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Proof of Observation 1

Proof. To prove the first part, note that δ2 is defined as a set of δ that solve a
quadratic equation in δ, so has at most two solutions. A solution exists by the
intermediate value theorem since wL is continuous in δ: wL → −∞ as δ → 0, and
wL(1) = µ0 + (1− µ0)(1− uL) > w. Moreover, there is only solution in (0, 1), since
for δ ≥ 0

w′
L(δ) > 0 > −(1− w),

where −(1− w) is the derivative of 1− δ + δw with respect to δ.

For i)-iii), note first that w1(1−uL) = wL(1−uL) for any uL. Therefore if uL = 1−δ1,
we have δ1 = 1− uL, and 1− δ1 + δ1w = w1(δ1) = wL(δ1), so δ2 = δ1.

If uL < 1 − δ1, the facts that w1(δ1) = 1 − δ1 + δ1w and w′
1(δ) > 0 imply that

wL(1− uL) = w1(1− uL) > uL + (1− uL)w. As w
′
L(δ) > 0, this implies δ2 < 1− uL.

An analogous argument shows that if uL > 1− δ1, then δ2 > 1− uL. This completes
the proof of Observation 1. ■

The role of the lower bound on µ0 when uL > 0

I will also show here that the assumption that when uL > 0 we have

µ0 >
uLw

uLw + 1− w
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is necessary for the construction I use. In particular, if the inequality does not
hold, we have δ1 > 1 − uL and δ2 is not well-defined (only δ2 ≥ 1 will satisfy the
condition), which means neither payoff w1 nor wL is feasible. To see this, substitute
µ0 = uLw

uLw+1−w
into δ1 = 1+c−µ0

1+c−µ0(c+w
. The resulting expression is strictly bigger than

1− uL:
(1− w)(1 + c) + cuLw

(1− w)(1 + c+ uLw)
> 1− uL,

which holds if and only if

cw + (1− w)(1 + c− w(1− uL)) > 0,

which is true for uL > 0. Therefore, δ1 > 1 − uL for µ0 ≤ uLw
uLw+1−w

since δ1 is

decreasing in µ0. Therefore, if µ0 ≤ uLw
uLw+1−w

the construction requires δ > δ2.

However, wL(1) = w when µ0 = uLw
uLw+1−w

, which means that for δ < 1, wL(δ) <

1 − δ + δw. Therefore, for any µ0 < uLw
uLw+1−w

, we have wL(1) < w since wL(1)

increasing in µ0. This implies wL(δ) < 1 − δ + δw for all δ ∈ (0, 1), so δ2 is not
well-defined, and the construction fails.

Proof of Observation 2

Proof. For i): By definition, this holds for k = 1. For k > 1, we simply substitute
the expressions for m, vE and Ĥk−1 in the definition of Ĥk, and collect terms. For ii)

note that by i), B2−B1 = 2+ c(1−δ)
δ

− (w+w+(1−uH)) > 0, which follows from the
fact that w + v ≤ 1 + uH . Now proceed by induction, and assume that Bk > Bk−1.
Then

Bk+1−Bk = Ak−1−Ak+(1− uH)(Bk −Bk−1) =
c(1− δ)

δ
+(1− uH)(Bk −Bk−1) > 0.

Moreover, the difference is bounded below by a constant, so Bk → ∞. ■

Proof of Observation 4

Proof. For i): For k < n + 1, we proceed by induction. Note that v0 = v > uH

by Claim 2. Assume vk > uH , then vk+1 = vk
1+vk−uH

> uH

1+uH−uH
= uH , where the

inequality comes from the fact that v
1+v−uH

is strictly increasing in v. This proves
that vk > uH for k ≤ n+ 1, and therefore, that vk+1 =

vk
1+vk−uH

< vk.
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The same argument shows that vk+1 < vk and vk ≥ uL, using the definition of
the sequence for k > n + 1. Therefore, the sequence is bounded below by uL, and
converges to some limit l ≥ uL. Taking limits, we have

lim
k→∞

vk = l =
l

1 + l − uL

,

so l solves l(l − uL) = 0. Therefore, l = 0 or l = uL, and clearly the sequence must
converge to the larger root, which proves ii). iii) For k ≤ n + 1, this is obvious.
Using the fact that vn and vn+1 are larger that uH , and setting vn = vn+1 = uH in
the definition of the sequence gives us a lower bound for every point vk for k > n+1
that is independent of δ. For δ sufficiently high, 1− δ is below this lower bound.

■

Proof of Proposition 5: last statement

Proof. Here we prove the last statement in the proposition, that for any k, there
exists δ̂ such that if δ > δ̂, we have v∗ < vn+k. It is easily checked from the definition
of the sequence {vk}, that vk is increasing in δ for all k, and from the definition of
F̂ , vn is increasing in δ—note here that n itself depends on δ.

Fix k ≥ 5. By Observation 4, for δ sufficiently high vn+k > 1 − δ. We will show
that for δ sufficiently high, the left derivative of F at vn+k can be made arbitrarily
small, so that the optimiser of Ŵ lies strictly below vn+k. In particular, we wish
to show that Bn+k < (1−µ0)

µ0
(δw − c(1 − δ)). Start with δ sufficiently high that

(1−µ0)
µ0

(δw−c(1−δ)) > 0, and let C be the value at the initial δ. Since this expression
is increasing in δ, C is a lower bound as we increase δ, so it is sufficient to show that
Bn+k < C.

Let ϵ > 0 be sufficiently small that

ϵ

k−1
2∑

i=0

(1− uL)
i < C.

vn is not explicitly given, but is implicitly defined as the point at which F switches
from increasing to decreasing, and we do not know the actual slope of F in this
range. Therefore, we need to uniformly bound the incremental change of the slope
of F , moving from one interval to the next, and this will provide an upper bound on
Bn+k.
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By Observation 2,

B2 −B1 = 1− w − v − (1− uH) + c(1− δ) + 1,

which converges to 0 as δ → 1.1 Therefore, there exists δ(ϵ) < 1 such that δ > δ(ϵ)

implies that 2− w − v − (1− uH) <
ϵ
2
and c(1−δ)

δ
< ϵ

2
, so B2 − B1 < ϵ. Moreover, if

for i ≤ n, Bi −Bi−1 <
ϵ
2
, then by Observation 2,

Bi+1 −Bi = (Bi −Bi−1)(1− uH) +
c(1− δ)

δ
< ϵ.

This is a uniform bound on differences for i ≤ n+1, so Bn+1 < Bn+1−Bn < ϵ, since
Bn < 0. By Observation 3,

Bn+3 −Bn+1 = Bn+1(1− uL)−Bn(1− uH)−
c(1− δ)

δ
< Bn+1 −Bn − uLBn+1 < ϵ(1− uL),

and
Bn+k −Bn+k−2 = (Bn+k−2 −Bn+k−4)(1− uL).

Therefore Bn+5 −Bn+3 < ϵ(1− uL)
2. Moreover, if Bn+k−2 −Bn+k−4 < ϵ(1− uL)

k−3
2 ,

then Bn+k −Bn+k−2 < ϵ(1− uL)
k−1
2 . In this case,

Bn+k < ϵ(1− uL)
k−1
2 +Bn+k−2

< ϵ(1− uL)
k−1
2 + ...+ ϵ(1− uL) +Bn+1

< ϵ(1− uL)
k−1
2 + ...+ ϵ(1− uL) + ϵ < C,

which proves what we want. ■

Proof of Proposition 3

I prove the following claim, which implies Proposition 3.

Claim 1. Let δ > δ. Then

(i) If v∗ ≥ vn+1, then the optimal contract in LBM is the same as the optimal
contract in the main problem.

1To see this, note that v, which is the larger solution of the quadratic equation y(v)+uH = w+v,
converges to 1 + uH − w as δ → 1.
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(ii) If v∗ ≤ vn+2, an optimal contract in LBM has probability one monitoring at
time zero, with the high type exerting effort, and if effort is observed, delivers
value vn using the optimal policy from (AP ), from t = 1. The principal’s payoff
is

µ0((1− δ)(1− c) + δF (vn)) + (1− µ0)(δw − c(1− δ)).

Proof. For i), note that if v∗ ≥ vn+1, the low type’s incentive constrain is slack at all
histories in the optimal contract. Therefore, the optimal contracts in LBM and the
main problem coincide.

For ii): note that it is immediate that if δ > δ, properties i)-iii) of Proposition 4 hold
for any optimal contract in LBM—the only difference between the main problem and
LBM is that the low type always shirks and has no incentive constraints. Denote
by vH the high type’s time zero value from this contract. The high type incentive
constraint in phase one requires that the monitoring probability m ≥ (1−δ)(1−uH)

δvEH
,

where vEH is the high type’s value after E. Clearly it is never optimal to set continu-
ation play below the Pareto frontier, so vEH ≥ vn, and the principal’s payoff after E
is F (vEH) with a known high type, with the optimal policy specified in the auxiliary
problem for such a value. Therefore, the principal’s payoff in LBM from an optimal
contract can be written as

w
(
m, vEH

)
:=

µ0

(
(1− δ)(1−mc) + δmF

(
vEH

))
+ (1− µ0)m(δw − c(1− δ))

1− δ + δm
,

and an optimal contract in LBM chooses m and vEH , subject to the high type’s
incentives, to maximise this function.

Now suppose vEH > vn. Then the high type’s incentive constraint must bind—
otherwise we could lower vEH for an improvement. By the construction of the solution
to the auxiliary problem, the principal’s payoff must then be

Ŵ (vH) = µ0F (vH) + (1− µ0)
1− vH

δ
(δw − c(1− δ)).

Since v∗ ≤ vn+2, we have that Ŵ (vH) < Ŵ (v∗) for vH ≥ vn+1. Moreover, Ŵ (v∗)
is feasible in LBM, so it must be that vH < vn+1. However, this implies that the
high type’s incentive constraint is slack, a contradiction. Therefore it must be that
vEH = vn, and the principal’s payoff from an optimal policy in LBM is w(m, vn), for
some m.
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Now re-write the principal’s payoff from a policy that optimally delivers v ∈ (vn+2, vn+1)
to the low type in the main problem, with the implied phase one monitoring proba-
bility m(v) as an argument:2

W̃ (v,m(v)) :=
µ0((1− δ)(1−m(v)c) + δm(v)F (vn)) + (1− µ0)m(v)(δw − c(1− δ))

1− δ + δm(v)
.

Since v∗ < vn+1, we have that Ŵ−(vn+1) < 0, or equivalently, that the total derivative
of the function above is negative in the interval (vn+2, vn+1):

Ŵ ′(v) =
dW̃

dv
(v,m(v)) =

∂W̃

∂v
+

∂W̃

∂m

dm

dv
=

∂W̃

∂m

dm

dv
< 0.

Since m(v) is decreasing in v, this means that ∂W̃
∂m

> 0. Now note that this partial
derivative is equal to the partial derivative of w(m, vn):

∂W̃

∂m
=

(1− δ)(µ0δF (vn) + (1− µ0)δw − c(1− δ)− δµ0)

(1− δ + δm)2
= wm(m, vn).

The numerator of this derivative is independent of m so is positive for all m, and it is
optimal to set m = 1 in LBM. This contract screens the low type in the first period,
and from the second period delivers vn using the policy in the auxiliary problem to
the high type, and the principal’s payoff is

w(1, vn) = µ0((1− δ)(1− c) + δF (vn)) + (1− µ0)(δw − c(1− δ)).

■

Low Type Auxiliary Problem 2

I define a second auxiliary problem here. The solution to this problem defines an
upper bound on P ’s payoff after a relevant history in the proof of Proposition 4.
Consider the problem in which P knows that the agent is the low type, is constrained
to deliver a value v to the low type, and has full commitment power. Note that the
high type plays no role in this problem. Define the program as

G(v) := max
σ

W (σ) (AP2)

s.t. VL(σ) = v (PK)

ICL ∀h (IC)

2This is the same function as Ŵ but without substituting for m(v). Note that in the interval
specified, vE = vn is constant since neither ICH nor ICL binds.
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There are no principal constraints because P has full commitment, and to make sure
that the problem is well-defined, assume that payments are bounded, so p(h) ∈ [0, p],
where we take the upper bound sufficiently large, and P can deliver any value v ∈
[0,M ] to the low type.

Lemma 1.

G(v) =

{
(1− v)w if v ∈ [0, 1],

1− v if v ∈ (1,M ].

I omit the proof as it follows a similar structure to the proof of the dynamic program
in the main auxiliary problem, (AP ) but is much simpler and standard. As yL+uL <
w, it is not efficient to incentivise effort from the agent. Moreover, since w < 1, paying
the agent by letting him shirk is more efficient than direct transfers.3 If v ≤ 1, the
optimal outcome can be implemented by firing the agent with probability 1 − v at
time zero, or with probability v, employing him forever and letting him shirk, with
no monitoring. If v > 1, the agent is employed forever and allowed to shirk, and a
payment of v − 1 is made in every period.

3If this wasn’t the case, it would instead be optimal to pay the agent and fire him.
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