior of the game of Section III.B to the probability of record-keeping being available in each period
converging to 1.

The other Assumptions that we introduce are sufficient conditions that allow us to derive our results in a clean
way, but there is often an alternative way to derive similar results in economies that do not satisfy them, in
particular by relying on Proposition 3.

Specifically, we use Assumption 3 to prove that the game that includes only the action payoff V (at, at+1, ...)

has a reconsideration-proof equilibrium that satisfies the no-restarting condition. Weak separability between
the initial action and the following sequence of actions allows us to find a worst continuation sequence that is
a sufficient deterrent for all possible deviations. When Assumption 3 fails, the worst continuation may depend
on the action taken, so for example the threat of restarting might work for the action to be taken in period
t+ 1, but not in period t+ 2. Nonetheless, checking whether this is the case in an application is not a difficult
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exercise. As an example, consider the following modification of preferences and technology of Section II, that
induce a violation of Assumption 3. At time t, preferences in terms of consumption sequences are given by

1

1− σ

[
c
(1−ι)(1−σ)
t + βδ

∞∑
v=0

βv
(
ct+v+1

cιt+v

)(1−σ)
]
,

with σ 6= 1 and ι ∈ (0, 1],8

kt+1 = Akt − ct.

Compared to the standard case, continuation preferences embed habit formation.9 When we express this
problem as preferences over a sequence of saving rates, so as to isolate the role of capital, we obtain

(Akt)
(1−ι)(1−σ)

1− σ

(1− st)(1−ι)(1−σ) + βδ

∞∑
v=0

βv

(
Av(1−ι)+1st+v(1− st+v+1)(1− st+v)−ι

v−1∏
n=0

s1−ι
t+n

)1−σ .
For these preferences, the marginal rate of substitution between st+1 and st+2 depends on st, so that sep-
arability of st from the remaining sequence fails. Nonetheless, we can establish whether an organizational
equilibrium exists by computing it from a recursive structure. Even when Assumption 3 fails, the proof of
Theorem 1 implies that a reconsideration-proof equilibrium of the game where preferences are given by the
action component only exists. On the path of play implied by such an equilibrium, the value from the sequence
of actions (excluding the separable state) is constant:

1

1− σ

(1− st)(1−ι)(1−σ) + βδ

∞∑
v=0

βv

(
Av(1−ι)+1st+v(1− st+v+1)(1− st+v)−ι

v−1∏
n=0

s1−ι
t+n

)1−σ = V̄ .

Using the fact that the players at time t and t+ 1 attain the same value V̄ , we derive a recursive expression
similar to the one we derive in the applications of the main text:

V̄ (1− β(Ast)
(1−ι)(1−σ)) = (1− st)(1−ι)(1−σ)

+ βδ(Ast(1− st+1)(1− st)−ι)1−σ − β(Ast(1− st+1))(1−ι)(1−σ) (3)

For any given V̄ , equation (3) is a difference equation in the saving rates that can be solved numerically. For any
given parameter combination, we can check whether this difference equation implies monotonic convergence
to a steady state. As long as δ and ι are such that there is an incentive to undersave in the first period, that
was the case in the numerical examples we tried. When this is the case, we can proceed as in the main text:

• Find the steady state that maximizes the value V̄ ;

• From equation (3), derive the function that maps st into st+1;

8When σ = 1 we obtain the logarithmic case, that preserves Assumption 3 even with the habit-formation specification
here. ι = 0 is the standard case in which Assumption 3 also applies.

9Introducing habit formation over the initial time-t consumption would break separability between the state and
the actions.
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• For any potential initial starting point s0, we can compute the payoff that a player at time t receives if
she expects restarting from s0 to happen in period t+1 and plays the best response to it, and compare it
to V̄ . If a value s0 can be found such that the threat of reversion to s0 in the future is enough to (weakly)
deter any action, we have found an organizational equilibrium. Such a value for s0 is guaranteed to
exist under Assumption 3, and not here. Nonetheless, in the numerical examples we tried, there is an
interval of values of s0 where the condition is satisfied, just as in our applications in the main text,
so an organizational equilibrium exists; as in the main text, we pick the highest saving in the interval
where no-restarting applies based on Pareto optimality (though another choice would also be valid and
converge to the same constant saving rate in the long run).

Finally, we used Assumption 5 to guarantee the existence of an organizational equilibrium which is recursive
in the continuation value. As always in infinite-horizon models, a recursive structure is of great help for
computations. Assumption 5 implies that the preference disagreement between the players moving at t and
t + 1 only concerns the action taken at t + 1: conditional on the action taken at t + 1, they agree on their
preference ordering over sequences of actions from t + 2 on. This allows us to use the continuation value
V̂ (at+2, at+3, ...) as a state in computing the equilibrium path recursively. Even when Assumption 5 fails,
there may be other ways of obtaining a recursive representation. As an example, we consider here a variant
of the consumption-saving problem of Section II. We now assume that the planner is seeking to maximize
the utility of a two-person household where both members have standard time-consistent preferences and
share consumption, but they differ in their discount factor, generating time-inconsistency for the planner as
in Jackson and Yariv (2014, 2015). Preferences at time t are thus given by

∞∑
v=0

(βvh + λβv` ) log (ct+v) ,

with 0 < β` < βh < 1, and λ > 0 being a measure of the relative Pareto weight of the impatient member.
Section II is a limiting case of these preferences as β` = 0, βh = β, and δ = 1/(1 + λ). When β` > 0,
Assumption 5 fails, as we can see considering the relative discount factor between periods t + 2 and t + 3.
From the perspective of period t, the relative discount factor is (β3

h+β3
` )/(β2

h+β2
` ), while from the perspective

of period t + 1 it is (β2
h + β2

` )/(βh + β`). As a consequence, the players at t and t + 1 differ not only in the
relative valuation of saving in period t+1, but also on saving in any future period. We can nonetheless retrieve
a recursive structure for this game as well. Specifically, let V`,t(st, st+1, ...) and Vh,t(st, st+1, ...) be the values
accruing to the impatient and the patient member of the household respectively, when the planner chooses
a sequence of savng rates (st, st+1, ...), excluding the additive utility from initial capital α/(1 − αβi)kt for
i = h, `. Since each member has standard time-consistent preferences, we can express these values recursively:

Vi,t = log(1− st) +
αβi

1− αβi
log st + βiVi,t+1, i = h, `. (4)

Since this economy satisfies the conditions of Proposition 1, an organizational equilibrium exists. The utility
attained by the planner in such an equilibrium is a constant value V̄ = Vh,t+λV`,t. From the Pareto weighted

11



sum of the two equations we then obtain

(1 + λ) log(1− st) +

(
αβh

1− αβh
+

αβ`
1− αβ`

)
log st − λ(βh − β`)V`t+1

= V̄ (1− βh). (5)

For any given value V̄ , equation (5) admits a unique solution for st as a function of V`,t+1;10 we can substitute
this solution into (4) for i = ` and obtain a difference equation in V`,t. We have thus obtained a recursive
representation in terms of the value V`,t. This difference equation can alternatively be expressed in terms of st,
since (5) implies a one-to-one correspondence. In our numerical evaluations, this difference equation behaves
in the same way as it does in the baseline case of Section II, so that the same procedure described above for the
habit-formation economy can be used again here to compute the organizational equilibrium. Figure C.1 plots
such an example for the transition function between st and st+1. When βL = 0, this economy becomes the
standard quasi-hyperbolic discounting example in our baseline analysis. When βL > 0, the dynamics needs to
be computed based on equations (4) and (5). In the end, the transitional dynamics are similar qualitatively.

Figure C.1: Evolution of the Saving Rate in Jackson and Yariv (2014)

D Proofs of Section III.C.

D.1 Proof of Proposition 3

Proof. Suppose first that {āt}∞t=0 is a sequence satisfying the three properties in the proposition. We construct
a subgame-perfect equilibrium strategy profile as follows.11 We start with σ0(∅) = ā0. Let h̃t, t ≥ 1 be an

10More precisely, the equation admits at most one solution, and may have none. However, since we know that an
organizational equilibrium exists, a solution has to exist for the appropriate range of values of V̄ and V`.

11We defined an organizational equilibrium within the context of the game of Section III.A, so the proposition is
proven in the context of this game, although of course the results apply to the game of Section III.B when Assumption 4
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arbitrary history whose predecessors are (∅, h̃0, h̃1, ...h̃t−1). If as = σs(h̃
s−1), s = 0, ..., t − 1, set σt(h̃t) = āt.

Otherwise, let t̃ := max{s : as 6= σs(h̃
s−1)} and set σt(h̃t) = āt−1−t̃. In words, this strategy punishes any

deviation by restarting the continuation equilibrium from the same equilibrium path that is supposed to prevail
in period 0. Properties 1 and 3 ensure that such a punishment is sufficient to deter deviations, both in the
initial period and in any subsequent period and history. This equilibrium is state independent (Requirement 1)
and symmetric, since the equilibrium path of play attains an action value V̄ independent of the past history.
No equilibrium can attain a higher constant value. Suppose such an equilibrium existed, and let {aBt }∞t=0 be its
equilibrium path, which attains a constant V B > V̄ . Then we would have V (aBt , a

B
t+1, ...) = V B > V̄ , ∀t ≥ 0,

which would contradict property 2 of our initial sequence. Therefore, the newly constructed subgame-perfect
equilibrium satisfies Requirement 2. Finally, Requirement 3 is a direct analog of the third property that we
imposed on the sequence.

Suppose now that a sequence satisfying the 3 properties of the proposition exists and its value is V̄ . Require-
ment 2 implies that all organizational equilibria feature a path of constant value V̄ as well, which implies that
they satisfy the first two properties; the third property follows directly from Requirement 3.

D.2 Proof of Proposition 4

To prove this we rely on a useful lemma, which introduces a convenient way of representing equilibria through
their values, similarly to Abreu, Pierce, and Stacchetti’s (1986; 1990) method.12

Lemma 4. Let V ∗ ∈ R and V̂ ⊂ R be a value and a set of continuation values that satisfy the following
properties:

1.
∀a ∈ A ∃v̂ ∈ V̂ : Ṽ (a, v̂) ≤ V ∗;

2.
∀v ∈ V̂ ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) = V ∗ ∧W (a, v̂) = v.

3. There exists no value V ∗∗ > V ∗ and set ˆ̂V that satisfies properties 1 and 2; furthermore, there is no set
V̂a ⊃ V̂ that satisfies properties 1 and 2 together with V ∗.

Then:

• Construct an arbitrary sequence of actions {a∗t }∞t=0 recursively as follows. In period 0, pick v̂∗0 ∈ V̂
and (a∗0, v̂

∗
1) ∈ A × V̂ such that Ṽ (a∗0, v̂

∗
1) = V ∗ and W (a∗0, v̂

∗
1) = v̂∗0 . In each subsequent period, pick

is satisfied.
12Note, however, that we cannot adopt their method to recursively compute the desired sets. Given V ∗, V̂ can be

computed recursively as in Abreu, Pierce, and Stacchetti. However, without further assumptions the set of values of
V ∗ for which V̂ is defined need not be convex, which makes finding its maximum difficult.
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(a∗t , v̂
∗
t+1) ∈ A × V̂ such that Ṽ (a∗t , v̂

∗
t+1) = V ∗ and W (a∗t , v̂

∗
t+1) = v̂∗t . Constructing such a sequence is

possible by the definition of V ∗ and V̂. The sequence so constructed is the outcome of a reconsideration-
proof equilibrium;

• If {a∗t }∞t=0 is the equilibrium path of a reconsideration-proof equilibrium, Ṽ (a∗0, a
∗
1, ...) = V ∗ and V̂ (a∗t , a

∗
t+1, ...) ∈

V̂ for any t > 0.

Proof.

First, we prove that the recursively-constructed sequence {a∗t }∞t=0 satisfies

Ṽ (a∗t , V̂ (a∗t+1, a
∗
t+2, ...)) = V ∗ ∀t ≥ 0 (6)

and
V̂ (a∗t , a

∗
t+1, a

∗
t+2, ...) ∈ V̂ ∀t ≥ 0. (7)

Note that, if v̂∗T = V̂ (a∗T , a
∗
T+1, a

∗
T+2, ...) for some period T , iterating backwards we find that v̂∗t = V̂ (a∗t , a

∗
t+1, a

∗
t+2, ...)

for all t < T , so that equations (6) and (7) hold.

Define
{at}∞t=0 ∈ arg min

{at}∞t=0

V̂ (a0, a1, ...)

and similarly let {āt}∞t=0 be a sequence that attains the maximum. Both exist by the compactness of A and
the continuity of V̂ (in the product topology).

Next, truncate the sequence {a∗t }∞t=0 at time S > T and replace the continuation with {at}∞t=0 or {āt}∞t=0. By
Assumption 5 and the monotonicity of W , we have

V̂ (a∗T , a
∗
T+1, ..., a

∗
S , a0, a1, ...) ≤ V̂ (a∗T , a

∗
T+1, ..., a

∗
S , a
∗
S+1, a

∗
S+2, ...) ≤ V̂ (a∗T , a

∗
T+1, ..., a

∗
S , ā0, ā1, ...) (8)

and

V̂ (a∗T , a
∗
T+1, ..., a

∗
S , a0, a1, ...) = W (a∗T ,W (a∗T+1, ...W (a∗S ,W (a0,W (a1, ...)...))...)) ≤

W (a∗T ,W (a∗T+1, ...W (a∗S , v̂
∗
S)...)) = v̂∗T ≤

W (a∗T ,W (a∗T+1, ...W (a∗S ,W (ā0,W (ā1, ...)...))...)) = V̂ (a∗T , a
∗
T+1, ..., a

∗
S , ā0, ā1, ...).

(9)

Taking limits as S →∞ in equations (8) and (9) and exploiting the continuity of V̂ according to the product
topology, the left-most and right-most expressions in the inequalities converge to the same value, which then
implies that indeed v̂∗T = V̂ (a∗T+1, a

∗
T+2, a

∗
T+3, ...) and (6) and (7) hold.

To complete the proof of the first point, we need to show that there exists no symmetric subgame-perfect equi-
librium whose payoff is strictly greater than V ∗. By contradiction, suppose that there is such an equilibrium
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with value V ∗∗ > V ∗. Let σ∗∗ be the strategy profile representing one such equilibrium. Define

V̂b := {v : v = V̂ (a∗∗t+1|ht , a∗∗t+2|ht , a∗∗t+3|ht , ...), ht ∈ At},

where {a∗∗s |ht}∞s=t+1 is the equilibrium path implied by the strategy profile σ∗∗ following a history ht. The
pair (V ∗∗, V̂b) satisfies property 1 in the lemma, since otherwise σ∗∗0 would not be optimal at time 0. It also
satisfies property 2 since σ∗∗ is symmetric and by the definition of V̂b. But then this implies that property 3
in the lemma does not hold for V ∗, establishing a contradiction.

In the previous point we proved that, given V ∗ and V̂, we can construct a reconsideration-proof equilibrium
of value V ∗. Since all reconsideration-proof equilibria must have the same value, it must be the case that
Ṽ (a∗0, a

∗
1, ...) = V ∗. Furthermore, repeating the steps of the previous point, we can prove that the value V ∗

and the set
V̂a := {v : v = V̂ (a∗t+1|ht , a∗t+2|ht , a∗t+3|ht , ...), ht ∈ At}

satisfy properties 1 and 2. By the definition of V̂, it follows that V̂a ⊆ V̂.

While not essential for the proof of Proposition 4, the following lemma is useful for computations:

Lemma 5. The set V̂ defined in Lemma 4 is convex.13

Proof. We first define the set V̂c by relaxing property 2 in Lemma 4 to be the following:

∀v ∈ V̂c ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v. (10)

We will later prove that V̂c = V̂.

Simple case. First, if V̂c is a singleton, then it is necessarily convex and V̂c = V̂: by property 3 of Lemma 4,
V ∗ should be raised until Ṽ (a, v̂) = V ∗ at the single element v̂ ∈ V̂c, with no effect on property 2 and relaxing
the constraint in property 1.

From now on, we study the case in which V̂c contains at least two values.

Step 1. To prove that V̂c is convex, we prove that its convex hull, Co(V̂c), satisfies properties 1 and 2 as well
(and of course Co(V̂c) ⊃ V̂c unless V̂c is convex as well). Property 1 is immediate from the monotonicity of Ṽ .
Let v1, v2 ∈ V̂c, and let (a1, v̂1), (a2, v̂2) elements of A×V̂c be two pairs of actions and continuation values that
satisfy property 2 of Lemma 4. Consider their convex combination (αv1 +(1−α)v2, αv̂1 +(1−α)v̂2), α ∈ [0, 1].
Since Ṽ is continuous and quasiconcave and W is continuous, Ṽ (αv1 + (1− α)v2, αv̂1 + (1− α)v̂2) ≥ V ∗, and
W (αv1 + (1 − α)v2, αv̂1 + (1 − α)v̂2) takes all values in [v1, v2] as α varies between 0 and 1. Hence, all
intermediate values satisfy property 2 as well, which completes the proof that Co(V̂c) satisfies property 2.

13Lemma 4 defines a unique set, since the union of all sets satisfying properties 1 and 2 satisfies properties 1 and 2
as well.
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Step 2. To prove that V̂c = V̂, proceed as follows. Define vc := min{V̂c} and v̄c := max{V̂c}.14 By definition,
we can find (a, v̂) and (ā, ¯̂v) such that

Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v

and
Ṽ (ā, ¯̂v) ≥ V ∗ ∧W (ā, ¯̂v) = v̄.

Since A is convex, we can construct within it a line from a to ā by defining a(α) := αa+ (1− α)ā, α ∈ [0, 1].
By the quasiconcavity of Ṽ , we know

Ṽ (a(α), αv̂ + (1− α)¯̂v) ≥ V ∗.

By property 1 of Lemma 4, for each action a(α) and the monotonicity and continuity of Ṽ we have

Ṽ (a(α), v) ≤ V ∗.

Since V̂c is convex, we can find a (unique) value v̂(α) such that

Ṽ (a(α), v̂(α)) = V ∗.

Monotonicity and continuity of Ṽ imply that v̂(α) is a continuous function. It then follows that V̂ (a(α), v̂(α))

is a continuous function of α. As α ∈ [0, 1], this function must take all values between v and v̄, proving that
the property 2 of Lemma 4 is satisfied by V̂c and thus V̂c = V̂.

We are now ready to prove Proposition 4.

Proof. The second property of the value V ∗ and the set V̂ in Lemma 4 implies that we can construct a
function g : V̂ → R × V̂ with the property that Ṽ (g(v)) = V ∗ and W (g(v)) = v. Starting from any value
v0 ∈ V̂, we can construct recursively a path (at, vt+1) = g(vt). By Lemma 4, this is the equilibrium path of a
reconsideration-proof equilibrium. It will thus be an organizational equilibrium provided that

V (at, vt+1) ≥ max
a

Ṽ (a, v0) ∀t.

By the definition of V, this property is satisfied by its least element, v;15 hence, it will be satisfied provided
that the initial value v0 is sufficiently low.

14It is straightforward to prove that V̂c is closed, by the continuity of the functions defining it.
15By the monotonicity of Ṽ in its second argument and the property 1 of V, Ṽ (a, v) ≤ V ∗ for all a ∈ A.
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D.3 Proof of Proposition 5

Proof. Define a correspondence ζ : R×R⇒ R as follows:

v ∈ ζ(v′, v∗)⇐⇒ ∃a ∈ A :

Ṽ (a, v′) = v∗

W (a, v′) = v.
(11)

In words, given (v∗, v′), v belongs to the correspondence if there is an action a which, together with a
continuation value v′, yields utility v∗ when evaluated according to the decision maker’s preferences (Ṽ ) and
utility v when evaluated with its continuation utility function W .

We prove that there exists a value v∗ for which ζ is nonempty and admits a fixed point in continuation utilities
(v = v′). We do so by proving that a Markov equilibium (aM , vM ) exists, such that

v∗ = Ṽ (aM , vM ) = max
a

Ṽ (a, vM ) (12)

and
vM = W (aM , vM ). (13)

To prove the existence of a Markov equilibrium, we construct a correspondence â(.) from A into itself by
setting

â(a) = max
a0∈A

V̂ (a0, a, a, a, ...).

By the usual compactness and continuity properties, this correspondence is nonempty, compact-valued, and
upper hemicontinuous. Quasiconcavity of V̂ ensures that it is also convex-valued. Hence, the correspondence
has a fixed point by Kakutani’s theorem; let aM be one such fixed point. Given Assumption 5, letting
vM := V̂ (aM , aM , aM , ...), equations (12) and (13) are satisfied.

We thus know vM ∈ ζ(vM , Ṽ (aM , vM )). Once again, our assumptions about compactness and continuity
imply that the correspondence ζ is upper hemicontinuous. Let V ∗ be the maximal value for which ζ admits
a fixed point in continuation utilities. In the proofs below, it is useful to establish that

v ∈ ζ(v′, V ∗) =⇒ v ≤ v′. (14)

Suppose (14) is not satisfied. Let (a, v′) be such that V (a, v′) = V ∗ and W (a, v′) > v′. Holding the action
a fixed, continuity and monotonicity imply that higher values of v′ lead to higher values of V (a, v′) and
W (a, v′). As long as W (a, v′) > v′, we know that v′ < max{at}∞t=0

V̂ (a0, a1, ...) and can thus be raised further.
Eventually, we will attain a value vh > v′ for which W (a, vh) = vh (this has to happen, since W (a, v′) is
bounded by the maximum above). Let V h := V (a, vh) > V ∗. We just established that a fixed point of ζ(., V h)

exists, which contradicts the assumption that V ∗ is the highest value for which a fixed point can be found.

In our next step, we prove that there are no symmetric equilibria with value V ∗∗ > V ∗. By the definition of V ∗,
given any combination of an action and a continuation utility (a, v′), if Ṽ (a, v′) = V ∗∗ thenW (a, v′) < v′. This
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implies that any equilibrium path with value V ∗∗ would feature a strictly increasing sequence of continuation
values; convergence is ruled out, because continuity and compactness would imply that the limiting point
would be a fixed point of ζ, which is inconsistent with V ∗∗ > V ∗. Since the set of possible continuation values
is bounded by

max
{at}∞t=0

V̂ (a0, a1, . . .),

no such equilibrium path can exist.

We now prove that there exist symmetric equilibria with value V ∗, which then implies that any such equilibrium
is reconsideration proof. Let vSS be the maximal fixed point of ζ(., V ∗). For any continuation value v > vSS ,
a repetition of the arguments described above for V ∗∗ imply that no equilibrium path would be possible.16

We prove instead that there exists a convex set V = [v`, v
SS ] which, together with V ∗, satisfies the properties

of Lemma 4, where
v` := min

v′≤vSS
min ζ(v′, V ∗). (15)

To do so, prove first that, for any action a ∈ A, Ṽ (a,min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗. By contradiction, suppose

that an action aL such that Ṽ (aL,min{at}∞t=0
V̂ (a0, a1, ...)) > V ∗ existed. We could then repeat the same steps

used to prove (14) and construct a steady state with value higher than V ∗.

Since Ṽ (a,min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗ ∀a ∈ A, we can define

v′min := min
(a,v′)

v′ := Ṽ (a, v′) = V ∗.

Since there exists an action aSS such that V (aSS , vSS) = V ∗, v′min ≤ vSS . Also, by equations (14) and (15),
v` ≤ v′min. Hence, Ṽ (a, v`) ≤ V ∗ ∀a ∈ A: Property 1 of Lemma 4 is satisfied by the value V ∗ and the
continuation set [v`, v

SS ]. To prove Property 2, let a` and v′` be such that W (a`, v
′
`) = v` and Ṽ (a`, v

′
`) = V ∗,

and λ ∈ [0, 1].17 As we just established, Ṽ (λa` + (1 − λ)aSS , v`) ≤ V ∗. By quasiconcavity, Ṽ (λa` + (1 −
λ)aSS , λv′` + (1 − λ)vSS) ≥ V ∗. Strict monotonicity implies that there exists a unique value vλ such that
Ṽ (λaSS + (1 − λ)a`, vλ) = V ∗, which must vary continuously with λ by the continuity of Ṽ . It follows that
W (λaSS + (1−λ)a`, vλ) is a continuous function of λ and it takes all values between v` and vSS , proving that
Property 2 of Lemma 4 holds. Finally, from equations (14) and (15), we know that any value v 6∈ [v`, v

SS ]

could only be attained by some action a with a continuation value v′ > vSS , which would lead to nonexistence
in subsequent periods. Hence, [v`, v

SS ] is the largest set that satisfies Properties 1 and 2 of Lemma 4 together
with the value V ∗, completing the proof that a reconsideration-proof equilibrium has value V ∗, and thus that
in turn the organizational equilibrium with the state variable is also associated with an action value V ∗. Our
construction also proved that V ∗ is the maximal action payoff that can be attained by a constant action.

Finally, suppose that V̂ is strictly quasiconcave. Let aSS be the unique action that attains maxa V (a, a, a, ...).
If this steady state is not a Markov equilibrium, then aSS < maxa Ṽ (a, vSS). In this case, a sequence that

16If along the equilibrium path, for some T ≥ 0, vT > vSS , then vt > vSS for all t > T . Since {vt} is bounded and
monotonically increasing, the limiting point will be a fixed point of ζ, which is incompatible with vSS being the largest
fixed point.

17We have v` ≤ v′` ≤ vSS by (14) and (15).
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starts at aSS and stays constant violates the no-delay condition.

Finally, we prove part 2 of the proposition. The Ramsey outcome is the allocation that attains the highest
payoff, and so by definition an organizational equilibrium cannot do better. If there is no constant allocation
that attains the Ramsey outcome, then it means that the best constant allocation attains a payoff strictly
smaller than Ramsey; Proposition 5 proves that the payoff of an organizational equilibrium coincides with that
of the best constant allocation, and is thus strictly worse than Ramsey as well. When a constant allocation
aSS attains the Ramsey outcome, it must be the case that

aSS ∈ argmax
a

V (a, aSS , aSS , ...);

this implies that (aSS , aSS , aSS , ...) is also a Markov equilibrium, and that aSS achieves the highest payoff
among constant allocations, which (by Proposition 5) is also the payoff of an organizational equilibrium. In
particular, (aSS , aSS , ...) is an organizational equilibrium.

A state-independent Markov equilibrium cannot depend on the past nor on calendar time, and so it is a
constant sequence (a, a, ...). An organizational equilibrium attains the same payoff as the best constant
allocation; hence, it can be no worse than the best Markov equilibrium, and is strictly better whenever the
best constant allocations do not correspond to a Markov equilibrium.

D.4 Proof of Corollary 1

Proof. This proof follows closely that of Proposition 5. Let ζ, V ∗, v`, and vSS be defined as in that proof.
The proof of Proposition 5 rules out symmetric equilibria with values higher than V ∗ by showing that there
does not exist a sequence of actions that has a constant value higher than V ∗. It also shows how to construct
a sequence such that Ṽ (a0, V̂ (a1, a2, ...)) = V ∗ and V̂ (a0, a1, ...) = v for any value in v ∈ [v`, v

SS ]; any such
sequence satisfies properties 1 and 2 of Proposition 3. Let {āt}∞t=0 be such that Ṽ (ā0, V̂ (ā1, ā2, ...)) = V ∗

and V̂ (ā0, ā1, ...) = v`. The proof of Proposition 5 establishes that Ṽ (a, v`) ≤ V ∗ ∀a ∈ A. Hence, {āt}∞t=0

satisfies Property 3 of Proposition 3 as well.

E Proofs for Section III.D

In this appendix, we establish that the slope of the transition function in the organizational equilibrium equals
to 1 when approaching to the steady state and equals to 0 when starting at the saving rate in the Markov
equilibrium. Furthermore, the slope is positive between the steady state and the Markov saving rate.
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Given the transition function (13), the slope of it can be expressed as

∂st+1

∂st
= − exp

{
−(1− β)V ∗ + δαβ

1−αβ log st + log(1− st)
β(1− δ)

}(
δαβ

1−αβ
1
st
− 1

1−st
β(1− δ)

)
.

With a constant saving rate s, the lifetime action payoff is

(1− β)V =
δαβ

1− αβ
log s+ log(1− s)− β(1− δ) log(1− s).

The optimal constant saving rate s∗ satisfies

δαβ

1− αβ
1

s∗
− 1

1− s∗
− β(1− δ)

1− s∗
= 0,

and the action payoff V ∗ satisfies

(1− β)V ∗ =
δαβ

1− αβ
log s∗ + log(1− s∗)− β(1− δ) log(1− s∗).

Therefore, we have

∂st+1

∂st

∣∣∣∣
st=s∗

= − exp

{
−(1− β)V ∗ + δαβ

1−αβ log s∗ + log(1− s∗)
β(1− δ)

}(
δαβ

1−αβ
1
s∗ −

1
1−s∗

β(1− δ)

)

= −(1− s∗)

(
δαβ

1−αβ
1
s∗ −

1
1−s∗

β(1− δ)

)
= 1

In the Markov equilibrium, the saving rate sM maximizes the part involving only the current saving rate:

δαβ

1− αβ
log s+ log(1− s),

which implies that
δαβ

1− αβ
1

sM
− 1

1− sM
= 0.

As a result, ∂st+1

∂st

∣∣∣∣
st=sM

= 0.

Denote χ(st) ≡ δαβ
1−αβ

1
st
− 1

1−st . Notice that: (1) χ(st) is decreasing in st when st ∈ (0, 1); (2) χ(st) = 0 when
st = sM . It follows that, ∂st+1

∂st
> 0 when st > sM .

F Example of Approximating Strategy

As an example to illustrate the approximating strategy, we revisit the quasi-geometric discounting economy
with partial depreciation and CRRA utility function and apply our approximation strategy. Compared with
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the environment in Section 2, we modify the period utility function and the law of motion to be

u(c) =
c1−σ

1− σ
, kt+1 = f(kt)− ct + (1− d)kt,

where d ∈ (0, 1).

Let st denote the saving rate. Mapping to the general setup, we have

P (k, s) = u((1− s)f(k)),

Q(k, s) = β(δ − 1)u((1− s)f(k)),

F (k, s) = sf(k) + (1− d)k.

In this economy, the action st and the states kt are not separable. To proceed, we choose m(s) = s1−σ

1−σ to
approximate the utility function and g(s) = log(1− s) to approximate the technology. In this approximating
economy, the organizational equilibrium can be constructed.

The blue solid line in Figure displays the transition paths of the capital shock and the saving rate of the
organizational equilibrium in this approximating economy. The red dashed line and the black broken line
correspond to the Markov equilibrium and the Ramsey outcome in the approximating economy. Similar
to our baseline analysis, the organizational equilibrium gradually transits from being close to the Markov
equilibrium towards being close to the Ramsey outcome.18

To evaluate this approximation, we also compute the the Markov equilibrium and the Ramsey outcome in the
original economy via global solutions, which are shown by the lines with circle markers. The outcomes in the
approximating economy and the original economy are close to each other not only in the steady states but
also along the entire transition paths.

G Organizational Equilibrium in Policy Problems

In Section III, there is one player for each period. Here, the policymaker is still represented by one player
for each period, but we also include a continuum of identical households that face a dynamic problem.19 In
this appendix, we describe explicitly the strategic interaction between the government and the households at
different points in time. The game unfolds as follows. In each period, the government in power takes an action
a ∈ A first. Then, the households move simultaneously. Each household takes an action s ∈ S. The aggregate
state for next period evolves according to k′ = F (k, a, s). A full description would require us to specify what
happens when households take different actions, so that, while they are identical ex ante, they may end up
being different ex post. However, in most of the applications that are of interest, the household optimization

18We set β = 0.8, δ = 0.9, d = 0.5, σ = 2, α = 0.36.
19The notion of an equilibrium can be readily extended to environments with finite types of households or to economies

with overlapping generations. Extending organizational equilibrium to economies with a continuum of types could be
done by interacting the analysis here with distributional notions of equilibrium as in Jovanovic and Rosenthal (1988).
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Figure F.1: Transition Paths in Approximating Economy
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Note: The dotted lines in red and black represent the true solutions to the Markov equilibrium and the
Ramsey outcome, respectively. The dashed lines in red and black represent the solutions in the approximating
economy according to our strategy.

problem has a unique solution. Hence, there can be no equilibrium in which identical households take different
actions. Moreover, a deviation by a single household has no effect on aggregates. We exploit these properties
and specify the evolution of the economy and preferences only after histories in which (almost) all households
have taken the same action. Starting from an arbitrary period t and state kt, household preferences are given
by a function

Z(kt, {av, sv, s−v }∞v=t), (16)

where sv represents the action taken by the individual household, and s−v is the action taken by (almost) all
other households. We assume that S is a convex compact subset of a locally convex topological linear space
and that Z is jointly continuous in all of its arguments (in the product topology), strictly quasiconcave in the
own action sequence {sv}∞v=t, and weakly separable between the state and the remaining arguments. We also
assume that household preferences are time consistent. More precisely, we assume that, given an initial level
of the state kt and a sequence of other households’ actions {av, sv}∞v=t,

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t) =⇒ Z(F (kt, at, st), {av, sv, sv}∞v=t+1) =

max
{s̃v}∞v=t+1

Z(kt, {av, s̃v, sv}∞v=t+1).
(17)

Equation (17) states that, if it is optimal from period t to follow the same sequence of actions that all other
households are taking, then it is also optimal to follow that sequence in subsequent periods, as long as other
households also continue to do the same. Notice that we exploit the fact that each household has no effect
on the aggregates to leave the continuation preferences over several histories unspecified; this is convenient,
because it prevents us from having to explicitly introduce individual state variables. To be concrete, consider
the taxation game to which we apply this general definition; in that game, st is the individual saving rate.
Equation (17) is written from the perspective of a household that starts with the same level of kt as the
aggregate, which allows us not to draw a distinction between the two. If that household finds it optimal to
follow the same saving rate as all other households, then it will optimally choose to have the same level of
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kt+1, and equation (17) ensures that the continuation plan will remain optimal from period t+ 1 onwards. If
instead the household chooses a different saving rate from others, then it would potentially enter period t+ 1

with a different level of the state from the aggregate; however, whenever this choice does not maximize (16),
we know this would not be an optimal individual choice without need to specify the entire continuation path;
moreover, the individual deviation does not affect aggregate incentives; hence, we do not need to keep track
of it for the purpose of computing other households’ best response either.

We define a competitive equilibrium from period t and a state kt as a sequence {av, sv}∞v=t, such that

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t).

Proposition G.1. Given any sequence of policy actions {av}∞v=t, a competitive equilibrium exists.

Proof. Fix kt and {av}∞v=t. Given our assumptions on S and Z, the best-response function

br({sv}∞v=0) := arg max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t)

is well defined and continuous. By Brouwer’s theorem, it admits a fixed point, which is a competitive equilib-
rium.

Equation (17) ensures that the continuation of a competitive equilibrium is a competitive equilibrium itself.
Also, the separability assumption about Z implies that, if {av, sv}∞v=t is a competitive equilibrium from a state
kt, then it is also a competitive equilibrium from any other state k′t.

In what follows, we proceed by assuming that the competitive equilibrium is unique given a sequence of policy
actions, which can be verified in each specific application.20

At time t, government preferences are given by a function Ψg(kt, at, st, at+1, st+1, at+2, st+2, . . .). We assume
that this function is also weakly separable in kt and its other arguments. For each given sequence of govern-
ment actions {as}∞s=t, a unique competitive equilibrium exists. The resulting sequence of private sector actions
is given by a sequence {ss}∞s=t, which is independent of kt, since household preferences are also separable in
kt. We thus specify the government utility from its sequence of actions as that experienced in the competitive
equilibrium associated with those actions. With this specification, government preferences can be represented
as in equation (8), and an organizational equilibrium can be defined in the same way as in Section II. Existence
of an organizational equilibrium is guaranteed by Proposition 1 when Assumptions 2 and 3 hold. However,
these assumptions are significantly more restrictive in tax applications. As is well known, optimal tax prob-
lems frequently feature nonconvexities, in which case existence may have to be established in the specific
application, as we do in our examples. Moreover, anticipation effects from the competitive equilibrium imply

20Non-uniqueness can be accommodated by assuming a selection rule on how households coordinate when multiple
equilibria are possible, as long as this rule has the properties that the continuation of a selected competitive equilibrium
is selected itself as a continuation competitive equilibrium and that the selection is continuous.
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that Assumption 3 often does not hold either. It is worth noting that this assumption can be weakened.
Its central role in our proof of Proposition 1 is to establish that the continuation sequence (aĒt+1, a

Ē
t+2, . . .)

in equation (1) can be made independent of the current deviation a. In our policy applications, we prove
this result by showing instead that the static best-response arg maxa V (a, a0, a1, a2, ...) is independent of the
sequence {at}∞t=0: hence, any continuation which deters deviation to this action will also be sufficient to deter
deviation to any other choice.

As we did for the simpler case of Section III, we relate an organizational equilibrium to a strategic notion of
equilibrium. To do so, we need to keep track of histories of play. A symmetric history of play is a record of all
actions taken in the past; we distinguish between histories at which the government is called to play, which
are given by h0 := ∅ and

ht := (a0, s0, a1, s1, ..., at−1, st−1), t > 0,

and histories at which households are called to play, that take the form of hp,0 := a0 and

hp,t := (a0, s0, a1, s1, ..., at−1, st−1, at), t > 0.

Let H be the set of histories at which the government is called to play, and Hp the set of histories at which
households are called to play. For the reasons discussed above, we only keep track of histories in which almost
all households have taken the same action.

A strategy for the households is a mapping σp : Hp → S; likewise, a government strategy is a mapping
σ : H → A. A symmetric strategy profile is a pair (σp, σ), representing how all households and the government
will act following any symmetric history; it recursively induces a path of play {at, st}∞t=0.

A symmetric strategy profile (σp, σ) is a sequential equilibrium if the following is true:

• Given that the government will follow σ and other households will follow σp, the actions dictated by σp

are optimal for each household. After any history hp,t, each household takes as given the government
policy action at and the initial state kt, which is recursively determined by the history of past play.
Moreover, the strategy σp followed by other households and the government strategy σ determine the
future path of aggregate play, {sv, av+1}∞v=t. Household optimality requires that the sequence of actions
prescribed by σp is optimal along this path: equivalently stated, it requires the actions prescribed by
σp to be a competitive equilibrium from period t on, following any arbitrary (symmetric) history.

• Given that households will follow the strategy σp and that future governments will follow the strategy
σ, and given any past history ht, the current government choice σ(ht) is optimal.

Proposition G.2. Given any organizational equilibrium, there exists a sequential equilibrium whose outcome
coincides with the organizational equilibrium.

Proof. Let (a∗0, a
∗
1, a
∗
2, ...) be an organizational equilibrium, and let (s∗0, s

∗
1, ...) be the competitive-equilibrium

associated with it. We construct a strategy profile recursively as follows:

24



• σ(∅) = a∗0;

• For any t > 0 and any history ht = (a0, ..., at−1) such that as = a∗s ∀s = 0, ..., t− 1, σ(ht) = a∗t ;

• For any t > 0 and any history ht = (a0, ..., at−1) such that ∃s : as 6= a∗s, define T := max{s < t : as 6=
σ(a0, ...as−1)} and set σ(ht) = a∗t−1−T .

• For any history hpt = (a0, s0, a1, s1, ..., at−1, st−1, at) at which households are called to play, let {aes}∞s=t+1

be the sequence of government actions that follow from period t+1 if the government plays the continu-
ation of the strategy σ defined above following (a0, ..., at). Set σp(h

p
t ) to be the competitive equilibrium

that is associated with (at, a
e
t+1, a

e
t+2, ...), which exists and is unique by assumption.

By construction, the household strategy satisfies the second condition for a sequential equilibrium for any
history of play. For the government, following any history, the strategy prescribes to play the organizational
equilibrium sequence, either from its beginning or from some element a∗t , t > 0. Should the government
deviate from its strategy, the continuation strategy restarts the organizational equilibrium sequence from a∗0.
By the definition of an organizational equilibrium, continuing along the sequence is always weakly preferred
to playing the best one-shot deviation followed by a restart; hence, the government optimality condition is
satisfied and the strategy above describes a sequential equilibrium.

H Details for Section IV

We first provide the details on the separable property of the model environment. Recall that the law of motion
of the stock of carbon is given by

q1t = q1t−1 + ϕLet,

q2t = ϕq2t−1 + (1− ϕL)ϕ0et.

It follows that

q1t = q1,−1 + ϕLA
t∑

j=0

(1− nj),

q2t = ϕtq2,−1 + (1− ϕL)ϕ0A

t∑
j=0

ϕt−j(1− nj),

qt = q1t + q2t = q1,−1 + ϕtq2,−1 +A

t∑
j=0

(ϕL + (1− ϕL)ϕ0ϕ
t−j)(1− nj).

Given a sequence of {st} and {nt}, it implies that

log ct = log(1− st)− γqt + α log kt + (1− α− ν) log nt + ν log(A(1− nt))

= log(1− st)− γ

q1,−1 + ϕtq2,−1 +A

t∑
j=0

(ϕL + (1− ϕL)ϕ0ϕ
t−j)(1− nj)


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+ α log kt + (1− α− ν) log nt + ν log(1− nt) + ν logA

Turn to the part involving the saving rates. The sequence of capital is

log kt = αt log k0 +

t−1∑
j=0

αt−j−1 log sj

The lifetime utility is therefore separable between initial states (q1,−1, q2,−1, k0) and the sequence of labor and
saving rates

U0 = log c0 + δ

∞∑
j=1

βj log ct+j

=G(k0, q1,−1, q2,−1) +W (s0, s1, . . .) + V (n0, n1, . . .).

Here, W (s0, s1, . . .) captures the impact of saving rates. Using the expression for log ct and log kt, we have

W (s0, s1, . . .) = log(1− s0) +
δαβ

1− αβ
log(s0) + δ

∞∑
j=1

βj
(

log(1− sj) +
αβ

1− αβ
log(sj)

)
,

which is similar to the baseline quasi-geometric discounting model.

Next, consider the part involving the labor choice.

V (n0, n1, . . .)

=(1− α− ν) log n0 + ν log(1− n0)− γA
(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n0)

+ δβ

−γA( ϕL
1− β

+
ϕ0(1− ϕL)

1− βϕ

) ∞∑
j=0

βj(1− nj+1) + (1− α− ν)

∞∑
j=0

βj log nj+1 + ν

∞∑
j=0

βj log(1− nj+1)


=(1− α− ν) log n0 + ν log(1− n0)− γA

(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n0)

− β(1− δ)
(

(1− α− ν) log n1 + ν log(1− n1)− γA (ϕL + (1− ϕL)ϕ0) (1− n1)

)
+ βV (n1, n2, . . .).

Characterization of steady state The organizational equilibrium requires that V (n0, n1, . . .) = V (n1, n2, . . .) =

V , which leads to

−γA
(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n0) + (1− α− ν) log n0 + ν log(1− n0)

= β(1− δ)
(

(1− α− ν) log n1 + ν log(1− n1)− γA (ϕL + (1− ϕL)ϕ0) (1− n1)

)
+ (1− β)V .
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In the steady state, the best constant action maximizes the following object

nO = argmax
n

−γA
(
ϕL

(
1− β + δβ

1− β
− β(1− δ)

)
+ (1− ϕL)ϕ0

(
1− ϕβ + δϕβ

1− ϕβ
− β(1− δ)

))
(1− n)

+ (1− α− ν)(1− β(1− δ)) log n+ ν(1− β(1− δ)) log(1− n).

The first-order condition implies

ΛO + (1− α− ν)
1

A

1

nO
= ν

1

A

1

1− nO
,

where ΛO in the organizational equilibrium is given by

ΛO ≡ γ
(
ϕL

(
1 +

δβ

(1− β)(1− β(1− δ))

)
+ (1− ϕL)ϕ0

(
1 +

δϕβ

(1− ϕβ)(1− β(1− δ))

))
.

When δ = 1, the steady-state policy reconciles with the outcome characterized in Golosov et al. (2014), which
corresponds to the Ramsey outcome in the long-run

ΛR ≡ γ
(
ϕL

1

1− β
+ (1− ϕL)ϕ0

1

1− ϕβ

)
.

The allocation of labor in the Markov equilibrium solves the action payoff taken future labor choice as given

nM = argmax−γA
(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n) + (1− α− ν) log n+ ν log(1− n).

The implied tax is

ΛM = γ

(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
.

I Details for Section V

Static equilibrium Recall that the final goods is an aggregator of the two intermediate goods

yt =
[
0.51−ρmρ

1t + 0.51−ρmρ
2t

] ρ−1
ρ .

The aggregate price index Pt is given by

Pt =
[
0.5p

ρ
ρ−1

1t + 0.5
] ρ−1

ρ
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. The demand schedules for goods 1 and 2 satisfy

m1t =
1

2

(
p1t

Pt

) 1
ρ−1

yt, m2t =
1

2

(
1

Pt

) 1
ρ−1

yt,

The production functions in the two sectors are given by

y1t = AL1−α
1t kα1tk

1−α
t , and y1t = L1−α

2t kα1tk
1−α
t .

We impose fixed labor input in the two sectors, i.e., L1t = L2t = 1.

Denote the tariff rate as τt. In the home country, the price of goods 2 is 1 by normalization. Therefore,
the price of goods 2 at the foreign country is 1

1+τt
due to the law of one price and the symmetric tariff rate

assumption. Again, by symmetry, the price of goods 1 in country 1 is also p1t = 1
1+τt

. That is, a higher
tariff rate lowers the more productive sector’s relative price. It also implies that there is a one-to-one mapping
between the tariff rate τt and the goods 1 price p1t.

Since capital is free to flow across sectors, the return to capital is equalized across the two sectors

p1tAk
α−1
1t k1−α

t = kα−1
2t k1−α

t

which leads to
k2t = φtkt where φt =

1

1 + (p1tA)
1

1−α
.

It also follows that the output in the two sectors are given by

y1t = A(1− φt)αkt, y2t = φαt kt,

and the nominal GDP in country 1 can be expressed as

vt = p1tAk
α
1tk

1−α
t + kα2tk

1−α
t = kt(p1tA(1− φt)α + φαt )) = ktφ

α−1
t .

The total expenditure and the nominal GDP is identical, which implies that

vt = Ptyt = p1tm1t +m2t,

where the total usage of goods 1 and 2 follows from the demand schedule

m1t =
1

2

(
p1t

Pt

) 1
ρ−1 vt
Pt
, m2t =

1

2

(
1

Pt

) 1
ρ−1 vt
Pt
.

By symmetry, the terms of the trade is 1 in equilibrium. Denote the tariff revenue as R, which can be derived
as

Rt = (m2t − y2t)

(
1

p1t
− 1

)
= ktφ

α
t

(
1

φt

1

2
P−

ρ
ρ−1

t − 1

)(
1

p1t
− 1

)
.

Under the assumption that the tariff revenue is equally split between the two groups of workers, the consump-
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tion of workers in industry 1 and 2 are

c1t =
1
2Rt + w1t

Pt
=

1
2Rt + (1− α)p1tA(1− φt)αkt

Pt
= χ1(τt)kt, (18)

c2t =
1
2Rt + w2t

Pt
=

1
2Rt + (1− α)φαt kt

Pt
= χ2(τt)kt, (19)

where p1t, Pt, φt are all functions of τt.

Capitalists The real return to capital is

r(τt) =
αkα−1

2t k1−α
t

Pt
=
αφα−1

t

Pt
.

The problem of capitalists can be written as

max

∞∑
t=0

βt
c1−σt

1− σ

subject to
ct + kt+1 = (r(τt) + 1− δ)kt.

The Euler equation is
c−σt = β(r(τt+1) + 1− δ)c−σt+1.

Denote st as the saving rate, the Euler equation can be expressed as(
1− st
st

)−σ
= β (r(τt+1) + 1− δ)1−σ

(1− st+1)
−σ

.

Meanwhile, given a sequence of saving rates and tariff rates, the capital evolution satisfies

kt =

t−1∏
j=0

sj (r(τj)− δ) k0.

Welfare Suppose the policymaker’s preference is to maximize

U =

∞∑
t=0

βt
(
λ log c1t + (1− λ) log c2t

)

Define
χ(τ) = λ logχ1 (τ) + (1− λ) logχ2 (τ) ,

where χ1(·) and χ2(·) are defined in equation (18) and (19).
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The total welfare is separable between capital and the trade policy

U =
1

1− β
log k0 +

∞∑
t=0

βtχ(τt) +
β

1− β

∞∑
t=0

βt(log st + log(r(τt) + 1− δ)).

Markov Equilibrium The policymaker in the Markov equilibrium takes future tariff rates as given and
simply maximizes the following object

χ(τ) +
β

1− β
log(r(τ) + 1− δ)

which yields a constant tariff. Note that the impact of tariff on the saving rate is not taken into account.

Organization Equilibrium The steady-state allocation in the organizational equilibrium satisfies

max
s,τ

χ(τ) +
β

1− β
log(r(τ) + 1− δ) +

β

1− β
log s

subject to (
1− s
s

)−σ
= β (r(τ) + 1− δ)1−σ

(1− s)−σ

With σ < 1, the saving rate is decreasing in τ , which gives the policymaker a larger incentive to lower the
tariff rate.

Ramsey Outcome With commitment, the policymaker’s problem is

max
{τ0,τ1,...}

∞∑
t=0

βtχ(τt) +
β

1− β

∞∑
t=0

βt(log st + log(r(τt) + 1− δ))

subject to (
1− st
st

)−σ
= β (r(τt+1) + 1− δ)1−σ

(1− st+1)
−σ

Let βtµt denote the multiplier associated with the constraint involving st and st+1. For τ0, the choice is to
maximize

χ(τ0) +
β

1− β
log(r(τ0) + 1− δ)

For s0, the first-order condition is

β

1− β
1

s0
= −µ0σ

(
1− s0

s0

)−σ−1
1

s2
0

For t ≥ 1, the first-order condition with respect to τt is

βt
(
χτ (τt) +

β

1− β
rτ (τt)

r(τt) + 1− δ

)
= βt−1µt−1(1− σ)β (r(τt) + 1− δ)−σ (1− st)−σ rτ (τt).
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The first order condition with respect to st is

βt
(

β

1− β
1

st

)
= βt−1µt−1σβ (r(τt) + 1− δ)1−σ

(1− st)−σ−1 − βtµtσ
(

1− st
st

)−σ−1
1

s2
t

.

These conditions characterize the transition dynamics.
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