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Appendix B - Main Proofs

Proof of Lemma 1. First, note that ui < um is always strictly dominated by ui = um

for any ηi ∈ {0, 1}. Increasing ui to um would i) raise firm i’s profits per consumer as

π′i(u) > 0 for ui < um, and yet ii) never reduce the number of consumers that it trades

with. Second, ui > um is strictly dominated by ui = um when ηi = 0. Reducing ui to um

would i) strictly increase firm i’s profits per-consumer as π′i(u) < 0 for ui > um, but ii)

never reduce the number of consumers that it trades with, since non-advertised offers are

unobserved to consumers and consumers can only visit one firm. Third, for any tie-break

probability, xi(T ) ∈ [0, 1], setting ui = um and ηi = 1 with positive probability is strictly

dominated by setting ui = um and ηi = 0 . Given ui = um, moving from advertising to not

advertising would i) strictly reduce firm i’s advertising costs, Ai > 0, and ii) never reduce

the number of consumers that it trades with since xi(T ) is independent of advertising

decisions via Assumption X.

Proof of Lemma 2. First, any sales equilibrium must have k∗ ≥ 2 because there can

be no sales equilibrium with k∗ = 1. If so, firm i would win the shoppers with probability

one whenever advertising as then ui > um and uj = um ∀j 6= i. Hence, in such instances,

i’s strategy cannot be defined as it would always want to relocate its probability mass

closer to um. Second, given this, one can then adapt standard arguments (e.g. Baye et al.

(1992)), to show that for at least two firms i and j, u must be a point of increase of Fi(u)

and Fj(u) at any u ∈ (um, ū]. Third, by adapting standard arguments (e.g. Narasimhan

(1988), Baye et al. (1992), Arnold et al. (2011)) firms cannot use point masses on any

u > um. Fourth, any firm with αi > 0 must have αi ∈ (0, 1) in equilibrium. To see this,

suppose αi = 1 for some i and note from above that at least two firms must randomize just

1



above um. If so, the expected profits from advertising just above um must equal θjπ
m
j −Aj

for at least one such firm j 6= i as there can be no mass points at u > um. However, firm

j could earn θjπ
m
j > θjπ

m
j − Aj from not advertising; a contradiction. Finally, suppose

n = 2. As a consequence of previous arguments, in any sales equilibrium both firms must

share a common advertised utility support, (um, ū], with no gaps.

Proof of Lemma 3. Assume the opposite and consider the following exhaustive cases.

First, consider a potential tie involving at least one advertising firm and at least one

non-advertising firm. If so, any advertising firms in T must set u > um, and any non-

advertising firms in T must set um in equilibrium; a contradiction. Second, consider a

potential tie involving only advertising firms. For such a tie to arise, at least two firms

must put positive probability mass on some utility level, u > um. However, such mass

points cannot exist in equilibrium via Lemma 2. Third, consider a potential tie involving

only non-advertising firms, but where |T | < n. If so, the firms in T must set um, and any

remaining firm, j /∈ T , must set uj > um in equilibrium, a contradiction.

Proof of Lemma 4. Firm i’s expected profits from advertising just above um must

equal πmi [θi + (1 − θ)Πj 6=i(1 − αj)] − Ai, where for a cost of Ai it can win the shoppers

outright with the probability that its rivals set um and do not advertise, Πj 6=i(1 − αj).

If firm i uses sales, we know from the text that its expected profits from advertising an

offer just above um must equal its expected profits from not advertising, (1). Hence, by

equating these two expressions one can solve for

Πj 6=i(1− αj) =
Ai

(1− x∗i )(1− θ)πmi
.

The expression in (2) can then be derived by plugging this back in to (1).

Proof of Lemma 5. Suppose firm i uses sales in equilibrium and ū > um. i) For this

to be optimal, it must be that ū ≤ ũi. Suppose not. Then from the derivation of (4), we

know πi(ū)(1 − θ−i) − Ai < θiπ
m
i such that firm i would strictly prefer to deviate from

ui = ū. ii) To derive (5), note that (1) expresses Π̄i for a given x∗i , and that i must expect

to earn Π̄i for ui = um and for all ui ∈ (um, ū]. If i set ui = ū it would attract the shoppers

with probability one because there are no mass points on u ∈ (um, ū]. Hence, it must be

that Π̄i = (1− θ−i)πi(ū)− Ai. Solving this implies x∗i = χi(ū).
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Proof of Lemma 6. First, given x∗1 + x∗2 = 1 and x∗i = χi(ū), it must be that χ1(ū) +

χ2(ū) = 1. χ1(ū) + χ2(ū) is defined on ū ∈ (um,min{ũ1, ũ2}) and is strictly decreasing.

Hence, we know the solution for ū will be unique, if it exists. Second, the expression for

αi can be calculated using the expression from the proof of Lemma 4, Πj 6=i(1 − αj) =

Ai
(1−x∗i )(1−θ)πmi

, and so the unique expression (7) follows for n = 2. Third, to derive Fi(u),

we require firm i’s equilibrium profits, Π̄i, to equal its expected profits for all ui ∈ (um, ū],

πi(u)[θi + (1 − θ)Fj(u)] − Ai. Using (2) and rearranging for Fj(u) implies the unique

expression (8).

Proof of Proposition 1. Part a). If a sales equilibrium exists, Lemmas 1-6 have char-

acterized its unique properties. We now demonstrate that this sales equilibrium exists

and that no other equilibrium can exist when A1

πm1
+ A2

πm2
< 1− θ.

First, we show that no other equilibrium can exist. The only other candidate is a non-

sales equilibrium where α1 = α2 = 0 and u1 = u2 = um. For this to be an equilibrium, we

require that no firm i can profitably deviate to advertising a utility slightly above um to

attract all the shoppers. For a given x∗i , this requires πmi [θi+x
∗
i (1−θ)] ≥ πmi [θi+(1−θ)]−Ai

or Ai
πmi
≥ (1 − θ)(1 − x∗i ). The same condition for j yields

Aj
πmj
≥ (1 − θ)x∗i , and so for

both to hold we need 1 − Ai
(1−θ)πmi

≤ x∗i ≤
Aj

(1−θ)πmj
. However, no such x∗i can exist when

A1

πm1
+ A2

πm2
< 1− θ.

Second, we demonstrate the unique sales equilibrium exists. For this, it is sufficient

to show that χ1(ū) + χ2(ū) = 1 implies a solution ū ∈ (um,min{ũ1, ũ2}). This follows as

χ1(ū)+χ2(ū) is i) strictly decreasing in ū ∈ (um,min{ũ1, ũ2}), ii) below 1 for ū sufficiently

close to min{ũ1, ũ2} and iii) above 1 for ū sufficiently close to um when A1

πm1
+ A2

πm2
< 1− θ.

It then follows that x∗i = χi(ū) ∈ (0, 1) for i = {1, 2}. One can then verify that α∗i =

1− Aj
x∗i (1−θ)πmj

∈ (0, 1), Fi(·) is increasing over (um, ū], and Fi(ū) = 1 for both firms.

Part b). As demonstrated in Part a), a sales equilibrium only exists when A1

πm1
+

A2

πm2
< 1 − θ. However, we now demonstrate that a non-sales equilibrium exists when

A1

πm1
+ A2

πm2
≥ 1− θ. From above, a non-sales equilibrium requires 1− Ai

(1−θ)πmi
≤ x∗i ≤

Aj
(1−θ)πmj

for each i, or equivalently, x∗i = 1− x∗j ∈ [χi(u
m), 1− χj(um)]. This interval is non-empty

when A1

πm1
+ A2

πm2
≥ 1− θ.

Proof of Lemma 7. First, let ũi > ū. To show why αi > 0 in equilibrium, suppose not,

with αi = 0. From our restrictions, firm i would then have x∗i = 0. Thus, by the definition

of ũi, i would be indifferent between never advertising, and advertising ũi provided it

attracted all the shoppers. Given ũi > ū, i must then strictly prefer to deviate to set
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ηi = 1 with ui = ū where it could win the shoppers with probability one; a contradiction.

Second, let ũi ≤ ū. To show why αi = 0 in equilibrium, suppose not, with αi > 0.

From our restrictions, firm i would then have x∗i > 0. Thus, using the definition of ũi, i

would be unwilling to advertise over the whole required support u ∈ (um, ū], and would

strictly prefer to deviate to αi = 0. Finally, statements i) and ii) in the Lemma then follow

immediately given our two settings where um < ũi = ũ for all i, or um < ũn < ... < ũ1.

Proof of Proposition 2. In line with the sketch of the proof under the proposition, we

proceed by proving a number of claims.

Claim 1: In any sales equilibrium under our restrictions, a) the equilibrium tie-break

probabilities, x∗, and upper bound, ū, are uniquely (implicitly) defined by (10) and (11),

and b) these solutions must satisfy (9) for k∗ to be consistent with equilibrium.

Proof of 1a: We know from (5), that any advertising firm, i ≤ k∗, must have x∗i = χi(ū).

From Lemma 7, an advertising firm must have ũi > ū such that x∗i = χi(ū) > 0 as required.

In addition, from our restrictions, x∗i = 0 for all non-advertising firms, i > k∗. Hence, (10)

applies. As
∑n

i=1 x
∗
i must sum to one, it then also follows that ū is implicitly defined by

(11). Note
∑k∗

i=1 χi(ū) is strictly decreasing on ū ∈ (um, ũk∗). Hence, the solution for ū

will be unique.

Proof of 1b: First, suppose k∗ = n. Then from Lemma 7, we require the solution to

(11) to lie within ū ∈ (um, ũn). Thus, we require
∑n

i=1 χi(u
m) > 1 and

∑n
i=1 χi(ũn) < 1

as consistent with (9). Note that ū ∈ (um, ũn) also guarantees a unique interior value

for x∗i ∈ (0, 1) ∀i ≤ k∗. Second, suppose k∗ ∈ [2, n). Then from Lemma 7, we require

the solution to (11) to lie within ū ∈ [ũk∗+1, ũk∗). Thus, we require
∑k∗

i=1 χi(ũk∗+1) ≥ 1

and
∑k∗

i=1 χi(ũk∗) < 1 as consistent with (9). Note that ū ∈ [ũk∗+1, ũk∗) also guarantees a

unique interior value for x∗i ∈ (0, 1) ∀i ≤ k∗ under our restrictions.

Claim 2: Whenever a sales equilibrium exists under our restrictions, k∗ ∈ [2, n] is

uniquely defined by (9) provided 1 <
∑n

i=1 χi(u
m).

Proof: Using Claim 1, it is useful to summarize and re-notate the following results.

First, for any k∗ ∈ [2, n],
∑k∗

i=1 χi(ū) is strictly decreasing on ū ∈ (um, ũk∗). Second, using

(9), if k∗ = n, then we require In ≡
∑n

i=1 χi(ũn) < 1 <
∑n

i=1 χi(u
m) ≡ Īn. Third, if

k∗ = k ∈ (2, n], then we require Ik ≡
∑k∗

i=1 χi(ũk∗) < 1 ≤
∑k∗

i=1 χi(ũk∗+1) ≡ Īk. Hence,

for k∗ to be uniquely defined, there must exist exactly one value of k∗ for which either

1 ∈ (In, Īn) or 1 ∈ (Ik, Īk]. Provided
∑n

i=1 χi(u
m) ≡ Īn > 1, this then follows because i)

Iz+1 = Īz for any z ∈ (2, n] (as
∑z+1

i=1 χi(ũz+1) =
∑z

i=1 χi(ũz+1) given χz+1(ũz+1) = 0 from

(4)), and ii) I2 ≡
∑2

i=1 χi(ũ2) < 1 (as
∑2

i=1 χi(ũ2) = χ1(ũ2) ∈ (0, 1)).
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Claim 3: Whenever a sales equilibrium exists under our restrictions, the firms’ adver-

tising probabilities and offer distributions are uniquely defined. Firms i > k∗ have αi = 0

and ui = um, and firms i ≤ k∗ have:

αi = 1−
[
Πk∗
j=1γj(u

m))
] 1
k∗−1

γi(um)
∈ (0, 1)

Fi(u) =

[
Πk∗
j=1γj(u)

] 1
k∗−1

γi(u)

where γi(u) =
πi(ū)(1− θ−i)− θiπi(u)

(1− θ)πi(u)

In addition, ∀i, each firm i’s equilibrium profits remain equal to (2).

Proof: The behavior of firms i > k∗ follows immediately from Lemma 1. To derive

αi, first recall the expression from the proof of Lemma 4, Πj 6=i(1 − αj) = Ai
(1−x∗i )(1−θ)πmi

.

As αi = 0 for all i > k∗, this also equals Πj 6=i∈K∗(1 − αj). After plugging in x∗i = χi(ū),

Πj 6=i∈K∗(1− αj) = γi(u
m), where γi(u) is given above. By then multiplying this equation

across the k∗ firms, we get Πk∗
i=1[Πj 6=i∈K∗(1 − αj)] ≡ Πk∗

i=1(1 − αi)k
∗−1 = Πk∗

i=1γi(u
m), such

that Πk∗
i=1(1− αi) =

[
Πk∗
i=1γi(u

m)
] 1

(k∗−1) . Then, by returning to Πj 6=i∈K∗(1− αj) = γi(u
m)

and multiplying both sides by 1 − αi we get Πk∗
j=1(1 − αj) = (1 − αi)γi(um), which after

substitution provides our expression for αi. Similar steps can be then used to derive the

expression for the unique utility distribution, Fi(u). One can verify that αi ∈ (0, 1) and

Fi(ū) = 1 ∀i ≤ k∗ as required given ū ∈ (ũk∗+1, ũk∗ ]. Finally, to verify each firm’s

equilibrium profits, remember that each firm must earn (1) for a given set of tie-break

probabilities. After substituting out for Πj 6=i(1 − αj) from above, this equals (2). Note

that (2) applies not only to firms that use sales, but also to those that do not because

they have x∗i = 0 under our assumptions such that Π̄i = θiπ
m
i as consistent with them

pricing only to their non-shoppers.

Proof of Corollary 1. i) Let A → 0. Using (3) and past results,
∑k∗

i=1 χi(ũk∗) =∑k∗−1
i=1 χi(ũk∗) → (k∗ − 1) for any k∗ ∈ [2, n]. Hence, the conditions in (9) can only be

satisfied when k∗ = 2. ii) Let A→ (n−1)(1−θ)∑n
i=1

1
πm
i

. Using (3),
∑n

i=1 χi(u
m) = n− nA

(1−θ)
∑n
i=1 π

m
i
→

1 such that the solution to ū in (11) converges to um < ũn from above. Hence, it must be

that ū ∈ (um, ũn) as only consistent with k∗ = n.
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Proof of Corollary 2. From above, firms with a higher ũi are more likely to use sales.

Hence, we require ∂ũi
∂ρi

> 0. Rewrite (4) as (1− θ−i)π(ũi, ρi)−Ai = θiπ(um, ρi). Then note

that ∂ũi
∂ρi

= θiπρ(um,ρi)−(1−θ−i)πρ(ũi,ρi)

(1−θ−i)πu(ũi,ρi)
. As πu(ũi, ρi) < 0 given ũi > um, then ∂ũi

∂ρi
is positive

whenever 1−θ−i
θi

> πρ(um,ρi)

πρ(ũi,ρi)
. This is satisfied when θi = (θ/n) ∀i and πρu ≥ 0 for u > um

because i) 1−θ−i
θi

= n−(n−1)θ
θ

> 1 given θ ∈ (0, 1), and ii) πρ(um,ρi)

πρ(ũi,ρi)
≤ 1 given ũi > um.

Proof of Proposition 3. i) Given Π̄i = π(ū(·))(1 −
∑

j 6=i θj(·)) − A − τei, firm i’s

first-order condition wrt ei can be expressed by (12) when evaluated at symmetry with

θj(·) = θ(·)/n ∀j. ii) For the comparative statics, we first re-write the FOC in terms of

model primitives by using (11) to derive ∂ū(·)
∂ei

. When evaluated at symmetry, this equals

[πm+π(ū(·))(n−1)]
π′(ū(·))[n−(n−1)θ(·)]

(
∂θi(·)
∂ei
− (n− 1)

∂θj(·)
∂ei

)
where π(ū(·)) =

θ(·)πm+ An2

(n−1)

n−(n−1)θ(·) . By substituting these

in and rearranging, one can rewrite the FOC as: ∂θi(·)
∂ei

(πm +An) +
∂θj(·)
∂ei

[πm(1− θ(·))(n−
1) − An] − τ [n − θ(·)(n − 1)] = 0. We now denote the LHS of this equation as H(·)
and apply the implicit function theorem. At any symmetric equilibrium, the associated

second-order condition must be negative, such that ∂H(·)
∂ei
≡ ∂2Π̄i

∂e2i
< 0. Hence, it follows

that ∂e
∂A

R 0 if ∂H(·)
∂A

= n
(∂θi(·)

∂ei
− ∂θj(·)

∂ei

)
R 0. Hence, given our assumptions about the form

of θi(·), the statics follow as ∂H(·)
∂A

> 0 under own loyalty-increasing actions, but ∂H(·)
∂A

< 0

under own loyalty-decreasing actions.

Proof of Proposition 4. Let πi(u) = π(u), Ai = A and θj = θ − θi. From (6), ∂ū
∂θi

= 0

after we impose symmetry ex post with θi = θj = θ/2. By using this with the derivative

of (5), we gain
∂x∗i
∂θi

= − A[πm−π(ū)]
[π(ū)(1−(θ/2))−(θ/2)πm]2

< 0. These two results also help us find the

remaining derivatives. Using (2) or Π̄i = (1 − θj)πi(ū) − Ai gives ∂Π̄i
∂θi

= π(ū) > 0 and
∂Π̄j
∂θi

= −π(ū) < 0, and using (7) gives ∂αi
∂θi

= − [πm−π(ū)]
(1−θ)πm < 0, and

∂αj
∂θi

= πm−π(ū)
(1−θ)πm > 0.

Further, from (8), ∂Fi
∂θi

= π(u)−π(ū)
(1−θ)π(u)

> 0 and
∂Fj
∂θi

= −π(u)−π(ū)
(1−θ)π(u)

< 0 for all relevant u, such

that E(ui) decreases and E(uj) increases.

Proof of Proposition 5. Given πi(u) = π(u) and θi = θ/2, note from (5) and (6) that

Ai+Aj = π(ū)(1− θ
2
)− θ

2
πm =

Aj
xi

, such that x∗i =
Aj

Ai+Aj
. For the profit results, substitute

x∗i into (2) to give Π̄i = θ
2
πm + Aj. For the remaining results, substitute x∗i into (7) to

give αi = 1− Ai+Aj
(1−θ)πm , and into (8) to obtain Fi(u) =

(θ/2)[πm−π(u)]+[Ai+Aj ]

(1−θ)π(u)
. An increase in

Ai then decreases αi and αj, and increases Fi(u) and Fj(u) for all relevant u.
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Proof of Proposition 6. Given Ai = A and θi = θ/2, note from (6) that ∂ū
∂ρi
|ρi=ρj=ρ =

(1−(θ/2))πρ(ū,ρ)−(θ/2)πρ(um,ρ)

−(2−θ)πu(ū,ρ)
. This is positive as both the denominator and numerator are

positive given θ ∈ (0, 1), πρu(·) ≥ 0 and ū > um. Then, using (5) and the above,
∂x∗i
∂ρi

=
A[(2−θ)πρ(ū,ρ)−θπρ(um,ρ)]

[(2−θ)π(ū,ρ)−θπ(um,ρ)]2
, which has the same sign as ∂ū

∂ρi
|ρi=ρj=ρ. Note Π̄i = (1− θ

2
)π(ū, ρi)−A.

At the point of symmetry, it then follows that ∂Π̄i
∂ρi

= (1− θ
2
)
(
πρ(ū, ρ) + ∂ū

∂ρi
πu(ū, ρ)

)
which

equals 1
2
[(1−(θ/2))πρ(ū, ρ)+(θ/2)πρ(u

m, ρ)] > 0. Similarly, note Π̄j = (1− θ
2
)π(ū, ρj)−A.

Then
∂Π̄j
∂ρi

= 1
2
θπρ(u

m, ρ) which has the opposite sign of ∂ū
∂ρi
|ρi=ρj=ρ. Using (7), one can

then prove ∂αi
∂ρi

has the same sign as ∂ū
∂ρi
|ρi=ρj=ρ. Using (8) one can show that ∂Fi(u)

∂ρi
has

the opposite sign to ∂ū
∂ρi
|ρi=ρj=ρ for all relevant u.

Appendix C - Supplementary Equilibrium Details

Sections C1 and C2 provide extra information about the equilibrium when i) advertising

costs tend to zero, and ii) the single visit assumption is relaxed.

C1. Equilibrium when Advertising Costs Tend to Zero

To ease exposition and to best connect to the existing literature, we illustrate the case of

near-zero advertising costs for the duopoly equilibrium. Suppose the firms are asymmetric,

but A1 = A2 = A→ 0. The equilibrium depends upon ũ1 ≷ ũ2. Without loss of generality,

suppose ũi < ũj such that πi(u)(1−θj)−A−θiπmi < πj(u)(1−θi)−A−θjπmj at u ∈ (um, ũi].

Using (5) and (6), for ū to exist within (um, ũi] and for x∗i and x∗j to be well defined, it must

be that ū→ ũi such that x∗i → 0 and x∗j → 1. Given this, we know limA→0 Π̄i = θiπ
m
i and

limA→0 Π̄j = limA→0(1 − θi)πj(ū) = (1 − θi)πj
(
π−1
i

(
θiπ

m
i

1−θj

))
> θjπ

m
j . Further, from (8),

we know limA→0 Fi(u) = limA→0
Π̄j−θjπj(u)

(1−θ)πj(u)
and limA→0 Fj(u) = limA→0

Π̄i−θiπi(u)
(1−θ)πi(u)

. Finally,

from (7), αj → 1, while firm i advertises with probability limA→0 αi = 1− Π̄j−θjπmj
(1−θ)πmj

∈ (0, 1).

This limit equilibrium converges to the equilibrium of a model that allows for A = 0

explicitly without our tie-break rule. There, both firms advertise with probability one

and use equivalent utility distributions except that firm i advertises um with a probability

mass equivalent to limA→0(1− αi).
To show how this connects to much of the past literature which has considered various

asymmetries in non-shopper shares, product values and/or costs under unit demand and

the restriction, Ai = Aj = 0, consider the following example. Suppose consumers have

unit demands. From above, the equilibrium then depends upon ũ1 ≷ ũ2, or (1− θ1)(V1 −
c1)− (1− θ2)(V2 − c2) ≶ 0. For instance, when this is negative, x∗1 → 0 and x∗2 → 1, such
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that Π̄1 → θ1(V1 − c1), and Π̄2 → (1 − θ1)[(V2 − c2) − ū], where ū →
(

(1−θ)(V1−c1)
1−θ2

)
. By

then denoting ∆V = V1 − V2, and noting that F1(u2) = Pr(u1 ≤ u2) = 1− F1(p2 + ∆V )

and F2(u1) = 1 − F2(p1 − ∆V ), it follows that F1(p) = 1 −
[

Π̄2−θ2(p−∆V−c2)
(1−θ)(p−∆V−c2)

]
= 1 +

θ2
1−θ −

(1−θ1)(θ1(V1−c1)+(1−θ2)(c1−c2−∆V ))
(1−θ2)(1−θ)(p−∆V−c2)

on [V1 − ū, V1) and F2(p) = 1 −
[

Π̄1−θ1(p+∆V−c1)
(1−θ)(p+∆V−c1)

]
=

1−
[

θ1(V2−p)
(1−θ)(p+∆V−c1)

]
on [V2−ū, V2), where α2 → 1 but where firm 1 refrains from advertising

with probability 1− α1 = 1− F1(V1) ∈ (0, 1).

C2: Relaxing the Single Visit Assumption

Here, we explain how the model can be generalized to allow the shoppers to sequentially

visit multiple firms. We focus on duopoly - similar (more lengthy) arguments can also

be made for n > 2 firms. Suppose the cost of visiting any first firm is s(1) and the

cost of visiting any second firm is s(2). The main model implicitly assumes s(1) = 0

and s(2) = ∞. However, we now use some arguments related to the Diamond paradox

(Diamond, 1971) to show that our equilibrium remains under sequential visits for any

s(2) > 0 provided that i) the costs of any first visit are not too large, s(1) ∈ [0, um),

and ii) shoppers can only purchase from a single firm. The latter ‘one-stop shopping’

assumption is frequently assumed in consumer search models and the wider literature on

price discrimination.

First, suppose s(1) ∈ [0, um) but maintain s(2) = ∞. Beyond s(1) = 0, this now

permits cases where s(1) ∈ (0, um) provided um > 0 as consistent with downward-sloping

demand and linear prices. In this case, shoppers will still be willing to make a first visit

and the equilibrium will remain unchanged.

Second, suppose s(1) ∈ [0, um) but allow for any s(2) > 0 subject to a persistent

‘one-stop shopping’ assumption such that shoppers cannot buy from more than one firm.

By assumption, the behavior of the non-shoppers will remain unchanged. Therefore, to

demonstrate that our equilibrium remains robust, we need to show that shoppers will

endogenously refrain from making a second visit. Initially suppose that the firms keep

playing their original equilibrium strategies and that a given shopper receives h ∈ {0, 1, 2}
adverts. Given s(2) > 0 and one-stop shopping, the gains from any second visit will always

be strictly negative for all h. In particular, if h = 0, then any second visit would be sub-

optimal as both firms will offer um. Alternatively, if h ≥ 1, then a shopper will first visit

the firm with the highest advertised utility, u∗ > um, and any second visit will be be

sub-optimal as it will necessarily offer u < u∗. Now suppose that the firms can deviate

from their original equilibrium strategies. To see that the logic still holds, note that only

8



the behavior of any non-advertising firms is relevant and that such firms are unable to

influence any second visit decisions due to their inability to communicate or commit to

any u < um. Hence, firms’ advertising and utility incentives remain unchanged and the

original equilibrium still applies.
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