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Appendix O.A Omitted Proofs

Proof of Lemma A.2

Proof. For δ ∈ [0, 1], let V (x; δ) := maxτ,dτ Ex[e−rτ (dτ (uA(1− δ)−Xτ ) +Xτ )], Cδ := {x :

V (x; δ) > max{x, uA(1 − δ)}}, τ δ := inf{t : Xt 6∈ Cδ} and dδ
τδ

:= 1(uA(1 − δ) ≥ Xτδ).

By standard arguments (see Peskir and Shiryaev (2006)), Cδ = (Sδ, Rδ) for some Sδ, Rδ ∈
G, V (x; δ) is continuous and decreasing in δ and (τ δ, dδ

τδ
) is in the arg max for V (x; δ).

Moreover, Sδ, Rδ are unique if Cδ 6= ∅. Unless stated otherwise, assume that C0 6= ∅.
Continuity of V implies Cδ = C0 for sufficiently small δ > 0. Consider such δ.

Take x < Rδ. We now show Px(d
δ
τδ

= 1) > 0. Suppose not, so Px(d
δ
τδ

= 1) = 0. If

x ∈ Cδ, then V (x; δ) = Ex[e−rτ
δ
Xτδ ] ≤ x, where the inequality follows by Doob’s optional

stopping theorem, contradicting x ∈ Cδ. If x 6∈ Cδ, then x ≤ Sδ, so Px(d
δ
τδ

= 1) = 0 implies

Sδ > uA(1 − δ). For x′ ∈ Cδ, because Px′(Xτδ ∈ {Rδ, Sδ}) = 1, by Rδ > Sδ > uA(1 − δ),
we have Px′(d

δ
τδ

= 1) = 0, which we have argued above cannot be. Thus, Px(d
δ
τδ

= 1) > 0

for all x < Rδ.

Set R = R0. Take an optimal contract (τ ∗, d∗τ∗ , α
∗
τ∗). Let H0 = {ht : τ ∗ = t <

τ+(R), d∗τ∗ = 0}. For the sake of contradiction, suppose the histories inH0 are realized with

positive probability. Consider a new contract (τ, dτ , ατ ) which is identical to (τ ∗, d∗τ∗ , α
∗
τ∗)

except after ht ∈ H0. After such histories, set (τ, dτ , ατ ) to use (τ δ, dδ
τδ
, αδ

τδ
) (where αδ

τδ
= δ

with probability one) as its continuation contract. Because (τ δ, dδ
τδ

) maximizes A’s util-

ity given αδ
τδ

, (τ δ, dδ
τδ
, αδ

τδ
) satisfies DIR and A’s continuation value after ht ∈ H0 is
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greater than his outside option. This change weakly increases A’s continuation value at

all earlier histories, so (τ, dτ , ατ ) satisfies DIR. Moreover, (τ, dτ , ατ ) strictly increases P ’s

continuation value at ht ∈ H0, since his continuation value is EXt [e−rτ
δ
dδ
τδ
uP (δ)] > 0 by

PXt(dδτδ = 1) > 0 as Xt < R0 = R and Rδ = R0 by Cδ = C0, contradicting the opti-

mality of (τ ∗, d∗τ∗ , α
∗
τ∗). Thus, d∗τ∗ = 1 whenever τ ∗ < τ+(R). This construction implies

there exists a DIR contract with strictly positive expected utility for P when X0 < R and

J(τ ∗, d∗τ∗ , α
∗
τ∗) > 0 if X0 < R.

Next, we show it is without loss to focus on optimal contracts with τ ∗ ≤ τ+(R) and

d∗τ∗ = 0 if Xτ∗ ≥ R. Any continuation contract at τ+(R) which realizes a split in (0, 1) with

positive probability yields a strictly lower payoff than V (Xτ+(R); 0) = Xτ+(R),
1 violating

DIR. Therefore, any continuation contract (τ ′, d′τ ′ , α
′
τ ′) of an optimal contract at τ+(R)

must have α′τ ′ = 0 with probability one and deliver A a continuation value of Xτ+(R), so P ’s

continuation value is 0. It is therefore payoff equivalent to replace the continuation contract

at τ+(R) with taking the outside option; namely, it is without loss to assume any optimal

contract (τ ∗, d∗τ∗ , α
∗
τ∗) has τ ∗ ≤ τ+(R) and d∗τ∗ = 0 if Xτ∗ ≥ R.2 Thus, J(τ ∗, d∗τ∗ , α

∗
τ∗) = 0 if

X0 ≥ R.

Finally, suppose C0 = ∅. In this case, take R = min{x : x ≥ uA(1)} if X > uA(1) and

R = X + ε otherwise. By analogous arguments as above, there exists no DIR contract

with a strictly positive continuation value for P at X0 ≥ R, so taking the outside option

immediately is optimal. If Xt < R, then reaching an immediate split with demand α such

that uA(1− α) = Xt gives a positive expected utility to P , so it cannot be optimal to take

the outside option at Xt < R.

Lemma O.A.1. Any contract that satisfies DIR also satisfies RDIR(c) for all c ≥ X0.

Proof. Suppose (τ, dτ , ατ ) satisfies DIR and take any c ≥ X0. A’s continuation value at

τ+(c) is Ec[e−r(τ−τ+(c))(dτ (uA(1−ατ )−Xτ )+Xτ )|hτ+(c)]. DIR implies that this is (weakly)

greater than c. Then (τ, dτ , ατ ) satisfies RDIR(c) as

V (τ, dτ , ατ )− V (τ ∧ τ+(c), dτ (c), ατ )

= E
[
e−rτ+(c)

(
Ec[e−r(τ−τ+(c))(dτ (uA(1− ατ )−Xτ ) +Xτ )|hτ+(c)]− c

)
1(τ+(c) ≤ τ)

]
≥ 0.

1Note that if V (R; 0) = uA(1) > R, then, for x ∈ C0, we would have V (x; 0) = Ex[e−rτ
0

uA(1)] < uA(1),

a contradiction of x ∈ Cδ. Thus, V (R; 0) = R, which implies V (x; 0) = x for all x ≥ R.
2The only time that there may exist a DIR contract that does not stop with probability one at or

before τ+(R) is if A is exactly indifferent between continuing and stopping at R in V (x; 0).
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Proof of Lemma A.3

Proof. In order to write RDP in the notation of Altman (1999), we first describe an

alternative way to specify a contract. We use a state (Ht, Xt,Mt) ∈ {0, 1}× [X,X]× [X,X]

at time t where Ht will equal 1 if and only if P has not stopped prior to t (so H0 = 1).

An action in period t is (at, dt, αt) ∈ {0, 1} × {0, 1} × [0, 1] where at = 1 if and only if

stopping at time t (so Ht+∆ = Ht(1 − at)), dt is an indicator for a split being made when

stopping at t and αt is the share of the surplus going to P when implementing a split at

time t; we restrict the choice of (at, dt, αt) to all be 0 if Ht = 0.3 A history at t takes

the form h̃t = (H0, X0,M0, a0, d0, α0, H1, ...., αt−1, Ht, Xt,Mt) and a strategy maps each

history into a distribution over (at, dt, αt).
4 By our restriction after Lemma A.2, we set

at = 1, dt = 0, αt = 0 whenever Xt ≥ R and Ht = 1.

We now rewrite RDP in the form used in Altman (1999); namely, as the discounted sum

of payoffs in t ∈ {0,∆, ...}, where the payoff in period t only depends on states (Ht, Xt,Mt)

and actions (at, dt, αt). Take (τ, dτ , ατ ) and let (at, dt, αt) be the associated strategy. We

first rewrite the objective function in our desired form:

E[e−rτdτuP (ατ )] = E[
∑

t∈{0,∆,...}

e−rtatdtuP (αt)].

Next, we rewrite RDIR(Xn). As discussed in the Appendix, RDIR(Xn) is equivalent to

E[
(
e−rτ (dτ (uA(1− ατ )−Xτ ) +Xτ )− e−rτ+(Xn)Xn

)
1(Mτ ≥ Xn)] ≤ 0. (1)

To rewrite (1) in our desired form, we do so separately for E[e−rτ (dτ (uA(1 − ατ ) −Xτ ) +

Xτ )1(Mτ ≥ Xn)] and E[e−rτ+(Xn)Xn1(Mτ ≥ Xn)]. The first is straightforward:

E[(e−rτ (dτ (uA(1− ατ )−Xτ ) +Xτ )1(Mτ ≥ Xn)]

= E[
∑

t∈{0,∆,...}

e−rtat
(
dt(uA(1− αt)−Xt) +Xt)1(Mt ≥ Xn)

)
].

For E[e−rτ+(Xn)Xn1(Mτ ≥ Xn)], we first considerXn = X0. Then E[e−rτ+(Xn)Xn1(Mτ ≥
Xn)] = X0, which trivially takes our desired form. Next, take Xn > X0, in which case

3Each contract (τ ′, d′τ ′ , α
′
τ ′) is associated with a unique strategy (i.e., when Ht = 1, we have at =

1(τ ′ = t), dt = atd
′
τ ′ and αt = atα

′
τ ′) and each strategy induces a unique contract (τ ′, d′τ ′ , α

′
τ ) (i.e.,

τ ′ = inf{t : at = 1}, d′τ ′ = dτ ′ , α
′
τ = ατ ′).

4Although our baseline setting makes the randomizing device explicit in U , we keep it implicit here to

match the notation of Altman (1999).
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P(τ+(Xn) > 0) = 1. We note that τ+(Xn) = t if and only if Mt−∆ < Xn = Xt and

Mτ ≥ Xn if and only if Hτ+(Xn) = 1. We then have

E[e−rτ+(Xn)Xn1(Mτ ≥ Xn)]

= E[
∑

t∈{∆,...}

e−rtHtX
n1(τ+(Xn) = t)]

= E[
∑

t∈{∆,...}

e−rtHt−∆(1− at−∆)Xn1(Mt−∆ < Xn)1(Xt = Xn)]

= E[
∑

s∈{0,∆,...}

e−r(s+∆)Hs(1− as)Xn1(Ms < Xn)1(Xs+∆ = Xn)]

= E[
∑

s∈{0,∆,...}

e−rsHs(1− as)1(Ms < Xn)e−r∆XnP(Xs+∆ = Xn|h̃s)]

= E[
∑

s∈{0,∆,...}

e−rsHs(1− as)1(Ms < Xn)e−r∆XnPXs(X∆ = Xn)],

which takes our desired form.

We show a Slater condition holds, namely, that there exists a strategy under which all

RDIR(Xn) constraints are slack. For simplicity, we describe such a strategy using the

contract it induces. Let (τ 0, d0
τ0 , α0

τ0) be A’s first-best contract (as defined in the proof of

Lemma A.2). Thus, τ 0 = inf{t : Xt 6∈ (S0, R)} for some S0. For some δ ∈ (0, 1), define a

contract that in each period t takes the same action as (τ 0, d0
τ0 , α0

τ0) would starting from

Xt with probability δ and waits with probability 1 − δ. Taking δ → 1, A’s continuation

value at each t is arbitrarily close to his first-best continuation value, from which it is easy

to see that all RDIR(Xn) constraints are slack.5

By Theorem 8.4 of Altman (1999), there exists a solution to RDP that is stationary

in (X,M).6 Because the Slater condition holds, by Theorem 9.10 of Altman (1999)7 there

exists Λ = (λ0, ..., λN) ∈ RN+1
− such that the value of RDP is equal to L(Λ) and any

solution (τ ∗, d∗τ∗ , α
∗
τ∗) must satisfy complementary slackness conditions, namely λn[V (τ ∗ ∧

τ+(Xn), d∗τ∗(X
n), α∗τ∗)− V (τ ∗, d∗τ∗ , α

∗
τ∗)] = 0 for all n = 0, ..., N .

5If X0 > S0 (for S0 as defined in Lemma A.2), then using (τ0, d0τ0 , α0
τ0) would satisfy all RDIR

constraints with strict inequality. However, for X0 ≤ S0, (τ0, d0τ0 , α0
τ0) stops immediately, so RDIR(Xn)

constraints for n > 0 hold with equality. We get around this problem by only stopping with probability

δ < 1 at each t < τ+(S0 + ε) so that τ+(Xn) occurs prior to stopping with positive probability.
6Writing RDP in terms of (at, dt, αt) as we did above, the results in Altman (1999) imply the existence

of an optimal policy that is stationary in (H,X,M). However, because only the case when Ht = 1 is payoff

relevant, this translates into a contract that is stationary in (X,M).
7Although the results in Chapter 9 of Altman (1999) are stated for a model without discounting, they

can be adapted to one with discounting as shown in Chapter 10 of Altman (1999).
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Lemma O.A.2. There exists a solution (τ ∗, d∗τ∗ , α
∗
τ∗) to RDP where, for some S(·), γ(·), α(·),

τ ∗ is an τS(m),γ(m) stopping time over [τ+(m), τ+(m+ ε)), α∗τ∗ = α(Mτ∗) and S(·), γ(·), α(·)
are constant over any [m1,m2] such that RDIR(m) is slack for all m ∈ (m1,m2].

Proof. Let (τ, dτ , ατ ) be an optimal contract that is stationary in (X,M). Suppose there

exists [m1,m2] such that, under (τ, dτ , ατ ), RDIR(m) is slack for all m ∈ (m1,m2] and

(τ, dτ , ατ ) is not stationary over [m1,m2]—i.e., the corresponding S(·), γ(·), α(·) are not all

constant in m over [m1,m2]. If (m,m) 6∈ R, then P(τ+(m) ≤ τ ∗) = 0 and RDIR(m) binds.

Therefore, (m,m) ∈ R for each m ∈ [m1,m2].

Complementary slackness conditions imply λn = 0 for all Xn ∈ (m1,m2]; by the char-

acterization of α(·) in Lemma A.4, α(·) is constant over [m1,m2]. Moreover, for each m,

by the same arguments as in Lemma A.5, the value of S ′ for which stopping is first weakly

optimal at t ∈ [τ+(m), τ+(m+ ε)) in L(Λ) is the same across all m ∈ [m1,m2].8 If stopping

is strictly optimal at S ′, then (S(m), γ(m)) = (S ′, 0) for all m ∈ [m1,m2], in which case

(τ, dτ , ατ ) is stationary over [m1,m2], a contradiction. Therefore, stopping at S ′ is only

weakly optimal. This implies that, for each m ∈ [m1,m2], either (S(m), γ(m)) = (S ′, 0), or

S(m) = S ′− ε and γ(m) ∈ [0, 1). We abuse notation slightly by calling the (S ′, 0)-stopping

threshold an (S ′ − ε, 1)-stopping threshold, so S(·) is constant over [m1,m2] and γ(·) must

be non-constant over [m1,m2]. Thus, γ(m′) 6= γ(m′ + ε) for some m′ ∈ [m1,m2). Fix

m′ = max{m ∈ [m1,m2] : γ(m) 6= γ(m+ ε) = γ(m′′) ∀m′′ ∈ [m+ ε,m2]}.
Consider a change of the contract which moves γ(m′) and γ(m′′) closer together for all

m′′ ∈ [m′ + ε,m2]. If γ(m′) < γ(m′ + ε), then, for all m′′ ∈ [m′ + ε,m2], decrease γ(m′′)

to γ(m′). Such a change must increase A’s continuation value at V (m′,m′′): V (m′,m′′) =

V (m′,m′) when γ(m′) = γ(m′′), so if decreasing γ(m′′) lowered V (m′,m′′), then we could

increase γ(m′) to γ(m′′) = γ(m′ + ε) and increase V (m′,m′), making both players better

off, P strictly so.9 Moreover, increasing V (m′,m′′) increases V (m′′,m′′), so all RDIR

constraints continue to hold after this change,10 contradicting the optimality of our original

contract. Therefore, γ(m′) > γ(m′ + ε).

For each m′′ ∈ [m′+ε,m2], increase γ(m′′) (by the same amount for all m′′ ∈ [m′+ε,m2]

to keep all such γ(m′′) equal); such a change will decrease all V (m′′,m′′) as well as V (m′,m′),

so we also decrease γ(m′) at a rate to keep V (m′,m′) constant, proceeding in this way until

8When λn = 0, the continuation problem in L(Λ) at (Xt,Mt) = (x,Xn−1) is the same as at (x,Xn),

so the decision of when it is optimal to stop is the same.
9Because α(·) is decreasing, P strictly prefers stopping sooner, i.e., a higher γ.

10Because S(·), γ(·), α(·) are constant across [m′ + m2], so is V (m′, ·). We then have V (m′′,m′′) =

Em′′ [e−rτ−(m
′)V (m′,m′′)1(τ−(m′) < τ+(m2)) + e−rτ+(m2)V (m2,m2)1(τ+(m2) < τ−(m′))]. Thus, any

increase in V (m′,m′′) increases V (m′′,m′′).
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either γ(m′) = γ(m′ + ε) or V (m′′,m′′) = m′′ for some m′′ ∈ [m′ + ε,m2] (i.e., RDIR(m′′)

binds). In the either case, the new contract will still solve L(Λ)11 and satisfy all RDIR

constraints, and thus will be a solution to RDP . We can proceed iteratively in this way

until we are left with a contract satisfying the desired properties.

Lemma O.A.3. S∗ is constant if ui(z) = z for both i ∈ {P,A} and is strictly decreasing

if uA or uP is strictly concave and e−rtYt is a strict supermartingale.

Proof. Let v̂(y,m) be A’s continuation value under (τ ∗, d∗τ∗ , α
∗
τ∗) at (Yt,Mt) = (y,m) for

y > S∗(m); by standard arguments (Peskir and Shiryaev (2006)), v̂(y,m) is continuous in

both arguments. Take any y′ < y ≤ m < m′ such that y′ > S∗(m). We then have12

v̂(y,m) = Ey[e−rτ−(y′)v̂(y′,Mτ−(y′) ∨m)1(τ−(y′) < τ+(m′)) (2)

+ e−rτ+(m′)v̂(m′,m′)1(τ−(y′) > τ+(m′))].

Suppose e−rtYt is a strict supermartingale and v̂(y′, ·) is not strictly increasing on some

interval [m,m′]. Without loss, we can take m and m′ such that v̂(y′,m) ≥ v̂(y′,m′′) for all

m′′ ∈ [m,m′]. Because Mτ−(y′) ∨m′′ is increasing in m′′, v̂(y′,Mτ−(y′) ∨m) ≥ v̂(y′,Mτ−(y′) ∨
m′′) (conditional on τ−(y) < τ+(m′)) for m′′ ∈ [m,m′] and (2) implies v̂(y,m) ≥ v̂(y,m′′).

This holds for all y,m such that y′ < y ≤ m < m′. Taking y = m, for all m′′ ∈ [m,m′]

we have v̂(m,m) ≥ v̂(m,m′′). By Lemma A.7 (and taking the limit as ∆ → 0), we have

v̂(m,m) = m. Thus, conditional on τ−(m′) < τ−(m), we have v̂(m,Mτ−(m) ∨ m′′) ≤ m.

But then (2), after replacing y′,m, y with m,m′′,m′′ respectively for some m′′ ∈ (m,m′),

and using v̂(m′,m′) = m′, we have

v̂(m′′,m′′) = Em′′ [e−rτ−(m)v̂(m,Mτ−(m) ∨m′′)1(τ−(m) < τ+(m′))

+ e−rτ+(m′)v̂(m′,m′)1(τ−(m) > τ+(m′))]

≤ Em′′ [e−rτ−(m)m1(τ−(m) < τ+(m′)) + e−rτ+(m′)m′1(τ−(m) > τ+(m′))]

= Em′′ [e−r(τ−(m)∧τ+(m′))Yτ−(m)∧τ+(m′)]

< m′′

where the last inequality follows from Doob’s optional stopping theorem and the fact that

e−rtYt is a strict supermartingale. But this contradicts v̂(m′′,m′′) ≥ m′′ by DIR.13 There-

fore, v̂(y′, ·) must be strictly increasing if e−rtYt is a strict supermartingale.

11Because stopping and continuing are both optimal in L(Λ) at (Xt,Mt) = (S′+ε,m′′) for m′′ ∈ [m1,m2],

any (S′, γ)-stopping threshold at such t will be optimal.
12The use of ∨m in Mτ−(y′) ∨m captures the fact our expectation is set to start from (Y0,M0) = (y, y)

while we want the true value of Mt at τ−(y) to be m if Mτ−(y) < m when (Y0,M0) = (y, y).
13The part of the proof of Theorem 1 establishing DIR holds does not rely on this lemma.
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Fix some m ∈ (Y0, R
∗
) and let F (V ) be P ’s continuation value from the optimal DIR

contract delivering V continuation value to A when starting at m. It is easy to see that

F (v̂(m,m′)) is P ’s continuation value under the optimal contract when (Yt,Mt) = (m,m′).

Because we allowed for randomization devices in RDP , we can add a public randomization

device to our continuous-time model without changing the structure of the optimal contract,

in which case standard arguments imply F (·) is concave. Let Φ(S), φ(S) be as defined in

the text (for our choice of m). Consider the problem for P of choosing a fixed threshold

and demand S, α and a continuation value V subject to delivering w expected utility to A:

max
S,α,V

φ(S)uP (α) + Φ(S)F (V ) (3)

subject to w = φ(S)uA(1− α) + Φ(S)V.

For w = v̂(Y0,m
′), the optimal choice of S, α, V above will be S∗(m′), α∗(m′) and v̂(m,m′).14

Let α = 1−u−1
A (w−Φ(S)V

φ(S)
) be the value of α satisfying the constraint; for notational ease, we

suppress the dependence of α on S, V, w. Then (3) is equal to max
S,V

φ(S)uP (α) + Φ(S)F (V ).

If uP and uA are linear, then (3) simplifies to max
S,V

φ(S) + Φ(S)(V + F (V )) − w. The

optimal choice of S is clearly independent of w, which implies S∗ is constant.

Suppose uP or uA is strictly concave and e−rtYt is a strict supermartingale. Because F

is concave, it is differentiable almost everywhere. Without loss, consider an m′ such that F

is differentiable at v̂(m,m′). The first-order condition for V is given by, after substituting

in ∂α
∂V

,

Φ(S)(F ′(V ) +
u′P (α)

u′A(1− α)
) = 0, (4)

and first-order condition for S is given by, after substituting in ∂α
∂S

,

φ′(S)(uP (α) +
u′P (α)

u′A(1− α)
uA(1− α)) + Φ′(S)(F (V ) + V

u′P (α)

u′A(1− α)
) = 0. (5)

Suppose S∗ is constant at m′. A higher m′ translates into a higher w because v̂(Y0,m
′)

is strictly increasing in m′. Then the optimal S in (3) is constant in w at w = v̂(Y0,m
′), in

which case (5) must hold at this optimal S as we increase w. Thus, the derivative of the

left-hand side of (5) with respect to w must equal 0. Taking this derivative and simplifying

and using F ′(V ) = − u′P (α)

u′A(1−α)
by (4), we have

(
∂α

∂w
+
∂α

∂V

∂V

∂w
))
(u′′P (α)

u′P (α)
+
u′′A(1− α)

u′A(1− α)

)
· u′P (α)

u′A(1− α)
(φ′(S)uA(1− α) + Φ′(S)V ) = 0. (6)

14If they did not, then we can construct a strictly better contract that is equal to (τ∗, d∗τ∗ , α
∗
τ∗) prior to

reaching (Y0,Mt) at which point it uses a continuation contract with a constant split threshold of S and

demand α∗(m′) that solves (3) before switching to the continuation contract that delivers F (V ).
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By (5),
u′P (α)

u′A(1−α)
(φ′(S)uA(1−α)+Φ′(S)V ) = −(φ′(S)uP (α)+Φ′(S)F (V )) < 0, where the

inequality follows from the fact that because P always prefers to stop sooner, P must strictly

prefer a higher S, namely φ′(S)uP (α)+Φ′(S)F (V ) > 0. Because min{u′′P (α), u′′A(1−α)} < 0

by strict concavity, for (6) to hold, it must be that ∂α
∂w

+ ∂α
∂V

∂V
∂w

= 0, namely the optimal

choice of α is constant in w when the optimal S is also constant in w. But this implies that,

for m in the region, call it [m1,m2], over which S and α are constant (say at S ′, α′), we

have v̂(Y0,m) = E[e−rτ−(S′)uA(1 − α′)1(τ−(S ′) < τ+(m2)) + e−rτ+(m2)v̂(m2,m2)1(τ−(S ′) >

τ+(m2))], which is constant in m, a contradiction. Therefore, S∗ must be strictly decreasing.

Comparative Statics Proofs

It is without loss to assume a unique arg maxy∈(Y ,Y ) σ(y) exists and is above R
∗
. If not,

then we can increase σ(y) for y sufficiently close to Y without changing the incentives

to take the outside option at R
∗
.15 A similar argument holds for Ŷ and σ̂(y). Let R

+

be the max over the breakdown threshold in the optimal contract for Y and Ŷ . For

the rest of the proof, we assume arg maxy∈(Y ,Y ) σ(y) = arg maxy∈(Y ,Y ) σ̂(y) > R
+

and

σ0 = maxy∈(Y ,Y ) σ(y) = maxy∈(Y ,Y ) σ̂(y).16

We will combine the proofs of Propositions 1 and 2 and so will assume throughout that

(µ̂, σ̂) are such that either µ̂ > µ and σ̂ = σ, or µ̂ = µ ≤ 0 and σ̂ > σ. The proofs will look

at the discrete-time versions of RDP for X approximating Y and Ŷ in which we choose

X,X to be the same in both approximations.17 Let Ξ(x) := [µ(x), µ̂(x)]× [σ(x), σ̂(x)] and

Ξ := {(µ̃, σ̃) : (µ̃(x), σ̃(x)) ∈ Ξ(x) ∀x}. Throughout, when we condition in expectations

on (µ̃, σ̃), we mean that the transitions probabilities q+, q− for X are governed by (µ̃, σ̃)—

namely, we replace (µ, σ) in the formulas for q+, q− with (µ̃, σ̃).

Lemma O.A.4. P ’s value of the negotiation is higher under Ŷ than Y .

Proof. Consider a version of RDP in which P can also choose the (µ, σ) governing governing

X at each date, subject to (µ(Xt), σ(Xt)) ∈ Ξ(Xt) for all t. Formally, we let P choose a

15For δ > 0, the expected length of time to reach Y − δ goes to ∞ as δ → 0. Thus, it will never be

optimal to continue until Y − δ for sufficiently small δ, regardless of what happens to the evolution of Y

above Y − δ.
16We make this assumption to ensure that, as we change σ(·), we are not also changing the step size ε,

which is set equal to maxx σ(x)
√

∆ in the random walk X approximating Y (and similar for Ŷ ).
17The exact values of X,X are not important in the proof of Theorem 1 other than that they converge

to Y , Y as ∆→ 0.
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function (µP , σP ) that maps each history ht into a choice in Ξ(Xt) and consider the problem

sup
(τ,dτ ,ατ ), (µP ,σP )

E[e−rτdτuP (ατ )|(µP , σP )] (7)

subject to, ∀n = 0, ..., N,

RDIR(Xn) : E[e−r(τ∧τ+(Xn))(dτ (X
n)(uA(1− ατ )−Xτ∧τ+(Xn)) +Xτ∧τ+(Xn))|(µP , σP )]

≤ E[e−rτ (dτ (uA(1− ατ )−Xτ ) +Xτ )|(µP , σP )].

Analogous arguments to those in the proof of Theorem 1 imply the optimal contract and

choice of (µP , σP ) are stationary in (X,M)18 and, for some multipliers (λ0, ..., λN) ∈ RN+1
− ,

they solve the Lagrangian

max
(τ,dτ ,ατ ), (µP ,σP )

E
[
e−rτ

(
dτuP (ατ )−

N∑
n=0

λn1(Mτ ≥ Xn){dτ (uA(1− ατ )−Xτ ) +Xτ}
)

+
N∑
n=0

λn1(Mτ ≥ Xn)e−rτ+(Xn)Xn|(µP , σP )
]
.

We start by showing it is optimal to choose (µ̂(Xt), σ̂(Xt)) at t < τ+(X1). As in Lemma

A.5, let u(λ0) = maxα uP (α0)− λ0uA(1−α0), which gives the value of stopping at Xt = x

for t < τ+(X1), and let K(X1) be the continuation value in our Lagrangian at τ+(X1).

The value of the Lagrangian at t < τ+(X1) when Xt = x is19

L∗(x) = max
τ,(µP ,σP )

Ex[e−rτu(λ0)1(τ < τ+(X1)) + e−rτ+(X1)K(X1)1(τ ≥ τ+(X1))|(µP , σP )].

Standard optimal stopping arguments imply L∗(x) ≥ u(λ0) > 0 for all x < X1. Let (µ∗, σ∗)

be the optimal choice of (µP , σP ). By the same arguments as in the proof of Lemma A.5,

there exists (S0, γ0) such that τS
0,γ0

is an optimal stopping rule in L∗(x) for all x < X1.

Standard dynamic programming arguments imply that, if not stopping is weakly optimal

at x (which is true for all x > S0), then

L∗(x) = max
(µ̃(x),σ̃(x))∈Ξ(x)

e−r∆
[1
2

((
σ̃(x)

σ0

)2 +
µ̃(x)
√

∆

σ0

)L∗(x+ ε) (8)

+
1

2
((
σ̃(x)

σ0

)2 − µ̃(x)
√

∆

σ0

)L∗(x− ε) + (1− (
σ̃(x)

σ0

)2)L∗(x)
]
,

18Stationarity in (X,M) for (µP , σP ) means the optimal (µP , σP ) can be written as a function

(µ̃(Xt,Mt), σ̃(Xt,Mt)).
19If t = 0, we drop the constant λ0X0 because it does not affect the optimal choice of τ or (µ̃, σ̃).
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with (µ∗(x), σ∗(x)) in the arg max of (8).

Because stopping is optimal (at least weakly) at S0, L∗(S)) = u(λ0). By L∗(x) ≥ u(λ0)

for all x < X1, we have L∗(S0) = u(λ0) ≤ L∗(S0 + ε). Using this observation, we show

L∗(x) < L∗(x + ε) for all x ∈ (S0, X0]. We proceed by induction (starting at x = S0 + ε),

showing L∗(x) < L∗(x + ε) whenever L∗(x − ε) ≤ L∗(x). Suppose not, so that, for some

x ∈ (S0, X0], max{L∗(x− ε), L∗(x+ ε)} ≤ L∗(x). Then (8) implies

L∗(x) ≤ e−r∆
[1
2

((
σ∗(x)

σ0

)2 +
µ∗(x)

√
∆

σ0

)L∗(x)

+
1

2
((
σ∗(x)

σ0

)2 − µ∗(x)
√

∆

σ0

)L∗(x) + (1− (
σ∗(x)

σ0

)2)L∗(x)
]

= e−r∆L∗(x),

a contradiction. We conclude L∗(x) < L∗(x+ ε).

We now argue (µ̂(x), σ̂(x)) is in the arg max of (8). If x ≤ S0, then (µ̂(x), σ̂(x)) is

weakly optimal (in fact any choice of (µ̃(x), σ̃(x)) is optimal). Suppose for the rest of the

proof that x ∈ (S0, X0].

Consider the case in which σ = σ̂ and µ̂ > µ. The derivative of the right-hand side

of (8) with respect to µ̃(x) is e−r∆
√

∆
2σ0

[L∗(x + ε) − L∗(x − ε)] > 0. Therefore, the uniquely

optimal choice of µ̃(x) is µ̂(x).

Now consider the case in which σ̂ > σ and µ = µ̂ ≤ 0. The derivative of the right-hand

side of (8) with respect to σ̃(x) is 2e−r∆σ̃(x)

σ2
0

[1
2
L∗(x + ε) + 1

2
L∗(x − ε) − L∗(x)]. Therefore,

σ̃(x) = σ̂(x) is strictly optimal if and only if 1
2
L∗(x+ ε) + 1

2
L∗(x− ε) > L∗(x). Rearranging

terms in (8), we get

L∗(x) =
e−r∆ 1

2
((σ

∗(x)
σ0

)2 + µ∗(x)
√

∆
σ0

)

1− e−r∆(1− (σ
∗(x)
σ0

)2)
L∗(x+ ε) +

e−r∆ 1
2
((σ

∗(x)
σ0

)2 − µ∗(x)
√

∆
σ0

)

1− e−r∆(1− (σ
∗(x)
σ0

)2)
L∗(x− ε)

<
1
2
((σ

∗(x)
σ0

)2 + µ∗(x)
√

∆
σ0

)

(σ
∗(x)
σ0

)2
L∗(x+ ε) +

1
2
((σ

∗(x)
σ0

)2 − µ∗(x)
√

∆
σ0

)

(σ
∗(x)
σ0

)2
L∗(x− ε)

=
1

2
L∗(x+ ε) +

1

2
L∗(x− ε) +

µ∗(x)σ0

√
∆

2(σ∗(x))2
[L∗(x+ ε)− L∗(x− ε)]

≤ 1

2
L∗(x+ ε) +

1

2
L∗(x− ε),

where the final inequality follows from µ∗(x) ≤ 0 and L∗(x+ ε) > L∗(x− ε). We conclude

σ̂(x) is the unique optimal choice of σ̃(x).
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The above argument shows (µ̂(Xt), σ̂(Xt)) is the optimal choice at t < τ+(X1). We can

repeat the above arguments at τ+(X1) to conclude (µ̂(Xt), σ̂(Xt)) is also the optimal choice

at t ∈ [τ+(X1), τ+(X2)). Proceeding in this way, we conclude (µ̂, σ̂) is P ’s optimal choice

of (µP , σP ).

The value of our problem in (7) is clearly at least as large as the value in RDP when

X is the discrete-time approximation to Y since (µ, σ) is a feasible choice of (µP , σP ) in

(7). Moreover, because (µ̂, σ̂) is the optimal choice of (µP , σP ), the value of (7) is equal to

the value in RDP when X is the discrete-time approximation to Ŷ . Taking the limit as

∆→ 0 yields our desired conclusion.

All that is left to show is that α̂∗ ≥ α∗. Let α(m), (S(m), γ(m)) and α̂(m), (Ŝ(m), γ̂(m))

be P ’s demand function and thresholds in the solution to RDP under the discrete-time

approximations to Y and Ŷ respectively.

We now show α̂(X0) ≥ α(X0). We adopt the convention that if taking the outside

option immediately is optimal, then P ’s demand is 0. Thus, α̂(X0) ≥ α(X0) clearly holds

if taking the outside option immediately is optimal in RDP when X approximates Y .

Moreover, Lemma O.A.4 implies that if taking the outside option immediately is optimal

under the discrete-time approximation to Ŷ , then it is also optimal under the discrete-time

approximation to Y , in which case α̂(X0) = α(X0) = 0. We henceforth assume it is not

optimal to immediately take the outside option in the RDP for X approximating Y or Ŷ .

Suppose S(X0) = X0. By Lemma A.7, X0 = V (X0, X0) and V (X0, X0) = uA(1 −
α(X0)) when S(X0) = X0; thus, α(X0) = 1 − u−1

A (X0). Similarly, α̂(X0) = 1 − u−1
A (X0)

if Ŝ(X0) = X0, in which case we have α̂(X0) = α(X0). If Ŝ(X0) < X0, then α̂(X0) >

1 − u−1
A (X0); otherwise, if α̂(X0) ≤ 1 − u−1

A (X0) and Ŝ(X0) < X0, then because α̂ is

decreasing, α̂(Mτ ) ≤ α̂(X0) and P would be better off immediately implementing a split

that gives him 1− u−1
A (X0) share of the pie. Thus, α̂(X0) ≥ α(X0) whenever S(X0) = X0.

Now suppose Ŝ(X0) = X0, which implies α̂(X0) = 1 − u−1
A (X0). It is straightforward

from the arguments in Lemma O.A.4 that Ŝ(X0) = X0 implies S(X0) = X0 so α(X0) =

1 − u−1
A (X0), in which case α(X0) = α̂(X0). We therefore focus on Y and Ŷ for which

max{Ŝ(X0), S(X0)} < X0.

We now prove several supporting Lemmas before showing α̂(X0) ≥ α(X0).

Lemma O.A.5. uA(1− α(m)) < m+ ε.

Proof. If uA(1 − α(m)) ≥ m + ε, then, because V (m,m) = m, A would be better off

taking a split giving him 1−α(m) immediately at τ+(m). Doing so would strictly increase

P ’s expected utility: because α(m) is decreasing, J(m,m) = Em[e−rτdτuP (α(Mτ ))] ≤
Em[e−rτdτuP (α(m))] < uP (α(m)), contradicting the optimality of our original contract.
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Our next Lemma will show that, under the optimal contract in RDP for X approxi-

mating Y , A prefers X to be governed by (µ̂, σ̂) rather than (µ, σ). Fix any m < R and,

for x ≤ m define Ṽ (x, µ̃, σ̃) to be

Ṽ (x, µ̃, σ̃) = Ex[e−rτ
S(m),γ(m)

uA(1− α(m))1(τ+(m+ ε) > τS(m),γ(m))

+ e−rτ+(m+ε)(m+ ε)1(τ+(m+ ε) ≤ τS(m),γ(m))|(µ̃, σ̃)].

We note that Ṽ (Xt, µ, σ) is A’s continuation value in RDP for X approximating Y at

t ∈ [τ+(m), τ+(m+ ε)).

Lemma O.A.6. For x > S(m), Ṽ (x, µ, σ) < Ṽ (x, µ̂, σ̂).

Proof. Let Ṽ ∗(x) = max(µ̃,σ̃)∈Ξ Ṽ (x, µ̃, σ̃). The lemma follows immediately if we can show

that (µ̂, σ̂) is the strictly optimal choice in Ṽ ∗.

We first prove that Ṽ ∗(x) < Ṽ ∗(x + ε) for x ∈ [S(m),m] by induction. If Ṽ (S(m) +

ε, µ, σ) ≤ uS(1−α(m)), then, in RDP for X approximating Y , P would be better off using a

(S(m) + ε, 0)-stopping threshold between [τ+(m), τ+(m+ ε)) rather than the (S(m), γ(m))-

stopping threshold because switching weakly increases A’s expected utility and strictly

increases P ’s expected utility,20 contradicting the optimality of using (S(m), γ(m)). Thus,

Ṽ ∗(S(m) + ε) ≥ Ṽ (S(m) + ε, µ, σ) > uS(1−α(m)) Because Ṽ ∗(S(m)) = uA(1−α(m)), we

have Ṽ ∗(S(m) + ε) > Ṽ ∗(S(m)).

For the sake of contradiction, suppose there exists x′ ∈ (S(m),m] such that Ṽ ∗(x′) ≥
Ṽ ∗(x′ + ε). Let x be the lowest such x′, which implies Ṽ ∗(x) ≥ max{Ṽ ∗(x− ε), Ṽ ∗(x+ ε)}
and Ṽ ∗(x) ≥ Ṽ ∗(S(m) + ε). Let ζ(x) = 1(x = S(m) + ε)γ(m), which gives the probability

of implementing a split at t with (Xt,Mt) = (x,m) and x > S(m). Then

Ṽ ∗(x) = max
(µ̃(x),σ̃(x))∈Ξ(x)

ζ(x)uA(1− α(m)) (9)

+ (1− ζ(x))e−r∆
[

1

2
(
σ̃(x)2

σ2
0

+
µ̃(x)
√

∆

σ0

)Ṽ ∗(x+ ε)

+
1

2
(
σ̃(x)2

σ2
0

− µ̃(x)
√

∆

σ0

)Ṽ ∗(x− ε) + (1− σ̃(x)2

σ2
0

)Ṽ ∗(x)

]
.

Using uA(1−α(m)) < Ṽ ∗(S(m) + ε) ≤ Ṽ ∗(x) and Ṽ ∗(x) ≥ max{Ṽ ∗(x− ε), Ṽ ∗(x+ ε)}, (9)

20P strictly benefits from immediately implementing a split with demand α(Ms) at dates s with

(Xs,Ms) = (S(m) + ε,m) because α(Mt) is only decreasing over time.
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implies

Ṽ ∗(x) ≤ max
(µ̃(x),σ̃(x))∈Ξ(x)

e−r∆
[1
2

(
σ̃(x)2

σ2
0

+
µ̃(x)
√

∆

σ0

)Ṽ ∗(x)

+
1

2
(
σ̃(x)2

σ2
0

− µ̃(x)
√

∆

σ0

)Ṽ ∗(x) + (1− σ̃(x)2

σ2
0

)Ṽ ∗(x)
]

= e−r∆Ṽ ∗(x),

a contradiction. We conclude Ṽ ∗(x) < Ṽ ∗(x+ ε) for x ∈ [S(m),m]. Analogous arguments

to those in Lemma O.A.4 imply (µ̂, σ̂) is strictly optimal in V ∗.

Our next Lemma looks at properties of the optimal-stopping rule in a problem analogous

to our Lagrangian L(Λ). Define functions ηP , ηA giving P and A’s expected utility for a

fixed (S, γ, α) and (µ̃, σ̃) when holding fixed their continuation value at τ+(X1):

ηP (S, γ, α, µ̃, σ̃, J̃) = E[e−rτ
S,γ

uP (α)1(τ+(X1) > τS,γ) + e−rτ+(X1)J̃1(τ+(X1) ≤ τS,γ)|(µ̃, σ̃)],

ηA(S, γ, α, µ̃, σ̃) = E[e−rτ
S,γ

uA(1− α)1(τ+(X1) > τS,γ) + e−rτ+(X1)X11(τ+(X1) ≤ τS,γ)|(µ̃, σ̃)].

Let η maximize (over S, γ, α) a weighted sum of ηP , ηA for some λ̃ ≤ 0:

η(λ̃, µ̃, σ̃, J̃) = max
S,γ,α

ηP (S, γ, α, µ̃, σ̃, J̃)− λ̃ηP (S, γ, α, µ̃, σ̃, J̃).

Letting λ0 be the multiplier on RDIR(X0) and J(X1, X1) is P ’s continuation value at

(X1, X1) in RDP for X approximating Y , because A’s continuation value at τ+(X1) is

equal to X1 in RDP , η(λ0, µ, σ, J(X1, X1)) is equal to L(Λ) (after dropping the constant

λ01(Mτ ≥ X0)e−rτ+(X0
)X0, which is realized at t = 0 regardless of the choice of (τ, dτ , ατ )

and so is decision irrelevant)..

Next we look at how the optimal thresholds in η depend with µ̃, σ̃, J̃ . Let S(λ̃, µ̃, σ̃, J̃)

be the set of (S, γ) in the arg max of η(λ̃, µ̃, σ̃, J̃). Let J and Ĵ be P ’s continuation value

at τ+(X1) under the solution to RDP when X approximates to Y and Ŷ respectively. By

the arguments in Lemma O.A.4, we know J < Ĵ .21

Lemma O.A.7. If (S, γ) ∈ S(λ, µ, σ, J) and (S ′, γ′) ∈ S(λ, µ̂, σ̂, Ĵ), then S ′ < S, or

S ′ = S and 0 = γ′ ≤ γ.

21Because A’s continuation contract at τ+(m) is equal to m, the optimal continuation contract at τ+(m)

is equal to the optimal contract if X0 = m, and so Lemma O.A.4 implies P ’s continuation value at τ+(m)

is higher under the discrete-time approximation to Ŷ than under the discrete-time approximation to Y .

Moreover, it is clear from the proof that this inequality is strict whenever it is not optimal to immediately

stop.
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Proof. Fix some λ ≤ 0 and let u(λ) = maxα uP (α)− λuA(1− α). Define

L(x; µ̃, σ̃, J̃) = sup
τ

Ex[e−rτu(λ)1(τ < τ+(X1)) (10)

+ e−rτ+(X1)(J̃ − λX1)1(τ+(X1) ≤ τ)|(µ̃, σ̃)].

Because τS,γ is a feasible choice above for all (S, γ), L(X0; µ̃, σ̃, J̃) ≥ η(λ, µ̃, σ̃, J̃). By the

same arguments as in Lemma A.5, there exists (S, γ) such that τS,γ solves L(X0; µ̃, σ̃, J̃), so

L(X0; µ̃, σ̃, J̃) = η(λ, µ̃, σ̃, J̃). Standard optimal stopping results imply stopping is optimal

in (10) when Xt = x if and only if L(x; µ̃, σ̃, J̃) = u(λ).

Let b = max{x : L(x; µ̃, σ̃, J̃) = u(λ)}; if stopping is strictly optimal at b, then

S(λ, µ̃, σ̃, , J̃) = {(b, 0)}. Otherwise, stopping is only weakly optimal at b and, by anal-

ogous arguments to those in Lemma A.5, stopping is strictly optimal at any x < b, so

S(λ, µ̃, σ̃, J̃) = {(b, 0)} ∪ {(b− ε, γ) : γ ∈ [0, 1)}.
L(x; µ̃, σ̃, J̃) is strictly increasing in J̃ for all x > b and x = b if stopping is not strictly

optimal when Xt = b. Therefore, b must be weakly decreasing in J̃ and if (b − ε, γ) ∈
S(λ, µ̂, σ̂, J̃) for some γ ∈ (0, 1), then (b− ε, 0) will be strictly optimal upon any sufficiently

small increase in J̃ . By analogous arguments to those in the proof of Lemma O.A.4,

L(x; µ̃, σ̃, J̃) is strictly increasing in µ̃ and in σ̃ if µ̃ ≤ 0, so the same conclusions apply

upon any small increase in µ̃, or in σ̃ when µ̃ ≤ 0. Our desired results follow from these

comparative statics on S.

Lemma O.A.8. α̂(X0) ≥ α(X0).

Proof. Let λ, λ̂ ≤ 0 be the multipliers on RDIR(X0) in RDP when using the discrete-time

approximation to Y and Ŷ , respectively. Because η(λ, µ, σ, J) is equivalent to L(Λ) prior to

τ+(X1), α(X0), (S(X0), γ(X0)) must solve η(λ, µ, σ, J), so (S(X0), γ(X0)) ∈ S(λ, µ, σ, J).

Similarly, α̂(X0), (Ŝ(X0), γ̂(X0)) must solve η(λ̂, µ̂, σ̂, Ĵ), so (Ŝ(X0), γ̂(X0)) ∈ S(λ̂, µ̂, σ̂, Ĵ).

For the sake of contradiction, suppose λ̂ < λ, which, by the characterization of α in

Lemma A.4, implies arg maxα uP (α) − λ̂uA(1 − α) = α̂(X0) < α(X0) = arg maxα uP (α) −
λuA(1 − α). Take any (S ′, γ′) ∈ S(λ, µ̂, σ̂, Ĵ). By Lemma O.A.7 and (S(X0), γ(X0)) ∈
S(λ, µ, σ, J), either S ′ < S(X0), or S ′ = S(X0) and 0 = γ′ ≤ γ(X0). Because uP (α(X0)) >

uP (α̂(X0)) ≥ Ĵ and τS(X0),γ(X0) ≤ τS
′,γ′ , for demand α(X0) P ’s utility is higher under

(S(X0), γ(X0)) than (S ′, γ′),22 namely,

ηP (S(X0), γ(X0), α(X0), µ̂, σ̂, Ĵ) ≥ ηP (S ′, γ′, α(X0), µ̂, σ̂, Ĵ).

22P will be better off stopping immediately at τS(X0),γ(X0) because it guarantees him a payoff uP (α(X0))

that is higher than what he can receive if continuing; namely, discounted values of either uP (α(X0)) or Ĵ .
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Optimality of (S ′, γ′) in η(λ, µ̂, σ̂, Ĵ) then implies that A’s utility (S ′, γ′) must be weakly

higher than from the (S(X0), γ(X0))-stopping threshold, namely,

ηA(S ′, γ′, α(X0), µ̂, σ̂) ≥ ηA(S(X0), γ(X0), α(X0), µ̂, σ̂). (11)

(S ′, γ′) ∈ S(λ, µ̂, σ̂, Ĵ) and α(X0) = arg maxα uP (α)− λuA(1− α) imply

ηP (S ′, γ′, α(X0), µ̂, σ̂, Ĵ)− ληA(S ′, γ′, α(X0), µ̂, σ̂)

= η(λ, µ̂, σ̂, Ĵ)

≥ ηP (Ŝ(X0), γ̂(X0), α̂(X0), µ̂, σ̂, Ĵ)− ληA(Ŝ(X0), γ̂(X0), α̂(X0), µ̂, σ̂),

while (Ŝ(X0), γ̂(X0)) ∈ S(λ̂, µ̂, σ̂, Ĵ) and α̂(X0) = arg maxα uP (α)− λ̂uA(1− α) imply

ηP (Ŝ(X0), γ̂(X0), α̂(X0), µ̂, σ̂, Ĵ)− λ̂ηA(Ŝ(X0), γ̂(X0), α̂(X0), µ̂, σ̂)

= η(λ̂, µ̂, σ̂, Ĵ)

≥ ηP (S ′, γ′, α(X0), µ̂, σ̂, Ĵ)− λ̂ηA(S ′, γ′, α(X0), µ̂, σ̂).

Adding these two inequalities together and simplifying, we get

ηA(S ′, γ′, α(X0), µ̂, σ̂) ≤ ηA(Ŝ(X0), γ̂(X0), α̂(X0), µ̂, σ̂).

Combining this inequality with (11), we get

ηA(S(X0), γ(X0), α(X0), µ̂, σ̂) ≤ ηA(Ŝ(X0), γ̂(X0), α̂(X0), µ̂, σ̂). (12)

Note that Ṽ (X0, ·, ·) = ηA(S(X0), γ(X0), α(X0), ·, ·) whenm = X0 in Ṽ and, by Ṽ (X0, µ, σ) =

V (X0, X0), we have V (X0, X0) = ηA(S(X0), γ(X0), α(X0), µ, σ). Using (12) and Lemmas

O.A.6 and A.7, we have

X0 = V (X0, X0) = ηA(S(X0), γ(X0), α(X0), µ, σ) (13)

< ηA(S(X0), γ(X0), α(X0), µ̂, σ̂)

≤ ηA(Ŝ(X0), γ̂(X0), α̂(X0), µ̂, σ̂).

But the last line in (13) is A’s expected utility under the optimal contract in the relaxed

problem RDP when we use the discrete-time approximation for Ŷ , contradicting Lemma

A.7, which shows A’s continuation value is equal to X0 at t = τ+(X0) = 0. Therefore,

λ̂ ≥ λ, which implies α(X0) ≤ α̂(X0).

We can apply the same arguments at τ+(X1), τ+(X2),... to conclude α̂(m) ≥ α(m)

for each m. Taking the continuous-time limits of our discrete-time approximations, we get

α̂∗ ≥ α∗.
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