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1 Proof of Proposition 4

1.1 Case of lim,,; ¢(¢) = o0

We prove Proposition 4 under the assumption that ¢/(1) = lim,—,; ¢/(¢) = oo, under which B will never
choose accuracy 1.

Our proof consists of three steps. Consider our model given a cost parameter A > 0. First, we derive
necessary conditions that any mixed-learning PBE must satisfy. Using the properties, we construct a mixed-
learning PBE, denoted &y (p*) given a price p* that S may offer, which is tractable. Second, we show that the
PBE &) (p*) is Pareto-undominated for a sufficiently small A > 0. Third, we examine B’s (ex-ante) expected
payoff in the PBE &, (p*).

Step 1 Consider our model with a cost parameter A > 0. We derive some necessary conditions that any
mixed-learning PBE must satisfy. These properties are used not only to construct a tractable mixed-learning
PBE but also to prove that the PBE is Pareto-undominated.

Lemma 1. For any mized-learning PBE, if B randomizes information acquisition after an equilibrium price
€ (L, H), the following holds after B is offered price p:

1. B randomizes over two accuracies 0 and G(p); that is, her strategy  is such that supp(B(- | p)) =
{0,4(p)}, where G : (L, H) — (0,1) is the function defined by

o) (J— =) ) + M) = L. )

This implicit function ¢ is well-defined.

2. B’s posterior probability that S is of type H after observing the price p, denoted 1 (p), satisfies equation

fup) = 2210 2

Proof. Consider any mixed-learning PBE, at which B randomizes information acquisition after some price
offer p. Suppose that she chooses to acquire information. If B chooses accuracy ¢ > 0 and buys if a signal
realization is x = H and never buys if x = N then her payoff is 71 (p)q(H — p) — Ac(q). In the equilibrium,
the accuracy ¢ = G(p) after the price p must maximize this payoff. Hence, it satisfies the first-order condition
71(p)(H — p) = X' (G(p)), which gives the desired equation (2).

Next, suppose that she acquires no information. That is, she chooses accuracy 0, after which she buys
with probability 1. Her payoff is 71 (p)(H —p) + (1 — 71(p)) (L — p).

B must be indifferent between the two accuracies ¢(p) and 0 since B randomizes her choice of accuracies.
That is,

m1(p)(1 = q(p))(H —p) + (1 = T1(p))(L — p) + Ac(q(p)) = 0. 3)



Substituting (2) into (3), we obtain the desired equation (1).

It remains to show that the implicit function ¢ is well-defined. That is, we show that for any p € (L, H),

there exists a unique ¢ € (0,1) that solves equation (1). Since c is strictly convex and I;I—:]L) —qg>1—g>0,

the LHS of (1) is strictly increasing in ¢(p). It is also continuous in §¢(p). Moreover,
A (0)(H—-L)/(H—p)—0)+Xc(0)=0<p—L,
M L)((H—-L)/(H-p)—1)+ (1) =c0>p—L,
which ensures the existence and uniqueness of ¢ that solves (1). |

Lemma 2. The functions 711 and G, defined by equations (1) and (2), satisfy the following properties:
1. lim,, 1, ¢(p) = 0 and lim,_, g G(p) = 0 for any A > 0.
2. limp_;, 71 (p) = 0 and lim,_, g 71 (p) = 1 for any A > 0.
3. 71(p) is continuous and strictly increasing for any A > 0.

4. im0 q¢(p) = 1, limyx—,0 71 (p) = 1, and limy_,o 7 (p) = 0 for any p € (L, H).

Proof. The first claim is immediate from (1). We prove the second claim. Since lim,_,1, §(p) = 0, we have

lim,_,;, 71 (p) = ’\;EOL) = 0. Since lim,_, 7 §(p) = 0 and (1) is equivalent to 71 (p)(H — L) — A'(¢(p))q(p) =

p — L, we have lim,_,y 71 (p) = 1.
We show the third claim. Since the continuity is obvious, we prove that it is strictly increasing. By the
implicit function theorem applied to the function ¢, as defined in (1),

A (@) =z — 1

SOy (H—p)
0= S L ) (Q

Substituting it into (2), we have

0k el St (OLN0))

TH-L—q(p)H-p) H-L—qp)(H—p)

(5)

Note that 71 (p) > 0 for any p such that 71 (p) < 1. This is because both the denominator and the numerator
of the RHS of (5) is strictly positive. Hence, to show that 71 (p) < 1 for all p € (L, H), it suffices to show that
71(p) < 1forall p € (L, H). Suppose, by negation, that there is some p € (L, H) such that 71 (p) = 1. Then,
71(p) > 1 for all p € (p, H) (because if 71 (p) = 1, we must have 71(p) > 0). Since lim, ,y 71 (p) = 1 and
71 > 1on (p, H), 71 must be weakly decreasing on a neighborhood of H. However, applying lim,_, g ¢(p) =0
and lim,_, g 71 (p) = 1 to the last expression of (5), we have that 77 (H) > 0, a contradiction.

We prove the fourth claim. Let A — 0. If G(p) /4 1 then the LHS of (1) would converge to zero, but the
RHS is p— L > 0 for any p € (L, H). This is a contradiction, and thus ¢(p) — 1. To show that 71(p) — 1,
rewrite (1) as

et | S50 (51

(4(p)) -p
(g

Since lim,_,1 ¢/(¢) = oo, we have lim,_,; C/(q)) = o0o.! For any fixed p € (L, H), taking the limit as A\ — 0, we

—ﬂ@)+¢}=p—L- (6)

have ¢(p) — 1, and thus the term in the square brackets of (6) goes to infinity. Since the RHS is finite, we
have Ac(G(p)) — 0. Using (2), we can rewrite (1) as

m(p) (H — L —q(p)(H —p)) + Ac(q(p)) =p — L.

- p)
Taking limit as A — 0 and applying ¢(p) — 1 and Ae(¢(p)) — 0, we have 71 (p) — 1.
Finally, taking the limit as A — 0 on both sides of (5) and applying ¢(p) — 1 and 71(p) — 1, we have
71(p) — 1. O

We show that limg—1¢’(g)/c(g) = oo. Since the claim is trivial if limg—1 c(q) < oo, let limg—1c(g) = oco. Suppose,
for a contradiction, that limg—1¢/(¢)/c(q) < oo. Then, for some M > 0, ¢/(¢)/c(q) < M for all g sufficiently close to
1. For any go € [0,1) that is sufficiently close to 1, integrating both sides, we have log(c(gq)/c(q0)) < M(g — go) and thus
c(q) < c(qo)eM(q*‘m), but this contradicts the assumption that limg_1 ¢(q) = oco.



Next, we construct a mixed-learning PBE.

Lemma 3. Given any A > 0, there exists some p, € (L, H) such that for any p* € (p,,H), the following
assessment Ex(p*) is a PBE:

1. Type H of S offers a price p* with probability 1, and type L offers prices p* and L with probabilities y*
and 1 — y*, respectively, where y* € (0,1) solves equation

™

m(p*) = P TR (7)

2. If B is offered price p* then:

o With probability z* = L/p*, B chooses accuracy 0 and buys with probability 1.

o With probability 1 —z*, B chooses accuracy ¢(p*) and buys with probability 1 if a signal realization
is X = H and never buys if x = N.

If B is offered any price p # p* then she assigns probability 1 to type L and chooses accuracy 0 and
buys if and only if price p is at most L.

Moreover, P, — L asA—0.

Proof. We derive the necessary and sufficient conditions for this assessment £, (p*) to be a PBE. First, we
note that if B is offered the price p* then she randomizes over two accuracies 0 and ¢(p*) by Lemma 1.

Second, we derive (7). In the assessment, type L of S offers prices p* and L with probabilities y* and
1 — y*, respectively. Then, B’s posterior probability (that S is of type H) at price p* is m By
Lemma 1, this posterior probability, which we have denoted by 71(p*), must satisfy (2). Since these two
representations must coincide,

T1(p*) = #

1—m)y*’

which is the desired (7).

We show that there exists p, € (L, H) such that for any p* € (p,, H), (7) has a solution y*. By Lemma 2,
71 is continuous and strictly increasing, and lim, 7, 71(p) = 0 and limpy g 71 (p) = 1. Hence, there must exist
a unique p, € (L, H) such that 71(p,) = 7, where we recall that 7 € (0,1) is the prior probability. Then,
we have 71 (p*) € (m,1) since p* € (p,, H) by assumption. Since the function (0,1) > y — oy € (m,1)
is strictly decreasing and continuous, we must have some y* that satisfies (7).

Third, we see that S has no profitable deviation. Type L is willing to randomize between prices L and
p* if and only if he gains the same profit from both prices. That is, L = p*z* because type L makes sales
only when B does not acquire information. Hence,

z" = L/p",

as desired. Type H gains a profit of p*(z* + (1 — 2*)g*). We show that he has no profitable deviation.
Indeed, any deviation would yield a profit of at most L, but p*(z* + (1 — 2*)g*) > L. This is because, for
z* = L/p*, this inequality is reduced to z* < 1.

Lastly, we show that p, — L as A — 0. For any p € (L,H), 4(p) — 1 and 71 (p) — 1 as A — 0 by Lemma
2. By the definition of Py it follows that p, = L. O

Step 2 We show the Pareto-undominance of PBE &, (p*), which we construct in Lemma 3.
Lemma 4. For each p* € (L, H), if X is sufficiently small then the PBE Ex(p*) is Pareto-undominated.

Proof. We prove this lemma in seven steps.

Step 1. In any mixed-learning PBE, B must randomize information acquisition after any equilibrium price
offer p' € (L, H).



Proof: Suppose, by contradiction, that there exists a mixed-learning PBE £ such that B does not randomize
information acquisition after some equilibrium price p’ € (L, H). Note that p’ must be in the support of
the prices offered by type H of S (because otherwise, B would never buy as she is sure that S is of type L
and thus S would profitably deviate to offering price L). Next, B must choose accuracy 0 after the price
offer p’. This is because otherwise, since B would acquire information for sure (as she does not randomize
information acquisition), type L would have a profitable deviation of offering price L (since type L makes
no sale. Hence, B chooses accuracy 0 after the price offer p’. Let o > 0 be the probability that B buys the
item after the price offer p'.

There is some price p after which B randomizes information acquisition, since £ is a mixed-learning PBE.
Then, p is in the support of the prices offered by both types of S, otherwise B would be sure about the type
of S. Moreover, it must be that p € (L, H), otherwise B would not acquire information. By Lemma 1, if
price p is offered then B randomizes over two accuracies 0 and ¢(p). She chooses accuracy 0 with probability
z.

Since prices p and p’ are in the support of the prices offered by type H of S, his profits from offering both
prices are the same; that is, p(z + (1 — 2)q) = p’«a, where « is the probability that B buys (when she does
not acquire information). It implies pz < p’a. Note that pz and p’« are type L’s profits from offering prices
p and p’, respectively. However, since pz < p’a, type L must strictly prefer price p’, which contradicts the
fact that p is in the support of the prices offered by type L of S.

Step 2. The function ¢, as defined in (1), is unimodal. That is, there exists a unique py € (L, H) such
that § is strictly increasing on the interval (L, py) and strictly decreasing on the interval (py, H). Moreover,
px — L as A — 0, which implies that for any fixed p € (L, H), if X is sufficiently small then ¢'(p) < 0.

Proof: Recall the derivative ¢'(p) given in (4). Since the denominator of the RHS in (4) is positive, ¢'(p) is
positive (resp. negative) if and only if its numerator, denoted f(p), is negative (resp. positive), where
~ H-L

flp) = AC/(@(P))W -1

There exists at most one px € (L, H) such that f(p,\) = 0, or equivalently ¢’'(px) = 0. This is because if
f(px) = 0 and thus @ (px) = 0 then f'(pr) = 2A/(G(px))(H — L)/(H — py)® > 0. Moreover, there exists
px € (L, H) such that ¢’(px) = 0. This is because by Lemma 2, §(p) — 0 as p — L or p — H and ¢(p) > 0
for any p € (L, H). Therefore, we have established the existence and uniqueness of pj.

Now we show that py — L as A — 0. By (2), f(p) =m(p)(H - L)/(H — p) — 1. Since T1(p) — 1 as
A — 0 for any p € (L, H) by Lemma 2, it follows that f(p) — Z;_I; > 0 and thus ¢’(p) < 0, which implies

that py — L.

Step 3. For any small § > 0, there exists some A5 > 0 such that if A\ < A\s then any mixed-learning PBE has
at most one equilibrium price in the interval (L, H —§). That is, the set, supp(U, o(- | v)) N (L, H —¢), is a
singleton or an empty set for any of S’s equilibrium strategy o.

Proof: For any uy, € [L, H), let ', be the set of all PBEs such that type L’s payoff is uy,. Let p € (L, H—9)
be an equilibrium price of some PBE in I';,, . By Step 1 with Lemma 1, B randomizes between accuracies
0 and ¢(p) after price p is offered. Moreover, the following holds. First, the probability that B acquires no
information, denoted z(p), satisfies ur, = pz(p), since pz(p) is type L’s payoff from offering price p. Second,
type L’s payoff from offering price p, denoted Ug (p), is

Un (p) = pz(p) + (1 — 2(p))d(p)p = ur + d(p)(p — ur). (8)

_ Now we show that for any small § > 0, there exists some As > 0 such that for any A < As, the function
Up is strictly increasing on the interval (L, H — ¢). Note that

Uty(0) = 40) + 4 0)(p — uz) = d(p) (1 n q;((ﬁ)) (- m) |

d(q(p)(H - L)
' (q(p))(H —p)(p— L)

q(p) > -



Since uy, > L and H —p > 6,

7 (p) (p—u) > — d@p) H-Lp-uy, _ dp) H-L

q(p) "(q(p))ap) H—p p— L "(q(p)a(p) 6
By Lemma 2, G(p) — 1 as A — 0. Since CC,/,(('ZI)) — 0 as ¢ — 1, it follows that C,,é(g)% —0as A — 0.
Moreover, there exists n > 0 such that cc/,'((?;)) < = for all ¢ € (1 —n,1). Recall from Step 2 that for any

p € (L, H), if X is sufficiently small then ¢'(p) < 0. Therefore, there exists As > 0 such that if A < As then
forp=H -9, ¢(p) >1—nand ¢ (p) < 0. By the definition of py, we have ¢'(p) < 0 for any p € (px, H —9).

Since ¢(H — ¢) > 1 —n, we have ¢(p) > 1 —n for any p € (px, H — ¢), implying that c”?:i((i()%)(p) < H‘EL for

all p € (pn, H — 0). Hence, if A < A5, then

which implies that Ul (p) > 0 for all p € (px, H — 6).

Take any equilibrium in I',, . Now we show that if A < A5, then there is at most one equilibrium price in
(L, H —§). Indeed, if there were two equilibrium prices p and p’ in (L, H — §), then by Step 1, B randomizes
information acquisition after both prices. This implies that type H of S receives the same payoff from offering
p and p’ (otherwise one of the price reveals type L and thus B would not acquire information); and type H
payoff from offering prices p and p’ are Ug (p) and Uy (p'), respectively. But since Ul (-) > 0 on € (L, H — )
(for A < \s), we have Ug(p) # U (p'), a contradiction.

Step 4. There exists Ay 5 € (0, As) such that if X\ < A, 5 then in any mixed-learning PBE with an equilibrium
price p € (L, H — 0), type L of S offers price L with a positive probability. Moreover, \, s weakly increases
in p.

Proof. Take any mixed-learning PBE with an equilibrium price p € (L, H — §). B’s posterior probability
that S is of type H after price p is offered is 71 (p|\) = 71 (p), where in this proof we write 71 (p|A) in order
to be explicit about its dependence on A\. By Lemma 2, 71 (p|A) — 1 as A — 0. Thus, 71(p|\) > 7 for any
sufficiently small X. Let A} = sup{\ > 0 : @1(p|\) > m, VA < X'}. That is, A} is the highest A" such that
if A < X, then 71 (p/|\) > 7. By Lemma 2, 7;(p|)\) is strictly increasing in p, which implies that for any
p>p if A< )\}) then 71 (p|\) > 7. By the definition of )\11), this implies that )\11, is increasing in p. Next, let
Ap,s i= min{)\ll?, As}. It follows that A, 5 weakly increases in p.

By the definition of X, 5, if A < A, 5, then 7 (p) > 7. Moreover, since 7 is increasing, we have 71 (p’) > 7
for all p’ € (p,H). For Bayes’ rule to hold, there must be some price p” € [L,p) such that 71 (p”) < m,
implying that p” € [L,p) is in the support of type L’s strategy. Moreover, since A < \g, there is at most
one equilibrium price in (L, H — §), and since p € (L, H — ¢) is an equilibrium price, there is no equilibrium
price in (L, p); that is p” ¢ (L, p). Combining p” € [L,p), we have p” = L, as desired.

In the rest of the proof, we revert to the original notation and write 71 (p|\) as 71(p); that is, we omit
its dependence on A.

Step 5. For any 6 > 0, let p € (L,H — ). If A > 0 is sufficiently small then the PBE &,(p), which is
constructed in Lemma 3, is Pareto undominated by any mixed-learning PBE with an equilibrium price p.

Proof. Let > 0 be sufficiently small, and take any A < A, 5. By Step 3 and Step 4, any mixed-learning PBE
has a unique equilibrium price p € (L, H — §), and type L of S offers price L with a probability y(p) > 0. In
such a mixed-learning PBE, type L’s payoff is L and type H'’s payoff is L+ G(p)(p — L). To show that £y (p)
is Pareto undominated, it suffices to show that among all such PBEs that S earns those profits, B’s payoff
is the highest in Ex(p).

B’s payoff in £,(p) is

Up(p) = (1 —my(p)(L —p) + n(H —p), 9)

where y(p) is the probability that type L of S charges price p.



Next, consider another mixed-learning PBE with an equilibrium price p, denoted Ex (p), where G is S’s
equilibrium strategy. To ease notation, let §(p) = ({p} | L) and Z(p) = 6({p} | H).> For PBE &x(p), let

P =supp(J, (- |v))N (L, H). By Step 3, there is a single price p € supp(lJ, (- | v)) N (L, H — ). Hence,
p' > H — ¢ for all p’ € P\ {p}. B’s payoft Ug(p) in Ex(p) is

Up(p) = (1= m)Bs( ) [L = P] + 7o) [H - 1]
= (1=m)(L -p)iP) + (1 = ™ Es0)[(L = 1)Ly
+ 7(H — p)&(p) + 7Es(. i) [(H — P")Lpr 2py]
< (1 —n)(L —p)ij(p) + n(H — p)z(p)
+ (1 =7m)(L = H+0)Es( 1)1 (prpy] + TOEs(. 1) [1{pr 2} -

where the inequality is by p’ > H—¢ for all p’ € P\{p}. Here, 1 is the indicator function. Since L—H+d < 0
and Es g [1{pr2p1] = 1 — Z(p), it follows that

Up(p) < (1 —2(p)) + (1 = m)(L — p)g(p) + n(H — p)Z(p)-

We consider B’s posterior after price p is offered. In both &,(p) and £x(p), B must assign to type H the
same posterior probability 71 (p) if price p is offered. Hence, §(p) = y(p)Z(p) by Bayes’ rule. Using this, we
have

Up(p) <m0(1 = Z(p)) + [(1 — m)(L = p)y(p) + = (H — p)Z(p).

Now we compare B’s payoffs Ug(p) and Ug (p):

_ Lﬂp)(p _ L)) ; (10)

where (1 — m)y(p) = ﬂ%&g’) by Bayes’ rule. By Lemma 2, 71(p) — 1 as A — 0. For any sufficiently small

0, we have H —p —§ > 4. For each p € (L, H), let

1 —71(p)
N =supiN e 0, Ns): H—p—6— —1
¥4 p{ ( 10,5) p 7T1(p)

That is, )\127 is the highest A" in (0, A\, 5) such that if A < X, then Ug(p) > Ug (p). Therefore, if A\ < )\12,, then
B’s payoff in £,(p) is weakly higher than in any mixed-learning PBE with an equilibrium price p.
By the definition of A2, for any 7" € (0, 2oLy, inf{\2:pe(L+n,H—-1n)}>0.

Step 6. For any 6 > 0, let p € (L,H — ¢). If X is sufficiently small then the PBE &£, (p) is not Pareto
dominated by any PBE &, (p’) for any p’ € (L, H). Recall B’s payoff in the PBE £, (p) is given by (9), where

y(p) = (#(m —1)/(£ — 1) by Bayes’ rule.

Proof. First, we show that there is some ¢’ > 0 such that £,(p) is not Pareto dominated by &) (p’) for any
p' € (p,p+¢€). Tt suffices to show that that Ug(p) > Ug(p’) for any p’ € (p,p+¢€’). We show this by showing
that Ug(p) < —/2 if X is small enough. Using the expression of y(p) and taking the derivative of both sides
of (9), we have

(p—L) >0 V)\<)\’}. (11)

™1 (p)
Uk(p) =n(p—L)— — (1 -=my(p) — .
B( ) ( )(ﬂ_l(p))g ( ) ( )
By Lemma 2, as A — 0, @{(p) — 0 and thus y(p) — 0. Hence, Up(p) — —n. For some A3 > 0, we

have Ug(p) < —m/2 for any A < A2. Let € > 0 be such that Ug(p') < 0 for all p’ € (p,p+ ¢). Then,
Ug(p) > Up(p) for any p’ € (p,p + €.

2Step 3 shows that the set, supp(l, 5(- | v))N (L, H—§), is a singleton. This leaves the possibility that S may offer (multiple)
prices greater than or equal to H — 4.




Second, we show that £y (p) is not Pareto dominated by Ey(p') for any p’ € [p+ €/, H). By (9), we have
Up(p) < m(H —p). As A\ — 0, we have Ug(p) — w(H — p). Thus, if A is sufficiently small then for any
p > p+€, wehave Ug(p) >nw(H —p—€)>n(H —p') > Up(p’). Thus, Ex(p) is not Pareto dominated by
5)\(])/).

Third, we show that £,(p) is not Pareto dominated by £,(p’) for any p’ € (L,p). Let v > 0 be small
enough that p < H — . By the proof in Step 3, type H’s payoff in &, (p) is given by (8) (when type L’s
payoff equal u;, = L), and is strictly increasing on (L, H — ) if A\ < \,. Since p < H — , for any p’ < p,
type H'’s payoff in £,(p’) is strictly less than in Ex(p), and thus Ex(p) is not Pareto dominated by &, (p').

Step 7. For any p € (L, H), if A is sufficiently small then £, (p) is not Pareto dominated by any mixed-learning
equilibrium.

Proof. Let € be small enough that p — L > 2e and H — p > 2¢. We divide the set of all mixed-learning PBEs
into three sets: I'°, I't, and I'~, which are the set of PBEs such that the infimum price that type H of S
offers is in [L + ¢, H — €], (H — ¢, H], and [L, L + ¢), respectively.

First, we show that £y (p) is not Pareto dominated by any PBE in I'’. Let

)\g:inf{/\f):pe[L—i—e,H—e]}.

where /\12) is defined in (11). As shown at the end of Step 5, )\g > 0. By definition, if A < )\g then for any
PBE in I'Y with an equilibrium price p’ € [L + ¢, H — €], Ex(p’) is not Pareto dominated by any PBE with
an equilibrium price p’. Moreover, if A < )\2, then by Step 6, Ex(p) is not Pareto dominated by Ex(p’).
Therefore, if A < )\157 and \ < /\g, then £, (p) is not Pareto dominated by any PBE in I'°.

Second, we show that £x(p) is not Pareto dominated by any PBE in I'". Recall that type H’s payoff in
Ex(p) is Ug(p), as defined in (8), which converges to p as A — 0 (because G(p) — 1). Since p > L + ¢, there
is a )\; > 0 such that if A < )\;, then UH(p) > L + €. For any PBE in I'", since type H of S offers a price
in (L, L + €), his payoff is at most L + ¢, which is strictly lower than his payoff in E(p), Ug(p). Thus, if
A< )\;, then &£, (p) is not Pareto dominated by any PBE in I'".

Finally, we show that £, (p) is not Pareto dominated by any PBE in I'*. For any PBE in I'", the prices
that type H of S may offer are above H — e. Thus, B’s payoff is at most 7(H — (H —¢€)) = we. In Ex(p), B’s
payoff Ug(p), as defined in (9), converges to m(H — p) as A — 0. Since p < H — ¢, there is a /\2 > 0 such
that if A < A3, then Up(p) > me. That is, if X\ < A} then B’s payoff in £x(p) is higher than in any PBE in
I't. Thus, £x(p) is not Pareto dominated by any PBE in I'*. O

Step 3 We examine B’s (ex-ante) expected payoff in the PBE &, (p*), which is Pareto undominated (Lemma
4). Then, we only need to show that for any ug € (0,7(H — L)), there exists some price py such that B’s
payoff in the PBE &£, (py) converges to up as A — 0.

Fix any A > 0 and take any p* € (B,\’ H), where Py is defined in Lemma 3. Consider B’s ex-ante payoff in
Ex(p*). Recall that if price p* is offered then B randomizes between buying without acquiring information
and acquiring information with accuracy ¢(p*). This means that B’s payoff is the same as the payoff that
she obtains from buying without acquiring information. Hence, B’s equilibrium payoff is

Up(p*) =n(H —p") + (1 —m)y" (L —p*),

1-m(p") 7 by Bayes’ rule.

where y* = ) Tow

Let A — 0. Then y* — 0 since 71 (p*) — 1 by Lemma 2. Hence, Up(p*) — 7(H — p*). Since p, — L as
A — 0 by Lemma 3, it follows that for any p* € (L, H), there exists a small A > 0 such that p* > P, In
particular, let p* = H — up/m € (L, H). Then, B’s payoff in £,(p)) converges to up. This completes the
proof of Proposition 4 in the case of lim,_,; ¢/(¢) = oc.

1.2 Case of lim, ,; ¢(q) < 00

We prove Proposition 4 under the assumption that ¢/(1) = limg,; ¢/(q) < oco.
In the proof of Lemma 1, B’s first order condition with respect to ¢ is replaced with

B 1 if m(p)(H — p) > A\'(1)
T (D) it (p)(H - p) < A1),



If there is no ¢(p) < 1 that satisfies (1), that is, if p is such that

H-L
Al (1) (H — 1) +Xe(l)<p—1L, (13)
then let ¢(p) = 1 and 71 (p) = 1 — ;\,CTOL)- This way, both the first-order condition (12) and B’s indifference

condition (between no information and accuracy ¢(p)):

71(p)(1 — q(p))(H — p) + (1 = 71(p)) (L — p) + Ac(q(p)) = 0,

which is an analog of (3), are satisfied. Moreover, as A\ — 0, we have ¢(p) — 1 and 71(p) — 1 in this case.

Lastly, we modify our proofs of Lemma 3 and Proposition 4 to accommodate the present case of ¢/(1) < co.
If X is such that there exists no p € (L, H) satisfying (13) then our proof for Lemma 3 and Proposition 4 is
valid without any modification. If A is such that there exists a p € (L, H) satisfying (13), then, multiplying
H — p on both sides of (13), we have

A1) (p— L)+ Ae(1)(H — p) < (p— L)(H — p). (14)

Since there is a p € (L, H) satisfying (14), there exists an interval (p7,p3) such that (14), or equivalently
(13) holds if and only if p € (p},p3). For all p € (p7,p3), we set G(p) = 1 and 71 (p) = 1 — Ac(1)

L and Lemma
3 and Proposition 4 hold.




