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Appendix A: Handbook of residential metered heating

In this online appendix, we show the original content of the explanation of the residential metered

heating that was included in the handbook delivered to all households in our sample along with its

English translation.

9/7/17, 3(39 PMॠၐးᬡᅾኪݪل

Page 4 of 9http://www.tedard.com.cn/Info/Info.aspx?id=1125

o��8R?EP�%S���K����
ǟ�łêĢ<wŘʂ"Ŋw5ÕÓ3Jĺȵ�ȺĢwɸwŘƵÒ<#

Ǣ�<ǄèŪÛʂÓ$Y;UǠŘʂKoǶėĢ;Ǟʂr"ǑŮɸȐÓĨ
áŀÂ$ĐƙȐÓƧŏS±ŖʂwŘƵÒ<#ÓáʂBƬƫąĆ7�ŕĬ
ǄèŪÛɸKo"ǌBMĠwǑŮÛʂ8BMÕwÓʂĬǳÓĢɸ
f��8R?��8IA'-Q/@)�
����ǟćĖȐÓŧ<JĆʂȐÓĨáÇƋFŲ<ȐÓăæĻǩJÌ�ɨ»ɷ
ƆŪɷɦŚɷĸƦɷǿĐSđȔ�â�ʂ�£$ō5'�ɸ:ŮñȐÓĨ
á<ǓƺJĆʂȐÓĩƙ8Jk>�<ǓƺŀűʂɄ£>«ŨŬʂȐÓă
æ8J&ũĈ<ķÉɸÌ�ȐÓĨáêĢ<FŲʂȐÓăæEĻǩǟćv
õČÓğÌ�wŘ<ÓĢçĲʂ�£$â�áS�ȌǮȁɸ
u�+��8R?��\�Q/ve�

ɷ�ȬȐÓĨáêĢÇƋ<ÓwŘñ§ȐÓăæǔȹɻ,ɇĖÞɃ

ĨáȐwÓë�ɼɸ
�ɷÓwŘ"=TǄè<ȐÓŨȬźȐÓĨáčǏÌ�ɕŀɷɡȆS

Ȥƽɸ
�ɷƊëȐÓõÎ<ɨ»ɷƆŪSĸƦ�â�ɸ

*ɷ�ȬȐÓĨáêĢÇƋ<ÓwŘñǟë�Ƴ�§ȐÓăæǟć�ǎɘ
ÓáÌ�çĲɸ
=�%>�#M+��8R?�
{ÞɃ�fȐÓĨáĻǩJÌ�ſɉĬ;ŀűSȐÓĩƙŀűɸ
{ÞɃȭÆɷÎǠēŪŗyƣƲʂăæ�łɘÓáŋƐƣwɸǧ�f

ȐÓĨáʂƷwŘ<ɘÓáG1ʂÓĢřO&B;1�f%<�łÓğȕ
ǊĢɸǧ�fȐÓĨáêĢʂĻǩJTǄèĩƙɷƨèĩƙɷŊ¥ɷůÓ
ļɷÓǞÌ�ŀűʂtǈJ£čŪǼɵɷÓĨáčǏɷŊ¥÷ɒŨȬɷÂ
Ɓǁ�ŨŬɸ
=���8R?5!EP�
Ƭƫkm¶¾ǀȞǢ�ʂ,ɇĖȐÓŧ®Ǆ<R$ɻ,ɇĖÞɃȕǊ

ȐÓĨáêĢȼ�ŧß<äqɼʀɇÓŧ6�		,7+-ěʁSɻ¾�ŕš0,ɇ
ĖÞɃȕǊȐÓĨáêĢȼ�ŧß2<äqɼʀɇÓŧ6�		-7+,ěʁ�Ñʂ
ȐÓĨáÇƋêĢ��võČĨĢŧßʂĕďáÓĢSĨáÓĢɸ
wŘÓĢ1ďáÓĢʀȰ�ÓĢʁ�ĨáÓĢʀBÂÓĢʁ

�ďáÓĢʄ 9/7/17, 3(39 PMॠၐးᬡᅾኪݪل

Page 5 of 9http://www.tedard.com.cn/Info/Info.aspx?id=1125

ďáÓğ1f��łÓğɽ+	�1�+ì%ʇɽ+	�1
��+ì%ʇɸ
ďáÓĢ1
��+ì%ʇɽȐÓſɉ�łɸ
��ĨáÓĢʄ
ĨáÓğʄ	�	/
ì%9�8ʀ�+��.ì%34ʁɸ
ĨáÓĢ1	�	/
ì%9�8ɽ¦XÛȕǊîŇɘÓáɸ
5�8S343:Óáăæʂhªƿ:Ǝɪ[SȸɈɸ
ȽuʄƉwŘȐÓſɉ�ł:
		÷Őʂš(ȕǊî<ɘÓá:

.			9�8ʂƷwŘ<ďáÓĢ:
��+ì%÷Őɽ
		÷Ő1
�+	ìʅĨáÓĢ
:	�	/
ì%9�8�ɽ.			9�81-�.ìʂwŘÓĢñ:ďáÓĢSĨáÓĢsS
:
�+	ì�-�.ì1
/-.ìɸwŘǟć�łêĢÙ:
		÷Őɽ�+ì%÷Ő
1�+		ìɸ�Mʂ�ȬȐÓĨáêĢ\ʂñôwŘȈĢ�+		�
/-.1+��ìɸ
=0�����8R?J	W�*8P�
Ó§�ɷ�ɷɯ�<ŇĢĎ^"�ʂÓwŘɘÓá5Õ§ĄwŘƃ�

�ċæǏSǙɞǵǝ<ȕǊ[Ǿ&üò¾ĩɸêÃȰ�ÓĢ<Ù¤�J#
Ŵȡ/ʄ�>ʂȐÓŨŬ<ƾǸS¸ÿĸƜʂĕĜ"wÓ8JRDKõh
Ģwʅ�¯ʂÞɃƨ6<®ƛõhuƨɌ�<ɘÓMźŘ�ĐÓ�ʂñĿ
�ÆwŘƛ�Ǧȁɸ¤ýʂ:ēƝȐÓĩƙ¸ÿĘ�ʂwŘ�îȗ�w
ÓʂȐÓĨáêĢ6ĻǩJ&Ȱ�Ģwɸ:ýʂ�		-XkmRŀȏSſŨ
õƇë<R$ɻĳĖȐÓğńŊ±ŧßɼʀ6�		-7

/+ěʁ�Ñʂ�ǗǢ
�ȐÓĨáêĢ��võČÓğʂêÃȰ�ÓĢɸ
=���8R?$GL8O
�*G����������
Č�võČÓğ[ñƬƫ¦Q�ǎ[Ǿʂñë±Ǘ�Ȱ�õhSBÂ

õh<¹Ƚ¾ĩɸȰ�õh×1ʂTȐÓăæ<ŃȟēƦ×1ʅBÂõh
×1ʂ×&Ń�ƟșwŘ�:Ĭ;ɸkÝ���ĨáȐÓ<kmʂÁȰ�
õh%�	��-	�ĨĲʂ=k¸%ÇƋɑşʂÃ÷ȀŶ+	�ɸ
T�ɘÓá5<wŘtŷʂ¦Ȱ�õh×wʂÁ5řO<ÓĢ+×

Õʅ³TɘÓáƣÕ<wŘʂ¦Ȱ�õh×ƀʂÁĬǳ<ÓĢ+×5ɸ¤
ýʂ:əǤM0vƸwŘ<Ńȟʂ%ÇƋɑşʂvõČÓğ6Ȱ�õhȕ
w$+	�<¹Ƚ#ƣ:ë±<ɸ
Ƭƫ�Ɔ�<,ɇĖ÷ȀȐÓV�ĢwʂĨĲOÁ6BÂĢwȷV�

Ģw<¹ȽƳ:,	ɿʂȰ�õhȷV�Ģw<*	ɿɸ%ýƼɢ0ʂŴȡ/
ſɉ®ƛõhɘÓSɞŘĐÓ�Íåʂ²ÚǬ�ãmSſŨõãmſǘȐ
ÓĨáâ�°lǅîʂĨáȐÓÓğ6ďáõh¹ȽñŮ¦£1ʂ�M,

[English translation by the authors]: We will implement a two-part tariff for metered heating

charges: a fixed charge and a charge for metered heating usage.

Heating bill = Fixed cost + variable cost (depending on metered heating usage)

• Fixed cost = 12.5 RMB/m2 * home size (in square meter)
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• Variable cost = 0.091 RMB/kWh * total heating usage of a heating season

Here is one example on how a user’s heating bill changes after switching to the two-part tariff.

Suppose a user’s home has 100 m2, and the heating usage of a heating season is 8000 kWh. The

fixed cost is 12.5 RMB/m2 * 100 m2 = 1250 RMB; the variable cost is 0.091 RMB/kWh * 8000

kWh = 728 RMB. The total heating cost is the sum of fixed cost and variable cost: 1250 RMB +

728 RMB = 1978 RMB. Previously, when the heating cost was fixed, the user’s heating bill was 100

m2 * 25 RMB / m2 = 2500 RMB. Therefore, after the implementation of the two-part tariff, the

user can save 2500-1978 = 522 RMB.
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Appendix B: Results using the OLS with Two-Way Fixed Effects

Recent developments in the econometrics literature highlight that the OLS could produce biased

estimates for two-way fixed effects models such as equation (1) if treatment effects are heterogeneous

across households and/or time (de Chaisemartin and D’Haultfœuille, 2020; Callaway and Sant’Anna,

2021). To address this problem, in our main analysis in the paper, we use a method developed by

de Chaisemartin and D’Haultfœuille (2020) to estimate equation (1) so that we do not impose the

assumption of homogeneity in the treatment effects.

In this appendix, we compare our estimation results based on the method developed by de Chaise-

martin and D’Haultfœuille (2020), which we report in Table 3, and our estimation results based on

the conventional OLS with two-way fixed effects, which we report in Table A.7 in this appendix.

We also would like to note that an earlier version of our working paper also used the conventional

OLS with two-way fixed effects.

We find that the results are indeed different between the two estimation methods. de Chaise-

martin and D’Haultfœuille (2020) show that the conventional OLS does not produce the correct

average treatment effects when the treatment effects are heterogeneous across individuals and/or

time. This is because the conventional OLS produces an incorrect weighted average of treatment

effects across cohorts and time. In addition, some of these wrong weights can be negative.

To be more precise, de Chaisemartin and D’Haultfœuille (2020) define cohort g and time t for

a staggered difference-in-differences method. Cohort g is the group of units who share the timing

of the start of treatment. t is the time period of the data. de Chaisemartin and D’Haultfœuille

(2020) show that E
[
β̂OLS

]
= E

[∑
g,tWg,t∆g,t

]
, where β̂OLS to be an estimate from the OLS with

two-way fixed effects, ∆g,t is the ATE for group g and time t, and Wg,t is weights summing to one.

IfWg,t are the relative sample size in (g, t), E
[
β̂OLS

]
is equal to the ATE across (g, t). However,

de Chaisemartin and D’Haultfœuille (2020) shows that Wg,t in the OLS are not necessarily equal

to the relative sample size in (g, t) when the treatment effects are heterogeneous across g and/or

t. Moreover, many of Wg,t can be negative. If many of Wg,t are negative, E
[
β̂OLS

]
could have an

opposite sign of the correct ATE over (g, t).

To explore this point in our data, we use the approach developed by de Chaisemartin and

D’Haultfœuille (2020) to compute the weights Wg,t in the conventional OLS with two-way fixed
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effects. In our application, the cohorts (g) are defined by the staggered timings of the introduction

of the CBB, and the time (t) is year-by-month.

In Figure A.4, we show Wg,t against the “correct” cohort-by-time weights, which are the relative

sample size across the cohort-by-time cells. If the OLS uses weights that are equivalent to the correct

weights (i.e., the OLS weights and correct weights line up at the 45-degree line in the figure), we

can obtain the correct average treatment effect using the OLS.

However, the figure shows that many weights are not on the 45-degree line. Furthermore, 46%

of the weights used by the OLS are negative. These results imply that the OLS estimates could be

substantially different from the ATE and even could have a wrong sign. Indeed, we find that the

sign of the estimates are different between the two methods for the quartile group 1 (column 1 in

each table).

de Chaisemartin and D’Haultfœuille (2020) and Callaway and Sant’Anna (2021) describe that

the OLS with two-way fixed effects could produce biased estimates because it effectively uses all

units, including already-treated units, as control units. The estimation methods developed by

de Chaisemartin and D’Haultfœuille (2020), which we use in our main analysis, address this problem.

Another alternative approach is to use OLS to estimate a cohort-specific treatment effect. We divide

our sample into cohorts based on the staggered timing of the introduction of the CBB. For each

cohort, we use households who were not-yet-treated as a clean control group, which allows the

cohort-specific OLS estimation to be a standard difference-in-differences without a staggered roll-

out. To check the robustness of our main approach, we also estimate this cohort-specific OLS

regression and take the weighted average of these estimates using the relative sample size as weight.

We estimate that this approach produces results consistent with our main results.28

28Among available methods in this literature, we use de Chaisemartin and D’Haultfœuille (2020) for our analysis
for a few reasons. First, their estimation method allows us to use ever-treated groups as the control groups. Second,
the paper provides a readily available code to compute the weights Wg,t in the conventional OLS with two-way fixed
effects to investigate the source of bias as we present in Figure A.4.
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Appendix C: Calculation of the Externalities from Air Pollution

To calculate the additional welfare gain from reduced environmental externalities, we need to under-

stand how household energy conservation affects local ambient pollution. First, we examine whether

pollution emissions of the heating plant correlate with household heating usage. We use emission

concentration data from the CEMS (Continuous Emission Monitoring System) monitor placed at

the heating plant. Figure A.5a shows that as the daily total heating usage of households in this

district increases, daily average SO2 concentration also increases. This positive association is also

observed for NOx and PM in Figure A.5b and Figure A.5c. As a major polluting source in winter,

the heating plant’s emissions likely affect the local ambient air quality.

Second, we estimate the correlation between household heating usage and ambient air pollution,

using air pollution data from a pollution monitor located in the residential area. In Table A.8, the

ambient pollution data and the total heating usage of all households are both at the daily level, and

we control for weather conditions, year-by-week fixed effects, and day of week fixed effects. We find

that 1 percent increase in heating consumption is associated with 0.88 percent increase in ambient

PM10 concentrations, where the baseline PM10 concentrations before the reform was 131. For each

of the decile groups, we combine these estimates with the ITT estimate on heating usage to calculate

the amount of reductions in PM10 concentrations following the reform. Ito and Zhang (2020) and

the average household income in Tianjin suggests that a Tianjin household’s marginal willingness

to pay for a reduction in PM10 is 1.43 dollars per ug/m3 of PM10 per year. We then multiply these

two estimates to measure the WTP for the policy-induced reduction in PM10. We find that the

marginal cost of the environmental externality is 0.0153 USD per kWh of heating usage.29

29Note that this estimate is likely to be a lower bound estimate for environmental externalities because this
calculation does not include other potential environmental externalities than PM10 and the MWTP for reductions in
PM10 in Ito and Zhang (2020) is a lower bound estimate for reasons described in that study.
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Appendix C: Additional Tables

Table A.1: Timing of the CBB policy

Dependent variable: Rollout year of usage-based pricing

Year of build 0.051
(0.036)

Average condo size (square meter) -0.005
(0.008)

Average home price per square meter (1,000 dollars) 0.018
(0.016)

Annual heating usage prior to CBB (1,000 kWh) -0.041
(0.034)

Number of Buildings 484
R2 0.89

Notes: In this table, we test if observed building characteristics are associated with the staggered rollout
timings of policy implementation. The observations are at the building level. The dependent variable is the
rollout year of consumption-based billing. The estimation includes the meter installation year fixed effects.

Table A.2: Robustness of the Impacts of the CBB by the Quartiles of the Predicted Changes in
Average Price (non-parametric controls of cohort trends are included)

Dependent variable: Log of daily heating usage
ITT

Quartile 1 Quartile 2 Quartile 3 Quartile 4

CBB 0.216 0.019 -0.159 -0.154
(0.060) (0.052) (0.061) (0.028)

Observations 44,384 57,106 31,602 44,362

Notes: We divide customers by quartile based on their policy-induced changes in average price and estimate
equation (1) for each quartile group separately. The estimation includes household fixed effects and year-by-
month fixed effects. Non-parametric controls of cohort trends are included. Standard errors in parentheses
are clustered at the building level.
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Table A.3: Does Heating Usage Depend on Neighbors’ Compliance Status?

ln(daily heating usage)

CBB*complied -0.088
(0.016)

CBB*next door neighbor complied -0.006
(0.014)

CBB*upper or lower level neighbor complied -0.021
(0.014)

Observations 201,338
R2 0.67

Notes: In this table, we test if changes in heating usage are correlated with neighbors’ compliance status.
The regression includes household fixed effects and year-by-month fixed effects. The first coefficient implies
that changes in heating usage are negatively correlated with households own compliance status, which is
consistent with our main findings on the policy’s treatment effects. The rest of the coefficients indicate that
there is little statistical evidence that changes in heating usage are correlated with neighbors’ compliance
status.

Table A.4: ATET: Impacts of the CBB by the Quartiles of the Predicted Changes in Average Price

Dependent variable: Log of daily heating usage
ATET

Quartile 1 Quartile 2 Quartile 3 Quartile 4

CBB 0.312 0.022 -0.221 -0.224
(0.062) (0.082) (0.088) (0.030)

Observations 44,384 57,106 31,602 44,362
Change in Marginal Price 0.014 0.014 0.014 0.014
ATET on ln(Average Price) -0.321 0.071 0.267 0.396
ATET on ln(Predicted Average Price) -0.170 0.081 0.084 0.339

Notes: The regression includes household fixed effects and year-by-month fixed effects. This table reports
the DID estimates (ATET) of the overall reform effect by quartile group of predicted average price.
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Table A.5: ATET: Testing for Schmeduling

ATET H0: β ≤ 0

Marginal ln(Predicted ln(Actual ln(Usage) (p-value)
price average price) average price)

Full sample 0.014 -0.170 -0.321 0.312 0.000
(0.008) (0.054) (0.062)

Households with 0.014 -0.166 -0.280 0.237 0.001
home value > median (0.012) (0.065) (0.076)

Households with 0.014 -0.172 -0.274 0.246 0.002
home value <= median (0.009) (0.077) (0.085)

Households with 0.014 -0.170 -0.337 0.287 0.000
home size > median (0.012) (0.076) (0.087)

Households with 0.014 -0.168 -0.211 0.225 0.006
home size <= median (0.009) (0.060) (0.090)

Notes: This table reports the DID estimates (ATET) of the reform effect in quartile 1 of predicted average
price.

Table A.6: Middle vs. Top and bottom floors, and Corner vs. Non-corner unites

ln(daily heating usage)

Panel A: Middle vs. Top and bottom floors
(1) (2)

Middle Top and bottom
floors floors

CBB -0.083 -0.062
(0.025) (0.026)

Observations 205,432 41,100

Panel B: Non-corner vs. Corner units
(1) (2)

Non-corner Corner
units units

CBB -0.081 -0.043
(0.027) (0.019)

Observations 54,971 78,746

Notes: The regression includes household fixed effects and year-by-month fixed effects. In Panel B,
we use a subsample of buildings where we can identify corner vs. non-corner units: buildings with three,
four or eight households on the same floor.
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Table A.7: Results Based on the Conventional OLS with Two-way Fixed Effects

ln(daily heating usage)

(1) (2) (3) (4)
Quartile 1 Quartile 2 Quartile 3 Quartile 4

First year of CBB -0.056 -0.111 -0.055 -0.048
(0.036) (0.023) (0.022) (0.023)

Second year of CBB -0.074 -0.139 -0.114 -0.052
(0.055) (0.036) (0.040) (0.047)

Third year of CBB -0.146 -0.234 -0.229 -0.152
(0.072) (0.049) (0.051) (0.065)

Observations 46,581 46,579 46,583 46,575
R2 0.53 0.64 0.67 0.69
Month*First data year FE Y Y Y Y
Household FE Y Y Y Y

Notes: This table shows the ITT estimates using the conventional OLS with two-way fixed effects. The
estimation includes household fixed effects and year-by-month fixed effects. Standard errors in parentheses
are clustered at the building level.

Table A.8: Household Heating Usage and Ambient Pollution

(1) (2) (3)
lnSO2 lnPM2.5 lnPM10

ln(Daily total heating usage) 1.562 1.414 0.877
(0.434) (0.476) (0.414)

Observations 461 459 444
R2 0.74 0.65 0.58
Weather controls Y Y Y
Year-week FE Y Y Y
Day-of-week FE Y Y Y

Notes: In this table, we estimate the relationship between heating usage and ambient pollution. Ambient
pollution data on the concentration of SO2, PM2.5 and PM10 are from a pollution monitor located in the
district of Tianjin where this study is conducted. This pollution monitor is the only one located in the district
of our study, and this district is relatively isolated from other districts of Tianjin, with a road distance of
about 55 kilometers from Tianjin’s city center. Weather controls include temperature, precipitation and
wind speed.

49



Appendix D: Additional Figures

Figure A.1: Rollout of the reform
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Notes: This figure shows the rollout of the consumption-based billing policy.
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Figure A.2: Robustness of Policy-Induced Changes in Average Price and Usage (non-parametric
controls of cohort trends are included)
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Notes: We divide customers by decile based on their policy-induced changes in average price. For each
decile, we estimate the ITT of the CBB on the log of heating usage based on the difference-in-differences
estimation method developed by de Chaisemartin and D’Haultfœuille (2020). We also apply the same method
to estimate the ITT on the log of the policy-induced change in average price. Non-parametric controls of
cohort trends are included. The bars indicate the 95 percent confidence intervals. Standard errors are
clustered at the building level.
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Figure A.3: Robustness of the Event-Study by Quartile (non-parametric controls of cohort trends
are included)
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b) Quartile 2
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c) Quartile 3
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d) Quartile 4
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Notes: This figure shows the ITT estimates of the staggered difference-in-differences analysis described in
equation (1) based on the estimation method developed by de Chaisemartin and D’Haultfœuille (2020).
There are three heating months in each year because the heating season is December, January, and February.
The bars indicate the 95 percent confidence intervals. Standard errors are clustered at the building level.
We divide customers by quartile based on their policy-induced changes in average price. We then estimate
equation (1) for each quartile group separately to make these event study figures. In this analysis, we
interact time fixed effects with cohorts.
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Figure A.4: Cohort-by-Time Weights Imposed by the OLS with Two-Way Fixed Effects
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Notes: We compute the cohort-by-time weights that are imposed by the conventional OLS using the method
developed by de Chaisemartin and D’Haultfœuille (2020). We then plot them against the “correct" cohort-
by-time weights, which are the relative sample size across the cohort-by-time cells. If the OLS uses weights
that are equivalent to the correct weights (i.e., the OLS weights and correct weights line up at the 45-degree
line in the figure), we can obtain the correct average treatment effect using the OLS. However, the figure
shows that many weights are not on the 45-degree line. Furthermore, 46% of the weights imposed by the
OLS are negative.
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Figure A.5: Household Heating Usage and Pollution Emissions of the Heating Plant

(a) SO2 concentration (mg/m3)
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(b) NOx concentration (mg/m3)
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(c) PM concentration (mg/m3)
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Notes: Data on emission concentrations are from the CEMS monitor placed at the heating plant.
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