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1 Existence in the Relaxed Pure Adverse Selection Problem

To show existence, we will need the assumption that, for each θ, Ĉ(·, ·, θ) is strictly convex. For

the canonical setting without moral hazard, Ĉ(a, u0, θ) = φ(u0 + c(a, θ)), where φ = u−1, and so

this is immediate. The situation is more complicated in the decoupling program where Ĉ = C

comes from the cost minimization step of the pure moral hazard problem. Although primitives for

C convex in a are known (see Jewitt, Kadan, and Swinkels (2008) and Chade and Swinkels (2020)

(CS )), ensuring convexity in (a, u0) is harder. For the square-root utility case, one can show that

all the assumptions are satisfied. Moreover, checking the convexity of a numerically generated C

for any given set of primitives is straightforward. Finally, we have the following result, showing

convexity on the relevant range as long as ū is large enough.

Lemma 8 Let F ∈ C4, let Assumption 6 hold, and let a < ∞. Then for all ū sufficiently large,

C(·, ·, θ) is strictly convex for each θ and for all (a, u0) with u0 ≥ ū.

Proof As in Lemma 6, Caa and Cu0u0 are positive for u0 sufficiently large. It remains only to

show that for u0 sufficiently large, the determinant CaaCu0u0 − (Cau0)
2 is strictly positive. But,

CaaCu0u0 − (Cau0)
2 =

Caa

φ′caa
φ′caa

Cu0u0

φ′′ φ′′ −
(
Cau0

φ′′ca

)2

(φ′′ca)
2

= s
Caa

φ′caa
caa

Cu0u0

φ′′ −
(
Cau0

φ′′ca

)2 φ′′

φ′ c
2
a,

which converges to caa > 0, using that φ′′/φ′ → 0 by Assumption 6. □

We are now ready to prove our existence and uniqueness result. Per Assumption 3, we will

proceed with B linear with slope β1 > 0. This is purely for convenience.

Proposition 2 Let Ĉ be C2, let Ĉ(·, ·, θ) be strictly convex, let Ĉa(0, u0, θ) = 0, and assume that

there is ε > 0 such that Ĉa(ā, u0, θ) > β1 + ε for all (u0, θ). Let u be in the interior of the range

of u. Then a solution to the relaxed pure adverse selection problem

max
α,S

∫ θ

θ

(
B(α(θ))− Ĉ(α (θ) , S(θ), θ)

)
h(θ)dθ

s.t. ICS

exists and is unique.
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Proof Recall from Footnote 16 that the Hamiltonian of the problem is H = (B−Ĉ)h−ηcθ, where
η ≤ 0, and where strict concavity of H follows since (i) Haa < 0 since Baa = 0, caaθ ≤ 0, and

Ĉaa > 0; (ii) Hu0u0 < 0 since Ĉu0u0 > 0; and (iii) HaaHu0u0−H2
au0

> 0 since ĈaaĈu0u0−Ĉ2
au0

> 0.

Given the boundary conditions on Ĉa, the optimality conditions are ∂H/∂a = 0, η′(θ) =

−∂H/∂S, and η(θ) = 0, from which we obtain

Ba − Ĉa = −caθ
h

∫ θ̄

θ
Ĉu0h, (11)

plus ICS . The concavity of H ensures that (11) plus ICS are also sufficient. As a result, we will

focus on them in our search for a solution (α, S) to the problem.

Define a∗(s, z, θ) as the solution in a to

Ba(a)− Ĉa(a, s, θ) = −caθ(a, θ)
h(θ)

z, (12)

where a∗ exists from the boundary conditions on Ĉa, and is unique from the strict convexity of Ĉ,

the convexity of −cθ in a, and Baa = 0. We will then be done if we find a solution to the system

of ordinary differential equations[
S′(θ)

Z ′(θ)

]
=

[
gS(S(θ), Z(θ), θ)

gZ(S(θ), Z(θ), θ)

]
.

with boundary conditions S(θ) = u and Z(θ̄) = 0, where[
gS(S(θ), Z(θ), θ)

gZ(S(θ), Z(θ), θ)

]
=

[
−cθ(a∗(S(θ), Z(θ), θ), θ)

−Cu0(a
∗(S(θ), Z(θ), θ), S(θ), θ)h(θ)

]
.

Indeed if we take α(θ) = a∗(S(θ), Z(θ), θ) then Z(θ) =
∫ θ̄
θ Cu0(α(t), S(t), t)h(t)dt. Hence, by

definition of a∗ and comparing (11) and (12), (α, S) satisfies the relevant conditions.

Define umax = ū + (θ − θ)max(a,θ)∈[0,a]×[θ,θ](−cθ(a, θ)). This is an upper bound on how high

S(θ̄) could be if S(θ) = ū. Similarly, let

zmax = (θ − θ) max
(a,s,θ)∈[0,a]×[u,umax]×[θ,θ]

(Cu0(a, s, θ)h (θ))

be an upper bound on how large Z(θ) can be if Z(θ̄) = 0. Choose δ ∈ [0, ε) such that u − δ

remains in the interior of the range of u, and let R = [u, umax]× [0, zmax] and Rδ = [u− δ, umax +

δ]× [−δ, zmax + δ], and define Rδ/2 similarly. Then a∗ is Lipschitz on Rδ × [θ, θ], and hence so are

gS and gZ .

Let ζ : R2 → [0, 1] be a Lipschitz function such that ζ(s, z) = 1 if (s, z) ∈ R and ζ(s, z) = 0 if
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(s, z) /∈ Rδ/2. Write ζgS for the function that is ζ(s, z)gS (s, z, θ) on Rδ, and zero otherwise, and

similarly for ζgZ . Then (ζgS , ζgZ) is Lipschitz on R2×[θ, θ]. Thus, (see, for example, Theorems 2.3

and 2.6 in Khalil (1992)), there exist continuous functions Ŝ and Ẑ such that (Ŝ (uθ̄, ·) , Ẑ (uθ̄, ·))
solves the system subject to terminal utility uθ̄. That is, Ŝ and Ẑ map R× [θ, θ] into R such that

Ŝ(uθ̄, θ̄) = uθ̄, Ẑ(s̄, θ̄) = 0, and[
Ŝθ(uθ̄, θ)

Ẑθ(uθ̄, θ)

]
=

[ (
ζgS

)
(Ŝ(uθ̄, θ), Ẑ(uθ̄, θ), θ)(

ζgZ
)
(Ŝ(uθ̄, θ), Ẑ(uθ̄, θ), θ)

]
.

Note that Ŝ(umax, θ) ≥ u since Ŝθ ≤ gS = −cθ, and by the definition of umax. Similarly, Ŝ(u, θ) ≤
u since Ŝθ ≥ 0. Hence, by continuity, there exists a terminal utility u∗ ∈ [ū, umax] such that the

initial utility Ŝ(u∗, θ) is equal to u. But then, since Ŝθ ≥ 0, Ŝ (u∗, θ) ∈ [ū, umax] for all θ ∈ [θ, θ].

Similarly, since Ẑθ ≤ 0, and using the definition of zmax, we have Ẑ(u∗, θ) ∈ [0, zmax] for all

θ ∈ [θ, θ]. Thus, (Ŝ(u∗, θ), Ẑ(u∗, θ)) ∈ R for all θ ∈ [θ, θ], and so since ζ = 1 on R, the pair

(S(·), Z(·)) = (Ŝ(u∗, ·), Ẑ(u∗, ·)) satisfies the required conditions.

To see uniqueness, let
(
α1, S1

)
and

(
α2, S2

)
be optimal and differ on a positive measure set.

Consider α̌ =
(
α1 + α2

)
/2, and note that since caaθ ≤ 0, −cθ (α̌, θ) ≤

(
−cθ

(
α1, θ

)
− cθ

(
α2, θ

))
/2.

Hence, Š = ū−
∫ θ
θ cθ (α̌ (τ) , τ) dτ ≤ (1/2)

(
S1 + S2

)
. But then, because B−C is strictly concave

in a and u0, and decreasing in u0, (α̌, Š) is strictly more profitable than either
(
α1, S1

)
or
(
α2, S2

)
,

a contradiction. □

Lemma 9 Under the conditions of Proposition 2, α is continuously differentiable.

Proof For each θ, α is defined by η(α(θ), θ) + z(θ) = 0, where

η(a, θ) =
Ba − Ĉa

caθ
h ≤ 0 and z(θ) =

∫ θ

θ
Ĉu0h ≥ 0.

Consider any point (a, θ) with θ < θ, where η(a, θ) + z(θ) = 0. Then, since caθ < 0, Ba − Ĉa > 0,

and since Ba − Ĉa is strictly decreasing in a using Ĉaa > 0 and caaθ ≤ 0, it follows that ηa > 0.

And since η and z are continuous in θ, it follows that α is continuous in θ.

The fact that α is continuous implies that S (θ) = ū −
∫ θ
θ cθ(α(s), s)ds is continuously dif-

ferentiable. Hence, z is continuously differentiable, since the integrand Ĉu0 (α(θ) , S (θ) , θ)h (θ)

is continuous. But, η is continuously differentiable as well, and so, as ηa > 0, α is continuously

differentiable by the Implicit Function Theorem. □

2 Other Omitted Proofs for Section III

Proposition 3 Consider the pure adverse selection case in which Ĉ(a, u0, θ) = φ(u0 + c(a, θ)).

Assume that caaθθ and caθθθ exist. If h is log-concave and −caθ is log-convex in θ, then α′ > 0.
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Proof Note that the numerator of OC ′ in Section A.A3 rearranges to

−caθθ
caθ

+
h′

h
+

(
caθĈu0 + Ĉaθ − cθĈau0

caθĈu0

)
Ĉu0h∫ θ̄
θ Ĉu0h

> 0.

We have Ĉa = φ′ca and Ĉu0 = φ′, and hence Ĉaθ = φ′′cθca + φ′caθ, and Ĉau0 = φ′′ca. From this,

the term in parenthesis equals 2, and thus α′ > 0 for any given θ if and only if for all θ,

z(θ) ≡ −caθθ
caθ

+
h′

h
+

2φ′h∫ θ̄
θ φ

′h
> 0. (13)

Note that z(θ̄) > 0, since the first two terms are bounded while the last term diverges as θ goes

to θ̄. Hence, by continuity, there is a smallest type θ0 ∈ [θ, θ̄) such that z(θ) > 0 for all θ > θ0.

We wish to show that θ0 = θ. Towards a contradiction, assume that θ0 > θ. Then z(θ0) = 0, and

z′(θ0) ≥ 0 (since z(θ) > 0 for all θ > θ0). We will show that these two properties cannot hold

simultaneously under the stated assumptions on h and caθ, yielding the desired contradiction.

Assume that z(θ0) = 0 and consider z′(θ0). The second term in (13) is decreasing in θ since

h is log-concave. Note next that(
caθθ
−caθ

)
θ

=

(
∂

∂a

caθθ
−caθ

)
α′ +

∂

∂θ

caθθ
−caθ

,

where we recall that (·)θ is the total derivative with respect to θ. When we evaluate this expression

at θ = θ0, the first term vanishes since α′(θ0) = 0, and the second term is negative since −caθ is

log-convex in θ. Hence, a necessary condition for z′(θ0) ≥ 0 is that
(
φ′h/

∫ θ̄
θ φ

′h
)
θ
is positive at

θ = θ0, which holds if and only if

φ′′caα
′h

∫ θ̄

θ0

φ′h+ φ′h′
∫ θ̄

θ0

φ′h+ φ′2h2 ≥ 0

when evaluated at θ = θ0. Since the first term vanishes at θ0, we obtain φ′h′
∫ θ̄
θ0
φ′h+ φ′2h2 ≥ 0,

which holds if and only if
h′

h
+

φ′h∫ θ̄
θ0
φ′h

≥ 0.

But this implies that

z(θ0) = −caθθ
caθ

+
h′

h
+

2φ′h∫ θ̄
θ0
φ′h

> 0,

contradicting that z (θ0) = 0. Hence, z(θ0) = 0 and z′(θ0) ≥ 0 cannot hold simultaneously. □

We now provide sufficient conditions for µa ≥ 0 and λa ≥ 0, which pin down the sign of Cau0
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and Caθ. Let ρ = (φ′)−1 map 1/u′ into u.

Lemma 10 Let FOP hold and let lxa < 0. Then, µa ≥ 0. If in addition f is log-concave in a

and ρ is concave, then λa ≥ 0, Cau0 ≥ 0, and Caθ ≤ 0.

Proof From the first-order condition of the cost-minimization problem plus the binding partici-

pation and incentive constraints, we obtain the following system of equations in λ and µ:∫
ρ(λ+ µl(x|a))f(x|a)dx = c(a, θ) + u0∫
ρ(λ+ µl(x|a))fa(x|a)dx = ca(a, θ).

Differentiating this system and manipulating (see CS for details),

λa = −µa
∫
lξ − µ

∫
laξ and µa =

1

varξ(l)

(
1∫
ρ′f

(
caa −

∫
ρfaa

)
− µ covξ(la, l)

)
, (14)

where ξ is the density with kernel ρ′ (λ+ µl (·|α (θ))) f (·|α (θ)) To see that µa > 0, note that

caa −
∫
ρfaa ≥ 0 by FOP, while covξ(la, l) < 0 under the assumption lax < 0. Turning to λa,

notice that
∫
lξ =s

∫
lρ′f =

∫
ρ′fa, where we recall that =s indicates that the objects on either

side have strictly the same sign. Now,
∫
ρ′fa is negative by Lemma 12, since fa single-crosses zero

from below,
∫
fa = 0, and ρ′ is positive and decreasing in x. Since µa ≥ 0, it follows that λa ≥ 0

if
∫
laξ =s

∫
laρ

′f ≤ 0. But this holds since f is log-concave in a, which is equivalent to la ≤ 0.

Recall from the proof of Lemma 3 that Cau0 = λa and Caθ = λacθ + λcaθ + µacaθ + µcaaθ.

Thus, Cau0 ≥ 0 since λa ≥ 0, and, given that cθ and caθ are negative, Caθ ≤ 0 since both λa and

µa are positive. □

3 Omitted Proofs for Section V

Here, we generalize Theorem 1 to the case that α is not continuously differentiable. Such α may

arise when C has less structure than we have imposed thus far, or for example, if the principal is

constrained in how many contracts she can offer.

Theorem 4 Let (α, v) satisfy ICMH and ICS, let α satisfy IMC, and assume that for each θ,∫
v(x, θ)f(x|·)dx is concave. Then, (α, v) is feasible in P.

Proof We proceed in several steps. Denote by γ the generalized inverse of α (recall that α can

jump up a countable number of times).

Step 1. By ICS , IR holds.
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Step 2. From Lemma 2, it suffices to show that every deviation (θA, â) /∈ G is dominated by

some on-graph deviation. We focus on deviations with â > α(θA) (the other case is similar).

Let the agent’s true type be θT . If θT ≤ θA, then∫
v(x, θA)f(x|â)dx−

∫
v(x, θA)f(x|α(θA))dx ≤ c(â, θA)− c(α(θA), θA) ≤ c(â, θT )− c(α(θA), θT ),

where the first inequality follows from the first-order condition ICMH , from concavity of
∫
vf

in a, and from â > α(θA), and the second since c is submodular. But then, (θA, α(θA)) ∈ G
dominates (θA, â).

Step 3. If for any given θ̃, â > α(θ̃) and θA ≤ θ̃, then (θA, α(θ̃)) dominates (θA, â) for type θ̃. To

see this, consider any action a ∈ [α(θ̃), â]. Then∫
v(x, θA)fa(x|a)dx ≤

∫
v(x, θA)fa(x|α(θA))dx = ca(α(θA), θA) ≤ ca(α(θ̃), θ̃) ≤ ca(a, θ̃),

where the first inequality follows from concavity of
∫
vf in a, the equality follows by ICMH , the sec-

ond inequality follows by IMC, and the third by convexity of c in a. Hence,
∫
v(x, θA)fa(x|a)dx−

ca(a, θ̃) ≤ 0 for any a ∈ [α(θ̃), â], and so (θA, α(θ̃)) dominates (θA, â) for type θ̃.

From Step 2, and from Step 3 applied to θ̃ = θT , we can restrict attention to deviations (θA, â)

with θA ≤ θT and â ∈ (α (θA) , α(θT )].

Step 4. Let (θA, â) be such that â > α(θA) and (γ(â), â) ∈ G, that is, â = α(γ(â)). We will show

that ∫
v(x, γ(â))f(x|â)dx ≥

∫
v(x, θA)f(x|â)dx (15)

and hence, subtracting c(â, θT ) from each side, (θA, â) is dominated for θT by (γ (â) , â) ∈ G.

Subtract
∫
v(x, θA)f(x|α (θA))dx from each side of (15), and then use that

∫
vf = S + c to

arrive at the equivalent expression

S(γ(â))+c (â, γ(â))−(S(γ (α (θA)))+c(α(θA), γ (α (θA)))) ≥
∫
v(x, θA)f(x|â)dx−

∫
v(x, θA)f(x|α (θA))dx,

where in the second term on the lhs, we used that θA = γ (α (θA)). Now, by Corollary 1, the lhs

is increasing, and so, by Kolmogorov and Fomin (1970), Chapter 9, Section 33, Theorem 1, it is

at least ∫ â

α(θA)

(
∂

∂a
(S(γ(a)) + c (a, γ(a)))

)
da,

while by the Fundamental Theorem of Calculus, the rhs is equal to∫ â

α(θA)

(
∂

∂a

(∫
v(x, θA)f(x|a)dx

))
da =

∫ â

α(θA)

(∫
v(x, θA)fa(x|a)dx

)
da,
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Figure 9: IMC . Under IMC, a deviation by θJ − ε to q1 is dominated by one to q2, which in turn
is dominated by q3, which, from the point of view of θJ − ε is nearly as good as q4. But then,
from the point of view of θT , who has a lower incremental cost of effort, the (on-locus) point q4
also nearly dominates q1, and telling the truth and taking the recommended action is better yet.

and so it suffices that for all a ∈ [α(θA), â] at which S(γ(a)) + c (a, γ(a)) is differentiable,

∂

∂a
(S(γ(a)) + c (a, γ(a))) ≥

∫
v(x, θA)fa(x|a)dx.

But, at points of differentiability,

∂

∂a
(S(γ(a)) + c (a, γ(a))) =

(
S′(γ(a)) + cθ (a, γ(a))

)
γ′(a) + ca (a, γ(a))

= ca (a, γ(a))

≥ ca(α(θA), θA),

where the second equality follows since S′ = −cθ on G and since γ′ = 0 where α jumps. To

see the inequality, note that since a > α(θA), it follows that γ(a) ≥ θA. Thus, if (γ(a), a) ∈ G
then ca(a, γ(a)) ≥ ca(α(θA), θA) by IMC. Otherwise, for all θ ∈ [θA, γ(a)) ∪ {θA}, ca(a, θ) ≥
ca(α(θ), θ) ≥ ca(α(θA), θA), where the first inequality is by convexity of c in a, noting that

θ < γ(a) implies α(θ) < a, and the second inequality is by IMC. But then, taking θ ↑ γ(a),

ca(a, γ(a)) ≥ ca(α(θA), θA) as claimed.

Step 5. Let (θA, â) be such that â > α(θA) and â ̸= α(γ(â)). Then α jumps at θJ = γ(â) from

al to ah with â within the jump. And, recalling â ∈ (α (θA) , α(θT )], θT ≥ θJ . See Figure 9.

7



For any ε ∈ (0, θJ − θA), note that∫
v(x, θA)f(x|â)dx− c(â, θJ − ε) ≤

∫
v(x, θA)f(x|α(θJ − ε))dx− c(α(θJ − ε), θJ − ε)

by Step 3. That is, type θJ − ε prefers to move from q1 to q2 in Figure 9. But, by Step 4,∫
v(x, θA)f(x|α(θJ − ε))dx− c(α(θJ − ε), θJ − ε)

≤
∫
v(x, θJ − ε)f(x|α(θJ − ε))dx− c(α(θJ − ε), θJ − ε)

= S(θJ − ε)

corresponding to the move by θJ − ε from q2 to q3. Finally, by imitating type θJ + ε (that is to

say, at q4), θJ − ε obtains

S (θJ + ε) + c (α (θJ + ε) , θJ + ε)− c (α (θJ + ε) , θJ − ε) .

But, since S is continuous, and since α (θJ + ε) is increasing and so has a well-defined and finite

limit as ε ↓ 0, it follows that for any given δ > 0, and for ε small enough,

S (θJ − ε) ≤ δ + S (θJ + ε) + c (α (θJ + ε) , θJ + ε)− c (α (θJ + ε) , θJ − ε) ,

which is to say that θJ − ε is hurt by at most δ by moving from q3 to q4. Combining, we have∫
v (x, θA) f (x|â) dx−c (â, θJ − ε) ≤ δ+S (θJ + ε)+c (α (θJ + ε) , θJ + ε)−c (α (θJ + ε) , θJ − ε) ,

and so, since θJ − ε < θT , and since c is submodular,∫
v (x, θA) f (x|â) dx− c (â, θT ) ≤ δ + S (θJ + ε) + c (α (θJ + ε) , θJ + ε)− c (α (θJ + ε) , θT )

≤ δ + S (θT ) ,

where the second inequality uses Lemma 2. But, δ > 0 was arbitrary, and so θT prefers q5, where

he announces his true type and takes the recommended action to q1, and we are done. □

4 Numerical Details for Section VI

4.1 Defining primitives

First, we define all the primitives of the model: the utility function, the effort cost function,

output distribution, type distribution, principal’s benefit from the effort, a minimum payment
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constraint, and a reservation utility.

Recall that ρ maps 1/u′ into utility, and φ ◦ ρ maps 1/u′ into income. Define

γ(a, λ, µ) ≡
∫
ρ (λ+ µℓ(x|a)) f(x|a)dx

as the utility from income that the agent receives at the contract associated with λ, µ, and a, and

γa(a, λ, µ) ≡
∫
ρ (λ+ µℓ(x|a)) fa(x|a)dx

as the associated marginal incentive.

Let

C̃a(a, θ, λ, µ) = µ

[
caa(a, θ)−

∫
ρ(λ+ µℓ(x|a))faa(x|a)dx

]
+

∫
φ(ρ(λ+ µℓ(x|a)))fa(x|a)dx.

Note that by the Envelope Theorem, if for given (a, s, θ) one finds the associated λ and µ satisfying

(2) and (3), then Ca(a, s, θ) = C̃a(a, θ, λ, µ). Similarly, recall that Cu0(a, s, θ) = λ, where λ is the

associated participation constraint multiplier.

4.2 Plan of Attack

We first solve the problem assuming there is no exclusion. In particular, we characterize the

surplus given to the highest type such that all types participate. Subsequently, we search over

multiple values of the highest type’s surplus to find the optimal exclusion threshold.

We will work with a discretization of Θ for tractability. Recall that in the solution to our

decoupled problem, the surplus of the agent depends on the actions being assigned to all types

below θ but the cost of changing the effort of the agent depends on the additional cost of providing

an extra util to all types above θ. Motivated by this, in the Online Appendix, Section 1, we

work with a system of two differential equations involving the objects S(θ) and Z(θ) where S

corresponds to the surplus given to agent θ, corresponding to −
∫ θ
θ cθ(α(t), s)ds, and Z is the

“externality” term that captures the cost of giving utility to types above θ, corresponding to the

expression
∫ θ
θ Cu0(α(t), S(t), t)h(t)dt. The boundary condition on S is evaluated at the lowest

type, while the boundary condition on Z is evaluated at the highest type.

Our plan of attack is first to construct a numerical function that “locally” finds the relevant

values of a, λ, and µ for given θ and for given values s and z of S and Z. Then, we use this

function to solve the system of differential equations. We do this by guessing a value of surplus

for the highest type. Then, we solve iteratively from top to bottom to find the surplus this implies

for all lower types, particularly for the lowest type. If the lowest type utility is not equal to the

outside option, we adjust the guess for the surplus value for the highest type and repeat.
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4.3 Solving Locally

Following equation (12) in Section 1 of the Online Appendix, define

χ(a, z, θ, λ, µ) ≡ Ba(a)− C̃a(a, θ, λ, µ) +
caθ(a, θ)

h(θ)
z. (16)

The function χ represents the principal’s first-order condition for the choice of recommended effort

for type θ given the cost of implementing the action for the type in question, and the incremental

surplus that her choice of action implies must be given to all types above. Let us first discuss how

we take any given type of agent, the surplus that they receive s, and the cost of providing utility

to higher types z and calculate what effort and associated multipliers the principal will choose.

That is, for each vector (θ, s, z) we must find (λ, µ, a) such that

γ(a, λ, µ) = c(a, θ) + s, γa(a, λ, µ) = ca(a, θ), and χ(a, z, θ, λ, µ) = 0. (17)

The first equation represents the participation constraint; the second is the agent’s effort choice

first-order condition (incentive compatibility), and the third is the principal’s first-order condition

with respect to the recommended effort. In a solution to the decoupled problem, all three must

hold with equality1.

To find the solution to (17), we define the numerical function “solver.” Solver begins by using

least squares to look for the root of this non-linear system of equations.2 If the least squares

approach does not find roots for the three constraints, the function solver sets λ = 0 and looks for

roots of (3) and χ only using (µ, a). We check whether the problem is solved, assuming that (2) is

slack. We then check whether (2) is indeed slack at this solution. Finally, if this second approach

does not find the roots, the solution must be a corner effort level. We set a = 1 and find (λ, µ)

that satisfies IC and IR. For this last step, we define the numerical function multipliers. The

function multipliers uses least squares to find (λ, µ) that make (2) and (3) satisfied with equality

while holding effort at the maximum level3.

4.4 Solving the System

For numerical tractability, we discretize Θ with n = 101 equally spaced points. Recall that the

boundary condition regarding participation binds at the lowest type, while the externality term

1Unless the participation constraint is slack, given the minimum payment constraint. In this case, γ(a, λ, µ) >
c(a, θ) + s and the other two expressions on (17) hold with equality. We discuss how to deal with such a case in
more detail below.

2The numerical function solver requires initial guesses for (λ, µ, a). For clarity, they will be omitted in this
algorithm description.

3In case we cannot find roots for (2) and (3) simultaneously, it must be the case that effort a = 1 and the
participation constraint is slack. We then set a = 1, λ = 0, and look for µ that satisfies (3) with equality using a
root finding function brentq.

10



z(θ) depends on the efforts of all types above it.

To address this, we construct a numerical function called “surplus” that guesses the surplus

of the highest type and iteratively calculates from top to bottom efforts, multipliers, surpluses,

and externalities {(ai, λi, µi, si, zi)}n−1
i=0 for each type θi starting from the initial condition that z

is zero for the highest type. The algorithm of surplus follows:

1. Set sn−1 = u∗ and zn−1 = 0.4 Then, for i iteratively decreasing from n− 2 to 0:

2. Given si+1, zi+1, calculate the effort and multipliers of type θi+1. That is, let

(ai+1, λi+1, µi+1) = solver(θi+1, si+1, zi+1). (18)

The function solver also requires initial guesses for (a, λ, µ),. For speed, we use the ones

calculated for the immediately higher type. For the highest type, we use an arbitrary guess.

3. Then, compute the surplus and externality of type θi. That is, let

si = si+1 +
1

n− 1
cθ(ai+1, θi+1), (19)

and

zi = zi+1 +
1

n− 1
λi+1h(θi+1). (20)

4. Finally, let

(a0, λ0, µ0) = solver(θ0, s0, z0).

Equation (18) describes the effort and multipliers for type θi+1 given that he receives a surplus

of si+1. Equation (19) computes the surplus of the type immediately below, and equation (20)

computes the additional cost of providing one extra util to all types above θi. That is, for each

surplus left to type θi+1, we use solver to find the effort, multipliers, and surplus of type θi. We

run this set n times to arrive at s0(u
∗). Since we are using Euler’s method, standard results imply

that the error term in this approximation versus the continuous system is of order 1/n.

Note that for each guess sn−1 = u∗, the numerical function surplus outputs a vector of sur-

pluses, including the surplus of the lowest type. Recall that in the solution to the decoupled

problem, the participation of the lowest type must bind. Then, we search for the correct highest

type’s surplus guess that makes s0 = ū. We do so by using the pre-built Python root finding func-

tion brentq5. Finally, we find the solution to the decoupled problem by evaluating our constructed

function surplus at the correct u∗ that makes s0(u
∗) = ū.

4Python indexes an array from 0 to n− 1; hence n− 1 corresponds to the highest type.
5For speed, if at some point when calculating the surpluses given an initial guess for sn−1, some si falls below

ū, then we stop the code because the initial guess for the high type’s surplus sn−1 = u∗ was too low, and simply
set s0 to something below ū.

11



4.5 Checking IMC

Checking IMC simply requires verifying if the marginal effort cost of each type at their respective

recommended effort is increasing in θ. That is, for each i from 0 to n− 2 check whether

ca(α
∗
i , θi) ≤ ca(α

∗
i+1, θi+1),

where α∗
i denotes the recommended efforts in the solution of the decoupled problem. If yes, then

IMC is satisfied, and the solution to the decoupled problem solves the original one.

4.6 Optimal Exclusion

Given the solution to the procedure above, we have characterized the surplus to the highest type

sn−1 that assures all types participate. Denote such surplus by s̄. We then create a grid (with 101

equally spaced points) with surpluses from ū to s̄. Each level of such surplus, when assigned to the

highest type, generates an exclusion cutoff θc(s). For instance, sn−1 = s̄ generates no exclusion

(i.e., θs = θ), while sn−1 = ū implies on excluding all types but the highest. We then evaluate

the numerical function surplus at each s in the grid and compute its associated profits. The one

that generates the highest profit is the optimal one, with the optimal associated exclusion cutoff.

4.7 Checking if C is convex

When looking for the optimal recommended effort for each type, we rely on the first-order con-

dition regarding effort recommendation (4). For such a first-order condition to be sufficient, we

need the function C(a, s, θ) to be convex in (a, s). To test whether such a condition is likely to be

satisfied, we sample many pairs (a, s) and θ’s to check if the resulting C(a, s, θ) violates convexity

in (a, s) for any of the tuples sampled. If it violates, then the pure moral hazard cost is not

convex. Otherwise, if our sample is large, the function will likely be convex.

Define the numerical function multipliers, which takes (a, s, θ) as given, and looks for a pair

(λ, µ) that makes (2) and (3) hold. The approach is similar to before (using least squares), but

now we hold a as exogenous. We compute the moral hazard cost using such multipliers and

C̃(a, λ, µ) defined by

C̃(a, λ, µ) ≡
∫
φ(ρ(λ+ µℓ(x|a)))f(x|a)dx.

Note that if for given (a, s, θ) one finds the associated λ and µ, then C(a, s, θ) = C̃(a, λ, µ).

We sample n-test random tuples of {(ai1, si1), (ai2, si2), θi}n-testi=1 . For each i, we compute the

average of pairs (ai1, s
i
1) and (ai2, s

i
2) and the multipliers associated with each pair of effort and

12



surplus given θi. That is, let

(aim, s
i
m) ≡

(
ai1 + ai2

2
,
si1 + si2

2

)
∀i ∈ {1, ..., n-test},

and

(λij , µ
i
j) ≡ multipliers(aij , s

i
j , θ

i) ∀i ∈ {1, ..., n− test}, j ∈ {1, 2,m}.

Finally, we check whether convexity holds for each i. That is, we check if for each i

C̃(ai1, λ
i
1, µ

i
1) + C̃(ai2, λ

i
2, µ

i
2) ≥ 2C̃(aim, λ

i
m, µ

i
m).

If this condition fails for any i, then C is not convex. Otherwise, C is likely to be convex. As a

practical matter, we take 500 draws.

4.8 Numerical Application Parametrized by τ ∈ [0, 1]

In Section VI.C, we state that one can parametrize the numerical application by τ ∈ [0, 1] and

capture the pure moral hazard and the pure adverse selection cases when τ = 1 and τ = 0,

respectively. To do so, let the agent’s income utility be u(w) =
√
2w and the disutility of effort c

be given by

c(a, θ, τ) =

(
3

2
− (1− τ)

(
θ − 1

2

))
aea

2−1.

Thus τ = 0 gives back the original disutility of effort used in Section VI.C, while τ = 1 makes the

disutility of effort independent of type, and we obtain a pure moral hazard problem. Similarly,

parametrize the distribution of the signal in such a way that it becomes perfectly informative

about effort at τ = 0, which reduces to a pure adverse selection problem. To do this, let f be the

density used in Section VI.C, and introduce the following density parametrized by τ :

g(x|a, τ) = f(x|a)e−
(x−a)2

τ∫
f(s|a)e−

(s−a)2

τ ds
.

This density satisfies MLRP and is degenerate at a when τ = 0.6

6The only other change in comparison to the baseline example is setting B(a) = 100E[x|a]. The outside option
value ū, and distributions f and h remain as in the baseline example.
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Figure 10: Convergence of Effort Schedule and IMC for Different θ’s.

Figures 10 and 11 illustrate the optimal menu and verify IMC as τ varies. The left panel of

Figure 10 shows how the effort schedules converge to pure moral hazard at τ = 1 (flat effort level),

and to the pure adverse selection case at τ = 0. The right panel checks that we do not violate

IMC as the values of τ change. In turn, Figure 11 depicts the compensation schemes for different

values of θ as τ varies. The scheme is flat for each type under pure adverse selection when τ = 0,

and is increasing under pure moral hazard when τ = 1.

Note that in Figure 10 the recommended efforts for different τ values are not consistently

below the plotted pure moral hazard and pure adverse selection curves. One might wonder if this

contradicts the intuition that, when decoupling holds, the distortions caused by moral hazard and

adverse selection reinforce each other (see Section VI.C). It does not. In Section VI.C, we change

whether the principal can directly observe efforts and/or types while holding fixed the primitives

of the model, including c and f . In the example above, however, as we vary τ , we simultaneously

affect both c and f . The explanation provided in Section VI.C would apply here if we fixed τ at

some given value but varied what the principal could directly observe.

In this numerical application, the computation uses the fact that we have closed-form solutions

for the multipliers λ and µ with a square root utility function. In particular, for a given (a, s, θ, τ)

we get

λ(a, s, θ, τ) = s+ c(a, θ, τ), and µ(a, s, θ, τ) =
ca(a, θ, τ)∫

l2(x|a, τ)f(x|a, τ)dx
.

Hence, instead of searching for a triple of variables (a, λ, µ) that satisfy three equations — as

described in Section 4 — one can look for the effort level that finds the root of (16) considering

that λ and µ are a function of effort as described above.
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Figure 11: Compensation Schemes for Different θ’s.

5 Omitted Proofs for Section VII.A

Proof of Lemma 5 Let T be any continuous distribution. By Theorem 1 in Cuadras (2002)

specialized to our setting, for any C2 function ζ of q,

covT (ζ(q), q) =

∫ (∫
(T (min(q, y))− T (q)T (y))dy

)
ζ ′(q)dq

=

∫ (∫ q

l
(T (y)− T (q)T (y))dy +

∫ l̄

q
(T (q)− T (q)T (y))dy

)
ζ ′(q)dq

=

∫
MT (q)ζ

′(q)dq,

where MT (q) = (1 − T (q))
∫ q
l T (y)dy + T (q)

∫ l̄
q (1 − T (y))dy, which is strictly positive on

(
l, l̄
)
.

Thus, since varT (q) = covT (q, q),

covT (q
2, q)

varT (q)
=

2
∫
MT (q)qdq∫
MT (q)dq

= 2

∫
mT (q)qdq
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where mT (·) is the density given by MT (·)/
∫
MT (q)dq. Since q is increasing, it is thus sufficient

for the result that mĜ/mG, or equivalently, MĜ/MG is increasing.

Now, MT (q) = T
(
l̄ − q −

∫
T
)
+
∫ q
l T = T (µT − q) +

∫ q
l T > 0, where µT is the expectation

of q under T . Thus, M ′
T = t(µT − q), and so,(

MĜ (q)

MG (q)

)
q

=
s

ĝ

g
(µĜ − q)

(
G(µG − q) +

∫ q

l
G

)
− (µG − q)

(
Ĝ(µĜ − q) +

∫ q

l
Ĝ

)
≡ Z(q).

We thus have

Z ′ =

(
ĝ

g

)
q

(
µĜ − q

)(
G (µG − q) +

∫ q

l
G

)
− ĝ

g

(
G (µG − q) +

∫ q

l
G

)
+
ĝ

g

(
µĜ − q

)
g (µG − q)

+

(
Ĝ
(
µĜ − q

)
+

∫ q

l
Ĝ

)
− (µG − q) ĝ

(
µĜ − q

)
=

((
ĝ

g

)
q

(
µĜ − q

)
− ĝ

g

)(
G (µG − q) +

∫ q

l
G

)
+

(
Ĝ
(
µĜ − q

)
+

∫ q

l
Ĝ

)
.

where we note that since ĝ/g is continuously differentiable, so is Z.

Consider first q ∈ (l, µG). If Z < 0, then

Ĝ(µĜ − q) +

∫ q

l
Ĝ >

ĝ

g

µĜ − q

µG − q

(
G(µG − q) +

∫ q

l
G

)
,

and so

Z ′ >

((
ĝ

g

)
q

(
µĜ − q

)
− ĝ

g

)(
G (µG − q) +

∫ q

l
G

)
+
ĝ

g

µĜ − q

µG − q

(
G(µG − q) +

∫ q

l
G

)
=
s

(
ĝ

g

)
q

(
µĜ − q

)
+
ĝ

g

(
µĜ − q

µG − q
− 1

)
> 0,

noting that for q < µG, (µĜ − q)/(µG − q) > 1, and that ĝ/g is increasing, and also recalling that

the eliminated term is strictly positive except at the endpoints. But then, since Z(l) = 0, Z is

everywhere positive on [l, µG]. In particular, if Z(q̂) < 0, then let q̃ ∈ [l, q̂) be such that Z(q̃) = 0,

and Z (q) < 0 on (q̃, q̂], where such a q̃ exists by continuity of Z. Then,

0 > Z(q̂)− Z(q̃) =

∫ q̂

q̃
Z ′ (q) dq > 0,

where the equality follows from the Fundamental Theorem of Calculus since Z is continuously

differentiable. This is a contradiction. Similarly, Z ′ < 0 everywhere on [µĜ, l̄), and so, since

Z(l̄) = 0, Z is everywhere positive on [µĜ, l̄]. Finally, Z(q) > 0 on [µG, µĜ] since µĜ − q and

−(µG − q) are positive, with one of them strictly so. Thus, Z is everywhere positive. But then,
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MĜ/MG is increasing, and we are done. □

Lemma 11 Let fL and fH be strictly positive densities on [0, 1], with skewFL
(x) ≤ 0 and fH/fL

increasing and concave. Let f(x|a) = afH + (1 − a)fL be the linear combination of fL and fH .

Then skewF (l) ≤ 0 for all a.

Proof For each a, since EF (l) = 0, and defining r = fH/fL,

skewF (l) =s

∫
l3f =

∫
f3a
f2

=

∫
(fH − fL)

3

(afH + (1− a)fL)2
dx =

∫
(r (x)− 1)3

(ar (x) + (1− a))2
fL(x)dx.

Differentiation shows that the last expression is decreasing in a. Hence, it is enough that
∫
(r −

1)3fL(x)dx ≤ 0. But, since EFL
[r] = 1,

∫
(r(x) − 1)3fL(x)dx =s skewFL

(r). Finally, since x is

a convex increasing transformation of r, it follows from Theorem 3.1 in van Zwet (2012) that

skewFL
(r) ≤ skewFL

(x), which is negative by assumption, and so we are done. □

In Footnote 28 we mentioned the two-outcome case. Since in this case C(a, u0, θ) = aφh +

(1−a)φl, where φi = φ (vi), i = l, h, with vh = u0+c(a, θ)+(1−a)ca(a, θ) and vl = u0+c(a, θ)−
aca(a, θ), we obtain

Ca(a, u0, θ) = φh − φl + a (1− a) caa
(
φ′
h − φ′

l

)
.

Thus,

Caa(a) =
(
φ′
h(2− 3a)− φ′

l (1− 3a)
)
caa + a (1− a)

(
caaa

(
φ′
h − φ′

l

)
+ c2aa

(
φ′′
h(1− a) + φ′′

l a
))

≥
(
φ′
l + φ′

h(2− 3a)− φ′
l (2− 3a)

)
caa + a (1− a) caaa

(
φ′
h − φ′

l

)
>
(
φ′
h − φ′

l

)
(2− 3a) caa + a (1− a) caaa

(
φ′
h − φ′

l

)
,

and so the first inequality in Footnote 28 is sufficient for Caa > 0.

From Lemma 3 and (A5), strict IMC is guaranteed if

(caθCu0 − Cau0cθ + Caθ) caa < caθCaa.

But, Cu0 = aφ′
h + (1− a)φ

′
l, and so Cau0 = φ′

h − φ′
l + a (1− a) caa (φ

′′
h − φ′′

l ), and

Caθ = φ′
h (cθ + (1− a) caθ)− φ′

l (cθ − acaθ) + a (1− a) caaθ
(
φ′
h − φ′

l

)
+ a (1− a) caa

(
φ′′
h (cθ + (1− a) caθ)− φ′′

l (cθ − acaθ)
)
.
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Substituting and manipulating, we want(
caθ

(
φ

′
l + φ′

h

)
+ a (1− a) [caacaθ

(
φ′′
h (1− a) + φ′′

l a
)
+ caaθ

(
φ′
h − φ′

l

)
]
)
caa

< caθcaa
(
φ′
h(1− a) + φ′

la
)
+ caθ ((1− 2a) caa + a (1− a) caaa)

(
φ′
h − φ′

l

)
+ caθa (1− a) c2aa

(
φ′′
h(1− a) + φ′′

l a
)
,

or, caacaθφ
′
l + [a (1− a) (caacaaθ − caθcaaa) + (3a− 1) caθcaa] (φ

′
h − φ′

l) < 0, and so, since φ′
l > 0,

it is sufficient that the term in square brackets is negative, or, equivalently, the second inequality

in Footnote 28 holds.

6 Analysis for Section VIII

6.1 Linear Output Case and Necessity of IMC

We first analyze screening in the linear-output case with the addition of IMC as a constraint.

To this end, for a given interval [θ1, θ2], let ϕ(θ) = 0 for θ < θ1, ϕ(θ) =
∫ θ
θ1
(−caθ/caa) dτ for

θ ∈ [θ1, θ2], and ϕ(θ) =
∫ θ2
θ1

(−caθ/caa) dτ for θ > θ2 (we will provide intuition shortly). We then

have the following theorem that presents a general optimality condition that allows for ironing.

Theorem 5 (Optimality in Linear Probability Case) Let Faa = 0, let C(·, ·, θ) be convex,

and let θ1 < θ2 be such that IMC is slack immediately to the left of θ1 and right of θ2.
7 Then,∫ θ2

θ1

(Ba − Ca)
1

caa
h =

∫
Cu0ϕh. (21)

At any point where IMC is slack, Ba − Ca = (−caθ/h)
∫ θ̄
θ Cu0h as in OC.

Proof Consider a candidate solution, and let [θ1, θ2] be any interval with the property that IMC

is slack to the immediate right of θ2 (as is automatic when θ2 = θ̄) and immediate left of θ1 (as

is automatic when θ1 = θ). Consider first shifting the action schedule up by an amount solving

ca (α̂ (θ, ε) , θ) = ca (α (θ) , θ) + ε on the interval [θ1, θ2]. That is, add a constant to ca on this

interval. Next, if ε is positive, set ca (α̂ (θ, ε) , θ) = ca (α̂ (θ2, ε) , θ2) on an interval immediately to

the right of θ2 so as to reestablish IMC, where this interval will disappear as ε gets small, since

IMC is strictly slack to the right of θ2. Similarly, if ε is negative, then adjust α̂ on an arbitrarily

small interval to the left of θ1. Set surplus to change at rate given by ϕ. Since ϕ = 0 on [θ, θ1],

IR continues to hold. The rate of change of the profit of the principal is∫ θ2

θ1

(Ba − Ca)
1

caa
h−

∫
Cu0ϕh,

7These are automatic when, respectively, θ1 = θ or θ2 = θ̄.
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and so, since the schedule is optimal, we have (21).

As a sanity check, if IMC is slack at θ2, then (21) holds on a neighborhood. Take ϕ as a function

of θ2, and differentiate both sides with respect to θ2, to arrive at (Ba − Ca)
1

caa
h =

∫
Cu0ϕθ2h.

But, ϕθ2 = 0 for θ < θ2, and ϕθ2 is −caθ/caa evaluated at θ2 for θ > θ2, yielding OC. □

As usual, if IMC is slack then the action is distorted strictly downwards for all but the highest

type. More generally, the lhs of (21) is proportional to a weighted expectation of Ba − Ca, and

the rhs is strictly positive for any θ1 < θ2 ≤ θ̄, and so effort is again distorted down in, but now

in an expected sense. The idea behind (21) is to change actions on [θ1, θ2] at rate 1/caa. This

changes ca by a constant, and hence maintains IMC. By inspection, surplus then changes at rate

ϕ if one holds fixed surplus at θ1 and below. Condition (21) is that the benefit and costs of the

perturbation are in balance.8,9

Note that while OC can be viewed as a generalization of the standard intuition of a screening

problem, over regions where the problem is ironed, we are dealing with an implication that

fundamentally depends on the two problems being present simultaneously. In particular, the fact

that we need IMC as opposed to the usual (weaker) condition that α is increasing arises precisely

because of the possibility that the agent might deviate both in his announcement and his action

from the candidate equilibrium.

6.2 A Second Sufficient Condition: Single Crossing

In this section, we derive our second sufficient condition for incentive compatibility. The following

lemma (Beesack (1957)) is central to our analysis.

Lemma 12 (Beesack’s inequality). Let g : X → R be an integrable function with domain an

interval X ⊆ R. Assume that g is never first strictly positive and then strictly negative, and that∫
X g(x)dx ≥ 0. Then, for any positive increasing function h : X → R such that gh is integrable,∫
X g(x)h(x)dx ≥ 0. If h is strictly increasing, and g is non-zero on some interval of positive

length, then the inequality is strict. If
∫
X g(x)dx = 0, then h need not be positive.

First let us consider the case in which there are no jumps in the action schedule.

Theorem 6 Let menu (α, S) be feasible in PD, and for each θ, let v(·, θ) = vMH(·, α(θ), S(θ), θ).
Let α be continuous, let v satisfy SCC, and let FOP hold. Then (α, v) is feasible in P. Thus, if

(α, S) is optimal in PD, then the associated (α, v) solves P.

8We believe that tools similar to those in the standard ironing literature (Guesnerie and Laffont (1984)) would
allow us to further characterize where the ironed regions lay if the solution to PD has a simple structure.

9Even over “pooling” regions where ca is constant, effort is strictly increasing in θ, and so the optimal compen-
sation scheme, which depends on f(·|a), is changing. The only exception in the linear case is that of two outcomes,
where the compensation scheme is completely tied down by ICMH and IR (or as in Castro-Pires and Moreira
(2021), by ICMH and limited liability).
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So, if PD with its associated v yields a solution satisfying SCC, then that solution is optimal in

P. For intuition, consider a type θT who contemplates a double deviation (θA, â), where â = α(θ̂)

for some θ̂ > θA and so, as in Figure 1, we are above the graph of α. We will show that the agent is

better off, holding fixed the action at â, to increase his announcement, sliding horizontally to the

right until θ̂ is reached, and we are back on the graph, where θT is better off reporting the truth.

In particular, consider any θ < θ̂, and, consider the effect of a small increase in the announced

type. Under SCC this increases the agent’s income at high signals and lowers it at low signals.

On the graph, the agent is indifferent about this trade-off by ICA. But then, above the graph,

where he is working harder, and thus more likely to attain high signals, the trade-off is profitable.

Proof of Theorem 6 Let menu (α, S) be feasible in PD, and for each θ, let v(·, θ) = vMH(·, α(θ), S(θ), θ).
By ICS , IR holds. As in the proof of Theorem 1 it suffices to show that for any given θT , any

deviation to (θA, â) with â > α(θA) is dominated by a deviation on G. A symmetric argument

holds for â < α(θA).

We claim that for any θ̃ that the agent is contemplating announcing with â > α(θ̃), the agent

is better off by modifying his deviation so as to slightly raise θ from θ̃. To see this, note that

by Lemma 9, α and hence v are continuously differentiable in θ. But then, ICA holds and so,∫
vθ(x, θ̃)f(x|α(θ̃))dx = 0. Thus, since vθ has sign pattern −/+ by hypothesis,∫

vθ(x, θ̃)f(x|â)dx =

∫
vθ(x, θ̃)f(x|α(θ̃))

f(x|â)
f(x|α(θ̃))

dx ≥ 0,

where we have used MLRP, â > α(θ̃), and Beesack’s inequality. Thus, the agent’s expected utility

is increasing in θ at (θ̃, â).

Hence, if there is a θ̂ such that α(θ̂) = â, then the agent is better off with deviation (θ̂, â) ∈ G.

And, since α is continuous, there is such a θ̂ unless â > α(θ̄). So, finally, assume that â > α(θ̄).

Then, by the previous paragraph, θT prefers (θ̄, â) to (θA, â). But, since
∫
vf is concave in a, and

by ICMH , θ̄ prefers (θ̄, α(θ̄)) ∈ G to (θ̄, â). Since c is submodular, this holds a fortiori for θT . □

Now let us consider the possibility of jumps in the action schedule. Such jumps are eco-

nomically reasonable if, for example, the principal is constrained to a finite set of compensation

schemes. To generalize Theorem 6 to this case, we need a regularity assumption. A menu (α, v) is

regular if (i) everywhere that α is differentiable in θ, so is v; and (ii) for all θ, there are v̄(·, θ) and
v(·, θ) such that as ε ↓ 0, v(·, θ + ε) converges uniformly to v̄ and v(·, θ − ε) converges uniformly

to v. This is more than we need, but simplifies the exposition.

Theorem 7 Let (α, v) be regular and satisfy ICMH and ICS. Also, assume v satisfies SCC, and∫
vf is concave in a for each θ. Then (α, v) is feasible in P.

Proof We proceed in several steps.
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Step 1. As before, IR holds, and we can fix θT , and consider â > α(θA), with the other case

symmetric. As in the proof of Step 2 of Theorem 4, we can also take θT > θA. Our goal is to

show that the agent is better off with some element of G.

Step 2. For any θ̃ with â > α(θ̃), let us show that the agent is better off to raise his announcement

slightly. Where v is differentiable in θ at θ̃, this is as before. So, consider a jump point θJ with

endpoints al and ah, and where â ≥ ah. Letting S be the associated surplus function to (α, v),

we claim∫
v̄(x, θJ)f(x|ah)dx− c(ah, θJ) = S(θJ) and

∫
v̄(x, θJ)fa(x|ah)dx− ca(ah, θJ) = 0 (22)

and similarly at al. To see the first equality, note that by definition,
∫
v(x, θ)f(x|α(θ))dx −

c(α(θ), θ) = S(θ) for all θ > θJ , and then use the definitions of ah and v̄, uniform convergence

of v(·, θ) to v̄ (·, θJ) as θ ↓ θJ , and continuity of S. The second equality similarly follows from

ICMH .

It is thus enough to show that∫
(v(x, θJ)− v(x, θJ)) f(x|ah)dx ≥ 0, (23)

for then, since v̄(·, θJ)− v(·, θJ) has sign pattern −/+, and since f(·|â)/f(·|ah) is increasing in x,

we have by Lemma 12 that
∫
(v(x, θJ)− v(x, θJ)) f(x|â)dx ≥ 0. Thus, the agent is again better

off to raise the report of his type from just below θJ to just above it. To show (23), note that∫
v(x, θJ)f(x|ah)dx− c(ah, θJ) = S(θJ) =

∫
v(x, θJ)f(x|al)dx− c(al, θJ)

≥
∫
v(x, θJ)f(x|ah)dx− c(ah, θJ),

where the first two equalities use the first part of (22), and the inequality uses the second part of

(22) and concavity of
∫
vf in a. Comparing the outer terms and cancelling c(ah, θJ) gives (23).

Step 3. As in the proof of Theorem 6, if â > α(θ̄), then, using Step 2, the agent is better off

with a deviation to (θ̄, α(θ̄)).

Step 4. Let us now complete the proof. If there is a θ̂ such that α(θ̂) = â, then by Step 2,

the agent is better off with deviation (θ̂, α(θ̂)) ∈ G, and we are done. Suppose instead that for

some θJ there is a jump at θJ such that â ∈ [al, ah]. Assume first that θJ > θT . Then, by Step

2, and using that by Step 1, θT > θA, we have
∫
v(x, θT )f(x|â)dx ≥

∫
v(x, θA)f(x|â)dx, and so

type θT prefers the deviation (θT , â) to (θA, â). But, by concavity of
∫
vf in a, (θT , α (θT )) is

better still and we are back on G. So, assume θJ ≤ θT . Define s1 =
∫
v(x, θA)f(x|â)dx− c(â, θT ),

s2 =
∫
v(x, θJ)f(x|â)dx − c(â, θT ), s3 =

∫
v̄(x, θJ)f(x|ah)dx − c(ah, θT ), and s4 = S(θT ). These
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Figure 12: SCC . Under SCC, a deviation by θT to q1 is dominated by one to q2. But that
deviation in turn is dominated by a deviation to q3 and, since q3 is on locus, it is dominated by
telling the truth and taking the recommended action at point q4.

are the expected utilities for type θT at the points qi, i = 1,2,3,4, in Figure 12, where q2 reflects

a limit from the left, and q3 from the right.

By Lemma 2 and (22), we have s4 ≥ s3, while by Step 2, s2 ≥ s1. It remains only to show

that s3 ≥ s2. Note that∫
v̄(x, θJ)f(x|ah)dx− c(ah, θJ) = S(θJ) =

∫
v(x, θJ)f(x|al)dx− c(al, θJ)

≥
∫
v(x, θJ)f(x|â)dx− c(â, θJ)

where the two equalities follow from the first part of (22) and the inequality by the second part

(22) and by concavity of
∫
vf in a. But then, since θT ≥ θJ and since c is submodular,

s3 =

∫
v̄(x, θJ)f(x|ah)dx− c(ah, θT ) ≥

∫
v(x, θJ)f(x|â)dx− c(â, θT ) = s2,

and we are done. Thus, the agent is better off at q4 ∈ G than at q1, and we are done. □

6.3 Common Values

Let us now consider the common-values case in which the type of the agent directly enters the

conditional density of the signal. The next assumption imposes further conditions on f .
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Assumption 8 Each of fa/f and fθ/f is increasing in x, with Faθ ≤ 0.

The following is an example that satisfies Assumption 8.

Example 1 Let g be a continuous parametrized family of densities on [x, x] satisfying strict

MLRP, where for each a ∈ [0, 1], g(·|a) is strictly increasing, and where g(x|·) is bounded away

from zero. Let r be a continuous strictly positive function on [x, x], and define

f(x|a, θ) = r(x)gθ(x|a)∫
r(s)gθ(s|a)ds

.

Let θ̄ be such that (fθ/f)θ + 1 > 0 for all (x, a, θ) with θ ∈ [0, θ].10 Then, Assumption 8

holds. To see this, note that since log f = log r + θ log g − log
∫
rgθ, we have fθ/f = log g −

(
∫
rgθ(log g)/

∫
rgθ), and so (fθ/f)x = gx/g > 0. Similarly, fa/f = (θga/g)−(θ

∫
rgθ−1ga/

∫
rgθ),

and so (fa/f)x = θ(ga/g)x > 0 for θ ∈ (0, θ̄] since g satisfies strict MLRP by assumption. It

remains to show that Faθ ≤ 0. But,

fa = fθ

(
ga
g

−
∫
rgθ gag∫
rgθ

)
= fθ

(
ga
g

−
∫
ga
g
f

)
= fθ

(
ga
g

− γ

)
,

where γ =
∫
(ga/g)f . Note that γθ =

∫
(ga/g)fθ =

∫
(ga/g)x(−Fθ) > 0, where the inequality

follows using that g satisfies strict MLRP, and that since fθ/f is strictly increasing, −Fθ > 0 on

(x, x̄). Now,

faθ =

((
fθ
f
θ + 1

)(
ga
g

− γ

)
− θγθ

)
f .

To show that Faθ ≤ 0, it is enough to show that faθ(·|a, θ) single-crosses zero from below, using

that Faθ(x|a, θ) =
∫ x
x faθds, and that Faθ(x|a, θ) = Faθ(x̄|a, θ) = 0. But, since γθ ≥ 0, and since

by assumption (fθ/f)θ+1 > 0, it follows that at any point where faθ(s|a, θ) = 0, both (fθ/f)θ+1

and (ga/g)− γ are positive and strictly increasing in x, and the result follows.

Note that except for the presence of θ in f , the first-order conditions ICMH and ICA are the

same. But, now S′(θ) =
∫
v(x, θ)fθ(x|α(θ), θ)dx − cθ(α(θ), θ), since as the agent’s type changes,

there is a direct effect through fθ. This in hand, we generalize Theorem 6 to this case.

Proposition 4 Let FOP and Assumption 8 hold, let (α, S) solve PD, and let (α, v) be its asso-

ciated menu. If v satisfies SCC, then (α, v) solves P.

Define the expected utility to type θ for compensation scheme v̂ and action a, given a and v̂

as U(θ, a, v̂) =
∫
v̂(x)f(x|a, θ)dx−c(a, θ). Note that Ua =

∫
v̂fa−ca =

∫
v̂x(−Fa)−ca, and hence

if v̂ is increasing, then Uaθ =
∫
v̂x(−Faθ)− caθ ≥ 0 since Faθ ≤ 0, and since c is submodular.

10Such a θ̄ > 0 exists since the expression is strictly positive at θ = 0, x and a come from compact sets, and fθ/f
is continuous.
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Lemma 13 Let (α, v) solve PD, and let v satisfy SCC. Let S̃(θT , θ̂) = U(θT , α(θ̂), v(·, θ̂)) be the

value to type θT of imitating θ̂’s action and announcement. Then, S̃(θT , ·) is single-peaked at θT

for all θT .

Proof By the analogue to Lemma 9, α and v are continuously differentiable. To show single-

peakedness, it is enough to show that for θ̂ < θT , S̃θ̂(θT , θ̂) ≥ 0, where the case θ̂ > θT is

symmetric.

Choose θ̂ < θT . Then,

S̃θ̂(θT , θ̂) =

∫
vθ(x, θ̂)f(x|α(θ̂), θT )dx+ α′(θ̂)Ua(θT , α(θ̂), v(·, θ̂)).

By ICA,
∫
vθ(x, θ̂)f(x|α(θ̂), θ̂)dx = 0, and so, since f(·|α(θ̂), θT )/f(·|α(θ̂), θ̂) is increasing, and

since vθ is −/+, the first term on the rhs is positive using Beesack’s Inequality. The second term

is positive using that α′ ≥ 0, that Ua(θ̂, α(θ̂), v(·, θ̂)) = 0, and that Uaθ ≥ 0. □

Proof of Proposition 4 Consider a type θT , and deviation (θ̂, â). We focus on the case where

θ̂ ≤ θT , and then appeal to symmetry. Given Lemma 13, the key, as before, is to show that there

is (θ, α(θ)) ∈ G that θT prefers to (θ̂, â).

Assume first that â ≤ α(θ̂). Then, since Ua(θ̂, α(θ̂), v(·, θ̂)) = 0, it follows from FOP that for

any a ∈ [â, α(θ̂)], Ua(θ̂, a, v(·, θ̂)) ≥ 0, and so, since Uaθ ≥ 0, the deviation (θ̂, â) is dominated for

θT by (θ̂, α(θ̂)) ∈ G.

Assume next that â > α(θ̂). We will show that, holding fixed â, type θT is better off to

increase his announced type until he reaches either the graph or θT . In the latter case, using

ICMH and FOP, (θT , α(θT )) is better still.

So, consider, any θ̃ < θT at which â > α(θ̃). Using the analogue to Lemma 9,
∫
vθ(x, θ̃)f(x|α(θ̃), θ̃)dx =

0. Let us show that
∫
vθ(x, θ̃)f(x|â, θT )dx ≥ 0. Since vθ is −/+ by assumption, and using Bee-

sack’s Inequality, it is enough that

f(x|â, θT )
f(x|α(θ̃), θ̃)

=
f(x|â, θT )

f(x|α(θ̃), θT )
f(x|α(θ̃), θT )
f(x|α(θ̃), θ̃)

increases in x. But, since each of fa/f and fθ/f are increasing in x, f(x|â, θT )/f(x|α(θ̃), θ̃) is the
product of positive increasing functions, and so is increasing, and we are done. □
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6.4 Optimal Exclusion

For any θc, let α̂(·, θc) and Ŝ(·, θc) be defined on [θc, θ̄] by

(α̂(·, θc), Ŝ(·, θc)) = argmax
(α,S)

∫ θ̄

θc

(B(α(θ))− C(α(θ), S(θ), θ))h(θ)dθ

s.t. S(θ) = ū−
∫ θ

θc

cθ(α(τ), τ)dτ ∀ θ ≥ θc,

noting that relative to PD, we have replaced S(θ) = ū by S(θc) = ū. This is the unique solution

to the principal’s relaxed problem subject to excluding types below θc.

Proposition 5 Assume decoupling is valid, and that C(·, ·, θ) is convex for each θ.11 Interior

cutoff level θc is optimal only if B −C = (−cθ/h)
∫ θ̄
θc
Cu0h, evaluated at θc and (α̂(·, θc), Ŝ(·, θc)).

If (−cθ/h) is decreasing in θ and Cu0a > 0, then this condition is sufficient as well.

At the optimal cutoff, B − C is strictly positive. Necessity is both simple and intuitive.

The direct benefit of adding types near θ is given by the lhs of the equation. The rhs reflects

that including additional types increases the information rent paid to types above the cutoff.

Sufficiency is more involved. They key is that the convexity of C(·, ·, θ) implies that profits are

strictly quasiconcave in the cutoff.

Proof of Proposition 5 Extend α̂ to have domain [θ, θ̄] by taking α̂(θ, θc) = α̂(θc, θc) for θ < θc.

Let S̃(θ, θc, θ
∗) = ū −

∫ θ
θc
cθ(α̂(τ, θ

∗), τ)dτ be the surplus the agent receives if the principal uses

action schedule α̂(·, θ∗), but excludes types below θc. The value to the principal of choosing cut-off

θc but implementing action schedule θ∗ is then

Z(θc, θ
∗) =

∫ θ̄

θc

(
B(α̂(θ, θ∗))− C(α̂(θ, θ∗), S̃(θ, θc, θ

∗), θ)
)
h(θ)dθ.

To see necessity, differentiate Z(θc, θc), noting that S̃θc(θ, θc, θ
∗) = cθ(α̂(θc, θ

∗), θc), and that

Zθ∗(θc, θ
∗)|θ∗=θc

= 0 by the Envelope Theorem to obtain

(Z(θc, θc))θc =− (B(α̂(θc, θc))− C(α̂(θc, θc), ū, θc)h(θc)

− cθ(α̂(θc, θc), θc)

∫ θ̄

θc

Cu0(α̂(θ, θc), S̃(θ, θc, θc), θ)h(θ)dθ.

Setting this equal to zero and rearranging yields the claimed necessary condition.

For sufficiency, let us show that if (−cθ/h) is decreasing in θ and Cu0a > 0, then Z(θc, θc) is

11See Online Appendix, Section 1 for a discussion and primitives.
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strictly quasiconcave in θc. But, by (6.4),

(Z(θc, θc))θcθc =

(
− (Ba − Ca)h− cθa

∫ θ̄

θc

Cu0h

)
(α̂)θc + Cθh− (B − C)h′ − cθθ

∫ θ̄

θc

Cu0h

+ cθCu0h− cθ

∫ θ̄

θc

(
Cu0(α̂(θ, θc), S̃(θ, θc, θc), θ)

)
θc
h(θ)dθ

The first term is zero using the FOC with respect to the implemented action at θc. It is immediate

that Cθh < 0, and cθCu0h < 0. And, where (Z)θc = 0, B − C = −(cθ/h)
∫ θ̄
θc
Cu0h from the

necessary condition, and so

− (B − C)h′ − cθθ

∫ θ̄

θc

Cu0h =

(
cθ
h

∫ θ̄

θc

Cu0h

)
h′ − cθθ

∫ θ̄

θc

Cu0h =s

(
−cθ
h

)
θ

≤ 0

by assumption. So, to show that Z(θc, θc) is strictly quasiconcave in θc, and since −cθ > 0, it

would be sufficient to show k(θc) ≤ 0, where

k(θ) =

∫ θ̄

θ

(
Cu0(α̂(τ, θc), S̃(τ, θc, θc), τ)

)
θc
h(τ)dτ .

We will in fact show that k(θ) ≤ 0 for all θ ∈
[
θc, θ̄

]
. Since k(θ̄) = 0, it is enough that whenever

k > 0, k′ > 0. But, k′ =s −(Cu0(α̂(θ, θc), S̃(θ, θc, θc), θ))θc , and it suffices that

Cu0aα̂θc(θ, θc) + Cu0u0(S̃(θ, θc, θc))θc < 0.

Let us first show that (S̃(θ, θc, θc))θc ≤ 0. Fix any θH > θL. Then, we claim that S̃(·, θH , θH) ≤
S̃(·, θL, θL). To see this, note first that

S̃(θH , θH , θH) = ū < ū−
∫ θH

θL

cθ (α̂ (τ, θL) , τ) dτ = S̃(θH , θL, θL).

So, assume that at some point θ̃, S̃(θ̃, θH , θH) = S̃(θ̃, θL, θL) = ũ. Then, we claim, (α̂(·, θH), S̃(·, θH , θH))

and (α̂(·, θL), S̃(·, θL, θL)) coincide for all θ > θ̃. In particular, each must on [θ̃, θ̄] equal the

(unique) solution to

max
(α,S)

∫ θ̄

θ̃
(B − C)h

s.t. S(θ) = ũ−
∫ θ

θ̃
cθ(α(τ), τ)dτ ,

since otherwise one could paste this solution together with the relevant solution below θ̃ for a
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strict increase in profits. Hence, S̃(·, θH , θH) ≤ S̃(·, θL, θL) and so (S̃(θ, θc, θc))θc ≤ 0.

Now, from the optimality of α̂(·, θc), we have that for all θc,

Ba(α̂(θ, θc))− Ca(α̂(θ, θc),S̃(θ, θc, θc), θ) =

− 1

h(θ)
caθ(α̂(θ, θc), θ)

∫ θ̄

θ
Cu0(α̂ (τ, θc) , S̃(τ, θc, θc), τ)h (τ) dτ,

and hence, differentiating by θc, and recalling that Baa = 0,(
−Caa +

1

h
caaθ

∫ θ̄

θ
Cu0

)
α̂θc(θ, θc) = Cau0(S̃(θ, θc, θc))θc −

1

h
caθk (θ)

and so, since k(θ) > 0 by assumption,(
−Caa +

1

h
caaθ

∫ θ̄

θ
Cu0

)
α̂θc(θ, θc) > Cau0(S̃(θ, θc, θc))θc

and so, since the term in the large parentheses is strictly negative,

α̂θc(θ, θc) <
Cau0

−Caa +
1
hcaaθ

∫ θ̄
θ Cu0

(S̃(θ, θc, θc))θc ≤
Cau0

−Caa
(S̃(θ, θc, θc))θc

where we use that caaθ ≤ 0, and that (S̃(θ, θc, θc))θc ≤ 0. But then, since Cu0a > 0, we have

Cu0aα̂θc(θ, θc) + Cu0u0(S̃(θ, θc, θc))θc <

(
Cu0a

Cau0

−Caa
+ Cu0u0

)
(S̃(θ, θc, θc)θc ≤ 0,

where the inequality follows since the bracketed term is positive by the convexity of C in a and

u0, and we are done. □

6.5 Random Mechanisms

Consider a setting in which first the agent announces a type, and then, based on the announce-

ment, the principal randomizes over pairs (a, v̂) consisting of a compensation scheme and recom-

mended action. The agent needs to be willing to report his type honestly given the lottery he

faces, and to follow the recommended action for each realized pair (a, v̂).

Proposition 6 Let C(·, ·, θ) be convex for each θ, and assume decoupling is valid. Then, the

solution (α, v) associated with PD remains optimal even if randomization is allowed.

The key to the proof is to consider any randomized solution to the relaxed screening problem

PD. Now, replace actions by their expectations. Because −cθ is convex in effort, this menu

27



requires less surplus to be given to the agent than the surplus in the randomized mechanism.

And, since B −C is concave, replacing actions and surplus by their expectations raises the value

of the objective function.

Proof of Proposition 6 A randomized mechanism is a map σ that for each θ generates a

distribution σ(·|θ) over triples (â, ŝ, v̂) consisting of a recommended action â, a surplus ŝ, and a

compensation scheme v̂, where ŝ =
∫
v̂(x)f(x|â)dx− c(â, θ) with probability one, and subject to

the incentive constraints discussed. Let VFR (full-random) be the value of this program.

Note that among the incentive constraints is that for each announced type, and for each v̂,

the agent should not want to vary his action from the recommended one. Hence, for each θ, and

with σ-probability one, ∫
φ(v̂(x))f(x|â)dx ≥ C(a, ŝ, θ).

Also, an agent should not want to locally lie about their type and then follow the recommended

action for the announced type. Hence, letting Ŝ(θ) =
∫
ŝdσ(â, ŝ, v̂|θ) be the equilibrium surplus

of type θ in the randomized mechanism, and recalling that θ enters ŝ only through c, we have by

the envelope theorem that

Ŝ′(θ) =

∫
(−cθ(â, θ))dσ(â, ŝ, v̂|θ).

But then, VFR is at most equal to VRR (relaxed-random) where VRR is defined by

VRR = max
µ

∫ (∫
(B(â)− C(â, ŝ, θ)) dσ(â, ŝ, v̂|θ)

)
h(θ)dθ

s.t.

∫
ŝdσ(â, ŝ, v̂|θ) = ū+

∫ θ

θ

(∫
(−cθ(â, τ))dσ(â, ŝ, v̂|θ)

)
dτ .

Let VRD (relaxed-deterministic) be the value of PD, in which menus are restricted to be de-

terministic. We claim VRD = VRR. To see this, let σ∗ be optimal in the relaxed-random program.

Let a∗(θ) =
∫
âdσ∗(â, ŝ, v̂|θ), S∗(θ) =

∫
ŝdσ∗(â, ŝ, v̂|θ), and S∗∗(θ) = ū +

∫ θ
θ (−cθ(a

∗(τ), τ))dτ .

Since −cθ is convex in a (recall caaθ ≤ 0), we have

S∗∗
θ = −cθ(a∗(θ), θ) ≤

∫
(−cθ(â, θ))dσ∗(â, ŝ, v̂|θ) = S∗

θ ,

and so, since S∗∗(θ) = S∗(θ) = ū, we have S∗∗ ≤ S∗. But then, since B −C is concave in (a, u0),
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and decreasing in u0,

VRR =

∫ (∫
(B(â)− C(â, ŝ, θ))dσ∗(â, ŝ, v̂|θ)

)
h(θ)dθ

≤
∫
(B(a∗(θ))− C(a∗(θ), S∗(θ), θ))h(θ)dθ

≤
∫
(B(a∗(θ))− C(a∗(θ), S∗∗(θ), θ))h(θ)dθ

≤ VRD,

where the last inequality follows since by construction (a∗, S∗∗) is feasible in the relaxed deter-

ministic problem. So, VFR ≤ VRD, and thus if the solution to the relaxed deterministic program

is feasible, then it is in fact optimal even if randomization is allowed. □

6.6 Analysis of Social Planner’s Problem

Our techniques apply beyond our profit-maximizing principal. As an example, consider a social

planner who cares about both the firm and the members of society.12 For example, the planner

may be designing a tax code that raises and redistributes income, and also affects effort incentives.

To model such a situation, reinterpret the agent as a continuum of agents of different types

with density h, and assume that B−C reflects the profits of a firm on any given agent. The social

planner cares about the total surplus,
∫
Sh, of the members of society with weight 1−η, and on the

total profits of the firm,
∫
(B−C)h, with weight η.13 The planner faces participation constraint for

the firm that
∫
(B − C)h ≥ K for some exogenously given K. Agents have outside option ū, and

their types and actions remain hidden. For simplicity, we work in the linear probability setting.

The case η = 1 is our original monopolist’s problem. When η = 0, the planner has production

technology B and utilitarian preferences over the utility of the agents, with K reflecting the other

spending needs of the planner net of her outside resources.

The critical realization is that the difficult part of this problem–an agent can both misrepresent

their ability, and then choose any effort level–is unaffected by the change in the objective function.

Hence, in the linear setting, IMC remains necessary and sufficient for a solution to the relaxed

program to induce a feasible solution in the full problem. Because of this, the planner will

optimally choose to use a menu of Holmström-Mirrlees contracts, and we can characterize the

12Many other objective functions are also amenable to what follows.
13The form of this integral embeds a separability assumption on the firm’s profits across agents.
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problem of the planner as

max
α,S

η

∫
(B − C)h+ (1− η)

∫
Sh (PS)

s.t.

∫
(B − C)h ≥ K, S(θ) ≥ ū, S′ = −cθ ∀θ, and IMC,

where the second two constraints weaken ICS to recognize that IR may not bind at θ.

Signing the distortions to effort in our society will depend on the condition that Cu0(α(·), S(·), ·)
is strictly increasing, so that it is more expensive to give extra utility to those who are better

off.14 Recall from Theorem 5 that for a given interval [θ1, θ2], ϕ(θ) = 0 for θ < θ1, ϕ(θ) =∫ θ
θ1
(−caθ/caa) dτ for θ ∈ [θ1, θ2], and ϕ(θ) =

∫ θ2
θ1

(−caθ/caa) dτ for θ > θ2.

Theorem 8 (Social Planner) Let FOP hold, let Faa = 0, let C(·, ·, θ) be strictly convex, let

Cu0(α(·), S(·), ·) be strictly increasing, and let θ1 < θ2 be such that IMC is slack immediately to

the left of θ1 and right of θ2. Then,∫ θ2

θ1

(Ba − Ca)
1

caa
h ≥

∫ (
Cu0 −

∫
Cu0h

)
ϕh > 0. (24)

If S(θ) > ū at the optimum, then the weak inequality is an equality, and anywhere that IMC is

slack,

Ba − Ca =
−caθ
h

∫ θ̄

θ

(
Cu0 −

∫
Cu0h

)
h. (25)

Thus, in the same average sense as in Theorem 5, effort is distorted downward, and it is

distorted downward pointwise where both S(θ) ≥ ū and IMC is slack. To see the intuition for

(24), consider the perturbation in the proof of Theorem 5, in which one lowers the effort of types

in an interval so as to lower their marginal cost of effort by a constant. In addition, move utility

between the firm and all agents uniformly so as to return the firm to its original profit level,

hence assuring that
∫
(B − C)h ≥ K remains satisfied. When the action is lowered on [θ1, θ2],

society becomes more equal. This raises the utility of the lowest type and hence IR continues

to hold. The resulting redistribution of surplus from the well-off to the less well-off saves money,

since in particular, Cu0 −
∫
Cu0h is the cost of moving a util from society in general to θ, and

ϕ is increasing and thus primarily increases surplus for the already well-off. So, for optimality,

lowering effort on this interval must lower total output, and we have (24). If S(θ) ≥ ū is not

binding at the optimum, as will hold if either ū is low (people simply cannot leave the society) or

if society is rich enough, then the perturbation is feasible in both directions, and (24) holds with

equality.15 Equation (25) follows where IMC is slack.

14The complexity is that while higher types are paid more on average, for sufficiently low output levels they are
paid less than if they had announced a lower type.

15The claim about a rich society follows because cθ is bounded, and thus so is S(θ̄)− S(θ). Hence, if the average
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If (25) holds globally, then the planner optimally penalizes effort for all types except the

extremes. But, unlike the monopolist, she does so to achieve a more egalitarian outcome subject

to the “resource constraint” represented byK, and so one with higher average utility. The planner

also utilizes the (moral-hazard constrained) efficient effort level at both extremes of types.16 This

is intuitive, since the reallocation of income from those below θ to those above θ is vacuous at

each extreme, and more generally, when θ is close to either extreme, changing the relative utility

of types below and above θ involves moving less and less money around. This generalizes a result

in the optimal taxation literature (see Seade (1977), and Salanie (2011) for a good summary).

Before proving the theorem, let us discuss the monotonicity assumption on Cu0 . Consider first

the two-outcome case, where at any given θ, Cu0 = αφ′
h+(1−α)φ′

l, with vh = S+ c+(1− α) ca,

and vl = S+ c−αca, and so, since Sθ− cθ = 0, (vh)θ = (1− α) (ca)θ and vl = −α (ca)θ. But then,

(Cu0)θ = α′ (φ′
h − φ′

l

)
+ α (1− α) (ca)θ

(
φ′′
h − φ′′

l

)
,

where the first term is strictly positive since φ is strictly convex, and the second term is positive,

since ρ is concave, which one can show is equivalent to φ′′′ ≥ 0. So, for the two outcome case,

Cu0 is indeed strictly increasing in θ.

More generally, since Cu0(α(θ), S(θ), θ) =
∫
φ′(v(θ, x))f(x|α(θ))dx is an identity, we have

(Cu0)θ = α′ ∫ φ′fa +
∫
φ′′vθf . The first term reflects that higher types exert higher effort and

so are more likely to attain higher outcomes. It is bounded strictly above zero, using IMC, that

φ is strictly convex, and strict MLRP . For the square-root case, φ′′ is constant, and so, since∫
vθf = 0, the second term disappears,

∫
vθf = 0, and so we are again done.

More informally, when u is “close” enough to square root, the second term will be small, and

we will have Cu0 strictly increasing. Finally, in our society, utility gaps are bounded uniformly

from top to bottom, since cθ is bounded. So, if society is rich enough–either because K is small

or B is large–then all members of society will be quite well-off. But then, as formalized in Section

VII.B, under mild conditions, φ′′ will again be close to constant over the relevant ranges, the

relevant integral will be small, and we again have Cu0 strictly increasing.17

Proof of Theorem 8 Modify the perturbation from the proof of Theorem 5 so that any change

in profit to the firm is redistributed in utility-equivalent terms to the agents. That is, S(θ; ε)

equals s(ε), where∫ (
B(α(θ; ε))− C

(
α(θ; ε), s(ε)−

∫ θ

θ
cθ (α (τ ; ε) , τ) dτ, θ

))
h =

∫
(B − C)h,

member of society is well off, so is the least well-off.
16Indeed, note that the integral in (25) is single-peaked and zero at the extremes.
17What stands in the way of a fully general result is that beyond the two outcome case, vθ need not have tidy

crossing properties, especially over over ironed regions, since ca is unchanging, but l is changing with a.
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with the rhs evaluated at the candidate solution, and where we thus have

s′(0) =
1∫
Cu0h

(∫ θ2

θ1

(Ba − Ca)
1

caa
h−

∫
Cu0ϕh

)
. (26)

Since the firm’s profit is unaffected, the rate of change in the objective function with respect to

ε is thus, for η < 1,

(1− η)
d

dε

(∫
Sh

)∣∣∣∣
ε=0

=
s
s′ (0) +

∫
ϕh (27)

=
s

∫ θ2

θ1

(Ba − Ca)
1

caa
h−

∫ (
Cu0 −

∫
Cu0h

)
ϕh,

where
∫ (
Cu0 −

∫
Cu0h

)
ϕh > 0 by Lemma 12, since Cu0 is strictly increasing, ϕ is increasing and

not everywhere constant, and
∫ (
Cu0 −

∫
Cu0h

)
h = 0.

Assume by contradiction that
∫ θ2
θ1
(Ba − Ca)

1
caa
h <

∫
(Cu0 −

∫
Cu0h)ϕh. Then, since

∫
Cu0h

and ϕ are both positive, and from (26), we have s′(0) < 0, so that for ε small but negative,

IR holds and the perturbation is feasible. But, from (27), this deviation is strictly profitable,

a contradiction.18 If IR does not bind, then the perturbation is also feasible for ε small and

positive, and so the weak inequality in (24) must be an equality.

The proof of (25) follows as before, by noting that the inequality in (24) is an equality on a

neighborhood, differentiating on both sides with respect to θ2, using that for θ < θ2, ϕθ2 = 0,

while for for θ > θ2, ϕθ2 is −caθ/caa evaluated at θ2, and rearranging. □

As for the profit maximizing principal case (Footnote 9), our societal optimum cannot in

general be implemented without the announcement or menu phase of the mechanism. Hence, for

example, in an optimal tax code, people of different abilities will be selected into different tax

schemes mapping gross into net incomes. It is intriguing to think about how such a tax code

would be implemented, since the announcement of type must occur prior to the choice of effort,

and so, for example, at the beginning of one’s career.

7 Existence and Differentiability in the Moral Hazard Problem

Let W be the domain of the utility function, an interval with infimum w and supremum w̄. Let

v = limw→w u(w), and let v̄ = limw→w̄ u(w). Let E be the set of (a, u0, θ) such that the relaxed

moral hazard problem in Section PMH admits a solution v̂ where v̂(x) > v and v̂(x̄) < v̄. If we

let τ = limw→w(1/u
′(w)), and τ̄ = limw→w̄(1/u

′(w)), then it is easy to show that v̂(x) > v if and

only if λ+µl(x|a) > τ for the associated Lagrange multipliers, and similarly, that v̂(x̄) < v̄ if and

18In the case η = 1, the perturbed solution has IR strictly slack, and so the firm can lower surplus to all types
for a strict increase in profits.

32



only if λ+ µl(x̄|a) < τ̄ .

Lemma 14 The set E is open. The multipliers λ and µ are twice continuously differentiable

functions of (a, u0, θ) on E. Hence, so are the functions ṽ and C.

Proof Let

G(λ, µ, a, u0, θ) =

(
g1(λ, µ, a, u0, θ)

g2(λ, µ, a, u0, θ)

)
,

where

g1(λ, µ, a, u0, θ) =

∫
ρ(λ+ µl(x|a))f(x|a)dx− c(a, θ)− u0,

g2(λ, µ, a, u0, θ) =

∫
ρ(λ+ µl(x|a))fa(x|a)dx− ca(a, θ).

Let (a0, u00, θ
0) ∈ E , let λ0 and µ0 be the associated Lagrange multipliers, and let κ0 = (λ0, µ0, a0, u00, θ

0).

Then, G(κ0) = 0, and by definition of E , λ0 + µ0l(x|a0) > τ , and λ0 + µ0l(x̄|a0) < τ̄ . We need

to show that λ and µ are implicitly defined as C1 functions of (a, u0, θ) on a neighborhood of

(a0, u00, θ
0). Since λ + µl(x|a) and λ + µl(x̄|a) are continuous in (λ, µ, a), it would follow from

this that E is open. We proceed in several steps. Let ψ map 1/u′ into money, that is, ψ solves

1/u′(ψ(τ)) = τ . Then we can write ρ as ρ(τ) = u(ψ(τ)).

Step 1. We first show that g1λ exists at κ0, and is equal to
∫
ρ′(λ0 + µ0l(x|a0))f(x|a0)dx. To

show this, we must first show that it is valid to differentiate under the integral. This requires

that ρ(λ+ µl(x|a))f(x|a) be integrable. Since f is continuous on the compact interval [x, x̄], it is

bounded, and so it is enough to show that |ρ(λ+ µl(x|a))| is bounded. But,

ρ(λ+ µl(x|a)) ≤ ρ(λ0 + µ0l(x̄|a0)) <∞,

where we use that λ0 + µ0l(x̄|a0) < τ̄ by hypothesis, and similarly, ρ(λ + µl(x|a)) ≥ ρ(λ0 +

µ0l(x|a0)) > ∞, and we are done. Another requirement for passing the derivative through the

integral is that ρ′(λ0 + µ0l(x|a0))f(x|a0) is bounded above by an integrable function on some

neighborhood of (λ0, µ0, a0). To see this, choose δ and δ̄ such that τ < δ < λ0 + µ0l(x|a0) and

λ0 + µ0l(x̄|a0) < δ̄ < τ̄ . Then, since λ+ µl(x|a) and λ+ µl(x̄|a) are continuous in (λ, µ, a), there

is a neighborhood N of (λ0, µ0, a0) such that δ < ρ(λ+ µl(x|a)) < ρ(λ+ µl(x̄|a)) < δ̄ on N . But

then, for all x, and everywhere on N , ρ′(λ + µl(x|a)) ≤ maxτ∈[δ,δ̄] ρ
′(τ) < ∞, where the second

inequality follows since ρ is continuously differentiable (with ρ′(τ) = ((u′)3/−u′′)(ψ(τ))) and [δ, δ̄]

is compact. By Corollary 5.9 in Bartle (1966) (and Billingsley (1995), problem 16.5), we can pass

the derivative through the integral and this provides an expression for g1λ.

Step 2. g1λ =
∫
ρ′(λ+µl(x|a))f(x|a)dx is itself continuous in (λ, µ, a) at (λ0, µ0, a0). This follows
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since λ + µl(x|a) is, under our conditions, uniformly continuous in (λ, µ, a), and ρ′ is uniformly

continuous in its argument on [δ, δ̄].

Step 3. By similar arguments, g1µ, g1a, g2λ, g2µ, and g2a are defined as the integral of the

relevant derivative, and are continuous. Finally, giθ and giu0 are trivially continuous. Hence, G is

continuously differentiable on a neighborhood of κ0. Then G is twice continuously differentiable,

noting in specific that

ρ′′(τ) =
(u′)3

−u′′

[
3
u′′

u′
− u′′′

u′′

]
(ψ(τ)),

and so since u is C3, ρ′′ is continuous on the compact interval [δ, δ̄], and hence it is bounded.

Step 4. By Jewitt, Kadan, and Swinkels (2008), ∇G(κ0) ̸= 0. Hence, by the Implicit Func-

tion Theorem for Ck functions (Fiacco (1983), Theorem 2.4.1), λ and µ are twice continuously

differentiable functions of (a, u0, θ) in a neighborhood of (a0, u00, θ
0).

Step 5. Since ṽ(x, a, u0, θ) = ρ(λ + µl(x|a)) for all (x, a, u0, θ), it follows that ṽ is twice-

continuously differentiable, and thus so is C, since C(a, u0, θ) =
∫
φ(ṽ(x, a, u0, θ))f(x|a)dx. □

The reader may wonder at the level of detail displayed in this proof. To see that there is

something to prove, consider u = logw. Then (see Moroni and Swinkels (2014) for details), it

is easy to exhibit first, combinations of ca, c, and u0 for which no optimal contract exists, and

second, combinations of ca, c, and u0 for which the optimal contract has v(x) = −∞, and at which

the relevant integrals cease to be continuous (let alone differentiable) in the relevant parameters.

In the text we have assumed that we can exchange differentiation and integration when dif-

ferentiating
∫
vf with respect to θ and a. This can be justified as follows:

Lemma 15 Let (α(θ0), S(θ0), θ0) ∈ E. Then, for all a,
∫
v(x, θ)f(x|a)dx is differentiable in θ at

θ0, with
∂

∂θ

∫
v(x, θ0)f(x|a)dx =

∫
vθ(x, θ

0)f(x|a)dx,

and similarly,
∫
v(x, θ0)f(x|a)dx is differentiable in a at a, with

∂

∂a

∫
v(x, θ0)f(x|a)dx =

∫
v(x, θ0)fa(x|a)dx.

Proof We will show the result for the case of differentiation by θ since the other case is similar.

We must show first that v(x, θ0)f(x|a) is integrable. This follows as before since

|v(x, θ0)| ≤ max
(
|v(x, θ0)|, |v(x̄, θ0)|

)
<∞.

Next we show that, under decoupling, vθ exists and it is uniformly bounded. To see this, note
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first that v(x, θ) = ρ(λ(θ) + µ(θ)l(x|α(θ))) and so

vθ(x, θ) = ρ′(λ(θ) + µ(θ)l(x|α(θ)))(λ′(θ) + µ′(θ)l(x|α(θ)) + µ(θ)la(x|α(θ))α′(θ)).

As before, let τ < δ < λ0+µ0l(x|a0), and let λ0+µ0l(x̄|a0) < δ̄ < τ̄ . Since α is continuous, for all

θ sufficiently close to θ0, λ(θ) + µ(θ)l(x|α(θ)) ∈ [δ, δ̄], and so, as before, ρ′(λ(θ) + µ(θ)l(x|α(θ)))
is uniformly bounded on a neighborhood of θ0. Also, since α and S are C1, λ(θ) and µ(θ) are

continuously differentiable on some neighborhood of θ0. But then, since l and la are uniformly

bounded, we can also uniformly bound (λ′(θ)+µ′(θ)l(x|α(θ))+µ(θ)la(x|α(θ))α′(θ)) on the relevant

neighborhood. It follows that vθ is uniformly bounded on the neighborhood, and the lemma follows

from Bartle (1966), Corollary 5.9. □

Finally, we need to know that (α(θ), S(θ), θ) ∈ E for all θ. By Moroni and Swinkels (2014),

one set of conditions is given by the following lemma.

Lemma 16 Assume that w̄ = v̄ = ∞, w = v = −∞, τ = 0, and τ̄ = ∞. Then, for all (a, u0, θ) ,

(a, u0, θ) ∈ E.

Proof Direct from Moroni and Swinkels (2014). □

This lemma, however, does not cover important cases such as u = logw or u =
√
w, because

in each case, w = 0 > −∞. Our next lemma covers u =
√
w, but not u = logw.

Lemma 17 Let w̄ = v̄ = ∞, w = 0, and τ̄ = ∞. Assume further that ρ′(τ)τ is increasing and

diverges in τ . Then, there is a threshold û such that for all ū ≥ û, (α(θ), S(θ), θ) ∈ E for all θ.

Proof For any given a, and µ > 0, let i(µ, a) =
∫
ρ(µ(l(x|a)− l(x|a)))fa(x|a)dx. Note that

i(µ, a) =

∫
ρ′(µ(l(x|a)− l(x|a)))µlx(x|a)(−Fa(x|a))dx

=

∫
1

l(x|a)− l(x|a)
[ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))]lx(x|a)(−Fa(x|a))dx,

and so, since ρ′(τ)τ is increasing in τ , it follows that the bracketed term, and hence i(·, a), is
increasing in µ. Let m = mina l(x̄|a)− l(x|a) > 0, and let

σ = − min
{(x,a)|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
lx(x|a)Fa(x|a) > 0.
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Then,

i(µ, a)

≥
∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))

l(x|a)− l(x|a)
lx(x|a)(−Fa(x|a))dx

≥ 4σ

3m

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))dx

≥ 4σ

3m
ρ′
(
µ
m

2

)
µ
m

2

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
dx ≥ 4σ

3m

m

4max{x,a} lx (x|a)
ρ′
(
µ
m

2

)
µ
m

2

=
σ

3max{x,a} lx (x|a)
ρ′
(
µ
m

2

)
µ
m

2
,

where the first inequality follows from the fact that the integrand is positive, the second from

l(x|a)− l(x|a) ≤ 3m/4, the third from the monotonicity of ρ′(τ)τ , and the fourth by integration.

Note that the lower bound on i(µ, a) thus obtained diverges in µ. Hence, there exists µ̂ such that

i(µ, a) > ca(a, θ̄) for all a, and µ > µ̂. Let

û = max
a

∫
ρ(µ̂(l(x|a)− l(x|a)))f(x|a)dx ≤ ρ

(
µ̂max

a
(l(x̄|a)− l(x|a))

)
<∞.

It follows from Proposition 1 of Moroni and Swinkels (2014), along with i(·, a) increasing, that

(α(θ), S(θ), θ) ∈ E for all θ for any ū > û. In particular, at any θ, S(θ) + c(α(θ), θ) > ū > û. □

Finally, let us consider the case u = logw (for which ρ′(τ)τ is identically 1, so the previous

result does not apply). Then, as in the proof of the previous lemma,

i (µ, a) ≥ 4σ

3m

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))dx

=
4σ

3m

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
dx ≥ 4σ

3m

m

4maxx,a lx (x|a)
≡ s,

and so, if we assume that ca(ā, θ̄) ≤ s, then Proposition 1 of Moroni and Swinkels (2014) applies.
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