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A. Reduction of the General Forecasting Problem to Estimation of µ

In the main text, we suppose that DM’s forecasts and memory structure minimize the
expected loss function (I.2). In this section, we show that the optimization problem can
be restricted to a problem of estimating µ, in which the memory system minimizes the
discounted sum of mean squared errors in the estimation task.

Consider the problem of choosing the vector of forecasts zt each period so as to minimize
(I.2). The elements of zt must be chosen as a function of the DM’s cognitive state at time
t (after observing the external state yt). As explained in the text, the DM’s cognitive state
at time t is assumed to consist of the value of the current external state yt (observed with
perfect precision), along with whatever additional information is reflected in the DM’s
period t memory state mt. (In this section, it is not yet necessary to specify the nature of
the vector mt.)

If we use the notation Et[·] for the expectation of a random variable conditional on a
complete description of the state at date t (including knowledge of the true value of µ),
then

E[(zt � Etz̃t)
0
W (z̃t � Etz̃t)] = 0,

since z̃t �Etz̃t is a function of innovations in the external state subsequent to date t, that
must be distributed independently of all of the determinants of both zt and Etz̃t. It follows
that the term in (I.2) involving zt can be equivalently expressed as53

E[(zt � z̃t)
0
W (zt � z̃t)] = E[(zt � Etz̃t)

0
W (zt � Etz̃t)] + E[(z̃t � Etz̃t)

0
W (z̃t � Etz̃t)]

⌘ L1t + L2t.

Moreover, L2t is independent of the decisions of the DM, and thus irrelevant to a deter-
mination of the optimal decision rule. The loss function (I.2) can thus equivalently be
written as the discounted sum of the L1t terms, which involve squared di↵erences between
zt and Etz̃t.

53Here we omit the factor �
t that multiplies this term in (I.2).



It further follows from the law of motion (I.1) that

Etz̃t =
1X

j=0

Aj[µ+ ⇢
j(yt � µ)].

Since the precise value of yt is presumed to be part of the cognitive state on the basis of
which zt can be chosen, one can write any decision rule in the form

zt = ẑt + (
1X

j=0

⇢
j
Aj) · yt,

where ẑt must be some function of the cognitive state at date t. In terms of this notation,
the relevant part of the loss function (I.2) can then be written as

L1t = E[(ẑt � µa)0W (ẑt � µa)],

where we define a ⌘
P1

j=0(1� ⇢
j)Aj and make use of the fact that Et[µ] = µ.

The term L1t that we wish to minimize can further be expressed as the expected value
(integrating over all possible realizations of the cognitive state st in period t) of the quantity

L̃1(st) ⌘ E[(ẑt � µa)0W (ẑt � µa) |st]
= E[ẑt |st]0WE[ẑt |st] + E[z̆0

t
Wz̆t |st]� 2a0WE[ẑt |st] · E[µ|st] + a

0
Wa · E[µ2|st],

where we define z̆t ⌘ ẑt�E[ẑt |st]. (In expanding the right-hand side in this way, we use the
fact that E[z̆t |st] = 0, and that z̆t must be independent of the deviation of µ from E[µ|st],
since the DM has no way to condition her action on µ except through the information
about µ revealed by the cognitive state.) The expression L̃1(st) can then be separately
minimized for each possible cognitive state st, by choosing a distribution for ẑt conditional
on that state. We further note that the random component z̆t of the action a↵ects only
the second term on the right-hand side, and so should be chosen to minimize that term;
since W is positive definite, this is achieved by setting z̆t = 0 with certainty, so that ẑt

must be a deterministic function of st.

We can then simply write E[ẑt |st] as ẑt, and observe that

(A.1) L̃1(st) = (ẑt � aE[µ|st])0W (ẑt � aE[µ|st]) + a
0
Wa · var[µ|st],

where the final term on the right-hand side is independent of the choice of ẑt. Thus in each
cognitive state st, ẑt must be chosen to minimize the first term on the right-hand side;
since W is positive definite, this is achieved by setting ẑt = a · µ̂t, where µ̂t = E[µ|st].

Thus there is no loss of generality in restricting the DM to response rules of the form
ẑt = a · µ̂t, where µ̂t is a scalar choice that depends on the cognitive state in period t, and
that can be interpreted as the DM’s estimate of µ given the cognitive state. Substituting



this expression for ẑt into (A.1), we have

L̃1(st) = a
0
Wa ·

�
(µ̂t � E[µ|st])2 + var[µ(st)]

 

= a
0
Wa · E[(µ̂t � µ)2 |st].

Then taking the unconditional expectation of this expression, we obtain

L1t = ↵ ·MSEt,

where ↵ ⌘ a
0
Wa > 0 and MSEt is defined as in the text.

Under any forecasting rule of the kind assumed here, then, the value of the loss function
(I.2) will equal (I.4), plus an additional term

1X

t=0

�
t
L2t

that is independent of the DM’s forecasting rule. Hence within this class of forecasting
rules, the rule that minimizes (I.2) must be the one that minimizes (I.4); and since any
other kind of forecasting rule can only lead to a higher value of (I.2), we can replace
the problem of choosing a rule for determining zt that minimizes (I.2) by the problem of
choosing a rule for determining µ̂t that minimizes (I.4).



B. Bayesian Updating After the External State is Observed: A Kalman Filter

In this section, we show how DM’s belief is updated given the feasible class of memory
system assumed in (I.5). We discuss the Kalman Filter problem when the external state
yt is observed.As in section III, we define the state vector as xt ⌘ (µ, yt�1). Given any
inherited memory state mt, we partition its elements as as

(B.1) mt =


m

t

m̄t

�
,

where the lower block consists of the elements of the “reduced” memory state, m̄t ⌘
E[xt |mt], while the upper block consists of the conditional expectations E[yt�j |mt] for
2  j  t. (This simply requires an appropriate ordering of the elements of mt, using the
notation for this vector introduced in the main text.)

The assumed memory structure implies that a posterior distribution of xt conditional
on the memory state mt is of the form

xt |mt ⇠ N(m̄t, ⌃t),

where m̄t is a 2-vector and ⌃t is a 2⇥ 2 symmetric, p.s.d. matrix. Under our assumption
of linear-Gaussian dynamics for the memory state, the vector m̄t will also be drawn from a
multivariate Gaussian distribution. Since the prior for the hidden state vector is specified
to be

(B.2) xt ⇠ N(0, ⌃0), ⌃0 ⌘

⌦ ⌦
⌦ ⌦+ �

2
y

�
,

it follows that the unconditional distribution for the reduced memory state m̄t must be of
the form

m̄t ⇠ N(0, ⌃0 � ⌃t).

The complete set of variables (xt,mt) also have a multivariate Gaussian distribution.
Moreover, since (by assumption) the expectation of xt conditional on the realization of mt

depends only on the elements of m̄t, it follows that the entire distribution of xt conditional
on mt depends only on m̄t, so that

xt|mt = xt|m̄t.

Hence the joint distribution of the variables (xt,mt) can be factored as

p(xt,mt
, m̄t) = p(xt, m̄t) · p(mt

|m̄t).

The DM then observes the external state yt, which is assumed to depend on the hidden



state vector xt through an “observation equation” of the form

yt = c
0
xt + ✏yt, ✏yt ⇠ N(0, �2

✏
)

where the vector c0 ⌘ [1 � ⇢ ⇢] is from (I.1) and ✏yt is distributed independently of both
mt and xt. It follows that the variables (xt,mt, yt) will have a joint distribution that is
multivariate Gaussian; and that this distribution can be factored as

p(xt,mt, yt) = p(xt,mt) · p(yt |xt)

= p(m
t
|m̄t) · p(xt, m̄t) · p(yt |xt)

= p(m
t
|m̄t) · p(xt, m̄t, yt).

From this it follows that
xt |mt, yt = xt |m̄t, yt.

Thus both the expectation of xt conditional on the cognitive state st ⌘ (mt, yt), and the
variance-covariance matrix of the errors in the estimation of xt based on the cognitive
state, will depend only on the joint distribution of the variables (xt, m̄t, yt). Moreover, the
distribution for xt conditional on the realizations of the elements of the cognitive state
will be multivariate Gaussian,

(B.3) xt |m̄t, yt ⇠ N(µ̄t, ⌃̄t),

where µ̄t is a linear function of m̄t and yt, while ⌃̄t is independent of the realizations of
either m̄t or yt.

We can further decompose the vector of means µ̄t as

µ̄t = E[xt |m̄t, yt]

= E[xt |m̄t] + {E[xt|m̄t, yt]� E[xt|m̄t]}
= m̄t + �t · (yt � E[yt |m̄t])

= m̄t + �t · (yt � c
0E[xt |m̄t])

= m̄t + �t · (yt � c
0
m̄t),

where �t is the vector of Kalman gains.

The vector of Kalman gains must be chosen so that the estimation errors xt � µ̄t are
orthogonal to the surprise in the observation of the external state, yt� c

0
m̄t. This requires

that

0 = cov(xt � µ̄t, yt � c
0
m̄t)

= cov((xt � m̄t)� �t(yt � c
0
m̄t), yt � c

0
m̄t)

= var[xt � m̄t]c � var[c0(xt � m̄t) + ✏yt] · �t
= ⌃tc � [c0⌃tc+ �

2
✏
] · �t.



Hence

(B.4) �t =
⌃tc

c0⌃tc+ �2
✏

.

The gain coe�cient �1t in equation (II.2) is just the first element of this vector, �1t ⌘ e
0
1�t.

The variance-covariance matrix in the conditional distribution (B.3) will be given by

⌃̄t = var[xt � µ̄t] = var[(xt � m̄t)� �t(yt � c
0
m̄t)]

= var[(I � �tc
0)(xt � m̄t) � �t✏yt]

= (I � �tc
0)⌃t(I � �tc

0)0 + �
2
✏
�t�

0
t

= ⌃t � 2[c0⌃tc+ �
2
✏
]�t�

0
t
+ [c0⌃tc]�t�

0
t
+ �

2
✏
�t�

0
t

= ⌃t � [c0⌃tc+ �
2
✏
]�t�

0
t
.

The remaining uncertainty about the value of µ given the cognitive state, �̂2
t
, is then equal

to ⌃̄11,t, so that

(B.5) �̂
2
t
= e

0
1⌃̄te1 = e

0
1⌃te1 � (c0⌃tc+ �

2
✏
)(�1t)

2
.

Substituting expression (B.2) for ⌃0 into this solution, we obtain

�̂
2
0 = ⌦ �

�
⌦+ �

2
y

�
·


⌦

⌦+ �2
y

�2

=
⌦�2

y

⌦+ �2
y

,

which is the formula given in (I.8). It remains to be shown that this is an upper bound
for �̂2

t
. To show this, we observe that

�̂
2
t

= min
�,�

var[µ� �
0
m̄t � �yt]

 min
�

var[µ� �yt]

 var[µ � (⌦/(⌦+ �
2
y
)) · yt]

= var[(�2
y
/(⌦+ �

2
y
))µ � (⌦/(⌦+ �

2
y
))(yt � µ)]

=

✓
�
2
y

⌦+ �2
y

◆2

var[µ] +

✓
⌦

⌦+ �2
y

◆2

var[yt|µ]

=

✓
�
2
y

⌦+ �2
y

◆2

⌦ +

✓
⌦

⌦+ �2
y

◆2

�
2
y

=
⌦�2

y

⌦+ �2
y

= �
2
0.



This establishes the upper bound (I.8) stated in the main text.



C. Information Optimally Recorded in the Memory Structure

In this section, we derive that the optimal memory structure records information only
about the “reduced” cognitive state, as represented in (III.4). In our general analysis, the
reduced cognitive state is defined as

s̄t ⌘

µ̂t

yt

�
.

Note that in the simple case discussed in section II, the recorded reduced cognitive state
is simply s̄t = µ̂t. This simplification arises because yt is a transitory process: it is only
the knowledge about µ̂t that increases accuracy of forecasts that will be made in time
t + 1 and beyond. In this case, we wish to show that the optimal memory structure
records information only about µ̂t, as represented in (II.4). The derivation below applies
analogously.

Let the feasible memory structure (I.5) be written in the partitioned form

(C.1)


m

t+1

m̄t+1

�
=


⇤a,t ⇤b,t

⇤c,t ⇤d,t

� 
s
t

s̄t

�
+


!
t+1

!̄t+1

�
.

Here mt+1 is again partitioned as in (B.1). The lower block of st consists of the elements
of the reduced cognitive state s̄t, which is linear function of st since s̄t = E[xt+1|st]. We
choose a representation for the vector st such that the lower block consists of the elements
of s̄t, the elements of s

t
are all uncorrelated with the elements of s̄t, and the elements

of the vectors s̄t and s
t
together span the same linear space of random variables as the

elements of st. (We can necessarily write any memory structure of the form (I.5) in this
way; it amounts simply to a choice of the basis vectors in terms of which the vectors mt+1

and st are each decomposed.)

Let us suppose furthermore that a representation for mt+1 is chosen consistent with the
normalization E[s̄t |mt+1] = m̄t+1. This holds if and only if both elements of the vector
s̄t�m̄t+1 are uncorrelated with each of the elements of mt+1. These consistency conditions
can be reduced to two requirements: (i) the requirement that

(C.2) var[⇤c,tst + !̄t+1] = (I � ⇤d,t)Xt⇤
0
d,t
,

where the matrix Xt defined as
Xt ⌘ var[s̄t]

is independent of the memory structure chosen for period t; and (ii) the requirement that
s̄t � m̄t+1 be uncorrelated with all elements of m

t+1. (Note that s̄t � m̄t+1 is uncorrelated
with m̄t+1 if and only if (C.2) holds.)

We show that (1) forecast accuracy depends only on {⇤d,t}, and (2) setting ⇤a,t = ⇤b,t =
⇤c,t = 0 is optimal, from which we conclude that optimal m̄t+1 is linear in s̄t with an



additive Gaussian noise.

1. Forecast accuracy depends only on the matrices {⇤d,t}

Suppose that in any period t, we take the memory structure in periods ⌧ < t as given.
This means that the DM’s uncertainty about xt given the memory state mt (specified
by the posterior variance-covariance matrix ⌃t) will be given. (If t = 0, ⌃0 is simply
given by the prior.) Hence the value of µ̂t as a function of m̄t and yt will be given, and
consequently the value of MSEt will be given, following the discussion in the main text
(and the previous section of this appendix). The elements of the matrix Xt will similarly
be given.
We next consider how ⇤d,t must be chosen, in order for it to be possible to choose matrices

⇤c,t and var[!̄t+1] such that (C.2) is satisfied. Equation (C.2) requires that (I�⇤d,t)Xt⇤0
d,t
,

be a symmetric matrix; this will hold if and only if the simpler requirement is satisfied that
⇤d,tXt = Xt⇤0

d,t
be a symmetric matrix. In addition, it is necessary that (I�⇤d,t)Xt⇤0

d,t
be

a p.s.d. matrix. The set of matrices ⇤d,t with these properties is a non-empty set (⇤d,t = 0
is a trivial example), and depends only on the matrix Xt. Let this set of matrices be
denoted L(Xt).
Now let ⇤d,t be any matrix that belongs to L(Xt). Then it is possible to choose the

matrices ⇤c,t and var[!̄t+1] so that (C.2) is satisfied; and given any such choice of these
two matrices, it is further possible to choose the specification of the equation for m

t+1

so that all elements of m
t+1 are uncorrelated with the elements of s̄t � m̄t+1. Given any

such specifications, both conditions (i) and (ii) above will be satisfied. Thus the matrix
⇤d,t is admissible as part of the specification of a memory structure; and any possible
memory structure consistent with the matrix ⇤d,t will be one of those with the properties
just assumed.
Given a matrix ⇤d,t of this sort, we next observe that the equations determining m̄t+1

can be written in the form
m̄t+1 = ⇤d,ts̄t + ⌫t+1,

where ⌫t+1 ⇠ N(0, ⇤d,tXt) is distributed independently of s̄t. Thus the joint distribution
of (s̄t, m̄t+1) will be a multivariate Gaussian distribution, the parameters of which are
completely determined by Xt and ⇤d,t. It then follows that the conditional distribution
s̄t|m̄t+1 will be a bivariate Gaussian distribution, with a mean m̄t+1 and a variance inde-
pendent of the realization of m̄t+1, which also depends only on Xt and ⇤d,t. Moreover,
since the elements of m

t+1 are all Gaussian random variables distributed independently
of s̄t � m̄t+1, knowledge of m

t+1 cannot further improve one’s estimate of s̄t, and so the
conditional distribution s̄t|mt+1 = s̄t|m̄t+1. Finally, since we can write

xt+1 = s̄t +


ut

0

�
,

where ut ⇠ N(0, �̂2
t
) must be uncorrelated with any of the elements of st (and hence



uncorrelated with any of the elements of mt+1), we must further have

xt+1|mt+1 ⇠ N(m̄t+1, ⌃t+1)

where
⌃t+1 = var[s̄t |m̄t+1] + �̂

2
t
e1e

0
1.

Since �̂2
t
also depends only on ⌃t (see equation (III.2)), it follows that the elements of ⌃t+1

depend only on ⌃t and ⇤d,t.

This argument can then be used recursively (starting from period t = 0) to show that
given the initial uncertainty matrix ⌃0 implied by the prior (B.2), we can completely
determine the entire sequence of matrices {⌃t}, given a sequence of matrices {⇤d,t} for
all t � 0 with the property that for each t, ⇤d,t 2 L(Xt), where Xt is the matrix implied
by ⌃t. Moreover, given such a sequence of matrices {⇤d,t}, the value of MSEt for each
period t will be uniquely determined as well. Hence the terms in the loss function (I.6)
that depend on the accuracy of forecasts that are possible using a given memory structure
will depend only on the sequence of matrices {⇤d,t}. (These matrices must be chosen
to satisfy a set of consistency conditions, stated above, but these conditions can also be
expressed purely in terms of the sequence of matrices {⇤d,t}.) Thus the other elements of
the specification (C.1) of the memory structure matter only to the extent that they have
consequences for the information cost terms in (I.6).

2. Mutual information: a useful lemma

Information costs in period t are assumed to be an increasing function of It = I (M ;S),
the Shannon mutual information between random variables M (the realizations of which
are denoted mt+1) and S (the realizations of which are denoted st).54 Each of the random
vectors M and S can further be partitioned as M = (M, M̄), S = (S, S̄).
Now for any random variables X1, X2, . . . , let H(X1, X2, . . . , Xk) be the entropy of the

joint distribution for variables (X1, X2, . . . , Xk), and H(X1, . . . , Xk |Xk+1, . . . Xk+m) be the
entropy of the joint distribution of the variables (X1, . . . , Xk) conditional on the values of
the variables (Xk+1, . . . Xk+m). The chain rule for entropy implies that

H(X1, X2, . . . , Xk) = H(X1) + H(X2 |X1) + . . . + H(Xk |X1, . . . , Xk�1).

We can then define the mutual information between the variables (X1, . . . , Xk) and the
variables (Xk+1, . . . Xk+m) as

I (X1, . . . , Xk; Xk+1, . . . , Xk+m) ⌘ H(X1, . . . , Xk) � H(X1, . . . , Xk |Xk+1, . . . Xk+m).

(The information about the first set of variables that is revealed by learning the values of

54Here we adopt the notation used in Cover and Thomas (2006), with di↵erent symbols for the random
variables M and S and their realizations. This is to make it clear that It is not a function of the values
taken by mt+1 and st along a particular history, but instead a function of the complete joint distribution
of the two random variables; It is itself not a random variable, but a single number for each date t.



the second set of variables is measured by the average amount by which the entropy of
the conditional distribution is smaller than the entropy of the unconditional distribution
of the first set of variables.) Similarly, we can define the mutual information between the
first set of variables and the second set of variables, conditioning on the values of some
third set of variables as

I (X1, . . . , Xk; Xk+1, . . . , Xk+m |Xk+m+1, . . . , Xk+m+n)

⌘ H(X1, X2, . . . , Xk |Xk+m+1, . . . , Xk+m+n) � H(X1, . . . , Xk |Xk+1, . . . , Xk+m+n).

Thus for any set of four random variables M, M̄, S, S̄, we must have

I (S, S̄; M, M̄)

= H(S, S̄) � H(S, S̄ |M, M̄)

= [H(S̄) +H(S |S̄)] � [H(S̄ |M, M̄) +H(S |S̄,M, M̄)]

= [H(S̄) +H(S |S̄)] � [H(S̄,M, M̄)�H(M |M̄)�H(M̄)] � H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] � [(H(M̄) +H(S̄ |M̄) +H(M |M̄, S̄))�H(M |M̄)�H(M̄)]

� H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] � [H(S̄ |M̄) +H(M |M̄, S̄)�H(M |M̄)] � H(S |S̄,M, M̄)

= [H(S̄)�H(S̄ |M̄)] + [H(S |S̄)�H(S |S̄,M, M̄)] + [H(M |M̄)�H(M |M̄, S̄)]

= I (S̄; M̄) + I (S; M, M̄ |S̄) + I (M ; S̄ |M̄).

Then, since mutual information is necessarily non-negative, we can establish the lower
bound

(C.3) It = I (S, S̄; M, M̄) � I (S̄; M̄).

Furthermore, this lower bound is achieved if and only if

I (S; M, M̄ |S̄) = I (M ; S̄ |M̄) = 0.

For any three random variablesX, Y, Z, the conditional mutual information I (X; Y |Z) =
0 if and only if the variables X and Y are distributed independently one another, con-
ditional on the value of Z. Hence the lower bound (C.3) is achieved if and only if (a)
conditional on the value of m̄t+1, the variables s̄t and m

t+1 are independent of one an-
other; and (b) conditional on the value of s̄t, the variables st and mt+1 are independent of
one another.

3. Optimality of Setting ⇤a,t = ⇤b,t = ⇤c,t = 0

We return now to the consideration of possible memory structures. Let the sequence
of matrices {⇤d,t} be chosen to satisfy the consistency conditions discussed above, and
for a given such sequence, consider an optimal choice of the remaining elements of the
specification (C.1), from among those specifications that are consistent with the sequence



{⇤d,t} (that is, that will satisfy both conditions (i) and (ii) stated above).
We have shown above that the sequence of values {MSEt} is completely determined by

the specification of {⇤d,t}. Hence other aspects of the specification of the memory structure
can matter only to the extent that they a↵ect the sequence of values {It}. Moreover, we
have shown that the joint distribution of (s̄t, m̄t+1) each period is completely determined
by Xt and ⇤d,t, which means that the lower bound for It given in (C.3) is completely
determined by the choice of {⇤d,⌧} for ⌧  t. It thus remains only to consider whether
this lower bound can be achieved, and under what conditions.
We first observe that the lower bound is achievable. For any sequence of matrices {⇤d,t}

satisfying the specified conditions, a memory structure specification with ⇤a,t = ⇤b,t =
⇤c,t = 0, together with a stipulation that !

t+1 be distributed independently of !̄t+1 and
that var[!̄t+1] = ⇤d,tXt, will satisfy both conditions (i) and (ii) stated in the introduction
to this appendix, and thus this represents a feasible memory structure. One can also show
that such a specification satisfies both of conditions (a) and (b) stated at the end of section
C.2, so that the lower bound (C.3) is achieved in each period. Thus such a specification
achieves the lowest possible value for the combined objective function (I.6), and will be
optimal, given our choice of the sequence {⇤d,t}.
Not only will this specification be su�cient for achieving the lowest possible value of

(I.6), but it will be essentially necessary. We have shown above that achieving the lower
bound for It in period t requires that conditional on the value of s̄t, the variables s

t
and

mt+1 are independent of one another. This means that the values of the variables in the
vector s

t
cannot help at all in predicting any elements of mt+1, once one is already using

the reduced cognitive state s̄t to forecast the next period’s memory state; thus one must
be able to write law of motion (C.1) for the memory state with ⇤a,t = ⇤c,t = 0.55 Thus it is
necessarily the case that the elements of mt+1 convey information only about the reduced
cognitive state s̄t, and not about any other aspects of the cognitive state st.
In addition, we have shown above that achieving the lower bound for It in period t

requires that conditional on the value of m̄t+1, the variables s̄t and m
t+1 are independent

of one another. Thus all of the information about s̄t that is contained in the memory state
mt+1 is contained in the elements m̄t+1. This means either that ⇤b,t = 0 as well, or, to the
extent that some element of m

t+1 corresponds to a row of ⇤b,t with non-zero elements, that
element of m

t+1 must be a linear combination of the elements of m̄t+1, so that conditioning
upon its value conveys no new information about s̄t. Thus any specification of the memory
structure in which ⇤b,t 6= 0 in any period represents a redundant representation of the
contents of memory available in period t+ 1; we can equivalently describe the contents of
memory by eliminating all such rows from mt+1.

Thus there is no loss of generality in assuming that the lower bound is achieved by

55It might be possible to satisfy the condition required for the lower bound with non-zero elements in
one of these matrices; but this will occur only because of collinearity in the fluctuations in the elements
of the vector st, so that it is possible to have a law of motion in which st has no e↵ect on mt+1,

despite non-zero matrices ⇤a,t and ⇤c,t. In such a case, the representation of the cognitive state by the
vector st would involve redundancy; and in any event, there would be no loss of generality in setting
⇤a,t = ⇤c,t = 0, since the implied fluctuations in the memory state would be the same.



specifying ⇤a,t = ⇤b,t = ⇤c,t = 0 in each period. Finally, satisfaction of consistency
condition (ii) in this case requires that the elements of !

t+1 be distributed independently
of the elements of !̄t+1. We might still allow var[!

t+1] to be non-zero; this would mean
that m

t+1 contains elements that fluctuate randomly, but are completely uncorrelated
with the previous period’s cognitive state st. Such an information structure is equally
optimal, in the sense that (I.6) is made no larger by the existence of such components
of the memory state, given our assumption that only mutual information is costly. But
the additional components m

t+1 of the memory structure will have no consequences for
cognitive processing, and our inclusion of them as part of the representation of the memory
state violates our assumption in the text that we label memory states by their implied
posteriors for the values of µ and the past realizations of the external state; using labels
(m

t+1, m̄t+1) in which m
t+1 is non-null will mean having separate labels for memory states

that imply the same posterior (since the value of m
t+1 would be completely uninformative

about either µ or any past external states).
Hence in the case of any optimal memory structure, the memory state can be described

more compactly by identifying it with the reduced memory state m̄t+1, which evolves
according to

(C.4) m̄t+1 = ⇤̄ts̄t + !̄t+1,

where ⇤̄t is the matrix called ⇤d,t in (C.1). (This corresponds to equation (III.4) in the
main text.) We need only consider (at most) a two-dimensional memory state, and the
optimal memory state conveys information only about the reduced cognitive state s̄t, not
about any other aspects of the cognitive state st.

4. Properties that ⇤̄t should satisfy

In order for (C.4) to represent a memory structure consistent with the normalization
according to which E[xt+1 |m̄t+1] = m̄t+1, the sequence of matrices {⇤̄t} and {⌃!̄,t+1} must
satisfy certain properties. Note first that the condition (C.2) will be satisfied if and only
if

(C.5) ⌃!̄,t+1 = (I � ⇤̄t)Xt⇤̄
0
t
.

For ⌃!̄,t+1 to be a symmetric, p.s.d. matrix, the matrix ⇤̄t must satisfy the following
properties: (a) the matrix ⇤̄tXt = Xt⇤̄0

t
must be symmetric (so that the right-hand side

of (C.5) is also symmetric); and (b) the right-hand side of (C.5) must be a p.s.d. matrix.
For any symmetric, positive definite 2⇥ 2 matrix Xt, we let L(Xt) be the set of matrices
⇤̄t with these properties. Note that since

Xt⇤̄
0
t
= (I � ⇤̄t)Xt⇤̄

0
t
+ ⇤̄tXt⇤̄

0
t
,

and Xt is necessarily a p.s.d. matrix, it follows from the assumption that (I � ⇤̄t)Xt⇤̄0
t
is

p.s.d. that ⇤̄tXt = Xt⇤̄0
t
will also be a p.s.d. matrix; but this latter condition is weaker



than the one assumed in our definition of the set L(Xt). This constitutes the complete set
of conditions that must be satisfied for (C.4) to represent a memory structure consistent
with our proposed normalization of the vector mt+1.

We can further specialize these conditions in the case that ⇤̄t is a singular matrix. (Here
we assume thatXt is of full rank.) If ⇤̄t is of rank one (or less), it can be written in the form
⇤̄t = utv

0
t
, where we are furthermore free to normalize the vector v

0
t
so that v

0
t
Xtvt = 1.

Then the condition that ⇤̄tXt = Xt⇤̄0
t
will hold only if ut(v0tXt) = (Xtvt)u0

t
. This means

that ut must be collinear with Xtvt, so that we must be able to write ut = �tXtvt, for
some scalar �t. Thus in the singular case, we must be able to write

(C.6) ⇤̄t = �tXtvtv
0
t
,

where �t is a scalar and vt is a vector such that v0
t
Xtvt = 1. Then

(I � ⇤̄t)Xt⇤̄
0
t
= �t(1� �t)(Xtvt)(Xtvt)

0

will be a p.s.d. matrix if and only if in addition 0  �t  1. Thus a singular matrix ⇤̄t is
an element of L(Xt) if and only if it is of the form (C.6) with 0  �t  1 and vt a vector
such that v0

t
Xtvt = 1.

Consistency with the proposed normalization of mt+1 then further requires that

(C.7) ⌃!̄,t+1 = �t(1� �t)Xtvtv
0
t
Xt.

This implies that ⌃!̄,t+1 is a singular matrix; the random vector !̄t+1 can be written as
!̄t+1 = Xtvt · !̃t+1, where !̃t+1 is a scalar random variable, with distribution N(0, �t(1�
�t). It follows that in such a case, the memory state can be given a one-dimensional
representation, writing m̄t+1 = Xtvt · m̃t+1, where the scalar memory state m̃t+1 has a
law of motion

(C.8) m̃t+1 = �tv
0
t
s̄t + !̃t+1, !̃t+1 ⇠ N(0, �t(1� �t)).

In the case that Xt = X0 (the only case in which it is possible for Xt = X(�̂2
t
) to be

singular), mt is completely uninformative. Since µ̂t is proportional to the observation yt,
there exists a vector w >> 0 such that s̄t = w · yt. In this case,

Xt = X0 ⌘ [⌦+ �
2
y
]ww0

,

and we can show that the requirements stated above are satisfied by a matrix ⇤̄t if and
only if ⇤̄tw = �tw (w is a right eigenvector), with an eigenvalue satisfying 0  �t  1.
Since the two elements of s̄t are perfectly collinear in this case, the only part of the matrix
⇤̄t that matters for the evolution of the memory state is the implied vector ⇤̄tw (which
must be a multiple of w). Thus we can without loss of generality impose the further
restriction that if �̂2

t
= �̂

2
0, we will describe the dynamics of the memory state using a



matrix ⇤̄t of the form

(C.9) ⇤̄t = �t
ww

0

w0w
,

for some 0  �t  1. We now adopt this more restrictive definition of the set L(X0) in this
special case.56 In this case, ⇤̄t is necessarily of the form (C.6), with the vector vt given by

(C.10) vt =
w

(⌦+ �2
y
)1/2(w0w)

.

Hence our comments above about the case in which ⇤̄t is singular apply also in the case
in which Xt is singular, except that in this latter case we have the further restriction that
vt must be given by (C.10). In this special case, (C.7) reduces to

⌃!̄,t+1 = �t(1� �t)[⌦+ �
2
y
]ww0

.

5. An alternative representation for the reduced cognitive state

Since s̄t is defined as E[xt+1|st], we can decompose the variance of var[xt+1] as

var[xt+1] = var[s̄t] + var[xt+1|st]

from which we see that

Xt = X(�̂2
t
) ⌘


⌦� �̂

2
t

⌦
⌦ ⌦+ �

2
y

�
.

Thus, the variance matrix of the reduced cognitive state s̄t can be written as a function of
the single parameter �̂2

t
. There is another way of writing this function that will be useful

below.

We can orthogonalize the reduced cognitive state using the transformation s̄t = �št,
where

(C.11) � ⌘

1 ⌦

⌦+�2
y

0 1

�
.

The elements of the orthogonalized cognitive state have the interpretation

št ⌘

µ̂t � E[µ|yt]

yt

�
,

from which it is obvious that the first element must be uncorrelated with the second.

56Restricting the set of transition matrices ⇤̄t that may be chosen in this way has no consequences for
the evolution of the memory state, but it makes equation (III.7) in the main text also valid in the case
that Xt = X0, and thus it allows us to state certain conditions more compactly.



The variance matrix of št is therefore diagonal:

(C.12) var[št] = X̌(�̂2
t
) ⌘


�̂
2
0 � �̂

2
t

0
0 ⌦+ �

2
y

�
.

We can then alternatively write

(C.13) X(�̂2
t
) = �X̌(�̂2

t
)�0

.



D. The Law of Motion and the Information Content of Memory

We now consider how the parameterization of the law of motion (C.4) for the memory
state determines the degree of uncertainty about the external state vector that will exist
when beliefs are conditioned on the memory state, and how the same parameters determine
the mutual information between the memory state and the prior cognitive state, and hence
the size of the information cost term c (It).

1. The degree of uncertainty implied by a given memory structure

We turn now to the question of how the memory-implied uncertainty ⌃t+1 in the fol-
lowing period is determined by the law of motion for the memory state m̄t+1 that can be
accessed at that time. Note that the variance of the marginal distribution for xt+1 can be
decomposed as

var[xt+1] = E[var[xt+1 |mt+1]] + var[E[xt+1 |mt+1]],

where in the first term on the right-hand side, the variance refers to the distribution
of values for xt+1 conditional on the realization of mt+1, and the expectation is over
realizations of mt+1, while in the second term the variance refers to the distribution of
values for mt+1, and the expectation is over values of xt+1 conditional on the realization
of mt+1. Since the marginal distribution for xt+1 is the same for all t, and coincides with
the prior distribution for x0 specified in (B.2), the left-hand side must equal the matrix
⌃0 defined there. Hence the variance decomposition can be written as

⌃0 = ⌃t+1 + var[m̄t+1],

which implies that in any period,

⌃t+1 = ⌃0 � var[m̄t+1].

Thus in order to understand how the choice of ⇤̄t determines ⌃t+1, it su�ces that we
determine the implications for the degree of variation in m̄t+1.

A law of motion of the form (C.4) implies that

var[m̄t+1] = ⇤̄tXt⇤̄
0
t
+ ⌃!̄,t+1

= ⇤̄tXt⇤̄
0
t
+ (I � ⇤̄t)Xt⇤̄

0
t

= Xt⇤̄
0
t
,

where the second line uses (C.5). Hence we obtain the prediction that

(D.1) ⌃t+1 = ⌃0 � Xt⇤̄
0
t
.

Note that for any ⇤̄t 2 L(Xt), this must be a symmetric, p.s.d. matrix.



Hence for any value of �̂2
t
satisfying 0  �̂

2
t
 �̂

2
0 and any transition matrix ⇤̄t 2

L(X(�̂2
t
)), we can substitute Xt = X(�̂2

t
) and the value of ⌃t+1 given by (D.1) into (B.5)

to obtain a solution for �̂2
t+1 as a function of �̂2

t
and ⇤̄t. This defines the function f(�̂2

t
, ⇤̄t)

referred to in the main text. We can then define Lseq as the set of sequences of transition
matrices {⇤̄t} for all t � 0 such that

⇤̄0 2 L(X0), ⇤̄1 2 L(X(f(�̂2
0, ⇤̄0))), ⇤̄2 2 L(X(f(f(�̂2

0, ⇤̄0), ⇤̄1))),

and so on.
Then given any sequence of transition matrices {⇤̄t} 2 Lseq

, there will be uniquely
defined sequences {�̂2

t
, Xt} for all t � 0. Equation (D.1), together with (B.2), can then be

used to uniquely define the implied sequence of matrices {⌃t} for all t � 0. These matrices
can in turn be used in (III.3) to define the Kalman gain �1t for each t � 0. Thus for any
sequence of transition matrices {⇤̄t} 2 Lseq

, there will be uniquely determined sequences
{⌃t, �1t, �̂

2
t
, Xt}, as stated in the text. These in turn will imply a uniquely determined

sequence of losses {MSEt} from forecast inaccuracy.

2. The mutual information implied by a given memory structure

Finally, we compute the mutual information It in the case that the memory state consists
only of a reduced memory state m̄t+1, with law of motion (C.4). We first review the
definition of mutual information in the case of continuously distributed random variables.
Let X and Y be two random variables, each parameterized using a finite system of

coordinates (so that realizations x and y are each represented by finite-dimensional vec-
tors), and suppose that at least Y has a continuous distribution, with a density function
p(y|x) such that p(y|x) > 0 for all y in the support of Y and all x in the support of
X. Suppose also that the marginal distribution for Y can be characterized by a density
function p(y) = E[p(Y |x)], where the expectation is over possible realizations of x, and
p(y) > 0 for all y in the support of Y . Then we can measure the degree to which knowing
the realization of x changes the distribution that one can expect y to be drawn from by
the Kullback-Liebler divergence (or relative entropy) of the conditional distribution p(y|x)
relative to the marginal distribution p(y), defined as

(D.2) DKL(p(·|x)||p(·)) ⌘ E


log

p(y|x)
p(y)

�
� 0,

where the expectation is over possible realizations of y, and this quantity is a function of
the particular realization x.57 The mutual information I (X; Y ) can then be defined as
the mean value of this expression,

(D.3) I (X; Y ) ⌘ E[DKL(p(·|x)||p(·))],

57The value of this quantity is necessarily non-negative because of Jensen’s inequality, owing to the
concavity of the logarithm.



where the expectation is now over possible realization of x, and the mutual information is
also necessarily non-negative.58

This definition of the mutual information has the attractive feature of being independent
of the coordinates used to parameterize the realizations of the variable Y . Suppose that we
write y = � (z), where � (·) is an invertible smooth coordinate transformation between two
Euclidean spaces of the same dimension. Then corresponding to the conditional density
p(y|x) for any x, there will be a corresponding density function p̃(z|x) for the random
variable Z (which is just the variable Y described using the alternative coordinate system),
such that p̃(z|x) = p(� (z)|x) ·D� (z) for each z, where D� (z) is the Jacobian matrix of
the coordinate transformation, evaluated at z. It follows that for any z in the support of
Z and any x in the support of X,

p(� (z)|x)
p(� (z))

=
p̃(z|x)
p̃(z)

,

so that
DKL( p(·|x) || p(·)) = DKL( p̃(·|x) || p̃(·))

for all x. We thus find that the mutual information I (X; Y ) will be the same as I (X; Z):
it is una↵ected by a change in the coordinates used to parameterize Y .59

We can similarly define the mutual information in a case in which the support of Y
is not the entire Euclidean space, because of the existence of redundant coordinates in
the parameterization of realizations y. Suppose that all vectors y in the support of Y
are of the form y = � (z), where � (·) is a smooth embedding of some lower-dimensional
Euclidean space (the support of Z) into a higher-dimensional Euclidean space. Then
the information about the possible realizations of y contained in a realization of x is
given by the information that x contains about the possible realizations of z. If the joint
distribution of X and Z is such that we can define conditional density functions p̃(z|x),
with p̃(z|x) > 0 for all z and x, and a marginal density function p̃(z) > 0 for all z, then we
can define the mutual information between X and Z using (D.3) as above. Since mutual
information should be independent of the coordinates used to parameterize the variables,
we can use the value of I (X; Z) as our definition of I (X; Y ) in this case as well (even
though expression (D.2) is not defined in this case).

In the case of interest in this paper, X and Y are variables with a joint distribution that
is multivariate Gaussian. Let us consider first the generic case in which the conditional
variance-covariance matrix var[Y |x] is of full rank. (Note that this matrix will be inde-
pendent of the realization of x, and so can be written var[Y |X], to emphasize that only
the parameters of the joint distribution matter.) In this case var[Y ] is of full rank as well,

58Note that this definition — rather than the one often given in terms of the average reduction in the
entropy of Y from observing X — has the advantage of remaining well-defined even when the random
variable Y has a continuous distribution. See Cover and Thomas (2006) for further discussion.

59It is equally una↵ected by a change in the coordinates used to parameterize X, though we need not
show this here.



and for any x and y, the ratio of the density functions satisfies

log
p(y|x)
p(y)

= �1

2
log

det(var[Y |x])
det(var[Y ])

� 1

2
(y � E[y|x])0var[Y |x]�1(y � E[y|x])

+
1

2
(y � E[y])0var[Y ]�1(y � E[y]).

Hence for any x, we have

DKL(x) = �1

2
log

det(var[Y |x])
det(var[Y ])

,

and since this will be independent of the realization of x, we similarly will have

(D.4) I (X; Y ) = �1

2
log

det(var[Y |X])

det(var[Y ])
.

One case in which var[Y |x] will not be of full rank is if y = Uz for some matrix U , where
z is a random vector of lower dimension than that of y. (In this case, the rank of var[Y |x]
cannot be greater than the rank of var[Z|x], which is at most the dimension of z.) Let us
suppose that the rank of U is equal to the dimension of z, so that any vector y = Uz is
associated with exactly one vector z. In such a case we can, as discussed above, define the
mutual information between X and Y to equal the mutual information between X and
Z. If var[Z|x] is of full rank, then we can use the calculations of the previous paragraph
to show that

(D.5) I (X; Y ) = I (X; Z) = �1

2
log

det(var[Z|X])

det(var[Z])
.

We turn now to the calculation of the mutual information between the reduced cognitive
state s̄t and the memory state m̄t+1, in the case of a law of motion of the form (C.4) for
the memory state. We first consider the case in which Xt is of full rank (which, as noted
in the text, will be true except when the memory state mt is completely uninformative).
If ⇤̄t and I � ⇤̄t are also both matrices of full rank, then

var[m̄t+1 |s̄t] = ⌃!̄,t+1 = (I � ⇤̄t)Xt⇤̄
0
t

will be of full rank, and

var[m̄t+1] = ⇤̄tXt⇤̄
0
t
+ ⌃!̄,t+1 = Xt⇤̄

0
t

will be of full rank as well. We can then apply (D.4) to obtain

(D.6) It = �1

2
log

det[(I � ⇤̄t)Xt⇤̄0
t
]

det[Xt⇤̄0
t]

= �1

2
log det(I � ⇤̄t),



in conformity with equation (III.7) in the text.

In the case thatXt is of full rank, but ⇤̄t is varied so that one of its eigenvalues approaches
1 (meaning that I� ⇤̄t approaches a singular matrix, while the determinant of ⇤̄t remains
bounded away from zero), the value of It implied by (D.6) grows without bound. It thus
makes sense to assign a value of +1 to the mutual information in the case that ⇤̄t is of
full rank but I � ⇤̄t is not. Note that in this case there is a linear combination of the
elements of s̄t that is revealed with perfect precision by the memory state (since ⌃!̄,t+1 will
be singular), while this linear combination is a continuous random variable with positive
variance (since Xt is of full rank). This is not consistent with any finite value for the
mutual information (and so cannot represent a feasible memory structure).

Suppose instead that while Xt is of full rank, ⇤̄t is only of rank one. In this case, we
have shown above that ⇤̄t must be of the form (C.6), as a consequence of which ⌃!̄,t+1

must be given by (C.7). In this case, the memory state can be represented in the form
m̄t+1 = Xtvt ·m̃t+1, where m̃t+1 is a scalar random variable with law of motion (C.8). This
implies that var[m̃t+1 |st] = var[!̃t+1] = �t(1��t), while var[m̃t+1] = �t. In the case that
0 < �t < 1, we can then apply (D.5) to show that

(D.7) It = �1

2
log

�t(1� �t)

�t
= �1

2
log(1� �t),

Since in this case, det(I � ⇤̄t) = det(I � �tvtv
0
t
) = 1� �t, result (D.7) is again just what

(D.6) would imply, so that (D.6) continues to be correct even though ⇤̄t is singular.

If we consider a sequence of matrices of this kind in which �t approaches 1, the mutual
information (D.7) grows without bound. Thus we can assign the value +1 to It in the
case that ⇤̄t is a matrix of rank one with �t = 1. Indeed, in this case, the memory state
reveals with perfect precision the value of v0

t
s̄t, a continuous random variable with positive

variance (under the assumption that Xt is of full rank); but this is not possible in the case
of any finite bound on mutual information. Hence (D.6) can be applied to this case as
well.

Suppose instead that Xt is of full rank, but ⇤̄t = 0. In this case, the distribution of
m̄t+1 is independent of the value of st+1, and the mutual information between these two
variables must be zero. This is also what (D.6) would imply, so that (D.6) is correct in
this case as well.

Finally, consider the case in which Xt = X0, the only possible case in which Xt is not
of full rank. In this case, we have defined L(X0) to consist only of matrices of the form
(C.6), with the vector vt given by (C.10). If �t = 0, then the entire matrix ⇤̄t = 0, and
the argument in the previous paragraph again applies. Suppose instead that �t > 0. Just
as in the discussion above of the case of a singular transition matrix, the memory state
can be represented by a scalar state variable m̃t+1 with law of motion (C.8), and we can
apply (D.5) to show that It will be given by (D.7). Again this is just what (D.6) would
imply, so that (D.6) also yields the correct conclusion when Xt is a singular matrix.

Thus in all cases, (D.6) applies, and the value of It depends only on the choice of the



transition matrix ⇤̄t. It follows that for any sequence of transition matrices {⇤̄t} 2 Lseq
,

there will be uniquely defined sequences {MSEt, It}, allowing the objective (I.6) to be
evaluated.



E. Recursive Determination of the Optimal Memory Structure

We have shown in the text how the optimal memory structure can be characterized if
we can find the value function V (�̂2

t
) that satisfies the Bellman equation

(E.1) V (�̂2
t
) = min

⇤̄t2L(X(�̂2
t ))
[↵�̂2

t
+ c (I (⇤̄t)) + �V (f(�̂2

t
,�t, vt))].

Here we establish some properties of the solution to the optimization problem on the
right-hand side of (E.1) for an arbitrary function V 2 F ., which we can then be used to
establish properties of the value function V (�̂2

t
) that solves this equation, and properties

of the optimal memory structure.

1. Monotonicity of the value function

We first show that, for any function V that may be assumed in the problem on the right-
hand side of (E.1), the minimum achievable value of the right-hand side is a monotonically
increasing function of �̂2

t
. This in turn implies that the value function (which must satisfy

(E.1)) must be a monotonically increasing function of its argument.
Fix any value function V to be used in the problem on the right-hand side of (E.1), and

consider any two possible degrees of uncertainty �̂2
a
, �̂

2
b
, satisfying

(E.2) 0  �̂
2
a
< �̂

2
b
 �

2
0.

Let ⇤̄t = ⇤̄b be some element of L(X(�̂2
b
)), and thus a feasible memory structure when

�̂
2
t
= �̂

2
b
, and let us further suppose that I (⇤̄b) < 1, as must be true of an optimal memory

structure. We wish to show that we can choose a transition matrix ⇤̄a 2 L(X(�̂2
a
)) such

that

(E.3) f(�̂2
a
, ⇤̄a) = f(�̂2

b
, ⇤̄b),

and in addition

(E.4) I (⇤̄a)  I (⇤̄b).

That is, in the case of the smaller degree of uncertainty �̂
2
a
in the cognitive state in

period t, it is possible to choose a memory structure that implies exactly the same degree
of uncertainty in period t + 1, and hence the same value for V (�̂2

t+1), at no greater an
information cost, and thus it is possible to achieve a strictly lower value for the right-hand
side of (E.1).
If we can show this for an arbitrary transition matrix ⇤̄b 2 L(X(�̂2

b
)), then it is also

true when ⇤̄b is the transition matrix associated with the optimal memory structure (the
solution to the problem on the right-hand side of (E.1)) when �̂2

t
= �̂

2
b
. This implies that it

is possible to achieve a lower value for the right-hand side of (E.1) when �̂2
t
= �̂

2
a
than it is



possible to achieve when �̂2
t
= �̂

2
b
. Since this must be true for any values of �̂2

a
, �̂

2
b
consistent

with (E.2), the right-hand side of (E.1) defines a monotonically increasing function of �̂2
t
.

To show that such a construction is always possible, let us first consider the case in
which �̂2

b
= �̂

2
0, so that the memory state mt is completely uninformative in case b. In this

case, the assumption that ⇤̄b 2 L(X(�̂2
b
)) = L(X0) requires that

⇤̄b = �b
ww

0

w0w

for some 0  �b < 1.60 In this case, the memory structure for the following period is
equivalent to one in which there is a univariate memory state

m̃b =
�b

(⌦+ �2
y
)1/2

yt + !̃b, !̃b ⇠ N(0, �b(1� �b)).

The implied uncertainty in the following period (given the memory state, but before yt+1

is observed) is then given by

(E.5) ⌃t+1 = ⌃0 � �b(⌦+ �
2
y
)ww0

.

Now let s̄a be the reduced cognitive state in period t, in the case of a more informative
memory structure that implies the lower degree of uncertainty �̂2

a
, and let Xa ⌘ X(�̂2

a
) be

the variance of this random vector. In this case, we can choose a memory structure for
the following period defined by the transition matrix

⇤̄a = �bXa

e2e
0
2

⌦+ �2
y

where e2 ⌘ [0 1]0. This is a matrix of the form (C.6), and hence an element of L(Xa).
Because ⇤̄a is singular, the specified memory structure is equivalent to one in which there
is a univariate memory state

m̃a = �b
e
0
2s̄a

(e02Xae2)1/2
+ !̃a, !̃a ⇠ N(0, �b(1� �b)).

But this means that

m̃a =
�b

(⌦+ �2
y
)1/2

yt + !̃a, !̃a ⇠ N(0, �b(1� �b)).

Hence the joint distribution of (m̃a, xt+1) is identical to the joint distribution of (m̃b, xt+1),
and the implied uncertainty in the following period given this memory structure is again
given by (E.5). Hence the value of �̂2

t+1 implied by memory structure a is the same as
that implied by memory structure b. This establishes condition (E.3). Moreover, for both

60The upper bound is required in order to satisfy the assumption that I (⇤̄b) < 1.



memory structures we have the same mutual information,

I (⇤̄a) = I (⇤̄b) = �1

2
log(1� �b).

This establishes condition (E.4). Hence the value of the right-hand side of (E.1) must be
lower when �̂2

t
= �̂

2
a
.

Let us next consider the less trivial case in which 0 < �̂
2
b
< �̂

2
0. Let s̄b be the reduced

cognitive state in period t that implies a degree of uncertainty �̂2
b
, and let Xb ⌘ X(�̂2

b
) be

the variance of this random vector. Let the optimal memory structure for the following
period (the solution to the problem on the right-hand side of (E.1)) in this case be

(E.6) m̄b = ⇤̄bs̄b + !̄b,

where
⇤̄b 2 L(Xb), !̄b ⇠ N(0, (I � ⇤̄b)Xb⇤̄

0
b
).

The implied uncertainty in the following period will then be given by

(E.7) ⌃t+1 = ⌃0 � Xb⇤̄
0
b
.

Let us consider the memory structure for cognitive state a defined by the transition
matrix

(E.8) ⇤̄a = ⇤̄b� �
�1
,

where � is the invertible matrix defined in (C.11), and

 ⌘

 0
0 1

�
,

where 0 <  < 1 is the quantity

 ⌘ �̂
2
0 � �̂

2
b

�̂
2
0 � �̂2

a

.

Note that  is a diagonal matrix, with the property that

 X̌a = X̌a = X̌b,

using the notation X̌i ⌘ X̌(�̂2
i
) for i = a, b, where X̌(�̂2

t
) is the function defined in (C.12).

It is first necessary to verify that ⇤̄a 2 L(Xa), so that this matrix defines a possible
memory structure.



We first show that ⇤̄aXa = Xa⇤̄0
a
. Definition (E.8) implies that

⇤̄aXa = ⇤̄b� �
�1
Xa

= ⇤̄b� X̌a�
0

= ⇤̄b�X̌b�
0

= ⇤̄bXb.

The fact that ⇤̄b 2 L(Xb) implies that ⇤̄bXb must be a symmetric matrix; hence ⇤̄aXa,

which is the same matrix, must also be symmetric. Thus ⇤̄aXa = Xa⇤̄0
a
.

Next, we must also show that (I � ⇤̄a)Xa⇤̄0
a
is a p.s.d. matrix. We first note that I � 

is a diagonal matrix with non-negative elements on the diagonal; it follows that (I� )X̌b

is also a diagonal matrix with non-negative elements on the diagonal, and hence p.s.d.
From this it follows that

⇤̄b� · (I � )X̌b · �0⇤̄0
b

= ⇤̄b�(X̌b � X̌a )�
0⇤̄0

b

= ⇤̄b(�X̌b�
0)⇤̄0

b
� (⇤̄b� �

�1)(�X̌a�
0)(⇤̄b� �

�1)0

= ⇤̄bXb⇤̄
0
b
� ⇤̄aXa⇤̄

0
a

= (Xa⇤̄
0
a
� ⇤̄aXa⇤̄

0
a
) � (Xb⇤̄

0
b
� ⇤̄bXb⇤̄

0
b
)

= (I � ⇤̄a)Xa⇤̄
0
a
� (I � ⇤̄b)Xb⇤̄

0
b

must be p.s.d. as well. But since the fact that ⇤̄b 2 L(Xb) implies that (I� ⇤̄b)Xb⇤̄0
b
must

be p.s.d., it follows that (I� ⇤̄a)Xa⇤̄0
a
can be expressed as the sum of two p.s.d. matrices,

and so must also be p.s.d. This verifies the second of the conditions required in order to
show that ⇤̄a 2 L(Xa).
Thus if s̄a is a reduced cognitive state for period t that implies a degree of uncertainty

�̂
2
a
, a possible memory structure for the following period is

(E.9) m̄a = ⇤̄as̄a + !̄a,

where the transition matrix ⇤̄a is defined in (E.8), and

!̄a ⇠ N(0, (I � ⇤̄a)Xa⇤̄
0
a
).

The implied uncertainty in the following period will then be given by

⌃t+1 = ⌃0 � Xa⇤̄
0
a
.

This latter matrix is the same as the one in (E.7); it follows that the implied value of
�̂
2
t+1 is also the same as for the memory structure (E.6). Thus we have shown that in the

case of the smaller degree of uncertainty �̂2
a
, it is possible to choose a memory structure

that implies exactly the same degree of uncertainty in period t+ 1 as when the degree of
uncertainty in period t is given by the larger quantity �̂2

b
.

It remains to be shown that memory structure (E.9) involves no greater information



cost than memory structure (E.6). Consider first the case in which the memory state m̄b

is non-degenerate, in the sense that var[m̄b] = Xb⇤̄0
b
is non-singular. It follows that the

same must be true of memory state m̄a. Then for either of the two memory structures
i = a, b just discussed, (D.6) implies that the mutual information will be given by

It = �1

2
log

det[(I � ⇤̄i)Xi⇤̄0
i
]

det[Xi⇤̄0
i
]

.

We have shown above that the value of the denominator in this expression is the same
for i = a, b (and under the assumption that Xb⇤̄0

b
is non-singular, it must be positive).

Hence the relative size of the two mutual informations depends on the relative size of the
numerator in the two cases. But we have shown above that (I�⇤̄a)Xa⇤̄0

a
can be expressed

as the sum of (I � ⇤̄b)Xb⇤̄0
b
plus a p.s.d. matrix. Since both of these matrices are also

p.s.d., their determinants satisfy

det[(I � ⇤̄a)Xa⇤̄
0
a
] � det[(I � ⇤̄b)Xb⇤̄

0
b
] > 0,

where the final inequality is necessary in order for memory structure b to have a finite
information cost. It follows that condition (E.4) must hold in this case.

Now suppose instead that var[m̄b] is a singular matrix. In the case that the matrix
is zero in all elements, ⇤̄b = 0, and so (E.8) implies that ⇤̄a = 0 as well. In this case,
det(I � ⇤̄a) = det(I � ⇤̄b) = 1, so that I (⇤̄a) = I (⇤̄b) = 0, and (E.4) is satisfied in this
case as well. Thus we need only consider further the case in which var[m̄b] is of rank one,
which requires that ⇤̄b be of rank one as well.

In this case, we can write
⇤̄b = �bXbvbv

0
b
,

where 0 < �b < 161 and vb is a vector such that v0
b
Xbvb = 1. All columns of ⇤̄b are multiples

of the vector Xbvb, and as a consequence the unique non-null right eigenvector of ⇤̄b is
given by Xbvb, with the associated eigenvalue �b. Alternatively, using the orthogonalized
representation of the cognitive state introduced in section C.4, we can write

��1⇤̄b� = �bX̌bv̌bv̌
0
b
,

where we define v̌b ⌘ �0
vb, and note that v̌0

b
X̌bv̌b = 1.

Then (E.8) implies that the columns of ⇤̄a must also all be multiples of the vector Xbvb.

It follows that ⇤̄a must also be singular, and that its unique non-null eigenvector must be

61Again, the upper bound is required in order for I (⇤̄b) to be finite.



Xbvb, with an associated eigenvalue

�a = �bv
0
b
� ��1(Xbvb)

= �bv̌
0
b
 X̌bv̌b

= �b(v̌
0
b
 1/2)X̌b( 

1/2
v̌b)

 �bv̌
0
b
X̌bv̌b = �b.

Thus we must have

det(I � ⇤̄a) = (1� �a) � (1� �b) = det(I � ⇤̄b),

from which it follows that (E.4) must hold in this case as well.
Thus we have shown that whenever �̂2

a
, �̂

2
b
satisfy (E.2), for any memory structure for

case b with a finite information cost, it is possible to choose a memory stucture for case
a satisfying both (E.3) and (E.4). This means that it must be possible to achieve a lower
value for the right-hand side of (E.1) when �̂2

t
= �̂

2
a
than when �̂2

b
. This in turn implies that

the right-hand side of (E.1) defines a monotonically increasing function of �̂2
t
, regardless

of the nature of the function V (�̂2
t+1) that is assumed in this optimization problem. Hence

the value function V (�̂2
t
) defined by (E.1) must be a monotonically increasing function of

its argument.

2. Optimality of a unidimensional memory state

Here we establish, as stated in the text, that the matrix ⇤̄t that solves the problem

(E.10) min
⇤̄t2L(X(�̂2

t ))
I (⇤̄t) s.t. f(�̂2

t
, ⇤̄t)  �̂

2
t+1,

for given values of (�̂2
t
, �̂

2
t+1) is necessarily at most of rank one. As explained in the text, we

need only consider the case in which �̂2
t
< �̂

2
0. Given a matrix ⇤̄t of rank two that satisfies

the constraint in (E.10), we wish to show that we can choose an alternative transition
matrix of at most rank one, that also satisfies the constraint, but which achieves a lower
value of I (⇤̄t).
We first note that when �̂2

t
< �̂

2
0, X(�̂2

t
) is non-singular. Under the hypothesis that ⇤̄t

is non-singular, it follows that Xt⇤̄0
t
is non-singular as well (where we now simply write

Xt for X(�̂2
t
)), and hence positive definite. Similarly, ⇤̄tXt⇤̄0

t
must be non-singular and

hence positive definite.
It is useful to observe that in any period t, the Kalman filter (III.1) implies that the

optimal estimate of the unknown value of µ will be given by a linear function of elements
of the cognitive state of the form

µ̂t =  t + �
0
m̄t.(E.11)

where �t+1 ⌘ e1 �1,t+1c.



Then let the alternative transition matrix be given by

(E.12) ⇤̄1D
t

= �tXtvtv
0
t
,

with

�t =
�
0
t+1⇤̄tXt⇤̄0

t
�t+1

�
0
t+1Xt⇤̄0

t�t+1
, vt =

⇤̄0
t
�t+1

(�0
t+1⇤̄tXt⇤̄0

t�t+1)1/2
,

where we let the matrix ⌃!̄,t+1 be correspondingly modified, i.e. ⌃!̄,t+1 = (I�⇤̄1D
t
)Xt⇤̄1D

t
0.

The fact that Xt⇤̄0
t
is positive definite implies that the denominator of the expression for �t

is necessarily positive, so that this quantity is well-defined. Similarly, the fact that ⇤̄tXt⇤̄0
t

is positive definite implies that the denominator of the expression for vt is necessarily
positive, so that this vector is well-defined as well.

In addition, the fact that (by assumption) ⇤̄t 2 L(Xt) implies that (I � ⇤̄t)Xt⇤̄0
t
must

be p.s.d. From this it follows that

�
0
t+1(I � ⇤̄t)Xt⇤̄

0
t
�t+1 � 0,

and hence that
�
0
t+1Xt⇤̄

0
t
�t+1 � �

0
t+1⇤̄tXt⇤̄

0
t
�t+1 > 0,

where the final inequality follows from the fact that ⇤̄tXt⇤̄0
t
is positive definite. Thus the

proposed definition of �t satisfies 0 < �t  1. One also observes from the definition of vt
that v0

t
Xtvt = 1. These conditions su�ce to establish that the alternative transition matrix

⇤̄1D
t

is also an element of L(Xt). That is, it represents a feasible memory structure for
period t, given the value of �̂2

t
.

This alternative transition matrix corresponds to a memory structure in which m̄t+1 =
Xtvtm̃t+1, where m̃t+1 is the unidimensional memory state with law of motion (III.13).
From this it follows that

�
0
t+1m̄t+1 = �t�

0
t+1Xtvtv

0
t
s̄t + �

0
t+1Xtvt!̃t+1

will be a normally distributed random variable, with conditional first and second moments
given by

E[�0
t+1m̄t+1 |st] = �t�

0
t+1Xtvtv

0
t
s̄t

=
�
0
t+1⇤̄tXt⇤̄0

t
�t+1

�
0
t+1Xt⇤̄0

t�t+1

�
0
t+1Xt⇤̄0

t
�t+1 · �0t+1⇤̄ts̄t

�
0
t+1⇤̄tXt⇤̄0

t�t+1

= �
0
t+1⇤̄ts̄t



and

var[�0
t+1m̄t+1 |st] = �t(1� �t)(�

0
t+1Xtvt)

2

= (1� �t)
�
0
t+1⇤̄tXt⇤̄0

t
�t+1

�
0
t+1Xt⇤̄0

t�t+1

(�0
t+1Xt⇤̄0

t
�t+1)2

�
0
t+1⇤̄tXt⇤̄0

t�t+1

= (1� �t)�
0
t+1Xt⇤̄

0
t
�t+1

= �
0
t+1Xt⇤̄

0
t
�t+1 � �

0
t+1⇤̄tXt⇤̄

0
t
�t+1

= �
0
t+1[(I � ⇤̄t)Xt⇤̄

0
t
]�t+1

= �
0
t+1⌃!̄t+1�t+1.

These are the same conditional mean and variance as in the case of the memory structure
specified by the transition matrix ⇤̄t. Since the optimal estimate µ̂t+1 depends on mt+1

only through the value of �0
t+1m̄t+1 (from equation (E.11)), it follows that the conditional

distribution µ̂t+1|st, yt+1 will be the same under the alternative memory structure. This
in turn implies that the variance of µ̂t+1 will be the same, and hence that

�̂
2
t+1 = ⌦ � var[µ̂t+1]

will be the same. Thus ⇤̄1D
t

also satisfies the constraint in (E.10).

Next we show that I (⇤̄1D
t
) must be lower than I (⇤̄t). Let u

0
1 and u

0
2 be the two left

eigenvectors of ⇤̄t, with associated eigenvalues µ1 and µ2 respectively, and let the eigen-
vectors be normalized so that u0

i
Xtui = 1 for i = 1, 2. The corresponding right eigenvectors

must then be Xtu1 and Xtu2 respectively. Thus we have

⇤̄tXtui = µiXtui, u
0
i
⇤̄t = µiu

0
i
,

for i = 1, 2, and
u
0
1Xtu1 = u

0
2Xtu2 = 1, u

0
1Xtu2 = 0.

The vector �0
t+1 introduced in (E.11) can be written as a linear combination of the two

left eigenvectors,
�
0
t+1 = ↵1u

0
1 + ↵2u

0
2,

for some coe�cients ↵1,↵2. This implies that

�
0
t+1Xt⇤̄

0
t
�t+1 = ↵

2
1µ1 + ↵

2
2µ2,

�
0
t+1⇤̄tXt⇤̄

0
t
�t+1 = ↵

2
1µ

2
1 + ↵

2
2µ

2
2,

and hence that

�t =
↵
2
1µ1

↵
2
1µ1 + ↵

2
2µ2

µ1 +
↵
2
2µ2

↵
2
1µ1 + ↵

2
2µ2

µ2.

Thus we see that �t must be a convex combination of µ1 and µ2.

The fact that ⇤̄t 2 L(Xt) requires that both eigenvalues satisfy 0  µi  1, and the



assumption that ⇤̄t is non-singular further requires that µi > 0 for both. Thus we must
have

1� µi > (1� µ1)(1� µ2)

for both i = 1, 2. Since �t is a convex combination of µ1 and µ2, it follows that

1� �t > (1� µ1)(1� µ2).

Thus
det(I � ⇤̄1D

t
) = 1� �t > (1� µ1)(1� µ2) = det(I � ⇤̄t).

Results (D.6) and (D.7) then imply that I (⇤̄1D
t
) < I (⇤̄t).

Thus ⇤̄t cannot be the solution to the optimization problem (E.10). Since this argument
can be made in the case of any matrix ⇤̄t 2 L(Xt) that is of full rank, we conclude that
the optimal transition matrix can be at most of rank one.

3. The optimal weight vector of the univariate memory state

We turn now to the question of which linear combination of the elements of the reduced
cognitive state constitutes the single variable for which it is optimal to retain a noisy
record in memory — that is, we wish to characterize the optimal weight vector vt in (C.8).
Here we take as given the value of �t (or equivalently, the mutual information between
the period t cognitive state and the memory carried into period t + 1), and solve for the
optimal choice of vt for any given value of �t. With this in hand, it will then be possible
to characterize an optimal memory structure in terms of the single parameter �t.
Given the value of �̂2

t
and the matrix Xt ⌘ var[s̄t], and taking as given the value of �t,

we wish to choose vt so as to minimize �̂2
t+1. Note that

�̂
2
t+1 = min

⇠,�1

var[µ� ⇠m̃t+1 � �1yt+1].

Hence we can write our problem as the choice of ⇠, �1, and the vector vt so as to minimize

f(�̂2
t
,�t, vt; ⇠, �1) ⌘ var[µ � ⇠ (�tv

0
t
s̄t + !̃t+1) � �1yt+1]

= var[µ � ⇠�tv
0
t
s̄t � �1yt+1] + ⇠

2
�t(1� �t),

subject to the constraint that v0
t
Xtvt = 1. Note that the solution to this problem will simul-

taneously determine the optimal choice of vt (and hence the optimal memory structure,
given a choice of �t) and the coe�cients of the optimal estimate

(E.13) µ̂t+1 = ⇠m̃t+1 + �1yt+1

based on that memory structure.
We can alternatively define this problem as the choice of a weighting vector  ⌘ ⇠�tvt

and a Kalman gain �1. The values of these quantities su�ce to determine the value of the
objective (if we know the values of �̂2

t
and �t), since we can reconstruct ⇠ and vt from



them:

vt =
 

( 0Xt )1/2
, ⇠ = ( 0

Xt )
1/2
�t.

Moreover, there is no theoretical restriction on the elements of the vector  , since the scale
factor ⇠ can be of arbitrary size in the previous formulation of the optimization problem.
Thus we can alternatively state our problem as the choice of a weighting vector  and a
Kalman gain �1 to minimize

(E.14) f(�̂2
t
,�t;  , �1) = var[µ �  

0
s̄t � �1yt+1] +

1� �t

�t
 

0
Xt .

We can write the first term in this objective as

var[µ �  
0
s̄t � �1yt+1] = var[(1� (1� ⇢)�1)(µ� µ̂t)� �1(yt+1 � µ) + (e01 � �1c

0)s̄t �  
0
s̄t]

= (e01 � �1c
0 �  

0)Xt(e1 � �1c�  ) + (1� (1� ⇢)�1)
2
�̂
2
t
+ �

2
1�

2
✏
.

Substituting this into (E.14), we see that the objective is a strictly convex quadratic
function of  and �1, for any values of �̂2

t
and �t. It follows that the objective has an

interior minimum, given by the unique solution to the first-order conditions.

The FOCs for the minimization of (E.14) are given by the linear equations

(E.15)  = �t(e1 � �1c),

(E.16) c
0
Xt(e1 � �1c�  ) + (1� ⇢)(1� (1� ⇢)�1)�̂

2
t
� �1�

2
✏
= 0.

Equation (E.15) already allows one valuable insight: the optimal weight vector vt is simply
a normalized version of the vector �t+1 defined in (E.11). However, this does not yet tell us
how to choose vt, since the vector �t+1 depends on the Kalman gain �1,t+1, which depends
on the memory structure chosen in period t.

But together equations (E.15)–(E.16) provide a linear system that can be solved for  
and �1, given the values of �̂2

t
and �t. We obtain

(E.17) �1,t+1 =
(1� �t)⌦+ �t(1� ⇢)�̂2

t

(1� �t)(⌦+ ⇢2�2
y
) + �t(1� ⇢)2�̂2

t + �2
✏

as an explicit solution for the Kalman gain. It is worth noting that this implies that

(E.18) 0 < �1,t+1 <
1

1� ⇢
.

We can then use this solution to evaluate the elements of the vector �. We obtain

�1,t+1 ⌘ 1� (1� ⇢)�1,t+1 =
(1� �t)⇢(⌦+ ⇢�

2
y
) + �

2
✏

(1� �t)(⌦+ ⇢2�2
y
) + �t(1� ⇢)2�̂2

t + �2
✏

> 0,



�2,t+1 ⌘ �⇢�1,t+1 = � (1� �t)⇢⌦+ �t⇢(1� ⇢)�̂2
t

(1� �t)(⌦+ ⇢2�2
y
) + �t(1� ⇢)2�̂2

t + �2
✏

 0.

The weight vector vt is then just a normalized version of �t+1.

We note that when ⇢ = 0, the optimal weight vector has v2 = 0; that is, the memory
state m̃t+1 is just a noisy record of µ̂t. (This is intuitive, since when the state is i.i.d., and
given the estimate µ̂t of the mean, the value of yt provides no information about anything
that needs to be estimated or forecasted in period t+ 1 or later.) Instead when ⇢ > 0, we
see that the sign of v2 is necessarily opposite to the sign of v1: the optimal memory state
averages µ̂t and yt with a negative relative weight on yt.
Given this solution for �1, the implied solution for the vector  is given by (E.15).

Substituting the solutions for �1 and  into the quadratic objective, we obtain for the
minimum possible value of the objective

(E.19) �̂
2
t+1 = (1� �t)�

0
t+1⌃0�t+1 + �t(�1,t+1)

2
�̂
2
t
+ �

2
1,t+1�

2
✏
.

This provides an equation for the evolution of the uncertainty measure �̂2
t+1, given a choice

each period of �t, and using the formulas above for the values of �1,t+1 and �t+1.



F. The Simple Example in Section II

Posterior uncertainty about the long-run mean µ sequentially evolves according to (II.3),
(II.6) and (II.7). It is straightforward to see that the posterior uncertainty converges to a
limit after an extensive learning, i.e. ⌃t ! ⌃1 and �̂2

t
! �̂

2
1. From the equations, one

can derive that ⌃1 should satisfy

⌃1 = (1� �̄)⌦+ �̄

✓
1

⌃1
+

1

�2
y

◆�1

.

Rearranging this term yields a unique solution for ⌃1 as follows,

⌃1 =
�
2
y

2

(
�(1� �̄)

✓
1� ⌦

�2
y

◆
+

s

(1� �̄)2
✓
1� ⌦

�2
y

◆2

+ 4(1� �̄)
⌦

�2
y

)
.

Thus, in the perfect memory case (�̄ = 1), the posterior uncertainty converges to zero,
⌃1 = �̂

2
1 = 0. In comparison, for �̄ < 1, we have ⌃1 > 0 and �

2
1 > 0. Then, (II.2)

determines the long-run Kalman gain as

�1 =
⌃1

⌃1 + �2
y

,

which is positive as long as �̄ < 1.



G. Numerical Solutions

Here we provide further details of the numerical calculations reported in section V of
the main text.

1. Dynamics of uncertainty given the path of {�t}

We begin by discussing our approach to numerical solution for the law of motion ⌘t+1 =
� (⌘t;�t) for the scaled uncertainty measure {⌘t}, given a path for the memory-sensitivity
coe�cient {�t}. In terms of this rescaled state variable, the law of motion (E.19) becomes

(G.1) ⌘t+1 = (1� �t)(1� �1,t+1)
2
K + (1� ⇢

2
�t)�

2
1,t+1 + �t(1� (1� ⇢)�1,t+1)

2
⌘t,

and (E.17) becomes

(G.2) �1,t+1 =
(1� �t)K + (1� ⇢)�t⌘t

(1� �t)(K + ⇢2) + (1� ⇢2) + (1� ⇢)2�t⌘t
.

Substitution of (G.2) for �1,t+1 in the right-hand side of (G.1) yields an analytical expres-
sion for the function � (⌘t;�t).
This result su�ces to allow us to compute the optimal dynamics of the uncertainty

measure {⌘t} in the case that the only limit on the complexity of memory is an upper
bound �t  �̄ < 1 each period. We observe from (E.14) that the objective f(�̂2

t
,�t;  , �1)

is minimized, for given values of the other parameters, by making �t as large as possible.
Hence the same is true for the function f(�̂2

t
,�t, vt) obtained by minimizing the objective

over possible choices of ⇠ and �1. It follows that it will be optimal to choose �t = �̄ each
period in the case of this kind of constraint.
We thus obtain a nonlinear di↵erence equation

⌘t+1 = � (⌘t; �̄)

for the dynamics of the scaled uncertainty measure. We can iterate this mapping, starting
from the initial condition ⌘0 = K/(K +1), to obtain the complete sequence of values {⌘t}
for all t � 0 implied by any given value of �̄. This is the method used to compute the
dynamic paths shown in Figure 1 in the main text.
Figure 1 shows the dynamics for {⌘t} implied by this solution, for various possible values

of �̄, in the case that K = 1 and ⇢ = 0. Figure A1 shows how this graph would be di↵erent
in the case of two larger values for K (but again assuming ⇢ = 0). A higher value of K
(greater prior uncertainty) implies a higher value for the initial value ⌘0 of our normalized
measure of uncertainty (since ⌘0 = K/(K+1)). This means that the curves all start higher,
the larger the value of K. But the value of K also a↵ects the long-run level of uncertainty
⌘1, even though the initial condition becomes irrelevant in the long run. Except when
�̄ = 1 (perfect memory), a higher value of K implies greater long-run uncertainty; and



when K is large (as illustrated in the right panel), ⌘1 is large (not much below the degree
of uncertainty implied by the prior) except in the case of quite high values of �̄.
Figure A2 similarly shows how Figure 1 would look in the case of two larger values of

⇢, but again assuming K = 1. We see that for a given degree of prior uncertainty and
a given bound on memory precision, the rate at which uncertainty is reduced is slower
when the external state is more serially correlated. This is because there are e↵ectively
fewer independent observations over a given number of periods when the state is serially
correlated. In the case of perfect memory (�̄ = 1), this a↵ects the speed of learning but not
the long-run value ⌘1 = 0 that is eventually reached. Instead, when memory is imperfect,
the long-run value ⌘1 is also higher when the state is more serially correlated; e↵ectively,
the limited number of recent observations of the state that can be retained in memory
reveal less about the value of µ when the state is more serially correlated.



Figure A1. The evolution of uncertainty about µ (when ⇢ = 0)

Note: The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remembered)
observations grows. Each panel corresponds to a particular value of K (maintaining the assumption that
⇢ = 0, as in Figure 1). Each panel shows the evolution for several di↵erent possible values of �̄ (color
code is the same in both panels).

Figure A2. The evolution of uncertainty about µ (when ⇢ > 0)

Note: The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remembered)
observations grows. Each panel corresponds to a particular value of ⇢ (maintaining the assumption that
K = 1, as in Figure 1). Each panel shows the evolution for several di↵erent possible values of �̄ (color
code is the same in both panels).



2. Solving for the value function Ṽ (⌘) and policy function �
⇤(⌘) in the case of a linear information cost

In the case of a linear information cost (or any other cost function with a positive
marginal cost of increasing It), it is necessary to solve the Bellman equation for the value
function Ṽ (⌘), in order to determine the optimal dynamics of {�t}. Here we explain the
methods used to solve this problem in the case of a linear information cost (the results
reported in section IV.B).
Once we have solved for the function � (⌘t;�t), as in the previous subsection, the Bellman

equation for the case of a linear information cost can be written

(G.3) Ṽ (⌘t) = min
�t2[0,1]

"
⌘t �

✓̃

2
log (1� �t) + �Ṽ (� (⌘t;�t))

#
.

We use the value function iteration algorithm to find the value function that is a fixed
point of this mapping.
When iterating the mapping to update the value function, we use a grid search method

to find the optimal policy function, because the right-hand side of the Bellman equation
is in general a non-convex function of the policy variable �t (as we illustrate in Figure
A5 below). We approximate the value function with Chebyshev polynomials. Once the
value function has converged, we can use our solution for Ṽ (⌘) to solve numerically for the
policy function �⇤(⌘), the solution to the minimization problem on the right-hand side of
(G.3).
This function is graphed for several values of ✓̃ in Figure A3, where we maintain the

parameter values K = 1, ⇢ = 0 as in Figure 1. When ✓̃ = 0 (no cost of memory precision),
it is optimal to choose �t = 1 (perfect memory) in all cases. But for any value of ⌘,
the optimal �⇤(⌘) < 1 when ✓̃ > 0 (since in this case, perfect memory becomes infinitely
costly); furthermore it is lower (memory is more imperfect) the higher is ✓̃. We also see
that for any cost parameter ✓̃ > 0, the optimal �⇤(⌘) is a decreasing function of ⌘. This
indicates that the less accurate the information contained in the cognitive state st (as
indicated by the higher value of ⌘t), the less information about the cognitive state that it
will be optimal to store in memory, when the memory cost can be reduced by storing a
less informative record.
The policy function �t = �

⇤(⌘t) together with the law of motion

(G.4) ⌘t+1 = � (⌘t;�t)

derived in section G.1 can then be solved for the dynamics of the scaled uncertainty {⌘t}
for all t � 0, starting from the initial condition ⌘0 = K/(K + 1). The dynamics implied
by these equations can be graphed in a phase diagram, as illustrated in Figure A4. In
the phase diagrams shown in each of the two panels, the value of ⌘t is indicated on the
horizontal axis and the value of �t on the vertical axis. Equation (G.4), which holds
regardless of the nature of the information cost function and the degree to which the
future is discounted, determines a locus ⌘1(�), indicating for each value of � the unique



Figure A3. The optimal policy function

Note: The optimal policy function �
⇤(⌘), in the case of progressively larger values for the information

cost parameter ✓̃, under the assumption that K = 1, ⇢ = 0.

value of ⌘ that will be a fixed point of these dynamics if �t is held at the value �. We can
further show that whenever ⌘t < ⌘1(�t), the law of motion (G.4) implies that ⌘t+1 > ⌘t,

so that uncertainty will increase, while if ⌘t > ⌘1(�t), it implies instead that ⌘t+1 < ⌘t, so
that uncertainty will decrease.
The choice of �t (and hence the degree to which uncertainty will increase or decrease)

is given by the policy function, that depends on the specification of information costs.
When there is a fixed upper bound on information (the case discussed in the previous
subsection), the policy function is just a horizontal line at the vertical height �̄, as shown
in the left panel of the figure.62 In this case, the values of (⌘t,�t) in successive periods start
at the point (⌘0, �̄), labeled “t = 0” in the figure, and then move left along the graph of the
policy function (since ⌘0 > ⌘1(�̄) as shown). They continue to move left along the policy
function, with ⌘t converging asymptotically to ⌘1(�̄) from above; the stationary long-run
values (⌘1,�1) correspond to the point at which the policy function � = �̄ intersects the
locus of fixed points ⌘1(�).
The right-hand panel of the figure shows the corresponding phase-plane dynamics in the

less trivial case of a linear cost function for information. In this case, the policy function
is instead a downward-sloping curve, as shown in Figure A3.63 Again the values of (⌘t,�t)
in successive periods must always lie on the graph of the policy function; the direction of

62The figure plots the location of this line for the case �̄ = 0.8. The figure is drawn for parameter
values K = 1, ⇢ = 0. Thus the dynamics of uncertainty shown in the figure correspond to the curve
labeled �̄ = 0.8 in Figure 1.

63In the figure, the policy function and the implied dynamics are shown for the case in which ✓̃ = 0.2,
corresponding to one of the intermediate curves shown in Figure A3. Again the figure is for the case
K = 1, ⇢ = 0, so that the location of the locus of fixed points ⌘1(�) and the law of motion (G.4) remain
the same as in the left panel.



Figure A4. The dynamics of scaled uncertainty and memory precision

Note: The dynamics of scaled uncertainty ⌘t and memory precision �t graphed in the phase plane. The
left panel gives an alternative graphical presentation of the dynamics plotted in Figure 1 for the case of
a fixed upper bound �̄ on memory precision. The right panel shows the corresponding dynamics in the
case of a linear cost of precision parameterized by ✓̃.

motion up or down this curve depends on whether the current position lies to the left or
right of the locus of fixed points ⌘1(�). The initial point (labeled “t = 0”) is determined
as the point on the policy curve with horizontal coordinate given by the initial condition
⌘0. Since this point lies to the right of the locus of fixed points, the points for successive
periods move up and to the left on the policy curve, meaning that �t rises as ⌘t falls.
The scaled uncertainty continues to fall, and the precision of memory continues to rise,

until the values (⌘t,�t) converge to stationary long-run values (⌘1,�1), again correspond-
ing to the point at which the policy function �

⇤(⌘) intersects the locus of fixed points
⌘1(�). Note that convergence is slower in the right panel of the figure than in the left,
because in the early periods, when uncertainty is high, a less precise memory is chosen in
the linear-cost case, resulting in slower learning from experience.
Di↵erent values of ✓̃ correspond to di↵erent locations for the policy function �⇤(⌘), as

shown in Figure A3, and hence to di↵erent dynamics in the phase plane, converging to
di↵erent long-run levels of scaled uncertainty. The dynamics of scaled uncertainty as a
function of the number of observations t are shown for progressively larger values of ✓̃ in
Figure 3 in the main text, using the same format as in Figure 1.

3. The possibility of discontinuous solutions

Figure A5 illustrates our comment about the possible non-convexity of the optimization
problem (G.3). Let RHS(�t; ⌘t) be the function defined on the right-hand side of (G.3),
i.e., the objective of the minimization problem. The figure plots the value of RHS(�; ⌘0),
normalized by dividing by the positive constant RHS(0; ⌘0) (so that a value of 1.0 on



Figure A5. The Bellman equation

Note: The objective function RHS(�t, ⌘t) that is minimized in the Bellman equation, plotted as a
function of �t for the initial level of uncertainty ⌘t = ⌘0. The function is normalized so that the value
is 1.0 when �t = 0, and plotted for three nearby values of ✓̃, in the case that K = 10. The minimizing
value of �t jumps discontinuously as ✓̃ passes a value between 0.2800 and 0.2805.

the vertical axis means that RHS(�; ⌘0) is of exactly the same size as RHS(0; ⌘0)). This
function is shown for each of three slightly di↵erent values of ✓̃, assuming in each case that
K = 10, as in the right panel of Figure 5 in the text. In the case of each of these curves,
a large dot (the same color as the curve) indicates the global minimum of the function.
A horizontal dashed line (also the same color as the corresponding curve) indicates the
minimum of RHS(�; ⌘0) — and thus the value of Ṽ (⌘0) — again normalized by dividing
by RHS(⌘0).

The figure shows that for values of ✓̃ in this range, RHS(�) is not a convex function of
�. It is increasing for small enough values of �, making the choice �t = 0 a local minimum
in this case. (This is true for all values of ✓̃ greater than a critical value around 0.15,
which explains the existence of the horizontal segment of the connected black curve in
the right panel of Figure 5.) However, the function reaches a local maximum, and then
decreases for larger values of �, as the degree to which a larger value of �t reduces � (⌘0;�t)
outweighs the increase in the information cost. (A large enough value of K is required for
this to occur. A larger value of K increases the sensitivity of the value of � (⌘0;�) to the
value of �; see equation (G.5) below.) For even larger values of � (values approaching 1),
further increases in � increase the information cost term so sharply that RHS(�; ⌘0) is
again decreasing in �. This means that there is a second local minimum of the objective
function, at an interior value of �. Which of the two local minima represents the global
minimum of the function depends on parameter values.

In the case illustrated in the figure, the interior local minimum achieves a lower value
of the objective than the choice �t = 0, for all values of ✓̃ less than a critical value that is



slightly larger than 0.2805. (As shown in the figure, when ✓̃ = 0.2805, the interior minimum
achieves a value of the objective that is quite close to the value RHS(0; ⌘0). However, the
value achieved remains slightly smaller: there is a (barely visible) green dashed line, just
below the blue dashed line at the normalized value 1.0.) But the normalized value of the
objective at the interior minimum increases as ✓̃ is increased, and for a value of ✓̃ only
slightly greater than 0.2805, the normalized value becomes greater than 1.0 (which is to
say, the interior local minimum is no longer the global minimum of the objective). When
this critical value of ✓̃ is passed, the optimal value �⇤(⌘0) jumps discontinuously from the
interior local minimum (which is a continuously decreasing function of ✓̃) to the value zero.
When this happens, the optimal long-run level for the normalized uncertainty measure ⌘1
increases discontinuously, from a value on the lower branch of the correspondence shown
in the right panel of Figure 5 to the value ⌘0 = K/K + 1. For all values of ✓̃ higher than
this, it is optimal to choose a completely uninformative memory for all t, so that ⌘t = ⌘0

for all t, and hence ⌘t ! ⌘1 = ⌘0.

For larger values of ✓̃ than those considered in Figure A3, the optimal policy function
�
⇤(⌘) is equal to zero for all large enough (though still finite) values of ⌘, as illustrated in

Figure A6. Once ✓̃ is large enough for �⇤(⌘0) to equal zero, the optimal dynamics imply
⌘t = ⌘0 for all t, and hence ⌘1 = ⌘0 = K/K + 1, as shown in Figure 5.

Figure A6. The optimal policy function (for a sufficiently large ✓̃)

Note: The optimal policy function �
⇤(⌘), in the case of progressively larger values for the information

cost parameter ✓̃, under the assumption that K = 1, ⇢ = 0. Here we consider values of ✓̃ larger than
those shown in Figure A3.



4. The case ⇢ = 0

Additional analytical results are possible in the case that ⇢ = 0 (the external state is an
i.i.d. random variable). In this case, the law of motion for the scaled uncertainty measure
(derived in section G.1) simplifies to

(G.5) ⌘t+1 = 1� 1

K + 1� �t(K � ⌘t)
⌘ � (⌘t;�t).

In the case of an exogenous upper bound on mutual information, the nonlinear di↵erence
equation obtained by setting �t = �̄ in (G.5) is of an especially simple sort. The function
on the right-hand side of this equation is a hyperbola, increasing and concave for all ⌘t > 0.
We easily see that the right-hand side has a positive value when ⌘t = 0, and a value less
than K/(K + 1) when ⌘t = K/(K + 1).

Thus for any 0 < �̄ < 1, the function � (⌘t; �̄) is an increasing, concave function that
is above the diagonal at ⌘t = 0 and below the diagonal at ⌘t = K/(K + 1). It follows
that the function must intersect the diagonal at exactly one point, ⌘t = ⌘1. We can
furthermore give an explicit algebraic solution for this fixed point as the solution to a
quadratic equation. Note in particular that it is necessarily strictly positive and strictly
less than K/(K + 1), and that it is a decreasing function of �̄, approaching K/(K + 1) as
�̄! 0, and approaching 0 as �̄! 1.

On the interval ⌘1 < ⌘t  K/(K+1), the law of motion (G.5) implies that ⌘1 < ⌘t+1 <

⌘t. Hence when we start from the initial condition ⌘0 = K/(K + 1), the implied dynamics
must satisfy

⌘0 > ⌘1 > ⌘2 > ⌘3 . . . ,

a monotonically decreasing sequence. Because the sequence is bounded below by ⌘1, it
must converge, and it is easily seen that it can only converge to the fixed point ⌘1 that we
have already calculated. Hence for each possible �̄, we obtain a monotonically decreasing,
convergent sequence of the kind shown in Figure 1. We can also easily show that the curve
must be lower for each value of t, the larger is �̄.

We can also obtain additional analytical results in the case of a linear information cost.
The value function satisfies a Bellman equation of the form

Ṽ (⌘t) = min
�t

"
�
2
⌘t �

✓̃

2
log (1� �) + �Ṽ (� (⌘t;�t)))

#
.

The first order condition with respect to �t is

(G.6)
✓̃

2

1

1� �t
+ �Ṽ

0(⌘t+1)
@� (⌘t;�t)

@�t
= 0.



And the envelope condition is

(G.7) Ṽ
0(⌘t) = �

2 + �Ṽ
0(⌘t+1)

@� (⌘t;�t)

@⌘t
.

We can use these two conditions to derive an Euler equation for the dynamics of the scaled
uncertainty measure.

Substituting the solution (G.5) for � (⌘t;�t) and taking the derivative with respect to
�t, we can rewrite (G.6) as

Ṽ
0(⌘t+1) = � ✓̃

2�

1

1� �t

✓
@� (⌘t;�t)

@�t

◆�1

= � ✓̃

2�

1

1� �t

✓
� (K � ⌘t)

(K + 1� �t(K � ⌘t))
2

◆�1

=
✓̃

2�

(K + 1� �t(K � ⌘t))
2

(1� �t)(K � ⌘t)

=
✓̃

2�

1

(1� ⌘t+1) (1� (1� ⌘t+1)(1 + ⌘t))
,

where the last equality is derived by again substituting the law of motion (G.5). It follows
that if ⌘t ! ⌘1 in the long run, the stationary solution ⌘1 must satisfy

(G.8) Ṽ
0(⌘1) =

✓̃

2�

1

(1� ⌘1)⌘21
.

Next we rewrite (G.7), again taking the derivative of expression (G.5) for Ṽ (⌘t;�t):

Ṽ
0(⌘t) = �

2 + �Ṽ
0(⌘t+1)

@� (⌘t;�t)

@⌘t

= �
2 + �Ṽ

0(⌘t+1)
�t

(K + 1� �(K � ⌘t))
2

= �
2 + �Ṽ

0(⌘t+1)
�t

(1� ⌘t+1)
�2

= �
2 + �Ṽ

0(⌘t+1)(1� ⌘t+1)
2 (K + 1)(1� ⌘t+1)� 1

(K � ⌘t)(1� ⌘t+1)
.

It follows that the stationary solution ⌘1 must satisfy

(G.9) Ṽ
0(⌘1) = �

2 + �Ṽ
0(⌘1)

(1� ⌘1) [(K + 1)(1� ⌘1)� 1]

K � ⌘1
.

Moreover, in a stationary solution, the value Ṽ 0(⌘1) given by (G.8) must also be the value



of Ṽ 0(⌘1) in (G.9). Using (G.8) to substitute for Ṽ 0(⌘1) in (G.9), we obtain a condition
that must be satisfied by ⌘1 in any stationary solution with an interior optimum (i.e., a
stationary solution in which 0 < ⌘1 < K/(K + 1)):

(G.10) ✓̃ = 2�3(1� ⌘1)⌘21


1� �

(K + 1)(1� ⌘1)2 � (1� ⌘1)

K � ⌘1

��1

.

This is the relationship between ✓̃ and ⌘1 that is graphed as a connected black curve in
Figure 5. Note that for any value 0 < ⌘1 < K/(K +1), there is a unique ✓̃ > 0 consistent
with this relationship; but (as shown in the right panel of Figure 5) there may be multiple
solutions for ⌘1 consistent with a given value of ✓̃.



H. Predicted Values for the Quantitative Measures of Forecast Bias

Here we provide further explanation of the numerical results reported in section V of
the main text.

1. Long-run stationary fluctuations

From the definition of the univariate memory state m̃t+1 = �tv
0
t
s̄t+!t+1, we can derive a

law of motion for the univariate memory state m̃t. Using the subscript 1 for the long-run
stationary coe�cients, we get

m̃t+1 = �1v
0
1s̄t + !̃t+1

= �1v
0
1

✓
µ̂t

yt

◆
+ !̃t+1

= �1 [e01v1 {(e01 � �1c
0)mt + �1yt}+ (e02v1)yt] + !̃t+1

= �1 [e01v1 {(e01 � �1c
0)X1v1m̃t + �1yt}+ (e02v1)yt] + !̃t+1

= ⇢mm̃t + ⇢myyt + !̃t+1

where ⇢m ⌘ �1(e01v1) (e01 � �1c
0)X1v1 and ⇢my ⌘ �1 (�1 + e

0
2v1).

We can evaluate the numerical values of the coe�cients defining the long-run dynamics
as follows. Equations (G.1)–(G.2) imply that the long-run coe�cients �1, ⌘1, �1,1 must
satisfy the pair of nonlinear equations

⌘1 =
(1� �1)(1� �1,1)2K + (1� ⇢

2
�1)�21,1

1 � �1(1� (1� ⇢)�1,1)2
,

�1,1 =
(1� �1)K + (1� ⇢)�1⌘1

(1� �1)(K + ⇢2) + (1� ⇢2) + (1� ⇢)2�1⌘1
.

In the case of an exogenous bound on mutual information, we can set �1 = �̄, in which
case these provide two equations to solve for the values of ⌘1 and �1,1. (Note that the
relevant solution is the one that satisfies the bounds 0 < ⌘1 < K/(K + 1), and that it
necessarily also satisfies 0 < �1,1 < 1/(1 � ⇢).) This allows us to compute the long-run
stationary values of the coe�cients ⌘ and �1 plotted for alternative values of �̄ in Figure
2.

We have also shown in section E.3 that the optimal weight vector vt is just a normalized
version of the vector �t+1 ⌘ e1 � �1,t+1c. Hence in the long run, this vector must become

v1 =
e1 � �1,1c

(e01 � �1,1c0)X1(e1 � �1,1c)
.



In particular, the ratio v2,1/v1,1 (the quantity plotted as “v1” in Figure 2) is given by

v2,1

v1,1
= � ⇢�1,1

1 � (1� ⇢)�1,1
< 0.

Finally, we observe that the intrinsic persistence coe�cient ⇢m defined above must satisfy

⇢m ⌘ �1v1,1 · (e01 � �1,1c
0)X1v1

= �1v1,1

= �1(1� (1� ⇢)�1,1).

This allows us to calculate the other coe�cient that is plotted in Figure 2. Note that
because the Kalman gain necessarily satisfies the bounds 0 < �1 < 1/(1� ⇢), this solution
for the intrinsic persistence coe�cient implies that

(H.1) 0 < ⇢m < 1.

In the long run, we can describe the evolution of the DM’s cognitive state using the
following system of equations:

m̃t+1 = ⇢mm̃t + ⇢myyt + !̃t+1

yt+1 = (1� ⇢)µ+ ⇢yt + ✏y,t+1

Therefore, we can write it as a VAR(1) system with constant coe�cients and Gaussian
innovation terms:

✓
m̃t+1

yt+1

◆
=

✓
0

1� ⇢

◆
µ+

✓
⇢m ⇢my

0 ⇢

◆✓
m̃t

yt

◆
+

✓
!̃t+1

✏y,t+1

◆

Because the two eigenvalues of this vector law of motion are ⇢ and ⇢m, (H.1) implies that
this describes a stationary stochastic process. Hence we can compute stationary long-
run values for the second moments of the variables, and use these to define the impulse
response functions and predicted regression coe�cients reported in the text.
For example, in the case of a fixed per-period bound on mutual information, we can

compute the impulse responses for the DM’s estimate of µ and her one-quarter-ahead
forecast of the external state, as explained in section IV.C. Here we present additional
figures, showing what the impulse responses shown in Figure 6 in the text would be like
in the case of alternative values of ⇢. In Figures A7 and A8 shown here, each panel
corresponds to a di↵erent value of ⇢, and shows the responses for several di↵erent possible
values of �̄. (As with Figure 6 in the main text, we here assume that K = 1.)



Figure A7. Impulse responses of the DM’s estimate of µ for alternative degrees of persistence

⇢ of the external state process.



Figure A8. Impulse responses of the DM’s one-quarter-ahead forecast of the external state

for alternative degrees of persistence ⇢ of the external state process.



2. Predicted value of the regression coe�cient bs,h

Given a long enough series of observations from an environment with a fixed µ, our model
yields stationary values for the Kalman gain �1 and for the amplitude of fluctuations in
the memory state var[m̄t]. We can then compute the values of the following long-run
conditional second moments:

var[m̄t|µ] = var[m̄t]� cov[m̄t, µ]var[µ]
�1
cov[µ, m̄t]

= var[m̄t]� cov[m̄t, xt]e1var[µ]
�1
e
0
1cov[xt, m̄t]

= var[m̄t]�
1

var[µ]
var[m̄t]e1e

0
1var[m̄t]

cov[µ̂t, yt|µ] = cov[(e01 � �1c
0)m̄t + �1yt, yt|µ]

= (e01 � �1c
0)cov[m̄t, yt|µ] + �1var[yt|µ]

= (e01 � �1c
0)var[m̄t|µ]c+ �1var[yt|µ]

var[µ̂t|µ] = var[(e01 � �1c
0)m̄t + �1yt|µ]

= (e01 � �1c
0)var[m̄t|µ](e1 � �1c) + �

2
1var[yt|µ] + 2�1(e

0
1 � �1c

0)cov[m̄t, yt|µ]
= (e01 � �1c

0)var[m̄t|µ](e1 � �1c) + �
2
1var[yt|µ] + 2�1(e

0
1 � �1c

0)var[m̄t|µ]c

In order to write the dynamics of the model in terms of scale-invariant quantities, we
divide each second moment by var[yt|µ] = �

2
y
. Thus we can write

var[m̄t|µ]
var[yt|µ]

= ⌃̃m̄ � 1

K
⌃̃m̄e1e

0
1⌃̃m̄

cov[µ̂t, yt|µ]
var[yt|µ]

= (e01 � �1c
0)
var[m̄t|µ]
var[yt|µ]

c+ �1

var[µ̂t|µ]
var[yt|µ]

= (e01 � �1c
0)
var[m̄t|µ]
var[yt|µ]

(e1 � �1c) + �
2
1 + 2�1(e

0
1 � �1c

0)
var[m̄t|µ]
var[yt|µ]

c,

using the notation ⌃̃m̄ ⌘ var[m̄t]/�2
y
.

We now wish to calculate the predicted asymptotic value of the regression coe�cient

bs,h ⌘
cov[ŷt+h|t, yt|µ]

var[yt|µ]

where ŷt+h|t ⌘ E[yt+h|m̄t, yt]. From

cov[ŷt+h|t, yt|µ] = cov[(1� ⇢
h)µ̂t + ⇢

h
yt, yt|µ]

= (1� ⇢
h)cov[µ̂t, yt|µ] + ⇢

h
var[yt|µ],



where µ̂t ⌘ E[µ|m̄t, yt], we can then compute

bs,h = (1� ⇢
h)
cov[µ̂t, yt|µ]
var[yt|µ]

+ ⇢
h

= (1� ⇢
h)


(e01 � �1c

0)

✓
⌃̃m̄ � 1

K
⌃̃m̄e1e

0
1⌃̃m̄

◆
c + �1

�
+ ⇢

h
.

In Figure 7, the value of b
1
h
s,h

is plotted against the value of ⇢.

3. Parameterization of the Model

We find pairs of parameters (�̄, K) that minimize the following target.

MSE
targeted =

1

6

X

⇢

✓
⇢
s

1 � ⇢̂
s

1

⇢̂
s

1

◆2

where ⇢̂s1 is the degree of over-reactions observed in one-period-ahead forecasts data, and ⇢
takes values from [0.0, 0.2, 0.6, 0.8, 1.0]. The minimum sample MSE is achieved at 0.0011,
and the best-fitting pairs are displayed in the left panel of Figure A9. The right panel
displays the pairs of (�̄, K) that generate the same level of MSE

targeted. We can see that
each curve is upward-sloping. This is because a lower degree of over-reactions predicted
by a higher �̄ has to be o↵set by a higher K.

Figure A9. Pairs of (�̄,K) generating the same level of MSE
targeted


