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Tariffs” by Corrao, Flynn, and Sastry

A Proofs of Main Results

In this appendix, we provide the proofs of the main results. In Section A.1, we define

and characterize implementable consumption functions under free disposal and characterize

optimal contracts, proving Proposition 1. In Section A.2, we characterize the occurrence

of multi-part tariffs by proving Proposition 2 and the corresponding corollaries. Finally, in

Section A.3, we derive comparative statics for welfare, proving Propositions 3 and 4.

A.1 Implementation and Proof of Proposition 1

We say that consumption function φ is implementable if there exist a purchase function ξ

and a price schedule T such that (φ, ξ, T ) jointly satisfy the constraints (O), (IC), and (IR)

of Problem 1. In this case, we say that φ is supported by (ξ, T ). The following intermediate

results fully characterize implementable consumption functions in terms of their functional

properties. We say real functions are monotone when they are monotone non-decreasing.

Lemma 1. Fix a consumption function φ that is monotone and such that φ ≤ φA. Define

the transfer function t : Θ→ R as

(23) t(θ) = C + u(φ(θ), θ)−
∫ θ

0

uθ(φ(s), s) ds

for some C ≤ 0, and define the price schedule T : X → R as

(24) T (x) = inf
θ′∈Θ
{t(θ′) : x ≤ φ(θ′)}

Then t and T are monotone.

Proof. Fix θ′, θ ∈ Θ such that θ′ ≥ θ. Given that φ is monotone, it is almost everywhere

differentiable with derivative denoted by φ′ when defined. By the Fundamental Theorem of

calculus, we can re-write the transfer function as

(25) t(θ) = C + u(φ(0), 0) +

∫ θ

0

(ux(φ(s), s)φ′(s) + uθ(φ(s), s)) ds−
∫ θ

0

uθ(φ(s), s) ds
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Subtracting t(θ) from t(θ′), we get

(26) t(θ′)− t(θ) =

∫ θ′

θ

ux(φ(s), s)φ′(s) ds

Given that φ ≤ φA, and that u is strictly quasiconcave in x, it follows that ux(φ(s), s) ≥ 0

for all s ∈ [0, θ′]. Moreover, given that φ is monotone, it follows that φ′(s) ≥ 0 for almost

all s ∈ [0, θ′]. Given that θ′ ≥ θ, Equation 26 implies that t(θ′) ≥ t(θ). Given that θ′, θ were

arbitrarily chosen, it follows that t is monotone.

Next, fix x, y ∈ X such that y ≤ x. Given that φ is monotone, the definition of T implies

that T (y) ≤ T (x). We then conclude that T is monotone.

Lemma 2. A consumption function φ is implementable if and only if φ is monotone and

such that φ ≤ φA. In this case, φ is supported by (φ, T ), where T is defined as in Equation

(24) for some C ≤ 0.27

Proof. (Only if). If φ is implementable, then there exists (ξ, T ) that support φ. By Incentive

Compatibility and by the taxation principle, there exists a transfer function t : Θ→ R such

that u(φ(θ), θ) − t(θ) ≥ u(φ(θ′), θ) − t(θ′) for all θ, θ′ ∈ Θ. By a standard implementation

result (see, e.g., Proposition 1 in Rochet, 1987), this implies that φ is monotone. Finally, if

there exists θ ∈ Θ such that φ(θ) > φA(θ), then we would contradict Obedience for type θ

since u(φA(θ), θ) > u(φ(θ), θ) and φA(θ) would be feasible given φ(θ) by construction.

(If). Now suppose that φ is monotone and such that φ(θ) ≤ φA(θ) for all θ ∈ Θ. Define t

and T given φ as in Equations 23 and 24 respectively. We next prove that (φ, φ, T ) satisfies

(O), (IC), and (IR).

First, for every θ ∈ Θ, we have

(27) u(φ(θ), θ)− T (φ(θ)) ≥ u(φ(θ), θ)− t(θ) =

∫ θ

0

uθ(φ(s), s) ds− C ≥ 0

where the first inequality follows from the definition of T and the last inequality follows

from C ≤ 0 and uθ(φ(θ), θ) ≥ 0 for all θ ∈ Θ (u is monotone increasing in θ). This proves

Individual Rationality.

Next, assume toward a contradiction that Obedience does not hold. That is, there

exist θ ∈ Θ and y < φ(θ) ≤ φA(θ) such that u(y, θ) > u(φ(θ), θ). However, this yields a

contradiction with strict quasiconcavity of u in x. Therefore, Obedience holds.

We are left to prove that (φ, φ, T ) satisfy Incentive Compatibility. Fix θ′, θ ∈ Θ such that

27Observe that here the purchase function is ξ = φ.
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θ′ 6= θ. We first prove that, for all θ, θ′, we have

(28) u(φ(θ), θ)− t(θ) ≥ max
x≤φ(θ′)

u(x, θ)− t(θ′)

This is a variation of the standard reporting problem under consumption function φ and

transfers t, where each agent, on top of misreporting their type, can freely dispose of the

allocated quantity. Violations of this condition can take two forms. First, an agent of type

θ could report type θ′ and consume x = φ(θ′). We call this a single deviation. Second, an

agent of type θ could report type θ′ and consume x < φ(θ′). We call this a double deviation.

Under our construction of transfers t and monotonicity of φ, by a standard mechanism-

design argument (e.g., Proposition 1 in Rochet, 1987), there is no strict gain to any agent of

reporting θ′ and consuming x = φ(θ′). Thus, there are no profitable single deviations under

(φ, t).

We now must rule out double deviations. Define the value function V : Θ→ R under φ

and t as

(29) V (θ) = u(φ(θ), θ)− t(θ) =

∫ θ

0

uθ(φ(s), s) ds− C

Suppose, toward a contradiction, that there exists a double deviation in which type θ re-

ports type θ′. We separate the argument by various cases comparing (θ, φ(θ), φA(θ)) and

(θ′, φ(θ′), φA(θ′)).

1. θ′ < θ: Given that φ is monotone, it must be that φ(θ′) ≤ φ(θ). Moreover, as (O)

holds, we have that φ(θ′) < φ(θ). For the same reason, we have that φ(θ′) is optimal for

type θ′ when they could choose any x ≤ φ(θ′). Moreover, by strict single-crossing of u

and strict quasiconcavity of u(·, θ), it is optimal for type θ to consume some x ≥ φ(θ′).

But, we know that x ≤ φ(θ′); thus x = φ(θ′) is optimal. Hence, if there is a double

deviation with θ′ < θ, there is also a single deviation. This is a contradiction as we

already showed that there are no strictly profitable single deviations.

2. θ′ > θ and φA(θ) ≥ φ(θ′): the optimal choice of consumption for agent θ in [0, φ(θ′)] is

given by φ(θ′) by strict quasiconcavity of u. Thus, there is a profitable single deviation,

which is a contradiction.

3. θ′ > θ and φA(θ) < φ(θ′): We know x = φA(θ) is most attractive following the

misreport θ′. Suppose that there exists some θ̂ ∈ (θ, θ′] such that φ(θ̂) = φA(θ). Given

that t is monotone by Lemma 1, we know that a single deviation to θ̂ is weakly more

attractive than a double deviation to x ≤ φ(θ′). As no single deviations exist, this is

a contradiction. As φ(θ) ≤ φA(θ) < φ(θ′), it follows that no type θ̂ ∈ (θ, θ′] receives
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φA(θ). We know that the most attractive misreport is the smallest type θ′ such that

φ(θ′) ≥ φA(θ). It follows that φA(θ) ≤ φ(θ′) ≤ φA(θ′) and therefore that there exists

some θ̂ such that φA(θ̂) = φ(θ′), by continuity of φA.

We now work toward a contradiction. By the hypothesis of a double deviation for type

θ:

(30) u(φA(θ), θ)− t(θ′) > u(φ(θ), θ)− t(θ)

Define for any type θ, the value of optimal autarkic consumption as V ∗(θ) = u(φA(θ), θ).

We can write V ∗(θ) − V (θ) > t(θ′). As we have ruled out single deviations, we know

that:

(31) u(φA(θ̂), θ̂)− t(θ′) ≤ u(φ(θ̂), θ̂)− t(θ̂)

Thus V ∗(θ̂) − V (θ̂) ≤ t(θ′). Together, we then have that V (θ̂) − V (θ) > V ∗(θ̂) −
V ∗(θ). From the definition of V in Equation 29, the left-hand-side is V (θ̂) − V (θ) =∫ θ̂
θ
uθ(φ(s), s) ds. From the envelope theorem applied to the autarkic consumption

problem, the right-hand-side is V ∗(θ̂) − V ∗(θ) =
∫ θ̂
θ
uθ(φ

A(s), s) ds. Combining these

substitutions with the original inequality,

(32)

∫ θ̂

θ

uθ(φ(s), s) ds >

∫ θ̂

θ

uθ(φ
A(s), s) ds

But we know that φA(s) ≥ φ(s) for all s ∈ [θ, θ̂], and this implies by single-crossing of

u that uθ(φ
A(s), s) ≥ uθ(φ(s), s), which contradicts the inequality above.

We have ruled out double deviations in all cases and thereby completed the proof of the

claim in Equation 28. We next prove that Equation 28 implies that (φ, φ, T ) satisfy Incentive

Compatibility. For all θ ∈ Θ, we have

u(φ(θ), θ)− T (φ(θ)) ≥ u(φ(θ), θ)− t(θ)

≥ sup
θ′∈Θ

{
sup

x∈X:x≤φ(θ′)
{u(x, θ)} − t(θ′)

}
= sup

x∈X

{
sup

θ′∈Θ:x≤φ(θ′)
{u(x, θ)− t(θ′)}

}
= sup

x∈X
{u(x, θ)− T (x)}

(33)

yielding Incentive Compatibility. This concludes the proof of the implication.

The second part of the statement directly follows from the proof of sufficiency.
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We now show that optimizing over the set of implementable allocations is equivalent to

maximizing virtual surplus subject to the implementation constraints from Lemma 2.

Lemma 3. A consumption function φ∗ is part of a solution to Problem 1 if any only if it

solves

max
φ

∫
Θ

J(φ(θ), θ) dF (θ)

s.t. φ(θ′) ≥ φ(θ), φ(θ) ≤ φA(θ), θ, θ′ ∈ Θ : θ′ ≥ θ

(34)

Proof. We begin by eliminating the proposed allocation and transfers from the objective

function of the seller. From the proof of Lemma 2, we have that every implementable φ is

supported by ξ = φ and by a price schedule T defined as in Equation 24 where the transfer

function t is defined in Equation 23 for some constant C ≤ 0. Given that any ξ that supports

φ leads to the same seller payoff, we can then set ξ = φ without loss of optimality. Moreover,

we know that φ being implementable is equivalent to φ being monotone increasing and

φ ≤ φA (given that C ≤ 0). Finally, it is not optimal for the seller to exclude any agent from

the mechanism as it is without loss to allocate any agent x = 0 rather than exclude them

owing to the fact that π(0, ·) = 0, u(0, ·) = 0, u(x, ·) is monotone increasing over Θ, and u

has strict single-crossing in (x, θ). In particular, for any incentive compatible allocation that

excludes some type θ, it is without loss of optimality to set φ(θ) = ξ(θ) = t(θ) = 0. Each

agent is indifferent between participation and not, and this does not change the principal’s

payoff.

Plugging in the expression (23), we can simplify the expression for the seller’s total

transfer revenue as the following:∫
Θ

t(θ) dF (θ) =

∫
Θ

(
C + u(φ(θ), θ)−

∫ θ

0

uθ(φ(s), s) ds

)
dF (θ)

=

∫
Θ

(
C + u(φ(θ), θ)− (1− F (θ))

f(θ)
uθ(φ(θ), θ)

)
dF (θ)

(35)

where the final equality follows by applying the standard integration-by-parts argument.

Plugging into the seller’s objective, we find that the principal solves:

max
φ,C

∫
Θ

(J(φ(θ), θ) + C) dF (θ)

s.t. C ≤ 0, φ(θ′) ≥ φ(θ), φ(θ) ≤ φA(θ) ∀θ, θ′ ∈ Θ : θ′ ≥ θ

(36)

It follows that it is optimal to set C = 0, completing the proof.

5



Proof of Proposition 1. By Lemma 3, any optimal consumption function must solve Problem

34. Consider now the family of problems maxx∈[0,φA(θ)] J(x, θ), indexed by θ ∈ Θ. As J is

strictly quasiconcave in x, there is a unique maximum in this problem, which we call φ∗(θ).

Moreover, whenever φP (θ) < φA(θ), we know that φ∗(θ) = φP (θ). Otherwise φ∗(θ) = φA(θ),

by strict quasiconcavity of J in x. Thus, the solution of this pointwise problem is φ∗(θ) =

min
{
φA(θ), φP (θ)

}
. As φA and φP are monotone, φ∗ is monotone and is therefore the unique

solution to Problem 34.

We next prove the remaining parts of the statement by explicitly constructing the claimed

supporting price schedules and purchases. From Lemma 2, we can construct the claimed

formula for the price schedule directly. Because φ∗ is invertible over (φ∗(0), φ∗(1)) and using

its extension on the boundaries (see Footnote 14), we have that for all x ∈ X∗ = [φ∗(0), φ∗(1)]:

(37) T ∗(x) = t(φ∗
−1

(x)) = u(x, φ∗
−1

(x))−
∫ φ∗

−1
(x)

0

uθ(φ
∗(s), s) ds

As T ∗ is monotone, it is almost everywhere differentiable. Moreover, whenever it is differ-

entiable, by differentiating Equation 37 we obtain T ∗
′
(x) = ux(x, φ

∗−1
(x)). Integrating, we

obtain the price schedule in Equation 6 on X∗.

Finally, we show that the optimal level of consumption is supported by any selection from

Ξφ∗ , and only by selections from Ξφ∗ . To this end, consider the selection ξ ∈ Ξφ∗ defined

as ξ = max Ξφ∗ . We want to show that the triple (φ∗, ξ, T ∗) satisfies Obedience, Incentive

Compatiblility, and Individual Rationality. We now define t = T ∗ ◦ ξ.
Consider first the Obedience constraint that φ∗(θ) ∈ arg maxx∈[0,ξ(θ)] u(x, θ), for all θ ∈ Θ.

Observe that φ∗ ≤ ξ by construction of ξ. Moreover, toward a contradiction, suppose that

there exists θ ∈ Θ and x ≤ ξ(θ) such that u(φ∗(θ), θ) < u(x, θ). There are two cases:

1. If φ∗(θ) < φA(θ), then by construction x ≤ ξ(θ) = φ∗(θ) < φA(θ) implying that

u(φ∗(θ), θ) ≥ u(x, θ) by strict quasiconcavity of u(·, θ), hence yielding a contradiction.

2. If φ∗(θ) = φA(θ), then by construction u(φ∗(θ), θ) ≥ u(x, θ) yielding a contradiction.

Consider now the Incentive Compatibility constraint that for all θ ∈ Θ:

(38) ξ(θ) ∈ arg max
y∈X

{
max
x∈[0,y]

u(x, θ)− T ∗(y)

}
and define g(y, θ) = maxx∈[0,y] u(x, θ). Toward a contradiction, suppose that there exist

θ, θ′ ∈ Θ such that g(ξ(θ), θ)− t(θ) < g(ξ(θ′), θ)− t(θ′). There are two cases to consider:
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1. If φ∗(θ′) < φA(θ′), then Ξφ∗(θ
′) = {φ∗(θ′)}. Thus, ξ(θ′) = φ∗(θ′). Hence:

(39) g(φ∗(θ), θ)− t(θ) = g(ξ(θ), θ)− t(θ) < g(ξ(θ′), θ)− t(θ′) = g(φ∗(θ′), θ)− t(θ′)

where the first equality follows by Obedience, the inequality follows by hypothesis, and

the last equality follows as ξ(θ′) = φ∗(θ′).

2. If φ∗(θ′) = φA(θ′), then define θ′′ = inf
{
θ̂ ∈ Θ : θ̂ ≥ θ′, φ∗(θ̂) < φA(θ̂)

}
. Note that, by

monotonicity of φ∗ and by construction of ξ, we have φ∗(θ′′) = ξ(θ′′) = ξ(θ′). Moreover,

by construction we necessarily have that [θ′, θ′′] ⊆
{
θ̂ ∈ Θ : φ∗(θ̂) = φA(θ̂)

}
. Therefore,

by Equation 26 in Lemma 1, we have that:

(40) t(θ′′)− t(θ′) =

∫ θ′′

θ′
ux(φ

A(s), s)
(
φA
)′

(s) ds = 0

by optimality of φA(s) for all s ∈ [0, 1]. Thus, t(θ′) = t(θ′′) and we have that:

(41) g(φ∗(θ), θ)− t(θ) = g(ξ(θ), θ)− t(θ) < g(ξ(θ′), θ)− t(θ′) = g(φ∗(θ′′), θ)− t(θ′′)

where the first equality is by Obedience, the inequality is by hypothesis and the second

equality follows as φ∗(θ′′) = ξ(θ′) and t(θ′) = t(θ′′).

In both cases, there exists θ′′ ∈ Θ such that g(φ∗(θ), θ)−t(θ) < g(φ∗(θ′′), θ)−t(θ′′) (in case 1,

θ′′ = θ′). This contradicts the fact that (φ∗, φ∗, T ∗) is implementable, which we established

in Lemma 2. Thus, Incentive Compatibility is satisfied.

Finally, consider the Individual Rationality constraint that u(φ∗(θ), θ) − T ∗(ξ(θ)) ≥ 0

for all θ ∈ Θ. Observe that T ∗(ξ(θ)) = T ∗(φ∗(θ)) for all θ such that φ∗(θ) < φA(θ). When

φ∗(θ) = φA(θ), we have that T ∗(ξ(θ))− T ∗(φ∗(θ)) =
∫ ξ(θ)
φ∗(θ) ux(z, φ

∗−1
(z)) dz = 0 as all types

that consume between φ∗(θ) = φA(θ) and ξ(θ) consume their bliss point, by construction.

Thus, T ∗ ◦ ξ = T ∗ ◦ φ∗ and by implementability of (φ∗, φ∗, T ∗) (see Lemma 2), Individual

Rationality holds.

This proves that (φ∗, ξ, T ∗) is implementable and therefore optimal. We now argue that

for any other selection ξ ∈ Ξφ∗ , the triple (φ∗, ξ, T ∗) is necessarily implementable and there-

fore optimal. Indeed, by way of contradiction, suppose that the latter is not implementable.

It follows that (φ∗, ξ, T ∗) is not implementable either as all feasible deviations under pur-

chase function ξ are still feasible under ξ and T ∗ ◦ ξ = T ∗ ◦ ξ. However, this contradicts our

demonstration that (φ∗, ξ, T ∗) is implementable.

We finally show that if ξ 6∈ Ξφ∗ , then it is not part of an optimal contract. We will

use the observation that all agents’ payments to the seller are pinned down by the envelope
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formula for t. There are two cases to consider. First, suppose that there exists a θ ∈ Θ

such that ξ(θ) 6= φ∗(θ) and φ∗(θ) < φA(θ). If ξ(θ) < φ∗(θ), then φ∗(θ) 6∈ [0, ξ(θ)], which

makes φ∗ infeasible. If ξ(θ) > φ∗(θ), then, as φ∗(θ) < φA(θ), t(θ) is strictly increasing

at θ. Thus T ∗(ξ(θ)) > t(θ), which is a contradiction. Second, suppose that there exists

a θ ∈ Θ such that ξ(θ) 6∈ [φA(θ), infθ′∈[θ,1]

{
φ∗(θ′) : φ∗(θ′) < φA(θ′)

}
] and φ∗(θ) = φA(θ).

Once again if ξ(θ) < φ∗(θ), then φ∗(θ) 6∈ [0, ξ(θ)], which makes φ∗ infeasible. If ξ(θ) >

infθ′∈[θ,1]

{
φ∗(θ′) : φ∗(θ′) < φA(θ′)

}
, then as before T ∗(ξ(θ)) > t(θ), which is a contradiction.

A.2 Proof of Proposition 2, Corollary 1, and Corollary 2

Proof of Proposition 2. We first prove that H(x) > 0 implies that T ∗(x) is flat at x, for any

x ∈ X∗. By the definition of a multi-part tariff, this will also prove that T ∗ is a multi-part

tariff. Consider first any x ∈ Int(X∗), where Int(·) denotes the interior of a set. Observe that

φ∗ = min{φP , φA} is invertible over Int(X∗). Suppose now that H(x) = Jx(x, (φ
A)−1(x)) > 0

and define θ(x) = (φ∗)−1(x). It is either the case that x = x (which is not in Int(X∗)), or

φA(θ(x)) < φP (θ(x)). Thus, when H(x) > 0, φA(θ(x)) < φP (θ(x)), so φ∗(θ(x)) = φA(θ(x)).

As φA and φP are continuous functions by the Theorem of the Maximum and invertible at

x, we can find a neighborhood O(x) of x, such that for all x′ ∈ O(x), and corresponding

θ′ = (φ∗)−1(x′), we have that φ∗(θ′) = φA(θ′). To see that prices are constant on O(x), take

any two points x1, x2 ∈ O(x), and observe that (by Equation 6 of Proposition 1):

(42) T (x1)− T (x2) =

∫ x1

x2

ux(z, φ
A−1

(z)) dz = 0

by optimality of z for type φA
−1

(z), which implies the necessary optimality condition, for

all z ∈ [x2, x1], ux(z, φ
A−1

(z)) = 0. It remains to consider all x 6∈ Int(X∗). Continuity of H

implies the result for the boundary points of X∗.28 Thus, we have shown that, if H(x) > 0,

then there exists a neighborhood of x such that prices are constant, proving the claim.

We now prove that, for every x ∈ X∗, if T ∗ is a multi-part tariff that is flat at x, then

H(x) ≥ 0. First, consider x ∈ Int(X∗). If T is flat at x, then there exists a neighborhood

O(x) such that for all x1, x2 ∈ O(x), we have that T (x1) − T (x2) = 0. Thus, by Equation

6 of Proposition 1, we have that
∫ x1
x2
ux(z, φ

∗−1
(z)) dz = 0 for all x1, x2 ∈ O(x). Thus,

we have that ux(z, φ
∗−1

(z)) = 0 (as ux(z, φ
∗−1

(z)) ≥ 0 by Obedience) for almost all z ∈
O(x). By strict quasiconcavity of u, this implies that φ∗

−1
(z) = φA

−1
(z) for almost all

28A neighborhood at maxX∗ is of the form (maxX∗ − ε,maxX∗] for some ε > 0, and at minX∗ of the
form [minX∗,minX∗ + ε).
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z ∈ O(x). Toward a contradiction, suppose that H(x) < 0. By continuity of H, there exists a

neighborhood O′(x) ⊆ O(x) such that φ∗
−1

(z) = φP
−1

(z) < φA
−1

(z) for all z ∈ O′(x). But we

have already shown that φ∗
−1

(z) = φA
−1

(z) for almost all z ∈ O(x). This is a contradiction,

and so H(x) ≥ 0. It remains to consider all x 6∈ Int(X∗). As before, continuity of H implies

the result for the boundary points of X∗.29

Proof of Corollary 1. Immediate from Proposition 2 and the pricing-scheme definitions.

Proof of Corollary 2. By Proposition 2, if H(x) > 0 at φA(1), then T ∗ is flat at φ∗(1) =

φA(1). Moreover, at x = φA(1), we have H(φA(1)) = πx(φ
A(1), 1). It follows that, when

πx(φ
A(1), 1) > 0, H(φA(1)) > 0 and T ∗ features an unlimited subscription. Likewise,

if H(x) > 0 at φA(0), then T ∗ is flat at φ∗(0) = φA(0). Moreover, at x = φA(0), we

have H(φA(0)) = πx(φ
A(0), 0) − 1

f(0)
uxθ(φ

A(0), 0). It follows that, when f(0)πx(φ
A(0), 0) −

uxθ(φ
A(0), 0) > 0, H(φA(0)) > 0 and T ∗ features a trial.

A.3 Proofs of Propositions 3 and 4

Proof of Proposition 3. We first prove that V (θ;T ) ≥ VN(θ;T ), for all θ ∈ Θ. We compare

the values with and without free disposal to each type θ ∈ Θ under any T :

(43) V (θ;T ) = sup
y∈X,x∈[0,y]

{u(x, θ)− T (y)} ≥ sup
y∈X
{u(y, θ)− T (y)} = VN(θ;T )

because any payoff in the problem on the right of the inequality is attainable in the problem

on the left of the inequality.

We now show that V ∗(θ) ≤ V ∗N(θ), for all θ ∈ Θ. Without free disposal, the opti-

mal allocation is φ∗N(θ) = φP (θ). With free disposal, the optimal allocation is φ∗(θ) =

min{φA(θ), φP (θ)}. It follows that φ∗(θ) ≤ φ∗N(θ) for all θ ∈ Θ. Using the formula for agent

welfare under the optimal mechanism (see Equation 29), we can then see that:

(44) V ∗(θ) =

∫ θ

0

uθ(φ
∗(s), s) ds ≤

∫ θ

0

uθ(φ
∗
N(s), s) ds = V ∗N(θ)

for all θ ∈ Θ, where the inequality follows as u is strictly single-crossing in (x, θ) and φ∗ ≤ φ∗N .

For the seller, by Proposition 1, we have that for all θ ∈ Θ:

(45) Π∗(θ) = max
x∈[0,φA(θ)]

J(x, θ) ≤ max
x∈X

J(x, θ) = Π∗N(θ)

29A careful reader may ask why it is not true that T ∗ being flat at x ∈ X∗ implies H(x) > 0. Toward a
counter-example to this claim, suppose that φP ≡ φA. We have that T ∗ is flat everywhere but H(x) ≡ 0.
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The inequality follows because the problem without free disposal allows for more choices of

x ∈ X.

Proof of Proposition 4. We first show how J and φP change when (i) π changes to π̃ such

that π̃x ≥ πx and (ii) F changes to F̃ such that F dominates F̃ in the hazard-rate order.

Observe that J(·, θ) increases pointwise for all θ ∈ Θ as we may write (noting that J(0, θ) = 0

by the properties that u(0, θ) ≡ π(0, θ) ≡ 0):

(46) J(x, θ) =

∫ x

0

[
πx(z, θ) + ux(z, θ)−

1− F (θ)

f(θ)
uxθ(z, θ)

]
dz

and see that the integrand, Jx(z, θ), increases pointwise under (i) and (ii). As Jx increases

pointwise and J is strictly quasiconcave, we moreover have that φP increases pointwise while

φA remains unchanged. Let φP , J , V ∗, and Π∗ be evaluated at the original π and/or F , and

φ̃P , J̃ , Ṽ ∗, and Π̃∗ be the same objects evaluated at the new π̃ and/or F̃ .

We first study consumer welfare and establish that Ṽ ∗ ≥ V ∗. See that (by Equation 29):

(47) Ṽ ∗(θ) =

∫ θ

0

uθ(φ̃∗(s), s) ds ≥
∫ θ

0

uθ(φ
∗(s), s) ds = V ∗(θ)

for all θ ∈ Θ, where the inequality follows as u is strictly single-crossing in (x, θ) and

φ̃∗ = min{φ̃P , φA} ≥ min{φP , φA} = φ∗. Showing that Ṽ ∗N − V ∗N ≥ Ṽ ∗ − V ∗ is equivalent to

showing that Ṽ ∗N − Ṽ ∗ ≥ V ∗N − V ∗, or (by Equation 29):

(48)

∫ θ

0

[(
uθ(φ̃

∗
N(s), s)− uθ(φ̃∗(s), s)

)
− (uθ(φ

∗
N(s), s)− uθ(φ∗(s), s))

]
ds ≥ 0 ,∀θ ∈ Θ

There are three possible cases for each s ∈ Θ to compute the integrand:

i φP (s) < φA(s) and φ̃P (s) < φA(s). Hence: φ∗(s) = φP (s) = φ∗N(s) and φ̃∗(s) =

φ̃P (s) = φ̃∗N(s). In this case, the value of the integrand is zero.

ii φP (s) < φA(s) and φ̃P (s) ≥ φA(s). Hence: φ∗(s) = φP (s) = φ∗N(s) and φ̃∗(s) = φA(s).

Thus, the integrand is uθ(φ̃
P (s), s)− uθ(φA(s), s) ≥ 0 by strict single-crossing of u.

iii φP (s) ≥ φA(s) and φ̃P (s) ≥ φA(s), so φ∗(s) = φA(s) and φ̃∗(s) = φA(s). Thus, the

value of the integrand is uθ(φ̃
P (s), s)− uθ(φP (s), s) ≥ 0 by strict single-crossing of u.

Thus, the integrand is positive for all s ∈ Θ and the claimed inequality holds.

We now study producer welfare and establish that Π̃∗ ≥ Π∗. By Proposition 1, we have:

(49) Π̃∗(θ) = J̃(φ̃∗(θ), θ) ≥ J̃(φ∗(θ), θ) ≥ J(φ∗(θ), θ) = Π∗(θ)
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where the first inequality is by feasibility of φ∗ before and after the change (as φA is un-

changed), and the second inequality follows as J̃ ≥ J . Showing that Π̃∗N(θ) − Π∗N(θ) ≥
Π̃∗(θ)− Π∗(θ) is equivalent to showing that Π̃∗N(θ)− Π̃∗(θ) ≥ Π∗N(θ)− Π∗(θ), or:

(50)
(
J̃(φ̃∗N(θ), θ)− J̃(φ̃∗(θ), θ)

)
− (J(φ∗N(θ), θ)− J(φ∗(θ), θ)) ≥ 0 ,∀θ ∈ Θ

We have that φ∗N(θ) = φP (θ) and φ̃∗N(θ) = φ̃P (θ), and there are three cases for each θ ∈ Θ:

i φP (θ) < φA(θ) and φ̃P (θ) < φA(θ), so φ∗(θ) = φP (θ) = φ∗N(θ) and φ̃∗(θ) = φ̃P (θ) =

φ̃∗N(θ). In this case, the value of the expression is zero.

ii φP (θ) < φA(θ) and φ̃P (θ) ≥ φA(θ), so φ∗(θ) = φP (θ) = φ∗N(θ) and φ̃∗(θ) = φA(θ). In

this case, the value of the expression is J̃(φ̃P (θ), θ)− J̃(φA(θ), θ) ≥ 0 as φ̃P is maximal

for J̃ .

iii φP (θ) ≥ φA(θ) and φ̃P (θ) ≥ φA(θ), so φ∗(θ) = φA(θ) and φ̃∗(θ) = φA(θ). In this case,

the value of the expression is
(
J̃(φ̃P (θ), θ)− J̃(φA(θ), θ)

)
−
(
J(φP (θ), θ)− J(φA(θ), θ)

)
,

and we wish to show that this is positive. Now observe that we can write this inequality

as:

(51)

∫ φ̃P (θ)

φP (θ)

J̃x(z, θ) dz +

∫ φP (θ)

φA(θ)

(
J̃x(z, θ)− Jx(z, θ)

)
dz ≥ 0

As J̃ is strictly quasiconcave and φ̃P is J̃ maximal, we know that
∫ φ̃P (θ)

φP (θ)
J̃x(z, θ) dz ≥ 0.

Moreover, as J̃x ≥ Jx, we have that
∫ φP (θ)

φA(θ)

(
J̃x(z, θ)− Jx(z, θ)

)
dz ≥ 0. The claimed

inequality follows.

Thus, the expression in (50) is positive for all θ ∈ Θ and the claimed inequality follows.

B Additional Results

B.1 Optimal Bunching and Free Disposal

This appendix extends our main analysis to cover cases in which the virtual surplus function

J does not satisfy single-crossing and thereby allows for the possibility that multiple buyer

types bunch on the same level of consumption. We apply techniques from Nöldeke and

Samuelson (2007) to study the inverse problem of assigning types to consumption. For this

reason, we make make the additional assumptions that J is concave and that both πxx and

uxxθ exist and are continuous.
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Denote an inverse consumption function by ψ : X → Θ. This corresponds to an inverse

of the standard consumption function φ. For any monotone ψ, define the correspondence:

(52) Ψ(x) =

[
lim
y→−x

ψ(y), lim
y→+x

ψ(y)

]
which “fills in” discontinuities in the inverse consumption function.30 Moreover, define the

generalized inverse of φA as
(
φA
)[−1]

(x) = min
{
θ ∈ [0, 1] : φA(θ) = x

}
. Our first result

concerns implementation in this setting.

Lemma 4. A consumption function φ is implementable and supported by (φ, T ) if and only

if there exists a monotone inverse consumption ψ : X → Θ such that ψ(x) ≥
(
φA
)[−1]

(x) for

all x ∈ X, θ ∈ Ψ(φ(θ)) for all θ ∈ Θ, and T (x) = C +
∫ x

0
ux(z, ψ(z)) dz with C ≤ 0.

Proof. By construction, (T, ψ) are consistent as defined in Equation 5 in Nöldeke and Samuel-

son (2007). Moreover, φ ≤ φA if and only if ψ ≥ (φA)[−1]. Therefore, the statement immedi-

ately follows from Lemma 1 and Lemma 2 in Nöldeke and Samuelson (2007) and the proof

of Lemma 2 in this paper.

We now provide the solution to the seller’s screening problem. Toward simplifying the

seller’s problem, we define the following function:

(54) Ĵ(x, θ) = ux(x, θ)(1− F (θ)) +

∫ 1

θ

πx(x, s) dF (s)

Using this function as well as Lemma 4 in this paper and Remark 1 and Lemma 5 in Nöldeke

and Samuelson (2007), we can re-express the seller’s problem as:

max
ψ

∫ x

0

Ĵ(x, ψ(x)) dx

s.t. ψ(x′) ≥ ψ(x), ψ(x) ≥
(
φA
)[−1]

(x), ∀x′, x ∈ X : x′ ≥ x

(55)

The following result solves this problem and uses the solution to solve Problem 1.

Proposition 5. Problem 55 is solved by the inverse consumption ψ∗ : X → Θ given by

(56) ψ∗(x) = max

{
arg max

θ∈[(φA)[−1](x),1]
Ĵ(x, θ)

}
30Where we follow the convention from Nöldeke and Samuelson (2007) that:

(53) lim
y→−0

ψ(y) = 0, lim
y→+x

ψ(y) = 1

12



Moreover, Problem 1 is solved by φ∗(θ) = inf{x ∈ X : ψ∗(x) ≥ θ} for all θ ∈ Θ.

Proof. We first show that Ĵ is supermodular. We follow Lemma 6 in Nöldeke and Samuelson

(2007) and observe that the cross partial derivative of Ĵ is:

(57) Ĵxθ(x, θ) = − [uxx(x, θ) + πxx(x, θ)] f(θ) + [1− F (θ)]uxxθ(x, θ) = −Jxx(x, θ)f(θ) ≥ 0

where the last inequality uses the concavity of J and f > 0. Next, we argue that the corre-

spondence x 7→ [(φA)[−1](x), 1] is monotone in the strong set order (SSO). This immediately

follows from the fact that (φA)[−1] is increasing. We then apply Theorem 4’ in Milgrom and

Shannon (1994) to argue that ψ∗ is monotone. Since ψ∗ ≥ (φA)[−1], the inverse consumption

function ψ∗ is implementable and therefore optimal in Problem 55.

We now prove the optimality of φ∗ in Problem 1. Given that ψ∗ is monotone and such that

ψ∗ ≥ (φA)[−1], it follows that φ∗ is also monotone and such that φ∗ ≤ φA. Hence, by Lemma

2, it is implementable. Next, suppose there exists an implementable consumption function

φ such that
∫ 1

0
J(φ(θ), θ) dF (θ) >

∫ 1

0
J(φ∗(θ), θ) dF (θ). Given that φ is implementable,

there exist (ξ, T ) that support it. By the proof of Lemma 1 in Nöldeke and Samuelson

(2007) it follows that there exists an inverse consumption function ψ such that T (x) =

T (0) +
∫ x

0
u(z, ψ(z)) dz. In turn, Lemma 3 in Nöldeke and Samuelson (2007) implies that

(58)

∫ x

0

Ĵ(x, ψ∗(x)) dx =

∫ 1

0

J(φ∗(θ), θ) dF (θ) <

∫ 1

0

J(φ(θ), θ) dF (θ) =

∫ x

0

Ĵ(x, ψ(x)) dx

contradicting the optimality of ψ∗ in Problem 55. Therefore, φ∗ solves Problem 1.

As in Nöldeke and Samuelson (2007), bunching manifests in the solution to this problem

as a discontinuity in the resulting inverse consumption function ψ. In particular, whenever ψ

is discontinuous the outcome at the discontinuity is assigned to a positive measure of types.

As explained in Remark 2, these bunching regions in the type space do not generate flat

regions of the optimal price schedule. Similarly to Proposition 2, we can fully characterize

the regions where T ∗ is flat. These are the quantities x where the local constraint θ ∈
[(φA)[−1](x), 1] in (56) binds at the optimum. However, here we do not assume strict concavity

of Ĵ since this would be equivalent to assuming strict supermodularity of J . Therefore, we

cannot rely on first-order conditions to replicate the local characterization of Proposition 2.

We conclude with an example in which the optimal contract features both bunching and a

multi-part tariff:

Example 4. Consumer preferences, the outcome space, and the external revenue function
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Figure 6: Multi-part tariff with bunching in Example 4.

are identical to those in Example 1. The type distribution has density

(59) f(θ) = 1 +
k

2πω
(cos(2πω)− 1) + k sin(2πωθ)

for some k > 0 and ω > 0. We solve the example for α = 1, β = 0, k = 1
2
, and ω = 3.

In Figure 6, we plot φ∗(θ), ψ∗(x), and T (x) in the optimal contract. In the price schedule,

there is both an unlimited subscription and a free trial. A mass of types, approximately

between 0.15 and 0.29, is bunched at the allocation φ∗ = 0.15. These types all consume the

maximum amount possible in the free trial. Anecdotally, this is a common occurrence for

free trials in practice (e.g., the free allotment of online Wall Street Journal articles).

4

B.2 Competition and Free Disposal

In this appendix, we study the relationship between competition and optimal pricing under

free disposal. We do this by comparing our monopoly screening benchmark with one model of

perfect competition. We show that our results are robust to this extension by demonstrating

that zero marginal pricing is in fact more prevalent under perfect competition.

The nature of perfect competition we consider is that our monopolist faces a perfectly

competitive fringe of firms that can enter and displace them to serve the entire market.

In this case (as in, e.g., Grubb, 2009), the equilibrium contract maximizes expected con-

sumer surplus subject to our usual implementation constraints and a new constraint that
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the monopolist actually wishes to serve the market. That is, the screening problem becomes:

sup
φ,ξ,T

∫
Θ

(u(φ(θ), θ)− T (ξ(θ))) dF (θ)

s.t. (O),(IC),(IR)∫
Θ

(π(φ(θ), θ) + T (ξ(θ))) dF (θ) ≥ 0

(60)

The last constraint, which we call “Monopolist’s IR,” encodes the requirement that the

monopolist wishes to serve the market compared to an outside option of earning nothing.

Toward characterizing the solution of this problem, define the total surplus function as

S(x, θ) = π(x, θ) + u(x, θ). In analogy to our assumptions that J is strictly single-crossing

and strictly quasiconcave, we assume that S is strictly single-crossing in (x, θ) and strictly

quasiconcave in x. We further define the total surplus maximizing consumption level as

φO(θ) = arg maxx∈X S(x, θ).

Proposition 6. The equilibrium consumption under perfect competition is φPC = min{φA, φO}.

Proof. As in the proof of Lemma 3, we have that agents’ transfers under any locally incentive

compatible menu are given by Equation 23 for some C ∈ R. We can therefore rewrite the

objective (using the same integration-by-parts argument as Lemma 3) as:

(61) − C +

∫
Θ

1− F (θ)

f(θ)
uθ(φ(θ), θ) dF (θ)

By integrating over types, we can then express the monopolist’s IR constraint as:

(62)

∫
Θ

(
π(φ(θ), θ) + u(φ(θ), θ)− 1− F (θ)

f(θ)
uθ(φ(θ), θ)

)
dF (θ) + C ≥ 0

Thus, the optimal C sets this inequality tight. Substituting, we obtain that the objective

function becomes
∫

Θ
S(φ(θ), θ) dF (θ). Moreover, by the same arguments as in Lemma 2, the

remaining implementation constraints are that φ(θ) ≤ φA(θ) for all θ ∈ Θ, φ is monotone

increasing and u(φ(0), 0)− t(0) ≥ 0. By identical arguments to Proposition 1 (as S is strictly

single-crossing and quasiconcave), it follows that the optimal consumption levels satisfy

φPC(θ) = min{φA(θ), φO(θ)}, which is monotone. Moreover, t(0) = C + u(φPC(0), 0) ≤ 0 as

C is negative and u(φPC(0), 0) ≥ 0 as φPC(0) ∈ [0, φA(0)].

We now show that zero marginal pricing is more prevalent under perfect competition:

Corollary 3. The set of outcomes at which there is flat pricing under perfect competition

includes the set of outcomes at which there is flat pricing under monopoly pricing.
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Proof. Define HPC(x) = Sx

(
x,
(
φA
)−1

(x)
)

for all x ∈ X∗ and observe that:

HPC(x) = Sx

(
x,
(
φA
)−1

(x)
)

= ux

(
x,
(
φA
)−1

(x)
)

+ πx

(
x,
(
φA
)−1

(x)
)

≥ ux

(
x,
(
φA
)−1

(x)
)

+ πx

(
x,
(
φA
)−1

(x)
)
−

1− F
((
φA
)−1

(x)
)

f
(
(φA)−1 (x)

) uxθ

(
x,
(
φA
)−1

(x)
)

= Jx

(
x,
(
φA
)−1

(x)
)

= H(x)

(63)

Thus, H(x) ≥ 0 =⇒ HPC(x) ≥ 0. Hence, by an identical argument to Proposition 2,

whenever T ∗ is flat, so is T PC .

The intuition for this result is that there are no quantity distortions from information

rents under the competitive solution. Thus, total-surplus-maximizing consumption is greater

than virtual-surplus-maximizing consumption, and the constraint φ ≤ φA binds more often.

C Microfoundations of Revenue from Usage

C.1 Network Effects from Platform Externalities

Sellers may value usage because it makes the platform more valuable for other end users.

That is, usage generates network effects. Examples include networking services (e.g., LinkedIn),

matching services (e.g., Tinder, Match.com, or OK Cupid), online games (e.g., Fortnite,

Candy Crush Saga, or World of Warcraft), and content-streaming platforms with social

rating systems (e.g., Hulu or Netflix).

The function W : X ×Θ→ R+ maps each agent’s consumption to a positive externality

for every agent. Agents’ payoffs if they participate, given a consumption function φ, are:

(64) v
(
x, θ, (φ(s))s∈[0,1]

)
= u(x, θ) +

∫ 1

0

W (φ(s), s) dF (s)

with the maintained assumption of a zero outside option otherwise. The rest of the model

is as in Section I. The externality of others’ usage is obtained by an agent whenever they

use the platform at the extensive margin. This makes the model amenable to settings where

an agent may gain from participating, even if they do not regularly use the platform. For

example, having a LinkedIn profile may generate the “passive” benefit of being findable by

job recruiters, even if the user spends essentially zero time using the website. In analogy to
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the main analysis, we assume that the modified virtual surplus function

(65) J†(x, θ) = π(x, θ) + u(x, θ) +W (x, θ)− 1− F (θ)

f(θ)
uθ(x, θ)

is strictly quasiconcave in x and strictly single-crossing in (x, θ). We now show how this

setting maps to our baseline setting of Section I.

Lemma 5. Optimal consumption is given by φ∗(θ) = min{φA(θ), φP (θ)}, where φA(θ) =

arg maxx∈X u(x, θ) and φP (θ) = arg maxx∈X J†(x, θ).

Proof. Observe first that the externality cannot affect the Obedience or Incentive Compati-

bility constraints since it has no dependence on consumer choice. The Individual Rational-

ity constraint becomes v
(
φ(θ), θ, (φ(s))s∈[0,1]

)
≥ 0. The same arguments from the proof of

Lemma 3 imply that, without loss of optimality, we can restrict attention to allocations in

which all agents participate (as W ≥ 0), but now where C =
∫

Θ
W (φ(θ), θ) dF (θ). Thus, by

Equation 36, the objective of the monopolist is now
∫

Θ
J†(x, θ) dF (θ) and the constraints are

the same as those in Equation 34. The result then follows by application of the arguments

in the proof of Proposition 1.

Intuitively, since the externality is excludable, or not available to agents that do not

participate in the mechanism, the seller can extract the full value of the externality as part

of a “participation fee.” Thus, each agent’s marginal contribution to the externality, W (x, θ),

is “as if” additional usage-derived revenue.

C.2 Irrational Addiction

Addicted users are commonly cited as a major source of revenue for digital goods (see, e.g.,

Allcott, Gentzkow and Song, 2022). In this appendix, we describe a simple microfoundation

of how external revenue could be derived from irrational addiction of consumers.

Suppose that agents live for two periods but are myopic. Let x ∈ X be the agent’s

consumption today (t = 0) and x̃ ∈ X their consumption tomorrow (t = 1). An agent of

type θ ∈ Θ believes they have lifetime payoff from consumption x given by u(x, θ), where

u satisfies our running assumptions. In reality, however, the agent also values consumption

tomorrow. Moreover, the more (or less) that they consumed today the more (or less) they

value consumption tomorrow. Thus, at t = 1, the agent has utility function ũ : X2×Θ→ R,

where u(x, x̃, θ) is their payoff. This complete myopia can be thought of as an extreme

form of the inattention toward habit formation that Allcott, Gentzkow and Song (2022)

find is necessary to empirically rationalize the total demand for six ubiquitous mobile apps

(Facebook, Instagram, Twitter, Snapchat, web browsers, and YouTube).
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Observe that given a full-revelation mechanism (or equivalently under observation of

agent consumption under an implementable mechanism), the seller knows the agent’s type

tomorrow. Thus, when agents consume x today and their type is θ, tomorrow the monopolist

sells them x̃∗(x, θ) ∈ arg maxx̃∈X ũ(x, x̃, θ) and charges a transfer of π(x, θ) = ũ(x, x̃∗(x, θ), θ)

to extract full surplus. Thus, from the perspective of today, the monopolist faces the non-

linear pricing problem we study in the main text, with an external revenue function π

that captures the gains from addicting a user through contemporaneous consumption and

extracting this surplus from them in the future.

C.3 Overconfidence

A natural reason why a seller may allocate more of a good than an agent wants ex post is

that the agent expected to want something different ex ante. This story is at the heart of

Grubb (2009)’s analysis of selling to overconfident consumers and his leading example of

pricing cell phone plans, a context in which individuals regularly (based on anecdotes and

empirical exploration) underestimate the variance of their future demand (see also Grubb

and Osborne, 2015). We now illustrate how over-confidence at the participation stage can

be mapped to our framework as a particular external revenue function.

The Grubb (2009) model is a monopoly pricing model, with continuous, increasing, and

convex production costs K(x) and no additional revenue from usage. The twist relative to

the standard model is that agents decide whether to participate ex ante without knowing

their type θ, but with a prior belief θ ∼ F̌ which may differ from the objective truth θ ∼ F

(see Grubb (2009) for the full details of the model). The common individual rationality

constraint for all consumers is that the expected payoff at the allocation (φ(θ), ξ(θ), t(θ))θ∈Θ

exceeds the outside option 0, or

(66)

∫ 1

0

(u(φ(θ), θ)− t(θ)) dF̌ (θ) ≥ 0

We derive the following mapping of the Grubb (2009) model into ours:

Lemma 6. The optimal consumption in the monopoly problem of Grubb (2009) is equal to

the consumption that solves Problem 1, with π(x, θ) = 1−F̌ (θ)
f(θ)

uθ(x, θ)−K(x)

Proof. This follows immediately from our Lemma 3 and Proposition 1 in Grubb (2009).

Observe first that, in a classical model with correctly specified expectations F̌ = F , the

first term in π cancels with the information rents and the Obedience constraint is always

slack in the optimum. With mis-specified F̌ 6= F , the first term and information rents do

not cancel. When the first term stemming from overconfidence dominates both production
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costs and information rents on the margin at x ∈ X, the model generates H(x) > 0 and

multi-part tariffs. Grubb (2009) applies this model to understand the occurrence of trial

tiers (in our language) in cell phone pricing.
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