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In this online appendix we collect the materials omitted from the main text of the paper.1

The appendices are ordered according to where they are first referenced in the main text.

Online Appendix A allows the contest organizer to randomize between full disclosure and

no disclosure, and shows that partial disclosure is suboptimal. Therefore, it is without loss

of generality to focus on the comparison between full disclosure and no disclosure in Propo-

sition 1. Online Appendix B relaxes the restriction that the contest organizer must select

the bias rule from those that induce a symmetric pure-strategy equilibrium, and demon-

strates that Proposition 2 remains largely intact. Online Appendix C presents a three-player

example to illustrate contest design with endogenous biases.

A Randomized Disclosure Schemes

We have assumed that the contest organizer chooses between full disclosure and no dis-

closure in the main text. In this section, we enrich the set of candidate disclosure schemes

by allowing for partial disclosure. For the sake of simplicity, we employ and extend the setup

in the baseline N -M two-stage model in Section 2.

Specifically, instead of full disclosure and no disclosure, the contest organizer now commits

to a disclosure scheme indexed by µ 2 [0, 1], where µ denotes the probability that the interim

rankings are disclosed. Clearly, full transparency corresponds to µ = 1 and full opacity

corresponds to µ = 0.
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Denote the optimal disclosure scheme that maximizes the total e↵ort and the expected

winner’s total e↵ort by µ⇤ and µ⇤⇤, respectively. Standard technique leads to the following.

Proposition A1 (Suboptimality of Randomized Disclosure Schemes) Consider a

two-stage elimination contest. Suppose that Assumption 1 is satisfied and the contest orga-

nizer is allowed to randomize between full disclosure and no disclosure. Then µ⇤
2 {0, 1}

and µ⇤⇤
2 {0, 1}.

Proof. Fixing a disclosure rule µ 2 [0, 1], a symmetric pure-strategy equilibrium is charac-

terized by the triple (e1p, e2p, ê2p), where e1p is a representative contestant’s stage-1 e↵ort,

and e2p (respectively, ê2p) denotes the contestant’s stage-2 e↵ort when the interim rankings

are disclosed (respectively, concealed). We use subscript p to indicate “partial disclosure.”

Fixing µ 2 [0, 1], a contestant’s stage-2 e↵ort when the interim rankings are publicized

is equal to that under transparency, i.e.,

e2p =
M � (M � 1)r

M2
, (A1)

and it remains to pin down (e1p, ê2p). Fixing the other contestants’ e↵ort profiles (e1p, ê2p),

let a contestant choose (e01p, ê
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2p) for the following optimization problem:
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where V is defined in Equation (13). Analogously to the analysis in the proof of Lemmata

3 and 4, (e1p, ê2p) can be solved as follows:

ê2p =
(M � 1)r

NM
, (A2)
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It can be verified that contestants’ participation constraints are satisfied under Assumption 1,

and thus the e↵ort profile specified by (A1)-(A3) constitutes a unique symmetric pure-

strategy equilibrium. In addition, the total e↵ort and the expected winner’s total e↵ort,

which we denote by TEp(µ) and WEp(µ), respectively, are

TEp(µ) ⌘ Ne1p + µMe2p + (1� µ)Nê2p,

A2



and

WEp(µ) ⌘ e1p + µe2p + (1� µ)ê2p.

Note that e2p and ê2p are independent of µ from Equations (A1) and (A2), and e1p is linear

in µ from Equation (A3). Therefore, TEp(µ) and WEp(µ) are convex in µ, implying that

µ⇤
2 {0, 1} and µ⇤⇤

2 {0, 1}. This completes the proof.

By Proposition A1, randomization (i.e., µ 2 (0, 1)) is always suboptimal regardless of the

organizer’s objective.

B Alternative Bidding Equilibria in Excessively Dis-

criminatory Contests

The results in Section 4 are obtained under the condition that the organizer optimizes by

choosing a bias rule �̂ from those that induce a symmetric pure-strategy equilibrium under

opacity. In this section, we relax this restriction and show that Proposition 2 remains robust.

As seen from Lemma 2, when r  1/�N(q̂⇤), the constraint is nonbinding as all bias

rules induce symmetric pure-strategy equilibria. The restriction, however, does limit the

set of potential bias rules for optimization when r exceeds the cuto↵. An increase in r

encourages more aggressive bidding, which could cause the participation condition to break

down and dissolve symmetric pure-strategy equilibrium, as in typical static contests. The

comparison between transparency and opacity in Proposition 2 is immune to this result

when the organizer aims to maximize total e↵ort. To be more specific, Lemma 2(ii) states

that there exists a bias rule that induces full rent dissipation in a symmetric pure-strategy

equilibrium, in which case a total e↵ort of 1 results. This indeed reaches the limit of the

contest design, and no other mechanism could outperform it. The global optimality of

opacity can therefore be established.

The same, however, cannot be said when the organizer’s objective is to maximize the

expected winner’s total e↵ort. With the restriction of a symmetric pure-strategy equilibrium,

the expected winner’s total e↵ort is bounded above by 1/N , which falls below the maximum

under transparency from Proposition 2. In this case, more aggressive bias rules exist and

they break down the symmetric pure-strategy equilibrium by violating the participation

constraint. In general, multiple equilibria could arise under large r; for instance, there could

exist symmetric mixed-strategy equilibria. Alternatively, there could exist semi-symmetric

equilibria that resemble those in contests with endogenous entry depicted by Fu, Jiao and

Lu (2015): In such equilibria, a subset of contestants play symmetric pure-strategy bidding

among themselves, while the rest stay inactive by bidding zero with probability one. There

may also exist many other types of asymmetric equilibria that involve various forms of

A3



randomization. These equilibria could lead to a greater expected winner’s total e↵ort than

under the restriction of symmetric equilibrium in pure strategies. To see that, imagine

a situation with r > 1/�N(q̂⇤). In a restricted optimum, the contest ends up with an

expected winner’s total e↵ort 1/N . If the organizer instead sets a rule that breaks down this

equilibrium and induces a semi-symmetric equilibrium with N � 1 active contestants, the

expected winner’s total e↵ort is then bounded by 1/(N � 1) instead of 1/N .

It is technically challenging to fully characterize these equilibria in our context. Re-

call that the dynamic linkage between stages dissolves in the contest under opacity, which

leads contestants to behave as if they were choosing multiple actions simultaneously, i.e.,

ê1 and ê2, in a static contest. The literature provides little guidance in solving for asym-

metric or mixed-strategy equilibria in imperfectly discriminatory contests that involve multi-

dimensional strategies: In such a scenario, each contestant can randomize in either dimension,

i.e., either ê1 or ê2. This is particularly challenging in our context because (i) the probability

of winning in Tullock contests is discontinuous at the origin; and (ii) one’s stage-2 outcome

ultimately depends on stage-1 outcome, despite the dissolved dynamic linkage due to opacity.

Moreover, the multiplicity of equilibria imposes conceptual limitations on contest design: It

is di�cult to predict the performance of the contest when the particular equilibrium to be

played under a given bias rule remains ambiguous.

Despite the limitations, our result does not lose its bite when we allow for the aforemen-

tioned semi-symmetric equilibria and consider bias rules that could induce semi-symmetric

equilibria. Imagine an equilibrium that involves N 0
2 {3, . . . , N � 1} active contestants

under opacity. The contest in this equilibrium is essentially equivalent to an alternative N 0-

contest in a symmetric pure-strategy equilibrium. As a result, enlarging the set of eligible

bias rules to allow for these semi-symmetric equilibria is no di↵erent than letting the contest

organizer shortlist the contestants—i.e., excluding N �N 0 contestants and inviting the rest

to participate in a two-stage contest—while optimizing over the set of bias rules that induce

a symmetric pure-strategy equilibrium. We then consider an alternative optimization prob-

lem: Under a given disclosure policy, the organizer sets the optimal number of participants,

and chooses the optimal bias rule accordingly over the set of candidate rules that induce a

symmetric pure-strategy equilibrium.

Lemma A1 �N(q̂⇤) strictly increases with N .

Proof. To highlight the fact that q̂⇤ depends on N , let us denote the optimal winning

probabilities for the case of N contestants by q̂⇤

N
:= (q̂⇤1N , . . . , q̂

⇤

NN
). To prove the lemma, it

su�ces to show that �N(q̂⇤

N
) < �N+1(q̂⇤

N+1). Let q̂?

N+1 = (q̂⇤1N , . . . , q̂
⇤

NN
, 0). It follows from
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Equation (28) that
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Therefore, we have that �N+1(q̂⇤

N+1) � �N+1(q̂?

N+1) > �N(q̂⇤

N
). This completes the proof.

By Lemma A1, the cuto↵ 1
�N (q̂⇤) strictly decreases when the number of participants

increases. When fewer participants are involved, a symmetric pure-strategy equilibrium is

more likely to emerge. In other words, the organizer, when narrowing the pool, ends up with

additional freedom in choosing the bias rule. Note that �3(q̂⇤) = 11
12 < 1, which implies that

if the organizer invites only three participants, she can induce a symmetric pure-strategy

equilibrium for any contest rule under Assumption 2. The following result can then be

obtained.

Proposition A2 Fix N � 4 and r 2 (0, 1]. Suppose that the contest organizer is allowed

to shortlist contestants and select N 0
2 {3, . . . , N} of them for the competition. When the

contest organizer is able to set the bias rule for the second-stage competition, she always

prefers transparency to opacity if she aims to maximize the expected winner’s total e↵ort.

We do not have to lay out a formal proof, as the logic is straightforward. Suppose that

the optimum under opacity requires N participants. Then the optimum under opacity is out-

performed by that under transparency by Proposition 2. Suppose otherwise that it requires

N 0
2 {3, . . . , N �1} participants, which demands that the organizer shortlist. The optimum

is still outperformed by that under transparency: The organizer, under transparency, can

shortlist the same number N 0 of participants and set the optimal bias rule accordingly, which

again generates a greater expected winner’s total e↵ort by Proposition 2. We thus restore

the optimality of transparency in a broader setting.

C Three-player Example of Optimal Contest Design

with Endogenous Biases

As stated in Section 4, we can establish a correspondence between contestants’ e↵orts

and winning probabilities in equilibrium. This further allows us to rewrite design objectives,

total e↵ort and the expected winner’s total e↵ort, as functions of the equilibrium winning
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probability distribution. Our optimization approach lets the organizer choose equilibrium

winning probability distribution to maximize reformulated objective functions. Table A1

summarizes the equilibrium winning probability distribution in the optimal contest under

transparency for the case of N = 3.

Transparency q⇤1 q⇤2 q⇤3 TERT (q⇤)
63�3

p
241

50 < r  1 8r2+9r�72
3(7r2�36)

r
2+45r�90
6(7r2�36)

25r2�63r+18
6(7r2�36)

r(5r3+33r2+171r�621)
126r2�648

0 < r  63�3
p
241

50
15�5r

2(12�5r)
9�5r

2(12�5r) 0 r(25r2�170r+273)
288�120r

Transparency q⇤⇤1 q⇤⇤2 q⇤⇤3 WERT (q⇤⇤)

0 < r  1 21�5r
36�10r

15�5r
36�10r 0 r(25r2�230r+513)

1296�360r

Table A1: Optimal Equilibrium Winning Probabilities under Transparency in Three-Player
Contests.

By Table A1, when r > 63�3
p
241

50 ⇡ 0.3285, the optimal contest involves three active

players in the second stage—i.e., q⇤1 > q⇤2 > q⇤3 > 0—and the equilibrium winning distribution

can be induced by a bias rule (�⇤1, �
⇤

2, �
⇤

3) =
�

1
1�q⇤1

(q⇤1)
1�r
r , 1

1�q⇤2
(q⇤2)

1�r
r , 1

1�q⇤3
(q⇤3)

1�r
r

�
. When

r  63�3
p
241

50 ⇡ 0.3285, the optimal contest involves two active players in the second stage—

i.e., q⇤1 > q⇤2 > q⇤3 = 0—and the equilibrium winning distribution can be induced by a bias

rule (�⇤1, �
⇤

2, �
⇤

3) =
�

1
1�q⇤1

(q⇤1)
1�r
r , 1

1�q⇤2
(q⇤2)

1�r
r , 0

�
.

Table A2 summarizes the equilibrium winning probability distribution in the optimal

contest under opacity.

Opacity q̂⇤1 q̂⇤2 q̂⇤3 TERT (q̂⇤) WERT (q̂⇤)

0 < r  1 5
8

3
8 0 91

96r
91
298r

Table A2: Optimal Equilibrium Winning Probabilities under Opacity in Three-Player Con-
tests.

Although the bottom-ranked contestant has zero chance of winning the prize in the

optimum, he is uninformed of his status and continues to exert e↵ort in the second stage.

The optimal equilibrium winning probability distribution simultaneously maximizes the total

e↵ort exerted in the overall contest and the expected winner’s total e↵ort, and is independent

of the discriminatory power of the contest technology (i.e., r).

References

Fu, Qiang, Qian Jiao, and Jingfeng Lu, “Contests with endogenous entry,” International

Journal of Game Theory, 2015, 44 (2), 387–424.

A6


	Introduction
	Baseline Model
	Winner-selection Mechanism
	A Two-stage Elimination Contest
	Disclosure Schemes and Equilibrium Preliminaries
	Objectives for Contest Design

	Analysis of the Baseline Model
	Optimal Disclosure Scheme with Endogenous Biases
	Optimal Bias Rule under Transparency
	Optimal Bias Rule under Opacity
	Transparency vs. Opacity with Endogenous Biases

	Extensions
	Alternative Contest Models
	Convex Cost Functions
	Two-stage Contests with Different Discriminatory Powers

	Alternative Contest Design
	Prize Allocation
	Contest Architecture


	Concluding Remarks
	Randomized Disclosure Schemes
	Alternative Bidding Equilibria in Excessively Discriminatory Contests
	Three-player Example of Optimal Contest Design with Endogenous Biases

