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1 Discussion and Extensions

In this Appendix, I discuss some extensions and describe some ways in which the model can be

enriched, pointing to how the analysis would change.

1.1 The Role of Uncertainty

Some interesting implications can be obtained when analyzing the role of uncertainty in the prin-

cipal’s commitment problem:

Corollary 1. aaa

(i) vbonus0 → wfb
0 and v∗0 → wfb

0 as q̄ → 1.

(ii) For any q̄ ∈ (0, 1), vbonus0 → wfb
0 and v∗0 → wfb

0 as λ→ ∞ and Π → 0 with g ≡ λΠ constant.

Proof. I will show that vbonus0 → wfb
0 , since this immediately implies that v∗0 → wfb

0 as a time-

contingent contract can always be made time-independent.

For (i), note that w(q̄; s) → g as q̄ → 1, so sfb → g − rf when I take this limit. Thus,

wfb
0 → max{g− rf, s} as q̄ → 1. Now, v(q̄;B, s) → g− λµB/(1 + µ) and u(q̄;B, s) → λµB/(1 + µ)

as q̄ → 1, so in the limit the principal solves:

max
B≥0

{s+ 1λµB/(1+µ)≥rf [g − λµB/(1 + µ)− s]}

where 1X is the indicator function of the event X. The solution to this problem is λµBbonus/(1 +

µ) = rf if g − rf > s and Bbonus = 0 otherwise, so vbonus0 → max{g − rf, s} as q̄ → 1 also.

For (ii), note that w(q̄; s) → gq̄ + s(1 − q̄) as λ → ∞ and Π → 0, keeping g ≡ λΠ constant,

so wfb
0 → max{gq̄ + s(1 − q̄) − rf, s}. Now, v(q̄;B, s) → q̄(g − λµB/(1 + µ)) + s(1 − q̄) and

u(q̄;B, s) → q̄λµB/(1 + µ) as λ → ∞ and Π → 0 keeping g ≡ λΠ constant, so in the limit the

principal solves:

max
B≥0

{s+ 1q̄λµB/(1+µ)≥rf [q̄(g − λµB/(1 + µ)) + s(1− q̄)− s]}

The solution to this problem is q̄λµBbonus/(1 + µ) = rf if q̄(g− s) > rf and Bbonus = 0 otherwise.

Thus, vbonus0 → max{gq̄ + s(1− q̄)− rf, s} also as λ→ ∞ keeping g constant.
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The first part of Corollary 1 shows the necessity of ex-ante uncertainty for the principal’s

commitment problem to arise, stating that the dual moral hazard problem disappears—even if the

principal is restricted to offer a fixed bonus—as players become ex-ante certain that R is superior

to S. This is because when the principal becomes ex-ante more optimistic about R’s prospects,

there is a decrease in the ex-ante risk of the principal ex-post inefficiently switching to S early.

Interestingly, this result could explain some anecdotal evidence suggesting that, even though

they usually struggle to innovate first, incumbent firms are relatively successful second-mover

adopters, see, e.g., Markides and Geroski (2005) and Gans (2016, pp. 123-124). This is because—

according to the model presented here—once a new entrant develops an innovation, the uncertainty

surrounding the innovation decreases, ameliorating the organizational rigidities that were deterring

successful incumbents from adopting it.

The second part of Corollary 1 shows, however, that ex-ante uncertainty is necessary but not

sufficient for the commitment problem to arise. In particular, it states that when the expected

instantaneous profit of R conditional on θ = 1 (equal to λΠ) is held fixed at g, the incentive

problem also disappears—again, even with a time-independent bonus—as the arrival rate of R’s

payments, λ, approaches infinity. That is, there is no dual moral hazard problem if the organization

can learn infinitely quickly whether the risky arm is profitable.

Intuitively, the principal’s incentives to experiment with R increase with the rate at which she

can discern its profitability. Hence, a higher λ induces the principal to wait for more evidence of

R’s unprofitability before switching back to S. As a result, there is less scope for a disagreement

between the principal and the agent over the correct allocation of resources once R is installed.

This last result is important because it shows that not all innovations will be equally difficult for

successful firms to adopt. In particular, a more profitable status quo will not lead to organizational

rigidities in the case of easily scalable innovations where preliminary experiments, prototypes, and

minimum viable products provide a good sense of the value of the overall opportunity. Conversely,

it reinforces the difficulty of developing innovations requiring extensive time and testing within

successful firms.

1.2 Timing of Adoption

As noted in Section 2 of the main text, the organization’s problem in the baseline model is to

decide whether to install R, not when to install it. This is without loss since no useful information

is gained when the organization does not install the risky arm.

Consider instead an alternative model in which the principal also has access to information that

does not depend on R’s installation. This adds an option value problem to the analysis. Both in

equilibrium and in the first-best case, the organization installs R whenever qt is greater than an

“installation” cutoff. This cutoff, however, will be higher under the optimal time-contingent bonus
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(and in the fixed bonus case) than in the first-best. The reason is that the principal can alleviate

her commitment problem by decreasing the ex-ante uncertainty surrounding R’s profitability, as

mentioned above. Hence, her incentives to wait for more evidence on R’s profitability before

installing the arm are stronger in equilibrium than in the first-best.

Thus, the main difference between the baseline model and this richer setting would be where

the inefficiency shows up. In the baseline model, the incentive friction appears either in the agent’s

increased compensation or in the organization’s inability to install R. In contrast, in the model

involving the timing of adoption, the friction appears in the agent’s increased compensation and in

the greater delay relative to the efficient time of adoption.1

1.3 Inconclusive Evidence

The baseline model considers only the case of conclusive evidence. However, it is unlikely that

changing this assumption will dramatically affect the results.

For instance, in a previous version of this paper, I showed that the first-best outcome and

the equilibrium with the fixed-bonus are qualitatively similar if players also observe the following

“news” process that imperfectly reveals R’s type once the arm is installed:2

dXt = θktdt+ k
1/2
t σdZt, where {Zt}t≥0 is a standard Brownian motion

Regarding time-contingent schedules, characterizing the optimal contract with inconclusive news

is left for future research. That said, one would expect that the value to the principal from

offering a time-contingent contract relative to the time-independent bonus will likely be lower in

the case of inconclusive news compared to the case with fully conclusive evidence, as time without

a breakthrough becomes a worse proxy for players’ pessimism on R’s profitability. Thus, the

equilibrium with a time-contingent bonus will probably be closer to the equilibrium with a fixed

bonus in the inconclusive news case than in the conclusive evidence case.

1.4 Observability of the Installation Decision

The assumption in the main text that the agent’s installation decision is observable is not crucial,

but it simplifies the analysis. In particular, it is easy to see that the equilibrium with the time-

contingent bonus described in Section 4 of the main text is an equilibrium of the equivalent game

where the agent’s installation is not observable to the principal (the same applies to the fixed-bonus

1The organization always eventually installs R in equilibrium since the incentive friction vanishes when the belief
that θ = 1 at the time of installation is sufficiently close to one (see Corollary 1).

2The benefit of using the diffusion process to create partial evidence—rather than the typical Poisson Bandit model
with inconclusive news—is that players’ value functions and the principal’s experimentation cutoff can be obtained
in closed form when characterizing the first-best and the fixed bonus case.
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equilibrium of Section 3).

However, when the agent’s installation decision is unobservable, there are additional Pareto-

dominated equilibria (dominated, in particular, by the equilibrium described in Section 4). This is

because the agent’s installation decision and the principal’s allocation of resources are complements,

so there is scope for miscoordination. For instance, there is an equilibrium where, irrespective of the

contract offered by the principal at t = 0−, the agent never installs R and, therefore, the principal

never allocates resources to that arm.

Hence, the results of the main text can be equivalently understood as the equilibrium of a game

where the installation decision is not observable and Pareto-dominated equilibria are discarded.

1.5 Contract Renegotiation

Finally, it is easy to see that allowing contract renegotiation improves efficiency but does not

completely solve the dual moral hazard problem.

More precisely, renegotiation allows the organization to avoid the inefficiency on the “intensive”

margin. This is because as long as experimenting with R is efficient, both the principal and the agent

have incentives to change the contract’s terms—lowering the agent’s compensation—whenever the

principal is about to switch to S.

However, renegotiation does not help with the inefficiency on the “extensive margin,” as even

if the parties can renegotiate the contract, the agent is still being expropriated ex-post (which

is anticipated by the agent ex-ante). This implies that the principal’s ex-ante payoff is still dis-

continuous at some s ∈ (0, sfb) when approaching from the left. Moreover, it also implies that a

well-designed renegotiation procedure (as in e.g., Aghion, Dewatripont, and Rey, 1994) does not

solve the organization’s dual moral hazard problem.

2 Proof of Proposition 1

To prove this proposition, I begin with the following lemma.

Lemma 2.1. If the organization installs R, then there is a cutoff belief qfb given by:

qfb =
µs

µs+ (1 + µ)(g − s)

such that below the cutoff it is optimal to allocate all the resource to S and above it is optimal to

allocate all the resource to R. The value function w(q; s) for this problem is given by:

w(q; s) =


gq + (s− gqfb)

(
1− q

1− qfb

)(
Ω(q)

Ω(qfb)

)µ

if q ≥ qfb

s otherwise

(1)
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where Ω(q) ≡ (1− q)/q denotes the odds ratio at the belief q, and µ = r/λ.

Proof. If the organization installs R, it faces a single-player experimentation problem with expo-

nential bandits and conclusive news. The solution to this problem is characterized in Keller, Rady

and Cripps (2005, Proposition 3.1).

Lemma 2.1 implies that installing R gives the organization an average discounted present value

of w(q̄; s)− rf . Not installing R, on the other hand, gives the organization an average discounted

present value of s, as the organization will always allocate all the resource to S in this case. Hence,

it is (strictly) optimal to install R whenever w(q̄; s)− rf − s > 0.

Using (1), note then that w(q̄; s)− s can be written as w(q̄; s)− s = ω(T fb(s); s), where:

ω(T ; s) = q̄(g − s)
(
1− e−λ(1+µ)T

)
− s(1− q̄)

(
1− e−λµT

)
and T fb(s) ≡

(
lnΩ(qfb(s)) − lnΩ(q̄)

)
/λ (note that I am making explicit that qfb(s) depends on

s). Using the fact that the derivative of ω(T fb(s); s) with respect to s taking into account that T fb

depends on s is the same as the derivative taking T fb fixed (this is due to the Envelope Theorem,

as T fb(s) = argmaxT ω(T ; s)), it follows that:

∂

∂s
ω(T fb(s); s) = −q̄

(
1− e−λ(1+µ)T fb(s)

)
− (1− q̄)

(
1− e−λµT fb(s)

)
< 0

Hence, w(q̄; s) − rf − s = ω(T fb(s); s) − rf is strictly decreasing in s. Furthermore, as s → 0,

w(q̄; s) − s − rf converges to q̄g − rf > 0, and as s → g, to −rf < 0 (recall that g ≡ λΠ).

Hence, it is optimal to install R whenever s < sfb, where sfb ∈ (0, g) is the (unique) solution

to w(q̄; sfb) − rf = sfb. The latter also implies that the first-best expected payoff at t = 0 is

wfb
0 = max{w(q̄; s)− rf, s}.
It is then not difficult to prove that sfb is strictly decreasing in f and strictly increasing in

g = λΠ and q̄. This is intuitive: A higher installation cost decreases the attractiveness of R vis-

a-vis S, while the opposite occurs when the risky arm is more likely to be profitable or provides

higher profits conditional on being profitable.

Finally, I show that wfb
0 is strictly increasing in s. When s > sfb, the result follows immediately

since wfb
0 = s. When s ≤ sfb, in turn, I differentiate wfb

0 = w(q̄; s) − rf with respect to s (noting

that s ≤ sfb implies q̄ > qfb and that qfb depends on s) to obtain:

∂wfb
0

∂s
=

(
1− q

1− qfb

)(
Ω(q)

Ω(qfb)

)µ

> 0

Hence, wfb
0 is also strictly increasing in s in this case.3

3Note that the derivative of wfb
0 with respect to s taking into account that qfb depends on s is the same as the
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3 Proof of Proposition 2

For easy of exposition, I split the proof into two steps. In the first step, I characterize the prin-

cipal’s equilibrium resource allocation policy at any t for a given bonus B ≥ 0 conditional on the

agent installing R. This allows me to obtain players’ continuation payoffs immediately after R’s

installation. In the second step, I use these continuation payoffs to characterize the optimal bonus

offered by the principal at t = 0− and the agent’s equilibrium installation decision at t = 0+.

3.1 Optimal Resource Allocation given B ≥ 0 and a0 = 1

The following lemma characterizes the equilibrium resource allocation policy at any t for a given

bonus B ≥ 0 conditional on the agent installing R.

Lemma 3.1. If the agent installs R, then there is a cutoff belief qbonus given by:

qbonus =
µs

µs+ (1 + µ)(g − s)− λµB

such that below the cutoff the principal allocates all the resource to S and above the cutoff she

allocates all the resource to R. The principal’s value function v(q;B, s) is then given by:

v(q;B, s) =


gq + (s− gqbonus)

(
1− q

1− qbonus

)(
Ω(q)

Ω(qbonus)

)µ

− u(q;B, s) if q ≥ qbonus

s otherwise

where u(q;B, s) is the agent’s value function, which is given by:

u(q;B, s) =


λBq

(
µ

1 + µ

)[
1−

(
Ω(q)

Ω(qbonus)

)1+µ
]

if q ≥ qbonus

0 otherwise

Proof. If the agent installs R given a bonus B ≥ 0, the principal’s resource allocation problem is

a dynamic programming problem with the current belief q as the state variable. The Hamilton-

Jacobi-Bellman equation (HJB) associated with this problem is (throughout the proof, I will omit

the dependency of v(·) on B and s to simplify notation):

rv(q) = max
k∈[0,1]

{
r [(1− k)s+ qk(g − λB)] + λkq(g − v(q))− λkq(1− q)v′(q)

}
(2)

derivative taking qfb fixed. This is due to the envelope theorem given that:

qfb = argmax
x

{
gq̄ + (s− gx)

(
1− q̄

1− x

)(
Ω(q̄)

Ω(x)

)µ}
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Hence, the right-hand side of the HJB equation implies that:

k∗(q) =


1 if r[q(g − λB)− s] + λq(g − v(q))− λq(1− q)v′(q) > 0

[0, 1] if r[q(g − λB)− s] + λq(g − v(q))− λq(1− q)v′(q) = 0

0 otherwise

(3)

I then conjecture that the principal follows a cutoff strategy (as in the first-best): k∗(q) = 1 if

q ≥ qbonus, and k∗(q) = 0, otherwise. If so, the differential equation (2), plus the value-matching

and the smooth-pasting conditions v(qbonus) = s and v′(qbonus) = 0, imply that qbonus = µs/(µs+

(1 + µ)(g − s) − λµB), and that v(q) is given as in the statement of the lemma. Moreover, with

this last expression is easy to prove that the conjecture was correct, i.e., that (3) holds when using

the expression of v(q) just found. The optimality of this cutoff strategy follows from standard

verification arguments.

To find the agent’s value function, note that since k∗(q) = 0 for q < qbonus, then u(q) = 0 for

q < qbonus as no breakthrough is possible in this region of the belief space (I am, again, omitting

the dependency of u(·) on B and s to simplify notation). In contrast, if q ≥ qbonus, then k∗(q) = 1,

so u(q) must satisfy ru(q) = λq(rB − u(q))− λq(1− q)u′(q) with terminal condition u(qbonus) = 0.

Solving yields that u(q) is as in the statement of the lemma.

3.2 Equilibrium Bonus and Installation Decision

Consider first the agent’s installation decision at t = 0+ given B ≥ 0. If the agent does not install

R, then he obtains a continuation value of zero, and the principal obtains s. In contrast, if the

agent installs R, he obtains u(q̄;B, s)− rf while the principal obtains v(q̄;B, s). Clearly, then:

a∗0(B; f, s) =

1 if rf ≤ u(q̄;B, s)

0 otherwise

So at t = 0−, the principal solves:

max
B≥0

{
s+ a∗0(B; f, s) [v(q̄;B; s)− s]

}
To solve this problem, define B̂(s) ≡ argmaxB u(q̄;B, s). The bonus B̂(s) always exists and is

unique given that u(q̄;B, s) is strictly quasiconcave in B. Using B̂(s), plus the fact that u(q̄;B, s)

is strictly decreasing in s, it is possible to prove that there exists a unique sbonus ∈ (0, sfb) such

that u(q̄; B̂(s), s) ≥ rf if s ≤ sbonus, and u(q̄; B̂(s), s) < rf , otherwise.

With these results at hand, Lemma 3.2 characterizes the solution to the principal’s problem

at t = 0+, while Lemma 3.3 establishes the non-monotonicy of the principal’s ex-ante equilibrium
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payoff with respect to s. The statement of Proposition 2 then follows directly from combining these

two lemmas and Lemma 3.1 above.

Lemma 3.2. The equilibrium bonus offered by the principal is:

Bbonus =

{
B(f, s) if s ≤ sbonus

[0,∞) otherwise

where B(f, s) ≡ inf{B ≥ 0 : u(q̄;B, s) = rf}. In equilibrium, the agent installs R whenever

s ≤ sbonus, and the players’ equilibrium expected payoffs at t = 0 are:

ubonus0 = 0 and vbonus0 =

v(q̄;B(f, s), s) > s if s ≤ sbonus

s otherwise

Proof. Clearly, motivating the agent to install R is impossible when s > sbonus, as u(q̄;B, s) ≤
u(q̄; B̂(s), s) < rf in this case. Thus, any B is optimal when s > sbonus.

Consider s ≤ sbonus instead. Then, the principal always finds it optimal to incentivize the agent

to install R. Indeed, for the agent to install R, u(q̄;B, s) ≥ rf necessarily. However, since f > 0,

this requires that B is such that qbonus < q̄, implying that v(q̄;B, s) > s.

Now, v(q̄;B, s) is strictly decreasing in B:4

∂

∂B
v(q̄;B, s) = −λ

(
µ

1 + µ

)[
1−

(
Ω(q)

Ω(qbonus)

)1+µ
]
< 0

Thus, the principal offers the agent the minimum B that satisfies u(q̄;B, s) = rf , i.e., Bbonus =

B(f, s) which always exists given that s ≤ sbonus. Based on this result, it is easy to see that the

principal’s expected payoff at t = 0, vbonus0 , is as given in the statement. On the other hand, since

the agent is always indifferent between installing and not installing R, his expected payoff at t = 0

is ubonus0 = 0.

Lemma 3.3. The principal’s equilibrium expected payoffs at t = 0 is strictly decreasing in s for

s ∈ (sbonus − ϵ, sbonus) (where ϵ > 0). Moreover, it exhibits a discontinuous downward jump at

s = sbonus when approaching from the left, i.e.,

lim
s↑s̄

vbonus0 > lim
s↓s̄

vbonus0 = s

4This follows due to the envelope theorem given that:

qbonus = argmax
x

{
gq̄ + (s− gx)

(
1− q̄

1− x

)(
Ω(q̄)

Ω(x)

)µ

− λBq̄

(
µ

1 + µ

)[
1−

(
Ω(q̄)

Ω(x)

)1+µ
]}
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Proof. That vbonus0 exhibits a discontinuous downward jump at s = sbonus when approaching from

the left comes directly from the fact that v(q̄;B(f, s), s) > s for s ≤ sbonus and that v(q̄;B(f, s), s) =

s for s > sbonus.

To show, in turn, that vbonus0 is strictly decreasing in s for s ∈ (sbonus − ϵ, sbonus), differentiate

vbonus0 with respect to s to obtain:

∂vbonus0

∂s
=

q̄

qbonus

(
Ω(q̄)

Ω(qbous)

)1+µ

− λq̄

(
µ

1 + µ

)[
1−

(
Ω(q̄)

Ω(qbous)

)1+µ
]
∂

∂s
B(f, s) (4)

where B(f, s) ≡ inf{B ≥ 0 : u(q̄;B, s) = rf}. By the implicit function theorem, I then have that:

∂

∂s
B(f, s) =

− ∂
∂su(q̄;B, s)

∣∣
B=B(f,s)

∂
∂Bu(q̄;B, s)

∣∣
B=B(f,s)

As I argued above, u(q̄;B, s) is strictly decreasing in s and u(q̄;B, s) is strictly quasiconcave in B.

This implies that ∂B(f, s)/∂s > 0 as B(f, s) ≤ argmaxB = u(q̄;B, s).

Consequently, the first term on the right-hand side is strictly positive (4), while the second term

is strictly negative. I then claim that ∂B/∂s → ∞ as s approaches sbonus from the left, implying

that there exists a ϵ > 0 such that ∂vbonus0 /∂s < 0 for all s ∈ (sbonus − ϵ, sbonus). Indeed, notice

that sbonus is given by the (unique) solution to maxB u(q̄;B, s
bonus) = rf , and that at such point

B(f, sbonus) is unique and satisfies:

∂

∂B
u(q̄;B, sbonus)

∣∣
B=B(f,sbonus)

= 0

Hence, as s approaches sbonus from the left, then (∂u(q̄;B, s)/∂B)|B=B(f,s) → 0 from above and,

therefore, ∂B/∂s→ ∞.

4 Efficiency when Contracting over the Resource Policy

In this appendix, I formally show that the principal can obtain her first-best payoff if parties can

contract directly or indirectly upon the allocation of resources.

4.1 Directly Contracting over the Resource Policy

I begin by showing that if parties can contract upon the allocation of resources, the principal can

obtain her first-best payoff by offering the agent a fixed bonus payable upon a breakthrough.

Formally, a strategy for the principal consists of a fixed bonus B ≥ 0 and a resource allocation

policy k = {kt, 0 ≤ t ≤ ∞} to be offered to the agent at t = 0−. The resource allocation policy

is such that kt is measurable with respect to (i) the sequence of resources allocated to each arm
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up to t (not including t) and (ii) the sequence of profits delivered by each of the arms up to and

including time t.5

A strategy for the agent, in turn, corresponds to an installation choice at t = 0+, a0 ∈ {0, 1},
as a function of the bonus and the resource allocation policy offered by the principal at t = 0−.

As in the main text, let τ ≥ 0 be the time at which R’s first success (a “breakthrough”) occurs.

Given the players’ actions, the principal’s and the agent’s expected payoffs at time 0, expressed in

per-period units, are equal to:

v0 =E

[∫ ∞

0
re−rt

[
(a0ktλθ)Π + s(1− kt)

]
dt− re−rτB

]
u0 =E

[
re−rτB

]
− ra0f

The next lemma characterizes the equilibrium of this game:

Lemma 4.1. In equilibrium, the principal achieves her first-best payoffs, vck0 = wfb
0 (where the

superscript “ck” stands for “contractible resources”), by offering the fixed bonus:

Bck =
rf

q̄

(
1 +

1

µ

)[
1−

(
Ω(q̄)

Ω(qfb)

)1+µ
]−1

and committing to the first-best resource allocation policy:

kfbt (Nt = 0) =


1 if t ≤ T fb =

1

λ
ln

(
Ω(qfb)

Ω(q̄)

)
0 otherwise

and kfbt (Nt ≥ 1) = 1

where Nt is the number of successes with R observed up to and including time t.

Proof. To prove this lemma, it suffices to show that under the proposed contract: (i) the agent

installs R, and (ii) the principal obtains her first-best payoff if the agent installs R.

To show (i), note that under the first-best resource policy, the belief that θ = 1 at t ∈ [0, T fb]

in the absence of a breakthrough is qt = q̄/(q̄ + (1 − q̄)eλt). This implies that if the agent installs

5This measurability condition aims to capture the idea that the resource allocation policy is verifiable and that it
is actually being written in a formal contract. An alternative assumption would be to assume that the principal can
credibly commit k = {kt, 0 ≤ t ≤ ∞} without having to actually include the policy in a formal contract, due to, for
example, reputational concerns. In this last case, it would be more natural to assume that kt is measurable with
respect to all the information available at t. In the current setting, both assumptions yield equivalent outcomes in
that both allow the principal to achieve her first-best payoff. The latter, however, is not true in general; for example,
in the case where R’s payments give only inconclusive evidence about the arm’s desirability.
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R, he obtains:

E

[
re−rτBck

]
− rf =

∫ T fb

0
re−rt(λqtB

ck)

(
1− q̄

1− qt

)
dt− rf

= λBckq̄

(
µ

1 + µ

)[
1−

(
Ω(q̄)

Ω(qfb)

)1+µ
]
− rf = 0

Hence, the agent installs R as he is indifferent between doing so or not.

To show (ii), I directly compute the principal’s payoffs taking into account that the agent has

incentives to install R:

vck0 = E

[∫ ∞

0
re−rt

[
(kfbt λθ)Π + s(1− kfbt )

]
dt− re−rτBck

]
=

∫ T fb

0
re−rtqtg

(
1 +

λ

r

)(
1− q̄

1− qt

)
dt+ se−rT fb

(
1− q̄

1− qT fb

)
− rf

= gq̄ + (s− gqfb)

(
1− q̄

1− qfb

)(
Ω(q̄)

Ω(qfb)

)µ

− rf

= wfb
0

where I am again using that in the absence of a breakthrough, qt = q̄/(q̄+(1− q̄)eλt) for t ∈ [0, T fb]

under the first-best resource policy.

4.2 Indirectly Contracting over the Resource Policy

I now show that even if directly contracting upon k = {kt, 0 ≤ t ≤ ∞} is unfeasible, the principal

can still achieve efficiency by indirectly contracting upon k. The latter is done by signing a contract

that promises the agent damages of D∗ > s every time S delivers profits before the efficient stopping

time T fb.

As a first step, I define the idea of a compensation scheme c = {ct, 0 ≤ t ≤ ∞}. This is a

nonnegative, nondecreasing process, where ct is interpreted as the cumulative transfers the principal

has made to the agent up to and including time t. Since directly contracting upon k = {kt, 0 ≤ t ≤
∞} is unfeasible, ct is only measurable with respect to the sequence of profits delivered by each of

the arms up to and including time t.

A strategy for the principal then consists of committing to a compensation scheme c = {ct, 0 ≤
t ≤ ∞} at t = 0−, and making a resource allocation decision, kt ∈ [0, 1], at every t > 0. The resource

allocation decision is contingent on all the information available at t, which can be summarized in

(i) the compensation scheme that the principal promised to the agent at t = 0−, (ii) whether the

agent installed R at t = 0+ or not, and (iii) the belief at time t that θ = 1.

A strategy for the agent, in turn, corresponds to an installation choice at t = 0+, a0 ∈ {0, 1},
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as a function of the compensation scheme offered by the principal at t = 0−.

Given the players’ actions, the principal’s and the agent’s expected payoffs at time 0, expressed

in per-period units, are equal to:

v0 =E0

[∫ ∞

0
re−rt

[
a0ktλθΠ+ s(1− kt)

]
dt−

∫ ∞

0
re−rtdct

]
u0 =E0

[∫ ∞

0
re−rtdct

]
− ra0f

Lemma 4.2. Even if directly contracting upon k = {kt, 0 ≤ t ≤ ∞} is unfeasible, the principal

can achieve her first-best payoff, vick0 = wfb
0 (where the superscript “ick” stands for “indirectly

contracting upon resources”), by offering:

dcickt =

1Nt−=0B
ckdNt + 1{S delivers profits at t}D if t ≤ T fb

1Nt−=0B
ckdNt otherwise

(5)

where D > s, and Bck is defined as in Lemma 4.1. This compensation scheme induces the principal

to follow a stopping-time allocation policy with a fixed stopping time T fb irrespective of whether the

agent installs R and leaves the agent indifferent between installing R or not.

Proof. To prove this proposition, it suffices to show that under the stated contract, (i) the principal

follows the first-best resource policy if the agent installs R, and (ii) the agent installs R and breaks

even.

To show (i), suppose that the agent installs R. If t < T fb, then it is easy to see that kt = 1

is optimal for the principal. Indeed, if Nt = 1, then qt = 1 and the bonus Bck has already been

disbursed. Hence kt = 1 is optimal as g > s. If Nt = 0, on the other hand, then playing kt = 1

is optimal since D > s and the principal’s continuation payoff in the event of a breakthrough is

r(Π−Bck) + g, which is always strictly greater than zero given the value of Bck and the fact that

s < sfb.

Now consider t ≥ T fb. If Nt = 1, then kt = 1 is optimal, as qt = 1, the bonus Bck has already

been disbursed, and g > s. If Nt = 0, then kt = 0 is optimal given that the principal no longer

has to pay damages for S’s profits, and qt ≤ qfb (given that kt = 1 is optimal for all t ≤ T fb, as I

showed above).

To show (ii), note that because the principal follows the efficient resource allocation policy upon

installation, then given Bck, the agent obtains an expected payoff of zero if he installs R. Notice,

further, that since D > s, the principal has incentives to allocate all the resources to R during

t ∈ (0, T fb) even if the agent fails to install R. Hence, not installing R also gives the agent zero.

Thus, the agent installs R and breaks even.

12



An important feature of the contract described in Lemma 4.2 is that the damages must be

sufficiently high so that the principal always has the incentives to avoid paying them. Note, in

particular, that this implies that the principal still has incentives to allocate all the resources to R

during t ∈ (0, T fb] even if the agent fails to install R. This feature of the contract is important since,

otherwise, the agent would deviate and not install R to obtain the damages payments promised in

the contract.

5 Proof of Lemma 2

I first show the existence and uniqueness of B̄C
t . Then, I show the existence and uniqueness of B̄t

and that this bonus coincides with B̄C
t when t ∈ T . Finally, I show that B̄t is pointwise higher than

any other bonus that satisfies the local incentive-compatibility constraint for all t ∈ [0, T̄ ], which

necessarily implies that B̄C
t is pointwise higher than any other local incentive compatible bonus

defined over T .

5.1 Construction of B̄C
t

To show the existence and uniqueness of B̄C
t , I will construct such a bonus starting from the last

time interval in [0, T̄ ] that entails kt > 0. For this purpose, it is notationally more convenient to

work with Mt ≡ g(1 + λ/r)− λBt rather than directly with Bt.

Let [T1−∆1, T1), where T1 ≤ T̄ , be the last time interval at which the recommendation prescribes

allocating resources to R. For any t ∈ [T1 −∆1, T1), then λB̄
C
t = g(1 + λ/r) − M̄

(1)
t , where M̄

(1)
t

satisfies the incentive-compatibility constraint (4) with equality:

qtM̄
(1)
t − s = λqt

[∫ T1

t
e−r(z−t)

[
s(1− kz) + kzM̄

(1)
t

]
e−

∫ z
t λkududz

+

∫ T̄

T1

e−r(z−t)se−
∫ T1
t λkududz +

s

r
e−r(T̄−t)e−

∫ T̄
t λkudu︸ ︷︷ ︸

= s
r
e−r(T1−t)e−

∫T1
t λkudu

]
(6)

Note that evaluating at t = T1, the above condition immediately implies that:

qT1M̄
(1)
T1

− s =
λqT1s

r
=⇒ M̄

(1)
T1

= s

[
1 +

λ

r
+

(
1− qT1

qT1

)]
(7)

Now, to solve (6), differentiate both sides of the equation with respect to t (taking into account

that qt = q̄/(q̄ + (1− q̄)e
∫ t
0 λkudu) depends on t) to obtain:

rM̄
(1)
t − d

dt
M̄

(1)
t = rsh(t), where h(t) ≡ 1 +

λ

r
+

(
1− q̄

q̄

)
e
∫ t
0 λkudu

13



M̄
(1)
t then comes from solving this differential equation using (7) as border condition:

M̄
(1)
t =

∫ T1

t
rse−r(z−t)h(z)dz + se−r(T1−t)h(T1) (8)

With this at hand, I then move to the second-to-last interval at which kt = 1. Let [T2−∆2, T2],

where T2 ≤ T1 −∆1 be such interval. Then for any t ∈ [T2 −∆2, T2), λB̄
C
t = g(1 + λ/r) − M̄

(2)
t ,

where M̄
(2)
t satisfies the incentive-compatibility constraint (4) with equality. Such constraint, in

this case, can be written as:

qtM̄
(2)
t − s = λqt

[∫ T2

t
e−r(z−t)

[
s(1− kz) + kzM̄

(2)
t

]
e−

∫ z
t λkududz + e−r(T2−t)e−

∫ T2
t λkuduI(1)

]
(9)

where:

I(1) =
s

r
(1− e−r(T1−∆1−T2)) +

e−r(T1−∆1−T2)

λ

[
M̄

(1)
T1−∆1

− s

qT1−∆1

]
To solve (9), differentiate both sides of the equation with respect to t to obtain:

rM̄
(2)
t − d

dt
M̄

(2)
t = rsh(t) (10)

The border condition, in turn, comes evaluating (9) at t = T2:

M̄
(2)
T2

= λI(1) +
s

qT2

Solving (10) using this border conditions yields:

M̄
(2)
t =

∫ T2

t
rse−r(z−t)h(z)dz + e−r(T2−t)

(
λI(1) +

s

qT2

)
=

∫ T2

t
rse−r(z−t)h(z)dz + se−r(T2−t)(1− e−r(T1−∆1−T2))h(T2) + e−r(T1−∆1−T2)M̄

(1)
T1−∆1

Where the last equality follows from the expression for I(1) and the fact that qT2 = qT1−∆1 since

kt = 0 for t ∈ [T2, T1 −∆1].

For n ≥ 2, let [Tn − ∆n, Tn] be the nth-to-last interval at which kt = 1. By induction, M̄
(n)
t

satisfies the following differential equation:

rM̄
(n)
t − d

dt
M̄

(n)
t = rsh(t) with border condition M̄

(n)
Tn

= λI(n−1) +
s

qTn

where:

I(n) =
s

r
(1− e−r(Tn−∆n−Tn+1)) +

e−r(Tn−∆n−Tn+1)

λ

[
M̄

(n)
Tn−∆n

− s

qTn−∆n

]
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The solution to this differential equation is:

M̄
(n)
t =

∫ Tn

t
rse−r(z−t)h(z)dz + se−r(Tn−t)(1− e−r(Tn−1−∆n−1−Tn))h(Tn)

+ e−r(Tn−1−∆n−1−Tn)M̄
(n−1)
Tn−1−∆n−1

(11)

The function B̄C
t in this interval is then given by λB̄C

t = g(1 + λ/r)− M̄
(n)
t . □

5.2 Construction of B̄t

To show the existence and uniqueness of B̄t, I will explicitly solve the differential equation that arises

from making the local incentive constraint (4) bind at every t ∈ [0, T̄ ]. The incentive constraint

can be written as:

qtM̄t − s = λqt

[∫ T̄

t
e−r(z−t)

[
s(1− kz) + kzM̄z

]
e−

∫ z
t λkududz +

s

r
e−r(T̄−t)e−

∫ T̄
t λkudu

]
(12)

where M̄t ≡ g(1 + λ/r)− λB̄t and qt = q̄/(q̄ + (1− q̄)e
∫ t
0 λkudu). Note that evaluating at t = T̄ , the

above condition immediately implies that:

qT̄ M̄T̄ − s =
λqT̄ s

r
=⇒ M̄T̄ = s

[
1 +

λ

r
+

(
1− qT̄
qT̄

)]
(13)

where qT̄ = q̄/(q̄ + (1− q̄)e
∫ T̄
0 λkudu). Now, to solve (12), note that rearranging terms one obtains:

∫ T̄

t
e−r(z−t)

[
s(1− kz) + kzM̄z

]
e−

∫ z
t λkududz =

M̄t

λ
− s

λqt
− s

r
e−r(T̄−t)e−

∫ T̄
0 λkudu

Differentiating both sides of this last expression with respect to t (taking into account that qt

depends on t) yields:

rM̄t −
d

dt
M̄t = rsh(t), where h(t) ≡ 1 +

λ

r
+

(
1− q̄

q̄

)
e
∫ t
0 λkudu

Solving this differential equation for M̄t using (13) as border condition one obtains that:

M̄t =

∫ T̄

t
rse−r(z−t)h(z)dz + se−r(T̄−t)h(T̄ ) (14)

Because M̄t = g(1 + λ/r)− λB̄t, I can then solve for B̄t to obtain (recall that µ ≡ r/λ):

λB̄t = g

(
1 +

1

µ

)
−
∫ T̄

t
rse−r(z−t)h(z)dz − se−r(T̄−t)h(T̄ )
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That B̄t coincides with B̄
C
t when t ∈ T then follows directly from the fact that the right-hand

side of (12) only depends on the future bonuses that can be paid with strictly positive probability,

i.e., only at those times t ∈ T . Alternatively (and significantly more cumbersomely), it can be

shown that (14) coincides with (11) when t ∈ T . □

5.3 B̄t is Pointwise Higher Among the Locally Incentive Compatible Bonuses

The following proof is adapted from Ely, Georgiadis and Rayo (2023, Proposition 2). Consider

an arbitrary bonus Bt that satisfies local incentive compatibility for all t ∈ [0, T̄ ], and let Mt ≡
g(1 + λ/r)− λBt. Define also the function βt as:

βt ≡ s

[
1

qt
+
λ

r
e−r(T̄−t)e−

∫ T̄
t λkudu + λ

∫ T̄

t
e−r(z−t)s(1− kz)e

−
∫ z
t λkududz

]
> 0

Because Bt is locally incentive compatible, then it must satisfy the incentive constraint (4) of the

main text. This constraint can be written as:

Mt ≥ βt +

∫ T̄

t
λkzMze

−r(z−t)e−
∫ T̄
t λkududz (15)

Note that because βt > 0 for all t ∈ [0, T̄ ], then the incentive constraint (15) implies that Mt > 0

for all t ∈ [0, T̄ ]. Indeed, the incentive constraint at t = T̄ requires that MT̄ ≥ βT̄ > 0, which then

implies that for ϵ > 0 but low enough:

MT̄−ϵ ≥ βT̄−ϵ +

∫ T̄

T̄−ϵ
λkzMze

−r(z−t)e−
∫ T̄
t λkududz > 0 (given that MT̄ > 0)

The exact same argument can then be used to show that MT̄−ϵ > 0 implies that MT̄−2ϵ > 0, and

so on, until eventually obtaining that Mt > 0 for all t ∈ [0, T̄ ].

With this in mind, define Z
(1)
t as the right-hand side of (15), i.e.,

Z
(1)
t ≡ βt +

∫ T̄

t
λkzMze

−r(z−t)e−
∫ T̄
t λkududz

Notice that, by construction, the function Z
(1)
t ≤ Mt for all t. Moreover, because Mz > 0 and

λkze
−r(z−t)e−

∫ T̄
t λkudu > 0, it also follows that Z

(1)
t ≥ βt for all t. For all k ≥ 2, define then the

function Z
(k)
t by:

Z
(k)
t = βt +

∫ T̄

t
λkzZ

(k−1)
t e−r(z−t)e−

∫ T̄
t λkududz

Given that λkze
−r(z−t)e−

∫ T̄
t λkudu > 0 and 0 < Z

(1)
t ≤ Mt, it follows that βt ≤ Z

(2)
t ≤ Z

(1)
t . By

induction, I then have that βt ≤ Z
(k)
t ≤ Z

(k−1)
t for all t. I have, therefore, constructed a pointwise
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decreasing sequence of functions bounded below by the function βt. Let Zt be the pointwise limit.

By the dominated convergence theorem, I have that:

Zt = βt +

∫ T̄

t
λkzZze

−r(z−t)e−
∫ T̄
t λkududz (16)

Define then M̄t = Zt. Note that M̄t is weakly pointwise lower than the original Mt and that it

satisfies (16) with equality, so M̄t is unique and given by (14). Thus, M̄t is pointwise lower than any

other locally incentive compatibleMt, asMt was arbitrary. Using the fact thatMt = g(1+λ/r)−λBt

and M̄t = g(1 + λ/r) − λB̄t, this immediately implies that B̄t is pointwise higher than any bonus

that satisfies the local incentive compatibility constraint at all t ∈ [0, T̄ ]. □

6 Proof of Lemma 3

6.1 Preliminaries

To solve this problem, let us omit the agent’s limited liability constraint for a moment (I later

verify that it is indeed satisfied). Note then that the agent’s payoffs—the objective in this case—is

pointwise increasing in Bt. Hence, it is clear that the agent’s preferred bonus is BA
t = B̄t. If so, the

problem at hand becomes choosing a recommended resource policy {kt, 0 ≤ t ≤ T̄} to maximize:

∫ T̄

0
re−rt(λqtktB̄t)

(
1− q̄

1− qt

)
dt (17)

where B̄t is given as in Lemma 2 and qt = q̄/(q̄ + (1− q̄)e
∫ t
0 λkudu).

To solve this problem, let me conjecture that the optimal policy is such that k0 > 0 (I will

later verify that this is indeed the case). If so, the objective function can be rewritten in a slightly

different (but more useful) way:

Lemma 6.1. Recall that µ ≡ r/λ. If in the optimum k0 > 0, then the objective (17) can be

equivalently written as:

q̄

∫ T̄

0
re−rt

[(
s(1− kt) + ktg

(
1 +

1

µ

))
e−xt − s(1 + µ)− µs

(
1− q̄

q̄

)
ext

]
dt

+ q̄µs

[
(1− e−rT̄ )− e−rT̄

µ
(1− e−xT̄ ) +

(
1− q̄

q̄

)
(1− e−rT̄ exT̄ )

]

where xt ≡
∫ t
0 λkzdz.
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Proof. Observe that qt(1− q̄)/(1− qt) = q̄ exp(−
∫ t
0 λkudu) = q̄ exp(−xt). This implies that:

∫ T̄

0
re−rt(λqtktB̄t)

(
1− q̄

1− qt

)
dt = q̄

∫ T̄

0
re−rtλktB̄te

−xtdt

Now, the conjecture that k0 > 0 then implies that the local incentive constraint (4) characterized

in Lemma 1 of the main text binds at t = 0:

q̄

(
g

(
1 +

1

µ

)
− λB̄0

)
− s = q̄

[
s

µ
e−rT̄ e−xT̄

+ λ

∫ T̄

0
e−rt

[
s(1− kt) + kt

(
g

(
1 +

1

µ

)
− λB̄t

)]
e−xtdt

]

Rearranging terms and noting that, according to Lemma 2 of the main text, λB̄0 = g
(
1 + 1

µ

)
−∫ T̄

0 rse−rth(t)dt− se−rT̄h(T̄ ), where h(t) ≡ 1 + 1/µ+ ext(1− q̄)/q̄, one obtains that:

q̄

∫ T̄

0
re−rtλktB̄te

−xtdt

= q̄

∫ T̄

0
re−rt

[(
s(1− kt) + ktg

(
1 +

1

µ

))
e−xt − s(1 + µ)− µs

(
1− q̄

q̄

)
ext

]
dt

+ q̄µs

[
(1− e−rT̄ )− e−rT̄

µ
(1− e−xT̄ ) +

(
1− q̄

q̄

)
(1− e−rT̄ exT̄ )

]

Lemma 6.1 implies that the problem at hand is equivalent maximizing rq̄[
∫ T̄
0 e−rtj(kt, xt)dt +

ψ(T̄ , xT̄ )] where:

j(kt, xt) ≡
[
s(1− kt) + ktg

(
1 +

1

µ

)]
e−xt − s(1 + µ)− µs

(
1− q̄

q̄

)
ext

ψ(T̄ , xT̄ ) ≡
s

λ

[
(1− e−rT̄ )− e−rT̄

µ
(1− e−xT̄ ) +

(
1− q̄

q̄

)
(1− e−rT̄ exT̄ )

]

choosing the control kt ∈ [0, 1] for t ∈ [0, T̄ ], subject to ẋt = λkt, x0 = 0, xT̄ free, and T̄ given.

However, since r and q̄ are constants, maximizing rq̄[
∫ T̄
0 e−rtj(kt, xt)dt+ψ(T̄ , xT̄ )] is equivalent as

maximizing
∫ T̄
0 e−rtj(kt, xt)dt+ ψ(T̄ , xT̄ ). The latter is the problem I will solve next.

6.1.1 Necessary Conditions for Optimality

Let H(k, x, z) ≡ j(k, x)+zλk be the current value Hamiltonian associated with the control problem

defined above, where zt is the Lagrange multiplier associated with the state equation ẋt = λkt.
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Given that this is a fixed-time problem with terminal date T̄ , free terminal state xT , and a

salvage value of ψ(T̄ , xT̄ ), the necessary conditions for optimality are (see Kamien and Schwartz,

1991, p. 160):

(U.1) ẋt = λkt with x0 = 0 (U.2) k ∈ argmax
k̃∈[0,1]

H(k̃, x, z)

(U.3) żt = rzt −
∂j

∂x
(U.4) zT̄ = erT̄

∂ψ

∂xT̄

I then conjecture that for T̄ sufficiently high, the optimal policy is a stopping time policy with fixed

time TA, i.e., kt = 1 for t ≤ TA and kt = 0 for t ∈ (TA, T̄ ]. Note if the conjectured policy is indeed

a candidate for an optimum, this verifies the conjecture that the optimal policy must be such that

k0 > 0. Moreover, it also verifies the claim (stated at the end of Section 4.2) that is without loss to

restrict attention to allocations with the property that kt = 0 for all t ≥ T̄ , at least when solving

this particular problem.

Now, given the conjectured optimal policy, (U.1) can be written as:

xt =

λt if t ∈ [0, TA]

λTA if t ∈ (TA, T̄ ]

while (U.3) as:

żt = rzt +


g

(
1 +

1

µ

)
e−λt + µs

(
1− q̄

q̄

)
eλt if t ∈ [0, TA]

se−λTA
+ µs

(
1− q̄

q̄

)
eλT

A
if t ∈ (TA, T̄ ]

Solving for zt using (U.4) as border condition, yields:

zt =



− 1

λ

[
e−λt

µ

(
g − (g − s)e−λ(1+µ)(TA−t)

)
+seλt

(
1− q̄

q̄

)(
µ

µ− 1

)(
1− e−λ(µ−1)(TA−t)

µ

)]
if t ∈ [0, TA]

− s

λ

[
e−λTA

µ
+

(
1− q̄

q̄

)
eλT

A

]
if t ∈ (TA, T̄ ]

The final optimality condition is (U.2). Because H(k, x, z) is linear in k, this condition can be

written as:

∂H
∂kt

=

[
g

(
1 +

1

µ

)
− s

]
e−xt + λzt

≥ 0 if t ∈ [0, TA]

≤ 0 if t ∈ (TA, T̄ ]
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For this condition to hold, it must then be that:[
g

(
1 +

1

µ

)
− s

]
e−λTA

+ λzTA = 0

Solving for TA one obtains that TA = T fb/2. Moreover, because xt and zt are constant for

t ∈ (TA, T̄ ], the latter immediately implies that ∂H/∂kt = 0 for t ∈ (TA, T̄ ]. Thus, the only

remaining loose end is checking that ∂H/∂kt ≥ 0 for t ∈ [0, TA).

To do this, note that when t ∈ [0, TA), then:

∂H
∂kt

= (g − s)e−λt

[
1 +

e−λ(1+µ)(TA−t)

µ

]
− seλt

(
1− q̄

q̄

)(
µ

µ− 1

)(
1− e−λ(µ−1)(TA−t)

µ

)
︸ ︷︷ ︸

≡γ(t)

Note then that γ(TA) = 0 and that:

γ′(t) = −λ(g − s)e−λt
[
1− e−λ(1+µ)(TA−t)

]
− λseλt

(
1− q̄

q̄

)(
µ

µ− 1

)(
1− e−λ(µ−1)(TA−t)

)
< 0

Thus, for t ∈ [0, TA), ∂H/∂kt = γ(t) > γ(TA) = 0, so the conjectured solution satisfies all the

necessary conditions for optimality. □

6.1.2 Sufficiency

In the previous subsection, I characterized a candidate solution to the problem at hand based on

the necessary conditions for optimality. Thus, we are left with proving that such a candidate is

indeed optimal.

While the optimization program described above is not necessarily concave in xt, observe that,

defining yt ≡ e−xt , the problem can be rewritten as maximizing
∫ T̄
0 e−rtj̃(kt, yt)dt+ ψ̃(T̄ , yT̄ ) where

ẏt = −λytkt, y0 = 1, yT̄ free, and:

j̃(kt, yt) =

[
s(1− kt) + ktg

(
1 +

1

µ

)]
yt − s(1 + µ)− µs

yt

(
1− q̄

q̄

)
ψ̃(T̄ , yT̄ ) =

s

λ

[
(1− e−rT̄ )− e−rT̄

µ
(1− yT̄ ) +

(
1− q̄

q̄

)(
1− e−rT̄

yt

)]

Let H◦(y, z) be the maximized Hamiltonian, i.e., H◦(y, z) ≡ maxk∈[0,1]{j̃(k, y)− zλyk}. Note then

that ∂2H◦/∂y2 = −2µs(1 − q̄)/y3 < 0, so H◦(y,m) is strictly concave in y. Hence, sufficiency

follows from Arrow’s Sufficiency Theorem (Seierstad and Sydsaeter, 1987, Thm. 3.17). □
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6.1.3 Limited Liability

The final step is verifying that the optimum described above satisfies the agent’s limited liability.

The latter, however, is easy. Since the optimal allocation is a stopping-time policy with fixed stop-

ping time T fb/2, this implies that the offered bonus is BA
t = B̄stop

t (T fb/2). Since B̄stop
t (T fb/2)

is strictly decreasing in t, and given that B̄stop
t (T fb/2) > 0 when t = T fb/2, it follows that

B̄stop
t (T fb/2) > 0 for all t ∈ [0, T fb/2]. □

7 Proof of Lemma 4

Recall that µ ≡ r/λ. I will focus on the case where µ ̸= 1 since the proof for when µ = 1 is basically

the same. Now, recall that s̄ is defined as the unique solution to ū(T fb(s̄)/2; s̄) = rf , where:

ū(T ; s) ≡ q̄(g − s)
(
1− e−λ(1+µ)T

)
− s(1− q̄)

(
µ

µ− 1

)(
1− e−λ(µ−1)T

)
On the other hand, sfb is defined as the unique solution to w(q̄; sfb) − rf = sfb, where w(q; s) is

defined in the proof of Proposition 1 found in Section 2 of this online Appendix. However, to show

that s̄ < sfb, it is convenient to rewrite the condition w(q̄; sfb) − rf = sfb in a slightly difference

way. In particular, using the expressions found in the proof of Proposition 1, it is straightforward

to prove that w(q̄; sfb)− rf = sfb is equivalent to ω(T fb(sfb); sfb) = rf , where:

ω(T ; s) = q̄(g − s)
(
1− e−λ(1+µ)T

)
− s(1− q̄)

(
1− e−λµT

)
Note then that:6

∂

∂s
ū(T fb(s)/2; s) = −q̄

(
1− e−λ(1+µ)T fb(s)/2

)
− (1− q̄)

(
µ

µ− 1

)(
1− e−λ(µ−1)T fb(s)/2

)
< 0

∂

∂s
ω(T fb(s); s) = −q̄

(
1− e−λ(1+µ)T fb(s)

)
− (1− q̄)

(
1− e−λµT fb(s)

)
< 0

Hence, to prove that s̄ < sfb it is sufficient to show that ū(T fb(s)/2; s) < ω(T fb(s); s) for all s ≤ sfb.

To do this, notice that:

ω(T fb(s); s)− ū(T fb(s)/2; s) =
(1− q̄)s

µ2 − 1

[
1 + µ+ (µ− 1)M−µ − 2µM (1−µ)/2

]
︸ ︷︷ ︸

≡ρ(M)

6Note that the derivatives of ū(T fb(s)/2; s) and ω(T fb(s); s) with respect to s taking into account that T fb

depends on s is the same as the derivative taking T fb fixed. This follows by the envelope theorem since
T fb/2 = argmaxT ū(T ; s) and T fb = argmaxT ω(T ; s).
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where:

M ≡ (1 + µ)(g − s)q̄

µs(1− q̄)
> 1 (since qfb < q̄ as s ≤ sfb)

Note then that ρ(1) = 0 and that:

ρ′(M) =
(1− q̄)µsM−µ

(1 + µ)M

[
M (1+µ)/2 − 1

]
> 0

Hence, ρ(M) > ρ(1) for all M > 1, so ū(T fb(s)/2; s) < ω(T fb(s); s) for all s ≤ sfb. □

8 Proof of Lemma 6

Notice that qt(1− q̄)/(1− qt) = q̄ exp(−
∫ t
0 λkudu) = q̄ exp(−xt), where xt ≡

∫ t
0 λkudu. Hence,∫ T̄

0
re−rt

[
s(1− kt) + qtktg

(
1 +

λ

r

)](
1− q̄

1− qt

)
dt = rq̄

∫ T̄

0
e−rtf(kt, xt)dt

se−rT̄

(
1− q̄

1− qT̄

)
− rf = rq̄ϕ(T̄ , xT̄ )

Consequently, given that r and q̄ are constant, maximizing the principal’s expected payoff is equiv-

alent maximizing: ∫ T̄

0
e−rtf(kt, xt)dt+ ϕ(T̄ , xT̄ )

Rewriting the constraint requires more work. Note first that:

∫ T̄

0
re−rt(λqtktB̄t)

(
1− q̄

1− qt

)
dt = q̄

∫ T̄

0
re−rtλktB̄te

−xtdt

Now, the conjecture that k0 > 0 implies that the local incentive constraint (4) characterized in

Lemma 1 of the main text binds at t = 0:

q̄

(
g

(
1 +

1

µ

)
− λB̄0

)
− s = q̄

[
s

µ
e−rT̄ e−xT̄

+ λ

∫ T̄

0
e−rt

[
s(1− kt) + kt

(
g

(
1 +

1

µ

)
− λB̄t

)]
e−xtdt

]

where I am already using the fact that xt ≡
∫ t
0 λkudu and that µ ≡ r/λ. Rearranging terms

and noting that, according to Lemma 2 of the main text, λB̄0 = g
(
1 + 1

µ

)
−
∫ T̄
0 rse−rth(t)dt −
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se−rT̄h(T̄ ), where h(t) ≡ 1 + 1/µ+ ext(1− q̄)/q̄, one obtains that:

q̄

∫ T̄

0
re−rtλktB̄te

−xtdt

= q̄

∫ T̄

0
re−rt

[(
s(1− kt) + ktg

(
1 +

1

µ

))
e−xt − s(1 + µ)− µs

(
1− q̄

q̄

)
ext

]
dt

+ q̄µs

[
(1− e−rT̄ )− e−rT̄

µ
(1− e−xT̄ ) +

(
1− q̄

q̄

)
(1− e−rT̄ exT̄ )

]

Hence, ∫ T̄

0
re−rt(λqtktB̄t)

(
1− q̄

1− qt

)
dt = rq̄

[∫ T̄

0
e−rtG(kt, xt)dt+ φ(xT̄ , T̄ )

]
where I am using the fact that µs/r = s/λ. Consequently,

∫ T̄

0
re−rt(λqtktB̄t)

(
1− q̄

1− qt

)
dt = rf ⇐⇒

∫ T̄

0
e−rtG(kt, xt)dt+ φ(xT̄ , T̄ ) =

f

q̄

□

9 Proof of Lemma 7

Recall that the necessary conditions for optimality were:

(O.1) ẋt = λkt with x0 = 0 (O.2) k ∈ argmax
k̃∈[0,1]

H(k̃, x,m, ξ)

(O.3) ṁt = rmt −
∂f

∂x
− ξ

∂G

∂x
(O.4) mT̄ = erT̄

(
∂ϕ

∂xT̄
+ ξ

∂φ

∂xT̄

)
(O.5)

∫ T̄

0
e−rtG(kt, xt)dt+ φ(T̄ , xT̄ ) =

f

q̄
(O.6) ξ ≥ 0

where H(k, x,m, ξ) ≡ f(k, x) +mλk + ξG(k, x) is current value Hamiltonian of the problem.

I then conjecture that for T̄ sufficiently high, the optimal policy is a stopping time policy with

fixed time T ∗, i.e., k∗t = 1 for t ≤ T ∗ and k∗t = 0 for t ∈ (T ∗, T̄ ]. Under this policy, condition (O.5)

can be written as ū(T ∗; s) = rf , where ū(T ; s) is given by equation (7) of the main text. Note that

because s ≤ s̄, such a T ∗ always exists. Moreover, because ū(T ; s) is strictly quasiconcave in T

with a maximum at T = T fb/2, then there are two such T ∗: One to the left of T fb/2, denoted by

T ∗
−, and one to the right of T fb/2, denoted by T ∗

+.

The conjecture that the optimal policy is a stopping time policy with fixed time T ∗ also implies
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that (O.1) can be written as:

xt =

λt if t ∈ [0, T ∗]

λT ∗ if t ∈ (T ∗, T̄ ]

while (O.3) as:

ṁt = rmt +


(1 + ξ)g

(
1 +

1

µ

)
e−λt + ξµs

(
1− q̄

q̄

)
eλt if t ∈ [0, T ∗]

(1 + ξ)se−λT ∗
+ ξµs

(
1− q̄

q̄

)
eλT

∗
if t ∈ (T ∗, T̄ ]

Solving for mt using (O.4) as border condition, yields:

mt =



−(1 + ξ)

λ

[
e−λt

µ

(
g − (g − s)e−λ(1+µ)(T ∗−t)

)
+seλt

(
ξ

1 + ξ

)(
1− q̄

q̄

)(
µ

µ− 1

)(
1− e−λ(µ−1)(T ∗−t)

µ

)]
if t ∈ [0, T ∗]

−s(1 + ξ)e−λT ∗

r

[
1 + µ

(
ξ

1 + ξ

)(
1− q̄

q̄

)
eλT

∗
]

if t ∈ (T ∗, T̄ ]

The final optimality condition is (O.2). Because H(k, x,m, ξ) is linear in k, this condition can be

written as:

∂H
∂kt

= (1 + ξ)

[
g

(
1 +

1

µ

)
− s

]
e−xt − s

(
1− q̄

q̄

)
+ λmt

≥ 0 if t ∈ [0, T ∗]

≤ 0 if t ∈ (T ∗, T̄ ]

For this condition to hold, it must then be that:

(1 + ξ)

[
g

(
1 +

1

µ

)
− s

]
e−λT ∗ − s

(
1− q̄

q̄

)
+ λmT ∗ = 0

so the Lagrange multiplier ξ is given by:

ξ = eλT
∗
(eλT

∗ − 1)

[
e2λT

∗ − q̄(1 + µ)(g − s)

µs(1− q̄)

]−1

− 1

Because ξ ≥ 0, it must be:

e2λT
∗ − q̄(1 + µ)(g − s)

µs(1− q̄)
≥ 0

which holds if and only if T ∗ ≥ T fb/2. Thus, T ∗ = T ∗
+, or equivalently, T

∗ = max{T > 0 : ū(T ; s) =

rf}. Moreover, because xt and mt are constant for t ∈ (T ∗, T̄ ], the latter immediately implies that

∂H/∂kt = 0 for t ∈ (T ∗, T̄ ]. Thus, the only remaining loose end is checking that ∂H/∂kt ≥ 0 for

t ∈ [0, T ∗).
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To do this, note that when t ∈ [0, T ∗), then:

∂H
∂kt

= (1 + ξ)(g − s)e−λt

[
1 +

e−λ(1+µ)(T ∗−t)

µ

]

− s

(
1− q̄

q̄

)[
1 + eλtξ

(
µ

µ− 1

)(
1− e−λ(µ−1)(T ∗−t)

µ

)]
≡ Σ(t)

Moreover, notice that Σ(T ∗) = 0 and that:

Σ′(t) = −λ(1 + ξ)(g − s)e−λt
[
1− e−λ(1+µ)(T ∗−t)

]
− λseλtξ

(
1− q̄

q̄

)(
µ

µ− 1

)(
1− e−λ(µ−1)(T ∗−t)

)
< 0

where the inequality follows because ξ ≥ 0. Thus, for t ∈ [0, T ∗), ∂H/∂kt = Σ(t) > Σ(T ∗) = 0, so

the candidate solution satisfies all the necessary conditions for optimality. □

10 Efficiency with Belief-Contingent Contracts

In this appendix, I show that if the principal could offer the agent a single belief-contingent bonus

payable upon a breakthrough, the principal would obtain her first-best payoff in equilibrium (as

noted in footnote 24 of the main text). Of course, as discussed in the main text (see footnote ??),

it is hard to envision a contract being contingent upon players’ beliefs. Hence, rather than being

taken seriously, the results that follow should be understood only as an interesting benchmark to

keep in mind.

As a first step, I begin by formally defining players’ strategies and payoffs. A strategy for the

principal consists of choosing a belief-contingent bonus B(q) at t = 0−, and making a resource

allocation decision, kt ∈ [0, 1], at every t > 0.

The bonus B(q) is interpreted as follows: If a breakthrough occurs at time t, the agent receives

a single payment by the amount B(qt−) where qt− is the belief that θ = 1 immediately before

the breakthrough occurred. Note, moreover, that due to the agent’s limited liability and lack of

wealth, the bonus must be such that B(q) ≥ 0 for all q. The resource allocation decision, in turn, is

contingent on all the information available at t, which can be summarized in (i) the belief-contingent

bonus that the principal promised to the agent at t = 0−, (ii) whether the agent installed R at

t = 0+ or not, and (iii) the belief at time t that θ = 1.

A strategy for the agent, in turn, corresponds to an installation choice at t = 0+, a0 ∈ {0, 1},
as a function of the belief-contingent bonus offered by the principal at t = 0−.

Let τ ≥ 0 be the time at which a breakthrough occurs. Given the players’ actions, the principal’s
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and the agent’s expected payoffs at time 0, expressed in per-period units, are equal to:

v0 =E

[∫ ∞

0
re−rt

[
(a0ktλθ)Π + s(1− kt)

]
dt− re−rτB(qτ−)

]
u0 =E

[
re−rτB(qτ−)

]
− ra0f

where qt evolves according to dqt = −λa0ktqt(1− qt)dt with initial condition q0 = q̄.

The next lemma characterizes the equilibrium of this game:

Lemma 10.1. In equilibrium, the principal achieves her first-best payoffs, vbelief0 = wfb
0 = w(q̄; s)−

rf (where the superscript “belief” stands for “belief-contingent bonus”), by offering the following

belief-contingent bonus:

B(q) =


rf

λ(wfb
0 + rf − s)

[(
1 +

1

µ

)
(g − s)− s

(
1− q

q

)]
if q ≥ qfb

0 otherwise

In particular, this bonus induces the principal to follow the first-best resource allocation policy of

Proposition 1, and leaves the agent indifferent between installing R or not.

To prove this lemma, it suffices to show that under the proposed contract: (i) the principal

follows the first-best resource allocation policy if the agent installs R, and (ii) that the agent is

indifferent between installing R or not. Claims 10.2 and 10.3 prove points (i) and (ii), respectively.

Claim 10.2. If the principal commits to B(q) as in Lemma 10.1, then she follows the first-best

resource allocation policy if the agent installs R.

Proof. If the agent installs R, the principal’s resource allocation problem is a dynamic programming

problem with the belief q as the state variable. The Hamilton-Jacobi-Bellman equation (HJB)

associated with this problem is:

rv(q) = max
k∈[0,1]

{
r [(1− k)s+ qk(g − λB(q))] + λkq(g − v(q))− λkq(1− q)v′(q)

}
where B(q) is given as in Lemma 10.1.

I then conjecture that the principal follows a cutoff strategy (as in the first-best): k∗(q) = 1

if q ≥ q†, and k∗(q) = 0, otherwise. If so, the HJB equation plus the value-matching and the

smooth-pasting conditions v(q†) = s and v′(q†) = 0, imply that q† = qfb, and that v(q) is given as

follows:

v(q) =


(1− γ)gq + γs+ (1− γ)(s− gqfb)

(
1− q

1− qfb

)(
Ω(q)

Ω(qfb)

)µ

if q ≥ qfb

s otherwise

(18)
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where γ ≡ rf/(wfb
0 + rf − s) < 1 (since s < sfb). Note that v(q) is continuously differentiable

in q, so the standard verification/sufficiency arguments hold (e.g., Yong and Zhou, 1999, Theorem

3.7, p. 241). Thus, to show that the principal follows the first-best resource allocation policy, it is

sufficient to show that:

kfb(q) = argmax
k∈[0,1]

{
r [(1− k)s+ qk(g − λB(q))] + λkq(g − v(q))− λkq(1− q)v′(q)

}
where:

kfb(q) =

1 if q ≥ qfb

0 if q < qfb

This is equivalent as showing that ϕ(q) ≥ 0 if q ≥ qfb and that ϕ(q) < 0, otherwise, where:

ϕ(q) ≡ r [−s+ q(g − λB(q))] + λq(g − v(q))− λq(1− q)v′(q) (19)

To show this last point, consider first q ≥ qfb. Using the relevant expressions for B(q) and v(q) for

this case yields that:

ϕ(q) = λs(1− γ)

(
µ

1 + µ

)[
µ(q − qfb)− qfb(1− q)

(
1−

(
Ω(q)

Ω(qfb)

)µ)]
≥ 0

where the last inequality follows because γ < 1 and the fact that the term in square brackets is

strictly increasing in q and is equal to zero when q = qfb.

Consider now q < qfb. Then using the relevant expression for v(q) for this case, yields:

ϕ(q) = −λsµ(1− γ)

(
1− q

qfb

)
< 0 as γ < 1 and q < qfb

Claim 10.3. If the principal commits to B(q) as in Lemma 10.1, then the agent is indifferent

between installing R or not.

Proof. If the agent does not install R, then he gets zero. To obtain the agent’s expected payoff

if he installs R, on the other hand, let u(q) be the agent’s value function when R is installed, a

breakthrough has not occurred, and the belief that θ = 1 is q.

Since the principal plays kfb(q) = 0 for q < qfb, then u(q) = 0 for q < qfb as no breakthrough

is possible in this region of the belief space. In contrast, if q ≥ qfb, then kfb(q) = 1, so u(q) must

satisfy ru(q) = λq(rB(q) − u(q)) − λq(1 − q)u′(q) with terminal condition u(qfb) = 0 where B(q)
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as in Lemma 10.1. Solving this differential equation I obtain that:

u(q) =


γ

[
gq + (s− gqfb)

(
1− q

1− qfb

)(
Ω(q)

Ω(qfb)

)µ

− s

]
if q ≥ qfb

0 otherwise

where γ ≡ rf/(wfb
0 + rf − s) < 1. Hence, the agent’s expected payoff if he installs R is:

u(q̄)− rf = γ

[
gq̄ + (s− gqfb)

(
1− q̄

1− qfb

)(
Ω(q̄)

Ω(qfb)

)µ

− s

]
− rf

= γ[wfb
0 + rf − s]− rf

=

(
rf

wfb
0 + rf − s

)
[wfb

0 + rf − s]− rf = 0

Thus, the agent’s expected payoff if he installs R is also zero, so the agent is indifferent between

installing R or not.
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