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1 Proof of Proposition 4

1.1 Case of limq→1 c
′(q) = ∞

We prove Proposition 4 under the assumption that c′(1) ≡ limq→1 c
′(q) = ∞, under which B will never

choose accuracy 1.
Our proof consists of three steps. Consider our model given a cost parameter λ > 0. First, we derive

necessary conditions that any mixed-learning PBE must satisfy. Using the properties, we construct a mixed-
learning PBE, denoted Eλ(p∗) given a price p∗ that S may offer, which is tractable. Second, we show that the
PBE Eλ(p∗) is Pareto-undominated for a sufficiently small λ > 0. Third, we examine B’s (ex-ante) expected
payoff in the PBE Eλ(p∗).

Step 1 Consider our model with a cost parameter λ > 0. We derive some necessary conditions that any
mixed-learning PBE must satisfy. These properties are used not only to construct a tractable mixed-learning
PBE but also to prove that the PBE is Pareto-undominated.

Lemma 1. For any mixed-learning PBE, if B randomizes information acquisition after an equilibrium price
p ∈ (L,H), the following holds after B is offered price p:

1. B randomizes over two accuracies 0 and q̃(p); that is, her strategy β is such that supp(β(· | p)) =
{0, q̃(p)}, where q̃ : (L,H) → (0, 1) is the function defined by

λc′(q̃(p))

󰀕
H − L

H − p
− q̃(p)

󰀖
+ λc(q̃(p)) = p− L. (1)

This implicit function q̃ is well-defined.

2. B’s posterior probability that S is of type H after observing the price p, denoted π̃1(p), satisfies equation

π̃1(p) =
λc′(q̃(p))

H − p
. (2)

Proof. Consider any mixed-learning PBE, at which B randomizes information acquisition after some price
offer p. Suppose that she chooses to acquire information. If B chooses accuracy q > 0 and buys if a signal
realization is x = H and never buys if x = N then her payoff is π̃1(p)q(H − p)− λc(q). In the equilibrium,
the accuracy q = q̃(p) after the price p must maximize this payoff. Hence, it satisfies the first-order condition
π̃1(p)(H − p) = λc′(q̃(p)), which gives the desired equation (2).

Next, suppose that she acquires no information. That is, she chooses accuracy 0, after which she buys
with probability 1. Her payoff is π̃1(p)(H − p) + (1− π̃1(p))(L− p).

B must be indifferent between the two accuracies q̃(p) and 0 since B randomizes her choice of accuracies.
That is,

π̃1(p)(1− q̃(p))(H − p) + (1− π̃1(p))(L− p) + λc(q̃(p)) = 0. (3)
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Substituting (2) into (3), we obtain the desired equation (1).
It remains to show that the implicit function q̃ is well-defined. That is, we show that for any p ∈ (L,H),

there exists a unique q ∈ (0, 1) that solves equation (1). Since c is strictly convex and H−L
H−p − q > 1− q > 0,

the LHS of (1) is strictly increasing in q̃(p). It is also continuous in q̃(p). Moreover,

λc′(0)((H − L)/(H − p)− 0) + λc(0) = 0 < p− L,

λc′(1)((H − L)/(H − p)− 1) + λc(1) = ∞ > p− L,

which ensures the existence and uniqueness of q that solves (1).

Lemma 2. The functions π̃1 and q̃, defined by equations (1) and (2), satisfy the following properties:

1. limp→L q̃(p) = 0 and limp→H q̃(p) = 0 for any λ > 0.

2. limp→L π̃1(p) = 0 and limp→H π̃1(p) = 1 for any λ > 0.

3. π̃1(p) is continuous and strictly increasing for any λ > 0.

4. limλ→0 q̃(p) = 1, limλ→0 π̃1(p) = 1, and limλ→0 π̃
′
1(p) = 0 for any p ∈ (L,H).

Proof. The first claim is immediate from (1). We prove the second claim. Since limp→L q̃(p) = 0, we have

limp→L π̃1(p) =
λc′(0)
H−L = 0. Since limp→H q̃(p) = 0 and (1) is equivalent to π̃1(p)(H − L) − λc′(q̃(p))q̃(p) =

p− L, we have limp→H π̃1(p) = 1.
We show the third claim. Since the continuity is obvious, we prove that it is strictly increasing. By the

implicit function theorem applied to the function q̃, as defined in (1),

q̃′(p) = −
λc′(q̃(p)) H−L

(H−p)2 − 1

λc′′(q̃(p))(H−L
H−p − q̃(p))

. (4)

Substituting it into (2), we have

π̃′
1(p) =

1− q̃(p)λc
′(q̃(p))
H−p

H − L− q̃(p)(H − p)
=

1− q̃(p)π̃1(p)

H − L− q̃(p)(H − p)
. (5)

Note that π̃′
1(p) > 0 for any p such that π̃1(p) ≤ 1. This is because both the denominator and the numerator

of the RHS of (5) is strictly positive. Hence, to show that π̃1(p) < 1 for all p ∈ (L,H), it suffices to show that
π̃1(p) < 1 for all p ∈ (L,H). Suppose, by negation, that there is some p̂ ∈ (L,H) such that π̃1(p̂) = 1. Then,
π̃1(p) > 1 for all p ∈ (p̂, H) (because if π̃1(p) = 1, we must have π̃1(p) > 0). Since limp→H π̃1(p) = 1 and
π̃1 > 1 on (p̂, H), π̃1 must be weakly decreasing on a neighborhood of H. However, applying limp→H q̃(p) = 0
and limp→H π̃1(p) = 1 to the last expression of (5), we have that π̃′

1(H) > 0, a contradiction.
We prove the fourth claim. Let λ → 0. If q̃(p) ∕→ 1 then the LHS of (1) would converge to zero, but the

RHS is p− L > 0 for any p ∈ (L,H). This is a contradiction, and thus q̃(p) → 1. To show that π̃1(p) → 1,
rewrite (1) as

λc(q̃(p))

󰀗
c′(q̃(p))

c(q̃(p))

󰀕
H − L

H − p
− q(p)

󰀖
+ 1

󰀘
= p− L. (6)

Since limq→1 c
′(q) = ∞, we have limq→1

c′(q)
c(q) = ∞.1 For any fixed p ∈ (L,H), taking the limit as λ → 0, we

have q̃(p) → 1, and thus the term in the square brackets of (6) goes to infinity. Since the RHS is finite, we
have λc(q̃(p)) → 0. Using (2), we can rewrite (1) as

π̃1(p) (H − L− q̃(p)(H − p)) + λc(q̃(p)) = p− L.

Taking limit as λ → 0 and applying q̃(p) → 1 and λc(q̃(p)) → 0, we have π̃1(p) → 1.
Finally, taking the limit as λ → 0 on both sides of (5) and applying q̃(p) → 1 and π̃1(p) → 1, we have

π̃′
1(p) → 1.

1We show that limq→1 c′(q)/c(q) = ∞. Since the claim is trivial if limq→1 c(q) < ∞, let limq→1 c(q) = ∞. Suppose,
for a contradiction, that limq→1 c′(q)/c(q) < ∞. Then, for some M > 0, c′(q)/c(q) ≤ M for all q sufficiently close to
1. For any q0 ∈ [0, 1) that is sufficiently close to 1, integrating both sides, we have log(c(q)/c(q0)) ≤ M(q − q0) and thus
c(q) ≤ c(q0)eM(q−q0), but this contradicts the assumption that limq→1 c(q) = ∞.
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Next, we construct a mixed-learning PBE.

Lemma 3. Given any λ > 0, there exists some p
λ
∈ (L,H) such that for any p∗ ∈ (p

λ
, H), the following

assessment Eλ(p∗) is a PBE:

1. Type H of S offers a price p∗ with probability 1, and type L offers prices p∗ and L with probabilities y∗

and 1− y∗, respectively, where y∗ ∈ (0, 1) solves equation

π̃1(p
∗) =

π

π + (1− π)y∗
. (7)

2. If B is offered price p∗ then:

• With probability z∗ = L/p∗, B chooses accuracy 0 and buys with probability 1.

• With probability 1−z∗, B chooses accuracy q̃(p∗) and buys with probability 1 if a signal realization
is x = H and never buys if x = N .

If B is offered any price p ∕= p∗ then she assigns probability 1 to type L and chooses accuracy 0 and
buys if and only if price p is at most L.

Moreover, p
λ
→ L as λ → 0.

Proof. We derive the necessary and sufficient conditions for this assessment Eλ(p∗) to be a PBE. First, we
note that if B is offered the price p∗ then she randomizes over two accuracies 0 and q̃(p∗) by Lemma 1.

Second, we derive (7). In the assessment, type L of S offers prices p∗ and L with probabilities y∗ and
1 − y∗, respectively. Then, B’s posterior probability (that S is of type H) at price p∗ is π

π+(1−π)y∗ . By

Lemma 1, this posterior probability, which we have denoted by π̃1(p
∗), must satisfy (2). Since these two

representations must coincide,

π̃1(p
∗) =

π

π + (1− π)y∗
,

which is the desired (7).
We show that there exists p

λ
∈ (L,H) such that for any p∗ ∈ (p

λ
, H), (7) has a solution y∗. By Lemma 2,

π̃1 is continuous and strictly increasing, and limp↓L π̃1(p) = 0 and limp↑H π̃1(p) = 1. Hence, there must exist
a unique p

λ
∈ (L,H) such that π̃1(pλ) = π, where we recall that π ∈ (0, 1) is the prior probability. Then,

we have π̃1(p
∗) ∈ (π, 1) since p∗ ∈ (p

λ
, H) by assumption. Since the function (0, 1) ∋ y 󰀁→ π

π+(1−π)y ∈ (π, 1)

is strictly decreasing and continuous, we must have some y∗ that satisfies (7).
Third, we see that S has no profitable deviation. Type L is willing to randomize between prices L and

p∗ if and only if he gains the same profit from both prices. That is, L = p∗z∗ because type L makes sales
only when B does not acquire information. Hence,

z∗ = L/p∗,

as desired. Type H gains a profit of p∗(z∗ + (1 − z∗)q∗). We show that he has no profitable deviation.
Indeed, any deviation would yield a profit of at most L, but p∗(z∗ + (1 − z∗)q∗) > L. This is because, for
z∗ = L/p∗, this inequality is reduced to z∗ < 1.

Lastly, we show that p
λ
→ L as λ → 0. For any p ∈ (L,H), q̃(p) → 1 and π̃1(p) → 1 as λ → 0 by Lemma

2. By the definition of p
λ
, it follows that p

λ
→ L.

Step 2 We show the Pareto-undominance of PBE Eλ(p∗), which we construct in Lemma 3.

Lemma 4. For each p∗ ∈ (L,H), if λ is sufficiently small then the PBE Eλ(p∗) is Pareto-undominated.

Proof. We prove this lemma in seven steps.

Step 1. In any mixed-learning PBE, B must randomize information acquisition after any equilibrium price
offer p′ ∈ (L,H).
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Proof: Suppose, by contradiction, that there exists a mixed-learning PBE E such that B does not randomize
information acquisition after some equilibrium price p′ ∈ (L,H). Note that p′ must be in the support of
the prices offered by type H of S (because otherwise, B would never buy as she is sure that S is of type L
and thus S would profitably deviate to offering price L). Next, B must choose accuracy 0 after the price
offer p′. This is because otherwise, since B would acquire information for sure (as she does not randomize
information acquisition), type L would have a profitable deviation of offering price L (since type L makes
no sale. Hence, B chooses accuracy 0 after the price offer p′. Let α ≥ 0 be the probability that B buys the
item after the price offer p′.

There is some price p after which B randomizes information acquisition, since E is a mixed-learning PBE.
Then, p is in the support of the prices offered by both types of S, otherwise B would be sure about the type
of S. Moreover, it must be that p ∈ (L,H), otherwise B would not acquire information. By Lemma 1, if
price p is offered then B randomizes over two accuracies 0 and q̃(p). She chooses accuracy 0 with probability
z.

Since prices p and p′ are in the support of the prices offered by type H of S, his profits from offering both
prices are the same; that is, p(z + (1 − z)q) = p′α, where α is the probability that B buys (when she does
not acquire information). It implies pz < p′α. Note that pz and p′α are type L’s profits from offering prices
p and p′, respectively. However, since pz < p′α, type L must strictly prefer price p′, which contradicts the
fact that p is in the support of the prices offered by type L of S.

Step 2. The function q̃, as defined in (1), is unimodal. That is, there exists a unique pλ ∈ (L,H) such
that q̃ is strictly increasing on the interval (L, pλ) and strictly decreasing on the interval (pλ, H). Moreover,
pλ → L as λ → 0, which implies that for any fixed p ∈ (L,H), if λ is sufficiently small then q̃′(p) < 0.

Proof: Recall the derivative q̃′(p) given in (4). Since the denominator of the RHS in (4) is positive, q̃′(p) is
positive (resp. negative) if and only if its numerator, denoted f̃(p), is negative (resp. positive), where

f̃(p) ≡ λc′(q̃(p))
H − L

(H − p)2
− 1.

There exists at most one pλ ∈ (L,H) such that f̃(pλ) = 0, or equivalently q̃′(pλ) = 0. This is because if
f̃(pλ) = 0 and thus q̃′(pλ) = 0 then f̃ ′(pλ) = 2λc′(q̃(pλ))(H − L)/(H − pλ)

3 > 0. Moreover, there exists
pλ ∈ (L,H) such that q̃′(pλ) = 0. This is because by Lemma 2, q̃(p) → 0 as p → L or p → H and q̃(p) > 0
for any p ∈ (L,H). Therefore, we have established the existence and uniqueness of pλ.

Now we show that pλ → L as λ → 0. By (2), f̃(p) = π̃1(p)(H − L)/(H − p) − 1. Since π̃1(p) → 1 as
λ → 0 for any p ∈ (L,H) by Lemma 2, it follows that f̃(p) → p−L

H−p > 0 and thus q̃′(p) < 0, which implies
that pλ → L.

Step 3. For any small δ > 0, there exists some λδ > 0 such that if λ < λδ then any mixed-learning PBE has
at most one equilibrium price in the interval (L,H − δ). That is, the set, supp(

󰁖
v σ(· | v))∩ (L,H − δ), is a

singleton or an empty set for any of S’s equilibrium strategy σ.

Proof: For any uL ∈ [L,H), let ΓuL
be the set of all PBEs such that type L’s payoff is uL. Let p ∈ (L,H−δ)

be an equilibrium price of some PBE in ΓuL
. By Step 1 with Lemma 1, B randomizes between accuracies

0 and q̃(p) after price p is offered. Moreover, the following holds. First, the probability that B acquires no
information, denoted z(p), satisfies uL = pz(p), since pz(p) is type L’s payoff from offering price p. Second,
type L’s payoff from offering price p, denoted ŨH(p), is

ŨH(p) = pz(p) + (1− z(p))q̃(p)p = uL + q̃(p)(p− uL). (8)

Now we show that for any small δ > 0, there exists some λδ > 0 such that for any λ < λδ, the function
ŨH is strictly increasing on the interval (L,H − δ). Note that

Ũ ′
H(p) = q̃(p) + q̃′(p)(p− uL) = q̃(p)

󰀕
1 +

q̃′(p)

q̃(p)
(p− uL)

󰀖
.

By (4),

q̃′(p) > − c′(q̃(p))(H − L)

c′′(q̃(p))(H − p)(p− L)
.
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Since uL ≥ L and H − p > δ,

q̃′(p)

q̃(p)
(p− uL) > − c′(q̃(p))

c′′(q̃(p))q̃(p)

H − L

H − p

p− uL

p− L
> − c′(q̃(p))

c′′(q̃(p))q̃(p)

H − L

δ
.

By Lemma 2, q̃(p) → 1 as λ → 0. Since c′(q)
c′′(q) → 0 as q → 1, it follows that c′(q̃(p))

c′′(q̃(p))q̃(p) → 0 as λ → 0.

Moreover, there exists η > 0 such that c′(q)
c′′(q) < 󰂃

H−L for all q ∈ (1 − η, 1). Recall from Step 2 that for any

p ∈ (L,H), if λ is sufficiently small then q̃′(p) < 0. Therefore, there exists λδ > 0 such that if λ < λδ then
for p = H − δ, q̃(p) > 1− η and q̃′(p) < 0. By the definition of pλ, we have q̃′(p) < 0 for any p ∈ (pλ, H − δ).

Since q̃(H − δ) > 1− η, we have q̃(p) > 1− η for any p ∈ (pλ, H − δ), implying that c′(q̃(p))
c′′(q̃(p))q̃(p) < δ

H−L for

all p ∈ (pλ, H − δ). Hence, if λ < λδ, then

q̃′(p)

q̃(p)
(p− uL) > − c′(q̃(p))

c′′(q̃(p))q̃(p)

H − L

δ
> −1,

which implies that Ũ ′
H(p) > 0 for all p ∈ (pλ, H − δ).

Take any equilibrium in ΓuL
. Now we show that if λ < λδ, then there is at most one equilibrium price in

(L,H − δ). Indeed, if there were two equilibrium prices p and p′ in (L,H − δ), then by Step 1, B randomizes
information acquisition after both prices. This implies that type H of S receives the same payoff from offering
p and p′ (otherwise one of the price reveals type L and thus B would not acquire information); and type H
payoff from offering prices p and p′ are ŨH(p) and ŨH(p′), respectively. But since Ũ ′

H(·) > 0 on ∈ (L,H − δ)
(for λ < λδ), we have ŨH(p) ∕= ŨH(p′), a contradiction.

Step 4. There exists λp,δ ∈ (0,λδ) such that if λ < λp,δ then in any mixed-learning PBE with an equilibrium
price p ∈ (L,H − δ), type L of S offers price L with a positive probability. Moreover, λp,δ weakly increases
in p.

Proof. Take any mixed-learning PBE with an equilibrium price p ∈ (L,H − δ). B’s posterior probability
that S is of type H after price p is offered is π̃1(p|λ) ≡ π̃1(p), where in this proof we write π̃1(p|λ) in order
to be explicit about its dependence on λ. By Lemma 2, π̃1(p|λ) → 1 as λ → 0. Thus, π̃1(p|λ) ≥ π for any
sufficiently small λ. Let λ1

p ≡ sup{λ′ > 0 : π̃1(p|λ) ≥ π, ∀λ < λ′}. That is, λ1
p is the highest λ′ such that

if λ < λ′, then π̃1(p
′|λ) ≥ π. By Lemma 2, π̃1(p|λ) is strictly increasing in p, which implies that for any

p′ > p, if λ < λ1
p then π̃1(p|λ) > π. By the definition of λ1

p, this implies that λ1
p is increasing in p. Next, let

λp,δ := min{λ1
p,λδ}. It follows that λp,δ weakly increases in p.

By the definition of λp,δ, if λ < λp,δ, then π̃1(p) > π. Moreover, since π̃1 is increasing, we have π̃1(p
′) > π

for all p′ ∈ (p,H). For Bayes’ rule to hold, there must be some price p′′ ∈ [L, p) such that π̃1(p
′′) < π,

implying that p′′ ∈ [L, p) is in the support of type L’s strategy. Moreover, since λ < λδ, there is at most
one equilibrium price in (L,H − δ), and since p ∈ (L,H − δ) is an equilibrium price, there is no equilibrium
price in (L, p); that is p′′ /∈ (L, p). Combining p′′ ∈ [L, p), we have p′′ = L, as desired.

In the rest of the proof, we revert to the original notation and write π̃1(p|λ) as π̃1(p); that is, we omit
its dependence on λ.

Step 5. For any δ > 0, let p ∈ (L,H − δ). If λ > 0 is sufficiently small then the PBE Eλ(p), which is
constructed in Lemma 3, is Pareto undominated by any mixed-learning PBE with an equilibrium price p.

Proof. Let δ > 0 be sufficiently small, and take any λ < λp,δ. By Step 3 and Step 4, any mixed-learning PBE
has a unique equilibrium price p ∈ (L,H − δ), and type L of S offers price L with a probability y(p) > 0. In
such a mixed-learning PBE, type L’s payoff is L and type H’s payoff is L+ q̃(p)(p−L). To show that Eλ(p)
is Pareto undominated, it suffices to show that among all such PBEs that S earns those profits, B’s payoff
is the highest in Eλ(p).

B’s payoff in Eλ(p) is

UB(p) = (1− π)y(p)(L− p) + π(H − p), (9)

where y(p) is the probability that type L of S charges price p.
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Next, consider another mixed-learning PBE with an equilibrium price p, denoted Ẽλ(p), where σ̃ is S’s
equilibrium strategy. To ease notation, let ỹ(p) = σ̃({p} | L) and x̃(p) = σ̃({p} | H).2 For PBE Ẽλ(p), let
P̃ = supp(

󰁖
v σ̃(· | v)) ∩ (L,H). By Step 3, there is a single price p ∈ supp(

󰁖
v σ̃(· | v)) ∩ (L,H − δ). Hence,

p′ ≥ H − δ for all p′ ∈ P̃ \ {p}. B’s payoff ŨB(p) in Ẽλ(p) is

ŨB(p) = (1− π)Eσ̃(·|L)[L− p′] + πEσ̃(·|H)[H − p′]

= (1− π)(L− p)ỹ(p) + (1− π)Eσ̃(·|L)[(L− p′)1{p′ ∕=p}]

+ π(H − p)x̃(p) + πEσ̃(·|H)[(H − p′)1{p′ ∕=p}]

≤ (1− π)(L− p)ỹ(p) + π(H − p)x̃(p)

+ (1− π)(L−H + δ)Eσ̃(·|L)[1{p′ ∕=p}] + πδEσ̃(·|H)[1{p′ ∕=p}].

where the inequality is by p′ ≥ H−δ for all p′ ∈ P̃ \{p}. Here, 1 is the indicator function. Since L−H+δ < 0
and Eσ̃(·|H)[1{p′ ∕=p}] = 1− x̃(p), it follows that

ŨB(p) < πδ(1− x̃(p)) + (1− π)(L− p)ỹ(p) + π(H − p)x̃(p).

We consider B’s posterior after price p is offered. In both Eλ(p) and Ẽλ(p), B must assign to type H the
same posterior probability π̃1(p) if price p is offered. Hence, ỹ(p) = y(p)x̃(p) by Bayes’ rule. Using this, we
have

ŨB(p) < πδ(1− x̃(p)) + [(1− π)(L− p)y(p) + π(H − p)]x̃(p).

Now we compare B’s payoffs UB(p) and ŨB(p):

UB(p)− ŨB(p) > (1− x̃(p))[π(H − p− δ) + (1− π)(L− p)y(p)]

= (1− x̃(p))π

󰀕
H − p− δ − 1− π̃1(p)

π̃1(p)
(p− L)

󰀖
, (10)

where (1− π)y(p) = π 1−π̃1(p)
π̃1(p)

by Bayes’ rule. By Lemma 2, π̃1(p) → 1 as λ → 0. For any sufficiently small

δ, we have H − p− δ > δ. For each p ∈ (L,H), let

λ2
p = sup

󰀝
λ′ ∈ (0,λp,δ) : H − p− δ − 1− π̃1(p)

π̃1(p)
(p− L) ≥ 0 ∀λ < λ′

󰀞
. (11)

That is, λ2
p is the highest λ′ in (0,λp,δ) such that if λ < λ′, then UB(p) ≥ ŨB(p). Therefore, if λ < λ2

p, then
B’s payoff in Eλ(p) is weakly higher than in any mixed-learning PBE with an equilibrium price p.

By the definition of λ2
p, for any η′ ∈ (0, H−L

2 ), inf{λ2
p : p ∈ (L+ η′, H − η′)} > 0.

Step 6. For any δ > 0, let p ∈ (L,H − δ). If λ is sufficiently small then the PBE Eλ(p) is not Pareto
dominated by any PBE Eλ(p′) for any p′ ∈ (L,H). Recall B’s payoff in the PBE Eλ(p) is given by (9), where
y(p) = ( 1

π̃1(p)
− 1)/( 1π − 1) by Bayes’ rule.

Proof. First, we show that there is some 󰂃′ > 0 such that Eλ(p) is not Pareto dominated by Eλ(p′) for any
p′ ∈ (p, p+ 󰂃′). It suffices to show that that UB(p) > UB(p

′) for any p′ ∈ (p, p+ 󰂃′). We show this by showing
that U ′

B(p) < −π/2 if λ is small enough. Using the expression of y(p) and taking the derivative of both sides
of (9), we have

U ′
B(p) = π(p− L)

π̃′
1(p)

(π̃1(p))2
− (1− π)y(p)− π.

By Lemma 2, as λ → 0, π̃′
1(p) → 0 and thus y(p) → 0. Hence, U ′

B(p) → −π. For some λ3
p > 0, we

have U ′
B(p) < −π/2 for any λ < λ3

p. Let 󰂃′ > 0 be such that U ′
B(p

′) < 0 for all p′ ∈ (p, p + 󰂃′). Then,
UB(p) > UB(p

′) for any p′ ∈ (p, p+ 󰂃′).

2Step 3 shows that the set, supp(
󰁖

v σ̃(· | v))∩(L,H−δ), is a singleton. This leaves the possibility that S may offer (multiple)
prices greater than or equal to H − δ.
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Second, we show that Eλ(p) is not Pareto dominated by Eλ(p′) for any p′ ∈ [p+ 󰂃′, H). By (9), we have
UB(p) < π(H − p). As λ → 0, we have UB(p) → π(H − p). Thus, if λ is sufficiently small then for any
p′ ≥ p+ 󰂃′, we have UB(p) > π(H − p− 󰂃′) ≥ π(H − p′) > UB(p

′). Thus, Eλ(p) is not Pareto dominated by
Eλ(p′).

Third, we show that Eλ(p) is not Pareto dominated by Eλ(p′) for any p′ ∈ (L, p). Let γ > 0 be small
enough that p < H − γ. By the proof in Step 3, type H’s payoff in Eλ(p) is given by (8) (when type L’s
payoff equal uL = L), and is strictly increasing on (L,H − γ) if λ < λγ . Since p < H − γ, for any p′ < p,
type H’s payoff in Eλ(p′) is strictly less than in Eλ(p), and thus Eλ(p) is not Pareto dominated by Eλ(p′).
Step 7. For any p ∈ (L,H), if λ is sufficiently small then Eλ(p) is not Pareto dominated by any mixed-learning
equilibrium.

Proof. Let 󰂃 be small enough that p−L > 2󰂃 and H − p > 2󰂃. We divide the set of all mixed-learning PBEs
into three sets: Γ0, Γ+, and Γ−, which are the set of PBEs such that the infimum price that type H of S
offers is in [L+ 󰂃, H − 󰂃], (H − 󰂃, H], and [L,L+ 󰂃), respectively.

First, we show that Eλ(p) is not Pareto dominated by any PBE in Γ0. Let

λ6
p = inf

󰀋
λ2
p : p ∈ [L+ 󰂃, H − 󰂃]

󰀌
.

where λ2
p is defined in (11). As shown at the end of Step 5, λ6

p > 0. By definition, if λ < λ6
p then for any

PBE in Γ0 with an equilibrium price p′ ∈ [L + 󰂃, H − 󰂃], Eλ(p′) is not Pareto dominated by any PBE with
an equilibrium price p′. Moreover, if λ < λ5

p, then by Step 6, Eλ(p) is not Pareto dominated by Eλ(p′).
Therefore, if λ < λ5

p and λ < λ6
p, then Eλ(p) is not Pareto dominated by any PBE in Γ0.

Second, we show that Eλ(p) is not Pareto dominated by any PBE in Γ−. Recall that type H’s payoff in
Eλ(p) is ŨH(p), as defined in (8), which converges to p as λ → 0 (because q̃(p) → 1). Since p > L+ 󰂃, there
is a λ7

p > 0 such that if λ < λ7
p, then ŨH(p) > L + 󰂃. For any PBE in Γ−, since type H of S offers a price

in (L,L + 󰂃), his payoff is at most L + 󰂃, which is strictly lower than his payoff in Eλ(p), ŨH(p). Thus, if
λ < λ7

p, then Eλ(p) is not Pareto dominated by any PBE in Γ−.
Finally, we show that Eλ(p) is not Pareto dominated by any PBE in Γ+. For any PBE in Γ+, the prices

that type H of S may offer are above H − 󰂃. Thus, B’s payoff is at most π(H − (H − 󰂃)) = π󰂃. In Eλ(p), B’s
payoff UB(p), as defined in (9), converges to π(H − p) as λ → 0. Since p < H − 󰂃, there is a λ8

p > 0 such
that if λ < λ8

p, then UB(p) > π󰂃. That is, if λ < λ8
p then B’s payoff in Eλ(p) is higher than in any PBE in

Γ+. Thus, Eλ(p) is not Pareto dominated by any PBE in Γ+.

Step 3 We examine B’s (ex-ante) expected payoff in the PBE Eλ(p∗), which is Pareto undominated (Lemma
4). Then, we only need to show that for any uB ∈ (0,π(H − L)), there exists some price pλ such that B’s
payoff in the PBE Eλ(pλ) converges to uB as λ → 0.

Fix any λ > 0 and take any p∗ ∈ (p
λ
, H), where p

λ
is defined in Lemma 3. Consider B’s ex-ante payoff in

Eλ(p∗). Recall that if price p∗ is offered then B randomizes between buying without acquiring information
and acquiring information with accuracy q̃(p∗). This means that B’s payoff is the same as the payoff that
she obtains from buying without acquiring information. Hence, B’s equilibrium payoff is

UB(p
∗) = π(H − p∗) + (1− π)y∗(L− p∗),

where y∗ = 1−π̃1(p
∗)

π̃1(p∗)
π

1−π by Bayes’ rule.

Let λ → 0. Then y∗ → 0 since π̃1(p
∗) → 1 by Lemma 2. Hence, UB(p

∗) → π(H − p∗). Since p
λ
→ L as

λ → 0 by Lemma 3, it follows that for any p∗ ∈ (L,H), there exists a small λ > 0 such that p∗ > p
λ
. In

particular, let p∗ = H − uB/π ∈ (L,H). Then, B’s payoff in Eλ(pλ) converges to uB . This completes the
proof of Proposition 4 in the case of limq→1 c

′(q) = ∞.

1.2 Case of limq→1 c
′(q) < ∞

We prove Proposition 4 under the assumption that c′(1) ≡ limq→1 c
′(q) < ∞.

In the proof of Lemma 1, B’s first order condition with respect to q is replaced with

q =

󰀫
1 if π1(p)(H − p) ≥ λc′(1)

(c′)−1
󰀓

π1(p)(H−p)
λ

󰀔
if π1(p)(H − p) < λc′(1).

(12)
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If there is no q̃(p) ≤ 1 that satisfies (1), that is, if p is such that

λc′(1)

󰀕
H − L

H − p
− 1

󰀖
+ λc(1) < p− L, (13)

then let q̃(p) = 1 and π̃1(p) = 1 − λc(1)
p−L . This way, both the first-order condition (12) and B’s indifference

condition (between no information and accuracy q̃(p)):

π̃1(p)(1− q̃(p))(H − p) + (1− π̃1(p))(L− p) + λc(q̃(p)) = 0,

which is an analog of (3), are satisfied. Moreover, as λ → 0, we have q̃(p) → 1 and π̃1(p) → 1 in this case.
Lastly, we modify our proofs of Lemma 3 and Proposition 4 to accommodate the present case of c′(1) < ∞.

If λ is such that there exists no p ∈ (L,H) satisfying (13) then our proof for Lemma 3 and Proposition 4 is
valid without any modification. If λ is such that there exists a p ∈ (L,H) satisfying (13), then, multiplying
H − p on both sides of (13), we have

λc′(1) (p− L) + λc(1)(H − p) < (p− L)(H − p). (14)

Since there is a p ∈ (L,H) satisfying (14), there exists an interval (pλ1 , p
λ
2 ) such that (14), or equivalently

(13) holds if and only if p ∈ (pλ1 , p
λ
2 ). For all p ∈ (pλ1 , p

λ
2 ), we set q̃(p) = 1 and π̃1(p) = 1− λc(1)

p−L , and Lemma
3 and Proposition 4 hold.
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