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C Online Appendix

C.1 Proof of Strategic Substitutes

Here we show that i’s social learning {�i,t} rises in other agents’ cutoffs ⌧�i. Assume others
raise their cutoffs, ⌧�i  ⌧

0
�i

. Realize independent “potential success times” {T
◆

�i
} according

to independent Poisson processes with arrival rate 1; j’s first actual success time Tj equals
inf{T

◆

j
: Aj,T

◆
j
= 1}. Write T�i, T

0
�i

for the first actual success times of j 6= i given cutoffs
⌧�i  ⌧

0
�i

, assuming throughout that no agent j 6= i ever observes a success by i.
Since we have fixed strategies, each agent j 6= i succeeds earlier when they use the higher

cutoffs, Tj � T
0
j

for all {T̃
◆

�i
}. This follows by induction over the contagion process with

initial successes during experimentation as induction anchor. Hence agent i sees a success
earlier, Si = minj2Ni(G) Tj � minj2Ni(G0) T

0
j
= S

0
i
for all {T̃

◆

�i
}, and so i’s social learning curve

is higher �i,t = � log Pr�i(t < Si)  � log Pr�i(t < S
0
i
) = �

0
i,t

. By Lemma 1, the associated
cutoffs are ranked ⌧i � ⌧

0
i
, so cutoffs are strategic substitutes.

This proof also implies that social learning {�i,t} increases in network density for fixed
⌧�i. Specifically, order deterministic networks by set inclusion g ✓ g

0 in {1, ..., I}2, and
extend this order to random networks, by writing G � G

0 if they are coupled to networks
G̃ ✓ G̃

0.40 Then, we get Tj � T
0
j

also for all realizations of {T
◆

�i
} and the coupled networks

G̃, G̃
0. Thus, a rise in G raises {�i,t} and lowers ⌧i by Lemma 1.

C.2 Proof of Proposition 3 (Equal Cutoffs of Equals)

The result uses two Lemmas. For social learning {�t} and the associated optimal cutoff
⌧ , define total learning �t + min{t, ⌧}. So defined, PrH(min{S, T}  t) = 1 � exp(�(�t +

min{t, ⌧})), where PrH is taken over the network G and success times of all agents {Tj}
including i, conditional on ✓ = H.

Lemma 8. Higher total learning, �t +min{⌧, t} � �̂t +min{⌧̂ , t} for all t, is associated with

a lower optimal cutoff, ⌧  ⌧̂ .

40Random variables X, X 0 are coupled to X̃, X̃ 0 if they have the same marginal distributions and X̃, X̃ 0

are defined on the same probability space.
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This is closely related to Lemma 1, that lower social learning {�t}  {�̂t} implies higher
cutoffs ⌧ � ⌧̂ . Lemma 8 shows additionally that the higher cutoff cannot lead to higher total
learning. Intuitively, all learning (both social and own) crowds out incentives.

Lemma 9. Fix a network G, cutoffs {⌧k}k 6=i,j and ⌧⇤ < ⌧
⇤
, and write k’s first success time

as {Tk} if ⌧i = ⌧
⇤
, ⌧j = ⌧⇤, and {T

0
k
} if ⌧i = ⌧⇤, ⌧j = ⌧

⇤
. Then min{Ti, Si}

D

� min{T
0
i
, S

0
i
}.41

Lemma 9 is intuitive: Additional experimentation during [⌧⇤, ⌧ ⇤] is more immediate and
useful to i when done by i herself instead of j.

Proof of Proposition 3. By contradiction, assume ⌧i > ⌧j. Exchangeability, Gi$j = G,

implies min{Tj, Sj}
D
= min{T

0
i
, S

0
i
}. Lemma 9 then implies min{Ti, Si}

D

� min{Tj, Sj}.
Noting the connection between total learning and the time of the first observed success,
PrH(min{S, T}  t) = 1 � exp(�(�t +min{⌧, t})), this implies {�i,t +min{⌧i, t}} � {�j,t +

min{⌧j, t}} and so, by Lemma 8, ⌧i  ⌧j.

Proof of Lemma 8. Lemmas 1 and 6 study incentives  ⌧ as a function of social learning {�t};
we now study  ⌧ as a function of total learning {�t +min{t, ⌧}}.

By contradiction assume that �t +min{⌧, t} � �̂t +min{⌧̂ , t} for all t, yet ⌧ > ⌧̂ . Define
�̃t := �̂t � (⌧ � ⌧̂); clearly �̃t  �t, and so Lemma 1 implies

 ⌧ ({�̃t}) �  ⌧ ({�t}) = 0.

Since �̃⌧ + ⌧ = �̂⌧ + ⌧̂ and b̃u = b̂u for u � ⌧ , time-⌧ experimentation incentives for the social
learning curve {�̂t} are also positive

e

R ⌧
0 r+pu(âu+b̂u)du

@⇧̂(I{t⌧̂})

@a⌧

= P
;(�̂⌧ + ⌧̂)

✓
x + ry

Z 1

⌧

e
�

R s
⌧ (r+b̂u)du

ds

◆
� c =  ⌧ ({�̃t}) � 0

where the first equality follows as in (27), using âu = 0 at u � ⌧ since ⌧ > ⌧̂ . Front-loading,
(22), then implies

@⇧̂(I{t⌧̂})

@a⌧̂

>
@⇧̂(I{t⌧̂})

@a⌧

� 0

contradicting the optimality of cutoff ⌧̂ .

Proof of Lemma 9. We couple min{Ti, Si} and min{T
0
i
, S

0
i
} by first realizing any agent k’s

first success time T̄k when i and j both use cutoff ⌧⇤ in network G. When we raise i’s cutoff
to ⌧i = ⌧

⇤ while keeping ⌧j = ⌧⇤, we account for i’s potential additional experimentation
41As always, Si = minj2Ni(G){Tj} and S0

i = minj2Ni(G){T 0
j}.
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over [⌧⇤, ⌧ ⇤] by realizing an exponential random variable Z ⇠ Exp(1) and setting Z̄ = Z if
Z  ⌧

⇤ � ⌧⇤ and Z̄ = 1 otherwise. So constructed, min{Ti, Si}
D
= min{T̄i, S̄i, ⌧⇤ + Z̄}.

Analogously when we raise j’s cutoff to ⌧j = ⌧
⇤ while keeping ⌧i = ⌧⇤, we account for

j’s potential additional experimentation over [⌧⇤, ⌧ ⇤] with the same random variable Z̄. We
then realize min{T

0
i
, S

0
i
} by tracing the additional successes and experimentation through

the network. Since this cascade does not start before ⌧⇤ + Z̄, we obtain min{T
0
i
, S

0
i
}

D

⌫
min{T̄i, S̄i, ⌧⇤ + Z̄} D

= min{Ti, Si}.

C.3 Proof of Lemma 3 (Links in Large Random Networks)

Part (a): We will show separately that for every ✏ > 0

Pr
h
N

I � (1 + ✏)I(1 � e
�n̂

I
/I)
i

! 0, (43)

Pr
h
N

I  (1 � ✏)I(1 � e
�n̂

I
/I)
i

! 0. (44)

This implies that N
I converges to I(1 � e

�n̂
I
/I) in distribution, N

I
/(I(1 � e

�n̂
I
/I))

D! 1.
Start with the upper bound, (43). We can restrict attention to ⇢̂ = lim n̂

I
/I < 1; for

⇢̂ = 1, we have (1 + ✏)I(1 � e
�n̂

I
/I) > I for any ✏ > 0 and large enough I, so trivially

Pr[N I � (1 + ✏)I(1 � e
�n̂

I
/I)] = 0.

Realize Iris’s n̂
I stubs k one after another, and keep track of the number of stubs

K
I(m) used to reach degree m; if i has less than m neighbors in the realized network

set K
I(m) := n̂

I + 1. When connecting Iris’s k
th stub to her m

th neighbor, I � m poten-
tial new neighbors with n̂

I(I � m) stubs compete with n̂
I
m � (2k � 1) remaining stubs of

Iris and her m � 1 neighbors, sandwiching the success rate between I�m

I
and I�m

I�2 . Writing
Y

I

`
for independent (shifted) geometric random variables with success rate I�`

I
we can thus

upper-bound K
I(m)

D

�
P

m

`=1 Y
I

`
.

The chance of m or more neighbors is then upper-bounded by

Pr
⇥
N

I � m
⇤
= Pr

⇥
K

I(m)  n̂
I
⇤

 Pr

"
mX

`=1

Y
I

`
 n̂

I

#
 inf

⇠�0
exp

 
⇠n̂

I +
mX

`=1

logE[e�⇠Y
I
` ]

!

= inf
⇠�0

exp

 
⇠(n̂I � m) �

mX

`=1

log
1 � e

�⇠
`/I

1 � `/I

!
(45)

where the second inequality is a Chernoff-bound, and the final equality evaluates the moment
generating function of the shifted geometric distribution, E[e�⇠Y

I
` ] = e

�⇠(1�`/I)
1�e�⇠`/I

.
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Since log I�e
�⇠

`

I�`
rises in `, the last term in (45) is lower-bounded by

mX

`=1

log
1 � e

�⇠
`/I

1 � `/I
�
Z

m

0

 Z 1�e
�⇠

`/I

1�`/I

1

x
dx

!
d` =

Z 1

1�m/I

 Z min{e
⇠
I(1�x),m}

I(1�x)

1

x
d`

!
dx

=

Z 1�e
�⇠

m/I

1�m/I

m � I(1 � x)

x
dx +

Z 1

1�e�⇠m/I

I(1 � x)(e⇠ � 1)

x
dx

= I
⇥
(1 � m/I) log(1 � m/I) � e

⇠
�
1 � e

�⇠
m/I

�
log(1 � e

�⇠
m/I)

⇤
.

For any ✏ > 0, we now set m = m
I :=

l
(1 + ✏)I(1 � e

�n̂
I
/I)
m
, substitute back into the

term in parentheses in (45), and divide by I

⇠
n̂

I � m
I

I
� (1 � m

I
/I) log(1 � m

I
/I) + e

⇠
�
1 � e

�⇠
m

I
/I
�
log(1 � e

�⇠
m

I
/I) =: �I(⇠, ✏)

with limit �(⇠, ✏) as I ! 1. So defined, (45) becomes

Pr
h
N

I � (1 + ✏)I(1 � e
�n̂

I
/I)
i

 inf
⇠�0

exp
�
I�I(⇠, ✏)

�
(46)

The derivative �⇠(0, ✏) = ⇢̂ + log(1 � (1 + ✏)(1 � e
�⇢̂)) vanishes for ✏ = 0 and falls in ✏.

Thus, for any ✏ > 0 we have �⇠(0, ✏) < 0. Also, �(0, ✏) = 0, and so �(⇠, ✏) < 0 for small ⇠,
and �I(⇠, ✏) is boundedly negative for large I. Thus, the RHS of (46) vanishes for I ! 1,
implying (43).

The lower bound (44) follows analogously.

Part (b): Since N
I
/I  1, part (a) implies convergence in expectation limn

I
/I = lim(1 �

e
�n̂

I
/I) = 1 � e

�⇢̂. Further, since

I(1 � exp�n̂
I
/I) = I

 
n̂

I

I
� 1

2

✓
n̂

I

I

◆2

+
1

6

✓
n̂

I

I

◆3

� ...

!

I(1 � exp�n̂
I
/I)/n̂I � 1 (and hence n

I
/n̂

I � 1) is of order n̂
I
/I, which vanishes for ⇢̂ = 0.

Part (c): Since A
I

t
= 1 for t < ⌧

I , we have �
I

⌧I =
R

⌧
I

0 E
�i[N I |t < S

I

i
]dt. For I finite,

E
�i[N I |t < S

I

i
] < n

I (and so �I

⌧I < n
I
⌧

I) because lack of success, t < S
I

i
, indicates fewer

neighbors N
I . To bound the effect of such updating, we note that conditional on |N I �n

I | 
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✏n
I , and so N

I  (1 + ✏)nI , we have Pr�i(t < S
I

i
||N I � n

I |  ✏n
I) � e

�(1+✏)nI
t. Thus

Pr�i(|N I � n
I |  ✏n

I |t < S
I

i
)

Pr�i(|N I � nI | > ✏nI |t < S
I

i
)
=

Pr�i(|N I � n
I |  ✏n

I)

Pr�i(|N I � nI | � ✏nI)

Pr�i(t < S
I

i
||N I � n

I |  ✏n
I)

Pr�i(t < S
I

i
||N I � nI | > ✏nI)

� Pr�i(|N I � n
I |  ✏n

I)

Pr�i(|N I � nI | � ✏nI)
e

�(1+✏)nI
t (47)

We show below that n
I
⌧

I is bounded. This bounds e
�(1+✏)nI

t away from 0 for all t  ⌧
I
.

Thus, as the prior likelihood-ratio of |N I � n
I |  ✏n

I on the RHS of (47) diverges as I ! 1
(by part (a)), so does the posterior likelihood-ratio on the LHS of (47). By part (b), N

I
/n

I

is bounded, implying E
�i[N I |t < S

I

i
]/nI ! 1 and so �I

⌧I/(nI
⌧

I) ! 1, finishing the proof of
part (c).

To show that n
I
⌧

I is bounded, assume it was not. Then we could choose ⌧̂ I
< ⌧

I such
that n

I
⌧̂

I is bounded, but with limit limn
I
⌧̂

I
> ⌧̄ . Applying the above argument to n

I
⌧̂

I

instead of n
I
⌧

I , we get lim �
I

⌧̂I = limn
I
⌧̂

I
> ⌧̄ , and so p⌧I < p⌧̂I = P

;(�I

⌧̂I + ⌧̂ I) < p for large
I, contradicting p⌧ 2 [p, p̄] as illustrated in Figure 1.

C.4 Proof of Equation (18)

We apply Bayes’ rule

1�at =
Pr �`(8k, `

0 : t < Tk, T`0)

Pr �`(t < T`, 8k : t < Tk)
=

8
>>>><

>>>>:

exp(�(K+L)t)
exp(�(K+1)t) = exp (�(L � 1)t) t < ⌧k

exp(�K⌧k�Lt))

exp
⇣
�K

⇣
⌧k+

R t
⌧k

asds

⌘
�t

⌘ = exp
⇣
�(L � 1)t + K

R
t

⌧k
asds

⌘
t 2 (⌧k, ⌧`)

exp(�K⌧k�L⌧`))

exp
⇣
�K

⇣
⌧k+

R t
⌧k

asds

⌘
�⌧`

⌘ = exp
⇣
�(L � 1)⌧` + K

R
t

⌧k
asds

⌘
t > ⌧`

and then differentiate wrt t.

C.5 Proof of Theorem 2 (Core-Periphery Networks)

The challenge with this proof is the complexity of characterizing two outcome variables,
asymptotic information and welfare, for a myriad of cases. Specifically we must consider six
different network densities  Q 

⇤, ⇢ = 0, 2 (0, 1), or = 1, and pessimistic priors p0 < p̄ as
well as optimistic ones. While some arguments apply to all of these cases, each case also has
its idiosyncrasies.

We structure the exposition in order of increasing network density, characterizing asymp-
totic information and welfare in parallel and emphasizing the case of pessimistic priors p0 < p̄.
But to avoid repetitions, we sometimes break this linear narrative by bracketing out argu-
ments that apply more broadly.
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As in the paper body, we superscript variables in finite networks with the network size
I, e.g. ⌧ I

`
, and drop the superscript in the limit, e.g. ⌧` := limI!1 ⌧

I

`
. A priori the limit

is well-defined only for some subsequence, but the analysis characterizes all limits under
consideration uniquely.

Asymptotic information equals � = lim �
I = lim(KI

⌧
I

k
+ L

I
⌧

I

`
) since the network is

connected and each agent’s own experimentation ⌧
I

k,`
(which in principle is excluded from

the social information �) is negligible as I ! 1. It will be useful to decompose � into core
agents’ pre-, and post-cutoff learning

⌥I

k
:= I⌧

I

k
⌥I

`
:= L

I(⌧ I

`
� ⌧

I

k
).

We can already note two bounds on ⌥k,⌥`: Total information � = ⌥k + ⌥` is strictly
positive: By contradiction, � = 0 means agents face the single-agent problem, choose ⌧k =

⌧` = ⌧̄ > 0 and so � = 1. Any agent’s pre-cutoff learning �⌧ is no larger than ⌧̄ , recalling
from (4) that P

;(�⌧ )(x + y) � c �  ⌧ = 0. For core agents, this means ⌥k  ⌧̄ . Thus, there
is asymptotic learning iff ⌥` = 1; a sufficient (but not necessary) condition is ⌧` > 0.

C.5.1 Case 1: Bounded core size  < 1

Preliminaries. We first establish a necessary and sufficient condition for maximal social
learning by peripherals

�`,t ⌘ t iff ⌥` = 1. (48)

If ⌥` = 1, core agents immediately observe a peripheral succeed, and then work forever
after. If ⌥` < 1, the probability of a success 1� e

�(⌥k+⌥`) is less than one, bounding above
b`,t  (1 � e

�(⌥k+⌥`)) <  for t > ⌧k.
By Lemma 1, the social learning upper-bound (48) implies an incentive lower-bound

 `,0 �  


`,0
:= p0

✓
x +

r

r + 
y

◆
� c (49)

with equality iff ⌥` = 1.
We distinguish three cases,  Q 

⇤; for optimistic priors p0 � p̄, we have ⇤ = 1, and so
only case 1a is relevant.

Case 1a:  < 
⇤. Since  

`,0
falls in , we have  

`,0
>  


⇤

`,0
= 0, so  `,0 > 0, and continuity

of  `,0 implies ⌧` > 0, and asymptotic learning ⌥` = 1. By Lemma 2, welfare is bounded
below the benchmark V(⌧`,⌧`) < V(0, 0) = V

⇤. Quantitatively, ⌥` = 1 and (48) imply
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�`,t = t, so welfare increases in  by Lemma 1.
For p0 � p̄, only one argument needs adapting: the welfare benchmark now equals

V
⇤ = p0y which requires immediate and perfect social learning, �t = 1 for t > 0. Clearly,

�`,t = t falls short of this benchmark.

Case 1b:  = 
⇤. Now  



`,0
= 0. We show asymptotic learning, ⌥` = 1, by contradiction:

By (49), ⌥` < 1 would imply  `,0 > 0 and so ⌧` > 0, leading to the contradiction that
⌥` = 1. In turn, ⌥` = 1 implies by (48) and (49) that  `,0 =  



`,0
= 0 and so ⌧` = 0 and

⌧` = 0, attaining the welfare benchmark V(0, 0) = V
⇤.

Case 1c:  2 (⇤
, 1). Now  



`,0
< 0. Asymptotic learning fails because ⌥` = 1 would imply

by (48) and (49) that  `,0 =  


`,0
< 0 and so ⌧ I

`
= 0 for large I and ⌥` = 0. In turn, ⌥` < 1

implies ⌧` = 0 and  `,0 = 0. To quantify information, we first claim that ⌥k = lim I⌧
I

k
= 0:

Indeed, core agents receive all social information immediately, �k,t = ⌥k + ⌥` for all t > 0,
while peripherals’ learning is bounded by �`,t  t. This bounds incentives of core agents
above  k,0 <  `,0 = 0, and so ⌧ I

k
= 0 for large I.42

Social information thus equals ⌥`. We now show this falls in : Peripherals observe a
success by time t iff at least one peripheral succeeds during experimentation, and then a core
agent succeeds during (0, t]; thus 1�e

��`,t = (1�e
�⌥`)(1�e

�t).43 Since the RHS rises with
both  and ⌥` and experimentation incentives  `,0 fall in {�`,t}, the equilibrium condition
 `,0 = 0 implies that a rise in information transmission  must be compensated by a fall in
aggregate information ⌥`. For future reference, we note that as  ! 1, the learning curve
�`,t converges to ⌥` for each t > 0, and so peripherals’ indifference condition converges to
p0(x + e

�⌥`y) = c, pinning down aggregate information ⌥`.
Finally, since ⌧` = ⌧` = 0, welfare attains the benchmark V(0, 0) = V

⇤.

C.5.2 Case 2: Exploding core  = 1

Preliminaries. We first assume ⇢ < 1, and cover the case ⇢ = 1 separately. We prepare the
ground with two preliminary lemmas.

Lemma 10. Assume  = 1, ⇢ < 1, and any prior p0 > p.

(a) Individual learning vanishes: ⌧
I

k
, ⌧

I

`
! 0.

(b) Social learning is immediate: For all t > 0, �I

k,t
, �

I

`,t
! ⌥k +⌥`.

42We also get ⌧ I
k = 0 for large I and ⌥k = 0 in cases 1a,b with p0 < p̄, where  k,0 < 0 is ensured by

�k,t = 1 for all t > 0.
43Solving for �`,t and differentiating yields b`,t =  e�t(1�e�⌥` )

e�t(1�e�⌥` )+e�⌥`
, generalizing (48).

7



Proof. Part (a) follows by the upper bound on pre-cutoff learning �⌧  ⌧̄ . For core agents,
�

I

k,⌧
I
k
= (I � 1)⌧ I

k
 ⌧̄ . For peripherals,

�
I

`,⌧
I
`
= K

I
⌧

I

k
+

Z
⌧

I
`

⌧
I
k

K
I
a

I

t
dt (50)

where core agents’ expected effort a
I

t
from (18) drifts towards min{(LI � 1)/KI

, 1} and is
hence bounded away from 0 by our assumption that ⇢ < 1. The upper bound, �I

`,⌧`
< ⌧̄ thus

requires the domain to vanish, ⌧ I

`
! 0, as the integrand explodes, K

I ! 1.
Turning to part (b), the conditional probability that some agent i has observed a neighbor

succeed by t > ⌧
I

`
is sandwiched via

�
1 � exp(�(I⌧ I

k
+ (LI � 1)(⌧ I

`
� ⌧

I

k
)))
� �

1 � exp(�K
I(t � ⌧

I

`
))
�

< 1�exp(��I

i,t
) < 1�exp(�(⌥I

k
+⌥I

`
))

The upper bound is the probability that any agent succeeds. The lower bound is the prob-
ability that some agent j 6= i succeeds during experimentation, times the probability that a
core agent succeeds in [⌧ I

`
, t]. Both bounds converge to 1� exp(�(⌥k +⌥`)) as I ! 1.

Lemma 10(b) implies that success is observed either immediately, with probability p0(1�
e

�(⌥k+⌥`)), or never; so welfare of both core agents and peripherals equals Vk = V` = p0(1 �
e

�(⌥k+⌥`))y and our monotonicity results for social information apply equally to welfare.
Lemma 10(b) implies that social learning of both core agents and peripherals occurs in

two bursts: one before the cutoff and one immediately after, and both approaching t = 0.
For such learning with burst sizes �� and �+, the indifference condition  t = 0 becomes

 (��
, �

+) := P
;(��)(x + e

��
+
y) � c = 0. (51)

Recalling the effects of social learning on experimentation incentives (5) and ry = x � c, the
solution of (51) has slope

�d�
+

d�� =
@�� 

@�+ 
=

e
��

+
y + x � c

e��+
y

= 1 + re
�
+
. (52)

To apply (51) to core agents and peripherals, write asymptotic pre-cutoff learning as
�`,⌧`

= lim �
I

`,⌧
I
`
, experimentation incentives as  `,⌧`

= lim 
I

`,⌧
I
`
, and similarly for core agents,

substituting “k” for “`”.44 For core agents, �� = �k,⌧k
= ⌥k, �+ = ⌥`, and (51) coincides

with the limit of (17) as L ! 1.

44Note that even though ⌧ I
` ! ⌧` = 0, �`,⌧` is distinct from, and generally greater than the other limit

�`,0 = lim�I
`,0 = 0.
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Lemma 11. Assume  = 1, ⇢ < 1, and any prior p0 > p.

(a) Core agents’ indifference condition converges to

 (⌥k,⌥`) = P
;(⌥k)

�
x + e

�⌥`y
�

� c = 0. (53)

(b) Pre-cutoff learning of core agents and peripherals coincides: �`,⌧`
= ⌥k.

Proof. Part (a): We will show that core agents’ cutoff incentives  I

k,⌧
I
k

! 0, implying (53).
By contradiction, assume without loss that lim 

I

k,⌧
I
k
=  k,0 = p0

�
x + e

�⌥`y
�
� c < 0. Using

Lemma 10(b) (immediate learning by both core agents and peripherals) and the greater
importance of pre-cutoff learning (52), strict shirking incentives by core agents carry over to
peripherals45

 `,⌧`
=  (�`,⌧`

,⌥` � �`,⌧`
)   (0,⌥`) =  k,⌧k

< 0.

Thus ⌧ I

`
= 0 for large I, so ⌥k + ⌥` = 0, leading to the contradiction that  k,0 =  `,0 =

p0 (x + y) � c =  (0, 0) > 0.
Part (b): This follows from the fact that core agents and peripherals have the same value,

and so V(0,⌥k) = Vk = V` = V(0, �`,⌧`
).

Lemma 11 establishes two conditions for ⌥k,⌥`. Below we show they admit a unique
solution; a corner solution for ⇢ = 0, and an internal one for ⇢ 2 (0, 1).

Case 2a: ⇢ = 0. In this case we get a corner solution for ⌥k,⌥` with ⌥k/⌥` = 0. Indeed,
using Lemma 11(b), pre-cutoff learning is a vanishing proportion of post-cutoff learning

⌥k = �`,⌧`
= lim �

I

`,⌧
I
`

 limK
I
⌧

I

`
= lim

K
I

LI
L

I
⌧

I

`
 “

⇢

1 � ⇢
(⌥k +⌥`)” , (54)

where the last inequality is only well-defined if ⌥` < 1, and should otherwise be omitted.
Since ⇢ = 0, we must have either ⌥k = 0 or ⌥` = 1 or both.

For pessimistic priors p0 < p̄, core agents’ indifference (53) rules out asymptotic learning,
so ⌥` < 1 and (54) implies ⌥k = 0. In turn, aggregate information ⌥` solves  (0,⌥`) =

p0

�
x + e

�⌥`y
�

� c = 0.46

For p0 � p̄, ⌥k solves P
;(⌥k) = p̄ and ⌥` = 1.47 Core agents’ indifference (53) clearly

requires experimentation until the myopic threshold, P
;(⌥k)  p̄. If, by contradiction, core

agents experiment past the myopic threshold, P
;(⌥k) < p̄, then (53) implies ⌥` < 1, and

45Note the contrast to the case with bounded core size  < 1 (and p0 < p̄), where peripherals learn slower
than core agents, so that  k,⌧k <  `,⌧` = 0.

46This is the same indifference condition we found in case 1c as  ! 1, so aggregate information is
continuous in this limit.

47In the borderline case with p0 = p̄, we get both ⌥k = 0 and ⌥` = 1.
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(54) leads to the contradiction that ⌥k = 0.

Case 2b: ⇢ 2 (0, 1). In this case we get an internal solution for ⌥k,⌥`. We first further
operationalize Lemma 11(b) by replacing the upper bound in (54) with an explicit expression
for peripherals’ pre-cutoff learning �`,⌧`

in terms of ⌥k,⌥`, (57). To analyze (50) as the
integrand K

I
a

I

t
explodes and the integration domain [⌧ I

k
, ⌧

I

`
] vanishes, we rescale time aI

t
:=

a
I

t/I
. The ODE (18) for core agents’ experimentation intensity thus becomes

I
ȧI

t

1 � aI

t

=

8
>>><

>>>:

L
I � 1 t < I⌧

I

k

L
I � 1 � K

IaI

t
t 2 (I⌧ I

k
, I⌧

I

`
)

�K
IaI

t
t > I⌧

I

`

(55)

Recalling ⇢,⌥k,⌥`, as I ! 1, the solution aI

t
converges to the solution at of

ȧ

1 � a
=

8
>>><

>>>:

1 � ⇢ t < ⌥k

1 � ⇢� ⇢a t 2 (⌥k,⌥k +⌥`/(1 � ⇢))

�⇢a t > ⌥k +⌥`/(1 � ⇢)

(56)

Peripherals’ pre-cutoff learning (50) then converges to

�`,⌧`
= ⇢

 
⌥k +

Z ⌥k+⌥`/(1�⇢)

⌥k

atdt

!
, (57)

so we can rewrite Lemma 11(b) as

�(⇢,⌥k,⌥`) := ⇢

 
⌥k +

Z ⌥k+⌥`/(1�⇢)

⌥k

atdt

!
�⌥k = 0. (58)

We can now characterize equilibrium learning.

Lemma 12. For all ⇢ 2 [0, 1], equations (53), (58) admit a unique solution (⌥k,⌥`). This

solution satisfies 0 < ⌥k,⌥` < 1, and aggregate information ⌥k +⌥` falls in ⇢.

The proof of Lemma 12 relies on the following generalization of Leibniz’s integral rule:
For Lipschitz-continuous functions f, g and some cutoff s > 0, let xt be the continuous
solution of an ODE

ẋ =

8
<

:
f(x) for t < s

g(x) for t > s

with initial condition x0. We write xt(s) to emphasize the importance of the cutoff, and

10



Proof of Theorem 1 (flipped)

⌥k

⌥`
0

0

�(⇢,⌥k,⌥`) = 0

�(⇢0,⌥k,⌥`) = 0

 (⌥k,⌥`) = 0

1 + re⌥`

1

⌧̄

3

Figure 8: Solutions of �(⇢,⌥k,⌥`) = 0 and  (⌥k,⌥`) = 0.

assume g(xs(s)) 6= 0.

Lemma 13. For any � > 0

@

@s

Z
s+�

s

xt(s)dt =
f(xs(s))

g(xs(s))
(xs(s +�) � xs(s)) (59)

Proof of Lemma 12. Equation (58) together with ⌥k +⌥` > 0 and the fact that the solution
a of (56) is bounded away from zero imply ⌥k > 0, and in turn that 0 < ⌥` < 1. Thus,
asymptotic learning fails.

To solve (53), (58), we note that � clearly rises in ⇢ and ⌥`. We show below that it falls
in ⌥k. Hence zero-sets of � in (⌥`,⌥k)-space are increasing and shift left when ⇢ rises to ⇢0,
as illustrated in Figure 8. Recalling from (52) that zero-sets of  are decreasing with slope
�1/(1 + re

�⌥`) > �1, equations (53), (58) admit a unique solution (⌥k,⌥`). A rise in ⇢

shifts this solution left on the zero-set of  , so ⌥k +⌥` falls.
In fact, the monotonicity of ⌥k +⌥` extends to the boundary points ⇢ = 0, 1: We recall

that for ⇢ = 0 all learning is post-cutoff, ⌥k = 0, (0,⌥`) = 0,48 and anticipate that for
⇢ = 1 all learning is pre-cutoff, ⌥` = 0, (⌥k, 0) = 0, thus attaining the extreme points on
the zero set of  (⌥k,⌥`) = 0 as illustrated in Figure 8.

To show that � falls in ⌥k, we write a⇤ = a⌥k
and a⇤ = a⌥k+⌥`/(1�⇢), assume that

48This assumes p0 < p̄. For p0 � p̄, asymptotic information is infinite for ⇢ = 0, and hence trivially greater
than the finite learning for ⇢ > 0.
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Leibniz’s Rule

t t

x x

s

f

g

xt(s+�) xt(s)

s

s+�

s+�0 s+�

s+�+�

s+�+�0

f g

xt(s+�)

xt(s)

s

s+�

s+�0 s+�

s+�+�

s+�+�0

5

Figure 9: Proof of Leibniz Rule. In both figures the difference of between the integral of the upper
solid line, xt(s + �) over t 2 [s + �, s + � +�], and the lower solid line, xt(s) over t 2 [s, s +�], equals the
difference in the integrals of the shaded lines. E.g. in the left picture this is difference between xt(s) over
t 2 [s +�, s + �0 +�] and xt(s) over t 2 [s, s + �0], which is the RHS of (61) after substituting t = s + �̃.

1 � ⇢� ⇢a⇤ 6= 0, and then argue49

@�

@⌥k

= �(1 � ⇢) + ⇢
1 � ⇢

1 � ⇢� ⇢a⇤
(a⇤ � a⇤) = �(1 � ⇢)

1 � ⇢� ⇢a⇤

1 � ⇢� ⇢a⇤
< 0.

The first equality follows from Lemma 13 by substituting s = ⌥k and � = ⌥`/(1�⇢) for the
integral boundaries, xt = at for the trajectory, f(a) = (1 � ⇢)(1 � a) for the law-of-motion
before s = ⌥k, and g(a) = (1�⇢�⇢a)(1�a) after ⌥k. The middle equality is simple algebra,
and the final inequality owes to the fact that ȧ/(1� a) = 1� ⇢� ⇢a from (56) cannot switch
signs on [⌥k,⌥k +⌥`/(1 � ⇢)], so that 1�⇢�⇢a⇤

1�⇢�⇢a⇤
> 0.

Proof of Lemma 13. The Leibniz rule evaluates the LHS of (59) “vertically”, computing
@

@s
xt(s) = lim�!0

1
�
(xt(s + �) � xt(s)) for fixed t 2 [s, s + �]. Since the ODE ẋ = g(x) is

autonomous, it is more economical to compare the trajectories {xt(s + �)}t and {xt(s)}t

“horizontally”, as illustrated in Figure 9.
Formally, assume first that f(s) and g(s) have the same sign, and for � > 0 small, let

�
0
> 0 solve xs+�0(s) = xs+�(s+ �). At s+ �0 the original trajectory “merges” with the shifted

trajectory and since ẋ = g(x) is autonomous we get x
s+�0+�̂

(s) = x
s+�+�̂

(s+ �), as illustrated

49Since at = 1 � exp(�(1 � ⇢)t) for t < ⌥k, there exists at most one value of ⌥k with 1 � ⇢ � ⇢a⌥k = 0.
Since � is continuous in ⌥k and decreasing in ⌥k everywhere else, it decreases everywhere.
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in Figure 9(left). Thus
Z

�+�

�

x
s+�̃

(s + �)d�̃ =

Z �

0

x
s+�+�̂

(s + �)d�̂ =

Z �

0

x
s+�0+�̂

(s)d�̂ =

Z
�
0+�

�0
x

s+�̃
(s)d�̃ (60)

using the change of variable �̃ = � + �̂ in the first equality, and �̃ = �
0 + �̂ in the last. Thus

Z
s+�+�

s+�

xt(s + �)dt �
Z

s+�

s

xt(s)dt =

Z
�+�

�

x
s+�̃

(s + �)d�̃ �
Z �

0

x
s+�̃

(s)d�̃

=

Z
�
0+�

�0
x

s+�̃
(s)d�̃ �

Z �

0

x
s+�̃

(s)d�̃ =

Z �+�
0

�

x
s+�̃

(s)d�̃ �
Z

�
0

0

x
s+�̃

(s)d�̃ (61)

where the first equality uses the change of variables t = s+ �̃, the second uses (60), and the
third cancels identical terms

R �

�0 x
s+�̃

(s)d�̃. In the limit

@

@s

Z
s+�

s

xt(s)dt = lim
�!0

�
0

�
(xs+�(s) � xs(s)) =

f(xs(s))

g(xs(s))
(xs+�(s) � xs(s)) ,

where we used that at first-order �0
g(xs(s)) = �f(xs(s)).

If f and g have different signs, we let �0
> � solve xs+�0(s + �) = xs(s), so �f(s) + (�0 �

�)g(s) = 0, as illustrated in Figure 9(right). Analogous arguments as above then show

@

@s

Z
s+�

s

xt(s)dt = lim
�!0

�
0 � �

�
(xs(s) � xs+�(s)) =

f(xs(s))

g(xs(s))
(xs+�(s) � xs(s)) .

Case 2c: ⇢ = 1. While Lemmas 10 and 11 and most other substantive intermediate results
remain true for ⇢ = 1, their proofs divide by 1 � ⇢, and sometimes invoke that L ! 1.
Instead of re-proving everything, we provide a separate analysis, solely based on the function
 and its derivatives, (51)-(52), and the ODE (55). Specifically we will show that

 (⌥k,⌥`)   k,⌧k
 0 =  `,⌧`

=  (⌥k +⌥`, 0) (62)

Together with (52), this implies ⌥` = 0, so the inequalities in (62) must hold with equality.
In particular 0 =  (⌥k, 0) = P

;(⌥k)(x + y) � c, so total information is as in the clique
⌥k +⌥` = ⌥k = ⌧̄ .

We now show (62). The first inequality takes the limit of the strict inequality  (⌥I

k
,⌥I

`
) <

 
I

k,⌧
I
k
, which reflects that core agents’ observe post-cutoff information ⌥I

`
with a delay. The

second inequality and the first equality reflect (the limits of) peripherals’ indifference and
core agents’ weak shirking incentives at their respective cutoffs.

Only the last equality in (62), which states that peripherals’ learning is entirely pre-cutoff,
requires a novel argument and the assumption ⇢ = 1. Intuitively, information transmission
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by K
I core agents is infinitely faster than generation by L

I peripherals. Formally, we will
show that peripherals’ aggregate post-cutoff learning vanishes

K
I

I

Z 1

I⌧
I
`

aI

t
dt ! 0. (63)

By (63), peripherals pre-cutoff learning �I

`,⌧
I
`

converges to total information ⌥k+⌥`, implying
the last equality in (62).

To see (63) we first argue that aI

t
! 0 for all t. By line one of (55), aI

t
 L

I
t/I 

L
I
⌧̄/I ! 0 for all t < I⌧

I

k
< ⌧̄ ; at t > I⌧

I

k
, lines two and three of (55) imply ȧI

t
< 0 when

aI

t
� L

I
/K

I ! (1 � ⇢)/⇢ = 0. All told, aI

t
! 0 for all t. Turning to the aggregate in (63),

line three of (55) states that aI

t
decays exponentially at rate (1 � aI

t
)KI

/I. Since this rate
converges to 1, we have

R1
I⌧

I
`
aI

t
dt � aI

I⌧
I
`

! 0. Together with aI

I⌧
I
`

! 0, this implies (63).
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