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1. Overview

This document provides more details on robustness checks, the data used in our paper,

and the programs that can be used to replicate our results.

The programs/data for each portion of the paper are stored in a separate subdirec-

tory. In general, the basic data are contained in spreadsheet files, and matlab programs

are used to conduct the analysis. We use Matlab 2018b.

The following program can be run in the main directory where “IdeaPFPrograms.zip”

is unzipped:

• MasterIdeaPF.m: Master program for generating all the results in the paper (other

than the Census results; see Section 8 below).

Note that you will need to edit this file to change to the main directory and to add the

proper path to the “ChadMatlab” directory that is unzipped from IdeaPFPrograms.zip

2. Additional Robustness Results: Alternative Wage Series for

Deflating R&D

A shortcoming of using the college earnings series as our deflator of nominal R&D

expenditures that the increase in college participation may mean that less talented

people are attending college over time. To the extent that this is true, our deflator

may understate the rise in the wage for a constant-quality college graduate and hence

overstate the rise in research productivity. As an alternative, we redid all our results

using two alternative deflators: first by adding 1 percent per year to the high-skilled

nominal wage growth as a coarse adjustment and second using nominal GDP per per-

son to deflate R&D expenditures — which according to the discussion surrounding

equation (12) in the paper is a valid way to proceed. The results are shown in Tables 1
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and 2 and are broadly similar, in part because the decreases in research productivity

that we document are so large.

3. Aggregate U.S. Evidence

The analysis for the aggregate data is contained in the “Aggregate” subdirectory.

• AggregateBLSIPP.m: This matlab program carries out the main calculations. The

NIPA data on “intellectual property products” investment are from FRED; the

download codes are reported in comments in the program.

• mfp_tables_historical-2017-02-17.xls:Contains the BLS data on private busi-

ness sector TFP growth. The contribution from intellectual property products,

which is netted out of TFP growth by the BLS, is added back in, in accordance

with the model.

The idea output measure is TFP growth, by decade (and for 2000-2014 for the latest

observation). For the years since 1950, this measure is the BLS Private Business Sector

multifactor productivity growth series, adding back in the contributions from R&D and

IPP. For the 1930s and 1940s, we use the measure from Robert Gordon (2016). The idea

input measure is gross domestic investment in intellectual property products from the

National Income and Product Accounts, deflated by a measure of the nominal wage for

high-skilled workers.

Figure 1 shows alternative measures of aggregate research effort, confirming the

statement in the main text that our results are robust to how we measure aggregate

research. In particular, the “NIPA IPP” series, which is the baseline series we report in

the main text, and the “U.S.” measure of total researchers in full-time equivalents are

very similar. The OECD and OECD+ series show that if we include broader measures

of research effort, the decline in aggregate research productivity would be compara-

ble in size or larger. These results are taken from the AggregateBLS_SciEng.m matlab

program, and the underlying data are collected in OECD-MSTI-TotalResearchers.xls.
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Table 1: Robustness: Wage Deflator with +1% Annual Adjustment

Dynamic

Time Average annual Half-life Diminishing

Scope Period growth rate (years) Returns, β

Aggregate economy 1930–2015 -4.1% 13 2.5

Moore’s law 1971–2014 -5.8% 12 0.2

Semiconductor TFP growth 1975–2011 -4.6% 15 0.3

Agriculture, US R&D 1970–2007 -2.7% 26 1.6

Agriculture, global R&D 1980–2010 -4.5% 15 2.7

Corn, version 1 1969–2009 -8.9% 8 6.4

Corn, version 2 1969–2009 -5.2% 13 3.8

Soybeans, version 1 1969–2009 -6.3% 11 5.5

Soybeans, version 2 1969–2009 -3.4% 20 2.9

Cotton, version 1 1969–2009 -2.4% 29 1.8

Cotton, version 2 1969–2009 +2.3% -31 -1.7

Wheat, version 1 1969–2009 -5.1% 13 5.7

Wheat, version 2 1969–2009 -2.3% 30 2.6

New molecular entities 1970–2015 -2.5% 27 ...

Compustat, sales 3 decades -10.1% 7 1.0

Compustat, market cap 3 decades -8.2% 8 0.8

Compustat, employment 3 decades -13.5% 5 1.7

Compustat, sales/emp 3 decades -3.4% 21 0.8

Note: This table shows robustness to using a wage deflator that grows 1 percent per year faster than the
college wage series used in the main paper. See notes to Table 7 in the main paper.
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Table 2: Robustness: Using Nominal GDP per Person as Wage Deflator

Dynamic

Time Average annual Half-life Diminishing

Scope Period growth rate (years) Returns, β

Aggregate economy 1930–2015 -4.4% 16 2.6

Moore’s law 1971–2014 -5.6% 12 0.2

Semiconductor TFP growth 1975–2011 -4.4% 16 0.3

Agriculture, US R&D 1970–2007 -2.4% 28 1.5

Agriculture, global R&D 1980–2010 -4.7% 15 2.8

Corn, version 1 1969–2009 -8.7% 8 6.3

Corn, version 2 1969–2009 -5.0% 14 3.7

Soybeans, version 1 1969–2009 -6.2% 11 5.3

Soybeans, version 2 1969–2009 -3.2% 21 2.8

Cotton, version 1 1969–2009 -2.2% 32 1.6

Cotton, version 2 1969–2009 +2.4% -28 -1.8

Wheat, version 1 1969–2009 -5.0% 14 5.6

Wheat, version 1969–2009 -2.1% 32 2.4

New molecular entities 1970–2015 -2.4% 29 ...

Compustat, sales 3 decades -10.3% 7 1.0

Compustat, market cap 3 decades -8.4% 8 0.8

Compustat, employment 3 decades -13.6% 5 1.7

Compustat, sales/emp 3 decades -3.8% 18 0.9

Note: Note: This table shows robustness to using nominal GDP per person as the wage deflator instead of
the college wage series. See notes to Table 7 in the main paper.
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Figure 1: Alternative Measures of Aggregate Research Effort
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Note: The figure shows alternative measures of aggregate research effort. The “NIPA IPP”
series is the main one resported in the paper; the “NIPA R&D” series includes only U.S.
R&D expenditures, also as measured by the NIPA. Both of these series are deflated by the
high-skilled wage series, as described in the main text. The other three series show mea-
sures of “Total Researchers (FTE)” from the OECD Main Science and Technology Indicators,
http://stats.oecd.org/ViewHTML.aspx?QueryId=58469#. The U.S. line reports researchers in the
United States; data before 1981 are taken from Jones (2002). The “OECD” line plots total researchers
in OECD countries since 1981, showing a 3.4-fold increase since that year. The “OECD+” line adds
researchers from China and Russia to the OECD measure and reveals a 1.9-fold increase between
1994 and 2015. For visual clarity, the OECD and OECD+ lines are normalized to the U.S. value in
their starting years.

http://stats.oecd.org/ViewHTML.aspx?QueryId=58469## 
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4. Moore’s Law

Our measurement of research spending related to Moore’s Law draws primarily on two

sources. First, we use the Compustat database to obtain R&D spending for more than

35 multinational companies; we are grateful to Unni Pillai for his advice and prelimi-

nary data on semiconductory R&D.1 Second, we use the PATSTAT database to obtain

the fraction of each company’s patents that are in technology class “H01L” which is

the class corresponding to semiconductors; we are grateful to Antoine Dechezlepretre

for extensive help and computer code for extracting data from PATSTAT. Our various

measures combine these data in different ways to create a measure of R&D relevant for

Moore’s Law.

The spreadsheet “MooresLawRND-2018-01-08.xls” provides the basic background

behind these calculations. The sheet labeled “Compustat” collates the Compustat R&D

spending numbers with the (smoothed) patent shares. The sheet “PatentNarrow” pro-

vides our “narrow” measures — in which all firms research spending is weighted by

their share of patents in the semiconductor class — while the sheet “PatentBroad” pro-

vides our “broad” measures — in which the research spending by focused companies

like Intel or Fairchild is all included, while the research spending by conglomerates like

AT&T or IBM or Toshiba is weighted according to their semiconductor patent shares.

TFP growth in the “semiconductor and related device manufacturing” industry (NAICS

334413) is taken from the NBER/CES Manufacturing Industry Database, variable “dtfp5”;

see Bartelsman and Gray (1996). We smooth TFP growth using an HP filter with smooth-

ing parameter 400 and lag R&D by 5 years in computing research productivity. In ad-

dition to the narrow/broad split, we also alternately include and exclude R&D from

semiconductor equipment manufacturers: equipment is captured in a separate 6-digit

industry — and therefore is perhaps most naturally excluded from our analysis. Alter-

natively, the pricing of the semiconductor equipment may not fully capture the benefits

of that equipment, in which case the R&D from semiconductor equipment manufac-

turing spills over into TFP growth in the semiconductor manufacturing sector.

The following matlab programs are used:

• MooresLaw/IntelGraph.m: This program produces the main results for Moore’s

1These data are supplemented in a few cases — for example for Siemens (thanks to Dietmar Harhoff)
and Samsung (thanks to Jihee Kim) — by data from company annual reports.
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Law reported in the paper.

• MooresLaw/SemiconductorTFP.m: This program produces the main results for

TFP growth in the semiconductor industry.

• Patents/ReadPatentData.m: This program reads the PATSTAT patent data and

constructs the smoothed share of each firm’s patenting that is in the semicon-

ductor class. These numbers show up in the Compustat tab of the main Moores-

LawRND*.xls spreadsheet.

5. Agricultural Innovations

The key files are contained in the “Seeds” subdirectory:

• Seed data v6.xlsx: This file contains the details of the data on seed yields and

research spending.

• SeedYields.m: This matlab program carries out the main calculations that are

reported in the paper.

• AgIdeaPF.m: TFP growth and research productivity for the agriculture sector as

a whole. Both TFP growth and U.S. R&D spending for the agriculture sector as

a whole are taken from the U.S. Department of Agricultures Economic Research

Service. The TFP series is smoothed with an HP filter. Global R&D spending for

agriculture is taken from Fuglie, Heisey, King, Day-Rubenstein, Schimmelpfen-

nig, Wang, Pray and Karmarkar-Deshmukh (2011), Beintema, Stads, Fuglie and

Heisey (2012), and Pardey, Chan-Kang, Beddow and Dehmer (2016). Nominal

R&D spending is deflated by the wage for college graduates, as described earlier.

The data are collected in the spreadsheet files "AgTFP v1.xlsx” , USDA-ERS-ag_all_research.xls,

and GlobalRND-Agriculture.xls.

We calculate idea input and output measures for agricultural crop yields in the

United States for each of four crops: corn, soybeans, cotton, and wheat.
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5.1. Idea output measure: crop yields

For each crop, we use realized average yields in the United States, measured in bushels

or pounds harvested per acre planted. These data are provided by the U.S. Department

of Agriculture (USDA) National Agricultural Statistics Service (NASS) (U.S. Department

of Agriculture National Agricultural Statistics Service (2016)). We use yield figures pro-

vided annually at the national level. The URL to access the data is:

https://quickstats.nass.usda.gov/#C57CA751-B131-3065-9F7C-E7DE08D92F87

To obtain our final measure, we compute smoothed yields using an HP filter with

a smoothing parameter of 400, then take an annualized average 5-year growth rate.

Figure 2 shows these yields for our four crops back to the 1960s, measured in bushels

or pounds harvested per acre planted. These correspond to average yields realized on

U.S. farms. They are therefore subject to many influences, including choice of inputs

and random shocks. These shocks, especially adverse weather and pest events, tend to

have asymmetric effects: adverse events cause much larger reductions in yields than

favorable events increase them, as indicated by the many large one-year reductions

followed by recoveries in the figure (see Huffman, Jin and Xu (2018)). Nevertheless,

yields across these four crops roughly doubled between 1960 and 2015.

5.2. Idea input measure: seed R&D

For each crop, we calculate annual R&D expenditure in the United States directed at

improving that crops yields. Our data sources have three relevant dimensions: crop

(corn, soybeans, cotton, and wheat), sector (public and private), and research area

(biological efficiency, and crop protection and maintenance). For the private sector,

we have measures of expenditure by research area that come aggregated over crops, so

combine these with data on the share of a given research area devoted to a particular

crop to produce an annual series of research area spending by crop. For the public

sector, we have measures of total R&D by crop that come aggregated over research

areas, so combine these with data on the share of a given crops total R&D devoted to a

particular research area to produce an annual series of research area spending by crop.

We sum across the two sectors to get an estimate for each crop-research area-year cell.

For the private sector, our measures of expenditure by research area were provided

by Keith Fuglie of the U.S. Department of Agricultures Economic Research Service.

https://quickstats.nass.usda.gov/#C57CA751-B131-3065-9F7C-E7DE08D92F87
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Figure 2: U.S. Crop Yields
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Note: Smoothed yields are computed using an HP filter with a smoothing parameter of 400.
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These series are an updated version of the series in Fuglie et al. (2011), and are an-

nual from 1960 to 2015, in nominal dollars. The distribution of expenditure for seed

efficiency by crop are taken from Perrin et al. (1983), Fernandez-Cornejo et al. (2004),

Traxler et al. (2005), and Huffman and Evenson (2006). These provide shares for the

years 1960, 1965, 1975, 1979, 1982, 1989, 1994, and 2001. No direct data are available

on distribution of expenditure for crop protection by crop. As such, we took 3 related

measures (crop protection sales shares from University of York (2016), the public crop

protection shares described below, and the private seed efficiency shares described

above) and took the average. We use linear interpolation where required to fill in miss-

ing years.

For the public sector, we begin with two comparable raw series of R&D by crop,

covering different time periods, that each come aggregated over research areas. One is

taken from annual versions of Table C from the U.S. Department of Agriculture National

Institute of Food and Agriculture Current Research Information System (CRIS) Funding

Summaries, and covers the years 1993-2015. The other is from Huffman and Evenson

(2006), covering 1969, 1984, and 1997. The year 1997 is thus an overlapping year. CRIS

figures are in nominal dollars; H&E figures are deflated by a price index. When we use

this index to un-deflate the H&E series to get back nominal figures, the CRIS amounts

for the overlapping year (1997) are close to 60% of the un-deflated H&E figures for all

four crops. As such, we use the CRIS numbers for all the years available (1993-2015),

and multiply the un-deflated H&E figures for the years 1969 and 1984 by this ’splicing

factor’ to get a consistent nominal series. The distribution of expenditure by research

area for each crop is taken from Huffman and Evenson (2006). This provides shares

for the years 1969, 1984, and 1997. We use linear interpolation where required to fill

in missing years. We use the output from this methodology for spending on biological

efficiency; for spending on biological efficiency and crop protection and maintenance

combined, we use a new series provided by Huffman of absolute productivity-directed

public research by crop for the years 1960-2009. This series is, as expected, very close

to the equivalent series generated using the methodology just outlined.

To obtain our final measure of idea inputs, we deflate the summed private and

public annual series using a measure of the average annual earnings for people with

4 or more years of college, for reasons explained in section 3.
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6. Medical Innovations

Programs and data for the disease measures are in the “Mortality” subdirectory, while

those for the new molecular entities are in the “Pharma” subdirectory.

• Cancer.m:, BreastCancer.m:, HeartDisease.m: These are the main programs that

carry out the calculations for the three diseases.

• mortality.m: This function is called to do the heavy lifting.

• LifeExpectancy.m: Create the life expectancy graph in Figure 7.

• BasicLifeTable.m: Reads the basic life tables from Mortality.org for all people.

• BasicLifeTableWomen.m: Reads the basic life tables from Mortality.org for women.

• NMEGraph.m: The basic program for generating the results for new molecular

entities.

• NME-Since1938.xls: Data on new molecular entities since 1938, from

http://www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/SummaryofNDAApprovalsR

Also the R&D data from various issues of “Pharmaceutical Industry Profile”; see

http://www.phrma.org/sites/default/files/pdf/PhRMA%20Profile%202013.pdf

Our measures of life expectancy and mortality from all sources by age come from

the Human Mortality Database at http://mortality.org. To measure the percentage de-

clines in mortality rates from cancer, we use the age-adjusted mortality rates for people

ages 50 and over computed from 5-year survival rates, taken from the National Cancer

Institutes Surveillance, Epidemiology, and End Results program at http://seer.cancer.gov/.

For heart disease, we report the crude death rate in each year for people aged 55–64.

For our research input, we measure the number of scientific publications in PUBMED

that have “Neoplasms” or “Breast Cancers” or “Heart Diseases”, as a MESH (Medical

Subject Heading) term. MESH is the National Library of Medicine’s controlled vocabu-

lary thesaurus. For more information on MESH, see https://www.nlm.nih.gov/mesh/.

Our queries of the PUBMED data use the webtool created by the Institute for Biostatis-

tics and Medical Informatics (IBMI) Medical Faculty, University of Ljubljana, Slovenia

available at http://webtools.mf.uni-lj.si/.

http://www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/SummaryofNDAApprovalsReceipts1938tothepresent/default.htm
http://www.phrma.org/sites/default/files/pdf/PhRMA%20Profile%202013.pdf
http://mortality.org
http://seer.cancer.gov/
https://www.nlm.nih.gov/mesh/
http://webtools.mf.uni-lj.si/
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6.1. New Molecular Entities

Our first example in the text of the paper from the medical sector is a fact that is well-

known in the literature, recast in terms of research productivity. Here we report the

details.

Figure 3 shows the number of new molecular entities (“NMEs”) approved by the

Food and Drug Administration (FDA). NMEs are compounds that emerge from the pro-

cess of medicine discovery, that are not a version or derivative of an existing, previously

investigated/approved substance. They are new drugs that include both chemical and

biological products and virtually all pharmaceutical advances in the last 50 years show

up in these counts (Zambrowicz and Sands, 2003). Famous examples that became

commercial blockbuster drugs are Zocor (for cholesterol), Prilosec (for gastroesophagal

reflux), Claritin (for allergies), Celebrex (for arthritis), and Taxol (for treating various

types of cancer). Only two or three of the NMEs in any given year become commercial

successes. Among famous drugs, only morphine and aspirin do not show up in these

counts, because their discovery pre-dates the FDA. The flow of NMEs is well-known

to show very little trend, although 2014 and 2015 are two of the years with the most

approvals. Based on this fact, we proceed conservatively and measure idea output as

the flow of NMEs rather than as the percentage change.

We obtain data on pharmaceutical R&D spending from the Pharmaceutical Research

and Manufacturers of America (Phrma), which has conducted an annual survey of its

members back to 1970 and includes R&D performed both domestically and abroad by

these companies.2 Using the procedures described earlier, we get the research pro-

ductivity and effective research numbers shown in Figure 4. Research effort rises by a

factor of 9, while research productivity falls by a factor of 11 by 2007 before rising in

recent years so that the overall decline by 2014 is a factor of 5. Over the entire period,

research effort rises at an annual rate of 6.0 percent, while research productivity falls

at an annual rate of 3.5 percent. It is well documented that the number of NMEs per

dollar of R&D is declining; our statement is different in that, importantly, our measure

of research input is deflated by the wage of college graduates. Akcigit and Liu (2016)

examine this case in more detail and suggest that the rising replication of dead-ends in

2A limitation is that it does not include R&D done by foreign companies that is performed abroad.
However, Figure 1 of Congressional Budget Office (2006) suggests that this is still a very useful measure.
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Figure 3: New Molecular Entities Approved by the FDA
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Note: Historical data on NME approvals are from Food and Administration (2013). Data for recent
years are taken from Pharmaceutical Research and Manufacturers of America (2016).

pharmaceutical research (and elsewhere) could be part of the story.

Of course, it is far from obvious that simple counts of NMEs appropriately measure

the output of ideas; we would really like to know how important each innovation is.3 In

addition, the NMEs still suffer from an important aggregation issue, adding up across a

wide range of health conditions. These limitations motivate the main approach in the

paper, in which we focus on the productivity of medical research in specific diseases.

7. Compustat Firm-Level Results

These programs and files are in the “Compustat” subdirectory.

• Compustat-WRDS-2016-06-13.xlsx, Compustat-WRDS-2016-06-13.csv: Basic data

file downloaded from Compustat via WRDS.

3An alternative source of information on pharmaceuticals would be clinical trial data. These are
available in the rich Cortellis dataset used in Krieger (2017). Unfortunately, the data is only reliable after
the mid 1990s, so it is not suitable to use over long periods of time, which is our purpose in this paper.
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Figure 4: Research Productivity for New Molecular Entities
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Note: Research productivity is the ratio of idea output, NME approvals, to the effective number
of researchers, measured as R&D expenditures deflated by the nominal wage for high-skilled
workers. Historical data on NME approvals are from Food and Administration (2013). Data on
research spending by the pharmaceutical industry are from the 2010, 2013, and 2016 editions of
Pharmaceutical Research and Manufacturers of America (2016). See the online data appendix for
more details.
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• CompustatRead.m: Reads the downloaded data from Compustat-WRDS-2016-

06-13.csv.

• MasterCompustat.m: The master program for the Compustat results, including

robustness.

• CompustatIdeaPF.m: The basic program that does the heavy lifting, given a set

of parameters and assumptions.

• SetParameters.m: Sets the baseline parameter values.

• ShowParameters.m: Reports the parameter values.

• GDPDeflator.m: Loads and saves the basic GDP Deflator used to deflates sales

revenue and market cap.

• compugrowthrate.m: A function for computing various growth rates.

As a measure of the output of the idea production function, we use decadal averages

of annual growth in sales revenue, market capitalization, employment, and revenue

labor productivity within each firm. Sales revenue and market cap are deflated by the

GDP implicit price deflator. We take the decade as our period of observation to smooth

out fluctuations.

To measure the research input, we use a firm’s spending on research and devel-

opment from Compustat. This means we are restricted to publicly-listed firms that

report formal R&D, and such firms are well-known to be a select sample (e.g. dis-

proportionately in manufacturing and large). We look at firms since 1980 that report

non-zero R&D, and this restricts us to an initial sample of 15,128 firms. Our additional

requirements for sample selection in our baseline sample are

1. We observe at least 3 annual growth observations for the firm in a given decade.

These growth rates are averaged to form the idea output growth measure for that

firm in that decade.

2. We only consider decades in which our idea output growth measure for the firm

is positive (negative growth is clearly not the result of the firm innovating, and our

framework cannot make sense of negative research productivity).
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Figure 5: Compustat Distributions, Sales Revenue (3 Decades)

Note: Based on 469 firms. 11.9% of firms have increasing research productivity. Only 4.3% have
research productivity that is roughly constant, defined as a growth rate whose absolute value is
less than 1% per year.

3. We require the firm to be observed (for both the output growth measure and the

research input measure) for two consecutive decades. Our decades are the 1980s,

the 1990s, the 2000s (which refers to the 2000-2007 period), and the 2010s (which

refers to the 2010-2015 period); we drop the years 2008 and 2009 because of the

financial crisis.

We relax many of these conditions in our robustness checks.

Figures 5 and 6 demonstrate the heterogeneity across firms in our Compustat sam-

ple by showing the distribution of the factor changes in effective research and research

productivity across all the firms Figures 5 and 6 shows the distributions for the firms ob-

served for three and four decades; the distribution for firms observed for two decades

is shown in the main paper.

8. Firm-Level Results with U.S. Census Data

We used all firms that reported manufacturing shipments (sales) in the Economic Cen-

suses of Manufacturers (CMF) of 1982, 1992, 2002 and 2012, as well as positive R&D

expenditure in the BRDIS (or SIRD before 2008) surveys of R&D in at least one year
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Figure 6: Compustat Distributions, Sales Revenue (4 Decades)

Note: Based on 149 firms. 14.8% of firms have increasing research productivity. 4.7% firms in
this sample have research productivity that is roughly constant, defined as a growth rate whose
absolute value is less than 1% per year.

in each decade. The Census of Manufacturers surveys around 250,000 manufacturing

establishments (distinct geographical locations), covering what the Census believes

is the population of US manufacturing establishments. The Census itself builds this

population file from a combination of prior years surveys, the survey of business or-

ganization (which asks firms to report all current production locations) and IRS tax

returns.

The Business Research and Development and Innovation Survey (BRDIS) is a firm-

level survey that is sent to the population of firms the Census believes undertakes R&D

(based from prior years data, patenting records etc) plus a random sample of all other

firms. Given the skewed nature of R&D expenditure — most R&D is carried out by a

few well identified large firms — this should capture the large majority of R&D ex-

penditure. This data spanned 1,300 firms over 2,700 firm-year observations (where

numbers have been rounded for disclosure purposes). All Census data was accessed

in the Stanford Census Research Data Center (RDC) by Nicholas Bloom working with

generous research assistance from Brian Lucking.

As discussed in the text there are a number of differences between US Census data

and US Compustat date. First, the Census uses the responses to official (mandatory)
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government surveys, rather than audited financial accounts. So this could potentially

induce some measurement error (if the auditing process helps to eliminate recording

errors for example), but it also helps to address concerns over potential bias in reported

accounting data for publicly-listed firms (e.g. if firms manipulate their reported R&D

activity to influence their stock market valuation). Second, the Census covers the ac-

tivity of all firms operating in the U.S. public and private including the subsidiaries

of foreign multinationals. Thus, smaller firms, start-ups and subsidiaries of overseas

firms are included so long as they are covered by the BRDIS survey. Third, the Cen-

sus data excludes the R&D and sales activities of U.S. firms abroad, which for large

manufacturing firms is often substantial. By contrast, Compustat reports the global

consolidated accounts, so overseas sales and R&D will be included in the totals. Fourth,

the Census also collects data on the number of scientists and engineers engaged in

R&D activity, providing a quantity measure of innovation inputs. Finally, the Census

compares the figures for large firms against administrative data e.g. IRS tax returns

and social security filings helping to ensure data accuracy. This means, for example,

figures in the CMF or BRDIS that appear implausible given IRS tax returns or other

Census data will be checked and edited.

Full replication of our Census results can be carried out using the “itfp.do” file,

which runs in Stata 16 on the RDC Census data. To run this requires having an eli-

gible Census project which grants access to the CMF and BRDIS. Those interested in

applying for an RDC Project should visit https://www.census.gov/fsrdc.

9. The Wage Series for Deflating R&D Spending

The program and data for this series are stored in the subdirectory “WageSci.”

• WageEducation.m: Reads the wage data and creates WageScientistData.mat, which

is used in many other programs.

• WageEducationPlus1.m: Adds 1 percent per year to the wage growth in WageEd-

ucation.m for robustness.

• WageNominalGDP.m: Uses nominal GDP per person as the wage deflator for

R&D expenditures, for robustness.

https://www.census.gov/fsrdc
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As our benchmark measure of the nominal wage in our empirical applications, we

use mean personal income from the Current Population Survey for males with a Bach-

elor’s degree or more of education. These data are from Census Tables P18 and P19,

available at http://www.census.gov/topics/income-poverty/income/data/tables.html.

Prior to 1991, we use the series for “4 or more years of college.” For years between 1939

and 1967, we use the series Bc845 from the Historical Statistics for the U.S. Economy,

Millennial Edition. Finally, for the aggregate research productivity calculations, we

require a deflator from the 1930s. We extrapolate the college earnings series backward

into the 1930s using nominal GDP per person for this purpose. As an alternative, we

have redone our results using nominal GDP per person as the deflator; this yielded

broadly similar results; see Tables 1 and 2 earlier in this document.
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