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1 Examples of Regularized Estimators

1.1 LASSO

B = arg min {% i (v — B)" + j/—% Hﬁl}

rﬁo Zp: h;sign (Bo;) 1 (Boj # 0) + |h;| 1 (Bo; = 0))

B = s min 0, 81, + 0 (i: (5a) 1 (B)) (8= Bu) + 5 18— Bl
L(Bo) = —E [ (yi — xiB)], == le yi — 7if,)

Hy = E [z;2))] Zx !

Examples of Z;*L (Bn) include the multinomial and wild bootstrap analogs of L, (Bn):

l* 5n = ——Z (?Jz* —xfl5n>, l* 5n = —%i 91’1 (yz—x;5n>
=1

where & are i.i.d. variables with variance 1 and finite 3rd moment and & = %Z?:1 &.
If H, = %Id, B; has a closed form solution:

B = pro<eaa|, <Bn — comy/n (ZZ (Bn) = I (Bn)>>
= (B — cony/n (15 (Ba) — 1 (B)) = cond) = (B — canv/m (B2 (Ba) = I () ) + coms )

where 27 = max(z,0) and z~ = —min(z, 0).



1.2 /;-norm support vector regression

The ¢;-norm support vector regression (SVR) estimator of Zhu et al. (2004) is similar to the
¢y penalized quantile regression estimator of Belloni and Chernozhukov (2011):
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The objective uses a relaxed version of the check function:
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=({(1=7)1(y; — 2B <0) +71(y; — 2,8 >0)} |y — '] — k)"
)= =) —2if) —r) (= =7) (i —2if) = > 0) ,yi—x;8 <0
(7 (y —fﬁ H)Qﬂ%—xm—ﬁ>0) i — i8>0
(—(1—=7)(y; —xip) — k)1 (yz»<:1c’ﬂ—ﬁ) VY — T8 <0
(1 (y; — 2P) —/{)1( >z + ) Y — x>0
~ (= i) = 1 (3= 2l + )~ (=7 - i)+ 001 (i< 0l - )

The proximal bootstrap estimator is

5 = argmin a8l + anv/n (B3 1 (B)) (8= B) + 5 18— Bully,

~ —

l, (5n) is a consistent estimate of [ (fy) using 3,:

[(By) =—-F lIz (7'1 (?Jz‘ > 380 + ;) —(1-7)1 (yi < ;8 — 1 f 7_))]
i (5.) = _%le (71 (= a4 5) == m1 (<t - )
The population Hessian and its consistent estimate using /3, are given by
Hy=F [x,x; (Tfym (xgﬁo - ;) + (1 —=7) fya (x;ﬁo 1 f T))]
1, = %Z <rfy|x (a0 + =) + (1= 1) fe (:czﬁn - 11))

An example of fy|x (y) is —Z] K (y), where Ky, (y) = +K (y/h) and K (u) is a kernel

function that is symmetric around 0 and integrates to 1.

1.3 Trace Regression via Nuclear Norm Regularization

n

. )1 /
©,, = arg min {EZ (yi —tr (0'X5)) + An H@*}

@eRdl x do _



where O], = Z;h:qu 0, (©) is the nuclear norm of ©, and 0, (©) is the jth largest singular
value of O.

67 = argmin aua 01, + ani (i2 (6,) 1 (61)) (0 - 6.) + 5[0 - 647,
(6,) =~ Z; X; (s — tr (60X)) s Hy — %Zl XX
o
Te, (h) = ; (hj1 (0 (©0) # 0) + [hj| 1 (0} (60) = 0))
In the case of H,, = 21, , the proximal bootstrap has a closed form:
61 = prozeait, (O = convn (15 (6,) =1 (84))) = USian, V7
where 0, = diag {max (51 — caphn, 0),max (S — canAn, 0) ;... max (La, ndy — CnAns 0)1,

and for j = 1...dy A dy, ¥, are the singular values of O, — cpa/n <ZZ ((:)n) — Zn ((:)n)>.

2 Proof of Theorem 1

Assumption 1 implies that the conditions of part 2 of Corollary 3.2.3 of van der Vaart and

Wellner (1996) are satisfied, and therefore 3, 5 fy = argmin@Q (3). To derive its asymptotic
BeRd
distribution, use the centered and scaled parameter h = \/n (8 — 5o):

Vi (B = ) = argmin { (0 =) =0 ) + duvr (504 1)}
r (ﬁo + \/%) — 7 (Bo)
1/y/n

= argmin { h'v/n <Zn (Bo) — 1 (ﬁo)> + %h'Hoh + A\ + 0,(1)
h

1
v arg min {/\07“/50 (h) + h,WO + §h,H0h}
h

The second line is due to the uniform in h local quadratic expansion of nQ,, (ﬁo + \%) —

n@n (Bo), which follows from assumption 2. The last line follows from the following arguments.
Assumption 3 implies the Lindeberg Condition is satisfied and /n (P, — P) g (-, Bo) »~~> W.

: o r(Bot g5 ) (B .
Assumption 5 implies W — 714, (h) for each h € R? and that rj (k) is a convex

. (Bt 1) —r
function of h. Since h'\/n (ln (Bo) —1 (ﬁo)> + 1M Hoh + X, <w> is a convex

function of h , pointwise convergence implies uniform convergence over compact sets K < R?

(Pollard (1991)). Therefore,

0Qu (Bo+ =) = 1 () + M (B = ) = A (B) o HWa 33+ ar, 1)

3



as a process indexed by h in the space of bounded functions ¢* (K) for any compact
K < R Convexity implies Aorly, (h) + KWy + 1h'Hoh has a unique minimum, so by the
argmin continuous mapping theorem (Theorem 3.2.2 in van der Vaart and Wellner (1996)),
Vi (Bu = o)~ .

Now we show B* 2 By. Since o, — 0 and o\, — 0 imply apA,r (B + By) = o(1) and

v/, (I7 (B) = I (B,)) = o3(1).

B:; - /80 = arghmin {O‘n)\nr (h + /BO) + % Hh + BO - ﬂ_n + Q4n\/ﬁ]rl'r:1 (Z;kz (Bn) - Zn (671))

1 - 1
arg;nin {ﬁh’Hoh + W H, (60 - Bn) - 5 Hﬁo 5nHH } + 0,(1)

= Bn - 50 + Op(l) = Op(l)
The second line follows from convexity of the proximal bootstrap objective function, which
_ 2
implies the difference between a;, A7 (h + o)+ Hh + Bo — B + ap/nH! (l* (ﬁn) (Bn)> H )
Hy

and 1 3 Hh + By — B"HHO = 1h’H0h + W H, (BO ) 5 Hﬁo @LHHO converges uniformly in
probability to zero over any compact subset of R%.

To derive B;L“’s asymptotic distribution, first note that because \/n (Bn — 60) = 0,(1)
and /na,, — o0,

b g VP (BB) aos,

+ 1
oy, oy, Vnay, o, o (1)

It therefore suffices to show that @ \?Ef J. To do this, use the centered and scaled
parameter h = (5 — 5y) /o
BE — Bo

Qp

— arganin fa,hor (B + ) + (52 (B2) = 6 (5)) (0 = B+ auh) + 5 160 = B + iy |

—argmin{/\n (r(ﬁoJranh)—r(ﬁo))jL\/ﬁ(i: (B.) — i (ﬁn)>’<ﬁo—5n +h) :

h Qi Qp

60 Bn

(e77

)

— argmin {/\n (T(ﬂo T anh) 77 (50)> + W (B (Ba) = 1 (Ba)) + %h’th + 0;';(1)}

h an
%;; arg min {Aor’ﬁo (h) + KWy + ;h’Hoh}
We have used ’8 0—bn  _ \/ﬁf/ﬂﬁo;nﬁ")
dlfferentlablhty of r (ﬁ) at p, and the following arguments. Assumption 4(i) says Gr =
{g(-,8) —g (-, Bo): |8 — Bo| < R}isaDonsker class for some R > 0, and P (g (-, 8) — g (-, 50))* —
0 for f — (y. By Lemma 3.3.5 of van der Vaart and Wellner (1996), \/n (P, — P) g (-, ) is
stochastically equicontinuous, which implies

H\/E(Pn - P) (g (aBn) _g('vﬁo))H = 0p (1 + \/ﬁHBn - ﬁOH) =

= o,(1), H, 5 Hy, the assumption of directional




Stochastic equicontinuity and the envelope integrability condition in assumption 4(ii) imply
that the assumptions of Lemma 4.2 in Wellner and Zhan (1996) are satisfied. Therefore,
Vn(PFf—P,)g(-,p) is bootstrap equicontinuous, which implies

[V By = Pa) (9 (- Ba) — 9 (. 80)) | = o) (1+v/n|Ba—Bof]) =
Therefore, h'\/n (Z;; (3,) — L, (Bn)) = W\ (B = Po) g (- o)+ v/n (B = o) (9 (- 8n) — 9. (-, 50)) +

P . o . : .
0, (1) v~~~ h'Wy. By convexity, pointwise convergence implies uniform convergence over
W

compact sets K < R?, so

A (T (Bo + anh) — 7 (Bo)) W ([;; (3,) — I, (Bn)) + %h’th v At (1) + W'Wo + %h’Hoh

Qn

as a process indexed by A in the space of bounded functions ¢* (K) for any compact K < R?.
BE—Bo 50

(see Lemma 14.2 in Hong and Li (2020)). |

W J follows from the bootstrap version of the argmin continuous mapping theorem

Monte Carlo Simulation for Finite-dimensional Lasso
We consider the following data generating process:

yi=aiBo+e, Bo=(1 000 0) 2~N(0I+050 —1I5),&~N(0,1)

We compute the Lasso estimator 3, = argmin {;n S (i —2i8)? + \’\/—% HﬁHl} using the
B

CVX modeling software in Matlab developed by Grant and Boyd (2009). The proximal
. N NN _ _
bootstrap estimator 3 = argmin a, \,, | B[, +an/n (lf; (Bn) — ln (ﬂn)> (B—Bn)+3 Hﬁ - ﬁan )
6 n

for Bn = Bru Hn = %Z?:l .TZ'ZL’§7 Zn (Bn) = _% 2?21 Lg (yz - x;BTL)a and lA;kL (Bn) = _% Z?:l l’f (y;l< - I’?’Bﬂ)?
is computed using the fminunc Matlab function so that we can run the code in parallel (the
current version of CVX does not support parallel for loops). We also tried using the fmincon
Matlab function, and the results were the same.
We consider five different sample sizes n € {100, 500, 1000, 5000, 10000}, three different
s for each n: o, € {n=Y3 n=Y* n=Y/6} and two choices of A, € {0.1,0.5}. We use 5000
bootstrap iterations and 2000 Monte Carlo simulations. Empirical coverage frequencies for

equal-tailed nominal 95% confidence intervals [ﬂn — Cg”’,ﬁn — CQTE , where ¢, is the 7-th

percentile of Bib Pon b and average interval lengths are reported in tables 1-3. Although the

proximal bootstrap undercovers for smaller sample sizes, it achieves coverage very close to
95% for sufficiently large n.



Table 1: Proximal Bootstrap Coverage Frequencies and Interval Lengths for a,, = n™/3
An = 0.1 An = 0.5

n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.940 0.940 0.945 0.957 0.951 0.933 0.933 0.938 0.958 0.950
(0.489) (0.222) (0.157) (0.070) (0.050) (0.450) (0.204) (0.145) (0.065) (0.046)
0.922 0.944 0.946 0.946 0.947 0.919 0.940 0.942 0.950 0.949
(0.458) (0.209) (0.147) (0.066) (0.047) (0.308) (0.143) (0.101) (0.045) (0.032)
0.935 0.945 0.942 0.953 0.954 0.934 0.944 0.939 0.953 0.945
(0.459) (0.208) (0.147) (0.066) (0.047) (0.308) (0.143) (0.101) (0.046) (0.032)
0.933 0.935 0.948 0.953 0.949 0.936 0.938 0.940 0.945 0.945
(0.456) (0.208) (0.147) (0.066) (0.047) (0.306) (0.142) (0.101) (0.045) (0.032)
0.929 0.947 0.953 0.939 0.950 0.936 0.949 0.951 0.938 0.945
(0.457) (0.208) (0.148) (0.066) (0.047) (0.306) (0.143) (0.102) (0.045) (0.032)

Table 2: Proximal Bootstrap Coverage Frequencies and Interval Lengths for a,, = n=4
Ap = 0.1 An = 0.5

n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.930 0.940  0.945 0.957  0.952 0.888 0.935 0.940  0.958  0.952
(0.485) (0.222) (0.157) (0.070) (0.050) (0.425) (0.204) (0.145) (0.065) (0.046)
0.921 0.944  0.946  0.946 0.948 0.921 0.942 0.943  0.950  0.950
(0.458) (0.209) (0.147) (0.066) (0.047) (0.306) (0.143) (0.101) (0.045) (0.032)
0.936 0.945 0.943  0.953 0.954  0.934  0.945 0.939  0.953  0.946
(0.458) (0.208) (0.147) (0.066) (0.047) (0.307) (0.143) (0.101) (0.045) (0.032)
0.933 0.935 0.948  0.954  0.950 0.933 0.939 0.940  0.947  0.944
(0.455) (0.208) (0.147) (0.066) (0.047) (0.304) (0.142) (0.101) (0.045) (0.032)
0.929 0.947  0.953  0.939 0.950 0.938 0.950 0.952 0.938  0.945
(0.456) (0.208) (0.147) (0.066) (0.047) (0.304) (0.143) (0.101) (0.045) (0.032)



Table 3: Proximal Bootstrap Coverage Frequencies and Interval Lengths for a,, = n=/6
An = 0.1 An = 0.5

n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.913 0.934 0.946 0.958 0.952 0.784 0.902 0.929 0.958 0.953
(0.462) (0.220) (0.157) (0.070) (0.050) (0.349) (0.190) (0.143) (0.065) (0.046)
0.921 0.944 0.946 0.946 0.948 0.919 0.941 0.943 0.951 0.950
(0.457) (0.208) (0.147) (0.066) (0.047) (0.302) (0.142) (0.101) (0.045) (0.032)
0.934 0.946 0.943 0.953 0.954 0.930 0.944 0.939 0.953 0.946
(0.458) (0.208) (0.147) (0.066) (0.047) (0.303) (0.142) (0.101) (0.045) (0.032)
0.933 0.936 0.949 0.953 0.950 0.933 0.937 0.941 0.948 0.945
(0.455) (0.207) (0.147) (0.066) (0.047) (0.300) (0.142) (0.101) (0.045) (0.032)
0.928 0.948 0.954 0.940 0.950 0.939 0.951 0.952 0.938 0.947
(0.456) (0.208) (0.147) (0.066) (0.047) (0.301) (0.142) (0.101) (0.045) (0.032)

We also compare the proximal bootstrap to the standard multinomial bootstrap estimator

B;L“* = arg ;nin {% > (y;“ — x;“/ﬁf + \’\/—% 18 ||1} . Empirical coverage frequencies for equal-

tailed nominal 95% confidence intervals [Bn — df}f 3 Bn — dQTi], where d, is the 7-th percentile

of \/n (B;k* — Bn>, and average interval lengths are reported in table 4. We use 5000

bootstrap iterations and 2000 Monte Carlo simulations. Interestingly, for the case of A\, =
0.1, the standard bootstrap coverage frequencies are close to the nominal level. The surprisingly
good coverage of the standard bootstrap under certain DGPs is also documented in section
6.2 of Chatterjee and Lahiri (2011). However, when we use A, = 0.5, the standard bootstrap
undercovers for the nonzero parameter and overcovers for the zero parameters. Additionally,
the standard bootstrap confidence intervals are on average wider than the proximal bootstrap
confidence intervals.

Table 4: Standard Bootstrap Coverage Frequencies and Interval Lengths

Ap = 0.1 Ay = 0.5
n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.947 0944 0945 0961 0953 0915 0917 0914 0926  0.920
(0.509) (0.224) (0.158) (0.071) (0.050) (0.474) (0.211) (0.149) (0.067) (0.047)
0.950 0960 0.959 0966 0965 0982 0.98  0.983 0987  0.991
(0.477) (0.211) (0.149) (0.067) (0.047) (0.329) (0.150) (0.107) (0.048) (0.034)
0.963 0961 0961 0969 0966 0987 0.991 0985  0.989  0.990
(0.478) (0.211) (0.149) (0.067) (0.047) (0.328) (0.151) (0.107) (0.048) (0.034)
0.959  0.955 0.964 0967 0964 0980 0982 0986 0.990  0.991
(0.474) (0.211) (0.149) (0.067) (0.047) (0.327) (0.151) (0.107) (0.048) (0.034)
0.958 0967 0966 0954 0965 0987 0.993 0989 0989  0.993
(0.476) (0.211) (0.149) (0.067) (0.047) (0.327) (0.150) (0.107) (0.048) (0.034)
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