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A Proofs and derivations for the model with CES demand

A.1 Policy functions and steady state

This sub-section proves Proposition 1 and characterizes the steady state of the economy. For

these results, we work with a CES demand function

yt = (∫
f
y

σ−1
σ

tf ⋅ df)
σ

σ−1

,

where σ > 1 denotes the elasticity of substitution across varieties.

Proof of Proposition 1. We first show that α̃t(α, z) weakly increases in z. We have

α̃t(α, z) = argmax
α′∈[α,1]

−ca ⋅ yt ⋅ (α′ − α) +
1

1 + r
E[Vt+1(α′, z′)∣z].

It is therefore sufficient to show that E[Vt+1(α, z′)∣z] has increasing differences in (α, z). Let
Ωt+1(α′, z) = ∂αE[Vt+1(α′, z′)∣z]. The envelope theorem implies

Ωt(α′, z) = E [
∂πt(α′, z′)

∂α
∣z] +E [Pt(z′) ⋅min{ca ⋅ yt,

1

1 + r
Ωt+1(α′, z′)} ∣z] ,(A1)

where Pt(z′) denotes the probability of survival given z′, and the minimum operator accounts

for the fact that the restriction α′ ≥ α binds in some states.

Let’s define a sequence of functions Ω
(n)
t of (α′, z) as:

Ω
(1)
t (α′, z) =E [

∂πt(α′, z′)
∂α

∣z]

Ω
(n+1)
t (α′, z) =E [∂πt(α

′, z′)
∂α

∣z] +E [Pt(z′) ⋅min{ca ⋅ yt,
1

1 + r
Ω
(n)
t+1(α′, z′)} ∣z] .

We prove by induction in n that Ω
(n)
t (α′, z) weakly increases in z. The base case for n = 1

follows from the fact that E [∂πt(α
′,z′)

∂α ∣z] increases in z. Because the process is assumed to be

increasing (in a stochastic sense), this is equivalent to showing that ∂πt(α′,z′)
∂α increases in z′.

Let’s write the marginal cost of firms as

ct(α, z) =
1

z
ct(α), with ct(α) =min

a≤α
(Γkt (a) + Γℓ(a) ⋅w

1−η
t )

1
1−η .
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This formulation is more general than the one from (1) in the main text. It allows for the

possibility that firms might have paid the fixed cost to automate all tasks up to α, and yet,

due to changing factor prices, choose to allocate some of these tasks to labor.

A second application of the envelope theorem (but now with respect to the optimal

pricing decision of firms) implies

∂πt(α′, z′)
∂α

= −yt(α
′, z′)
z′

⋅ ∂ct(α
′)

∂α
,

where yt(α′, z′) is the quantity sold by a firm with technology αtf = α′ and ztf = z′ at time

t. Here, ∂ct(α′)
∂α is weakly negative (firms always get the option value of automating tasks if

factor prices justify it). This means that ∂πt(α′,z′)
∂α is increasing in z′ if yt(α

′,z′)
z′ increases in z′,

which holds in the CES demand systems when σ > 1.
For the inductive step, suppose that Ω

(n)
t (α′, z) is weakly increasing in z for all (t, α)

with n ≤ N . We have

Ω
(N+1)
t (α′, z) = E [∂πt(α

′, z′)
∂α

∣z] +E [Pt(z′) ⋅min{ca ⋅ yt,
1

1 + r
Ω
(N)
t+1 (α′, z′)} ∣z] .

As before, E [∂πt(α
′,z′)

∂α ∣z] weakly increases in z. Moreover, Pt(z′) ⋅ min{ca ⋅ yt, (1/(1 + r)) ⋅
Ω
(N)
t+1 (α′, z′)} (weakly) increases in z′ (due to the inductive hypothesis), and so the term

E [Pt(z′) ⋅min{ca ⋅ yt, (1/(1 + r)) ⋅Ω(N)t+1 (α′, z′)}∣z] also (weakly) increases in z, which com-

pletes the inductive step.

Because the set of weakly increasing functions is closed, Ωt(α′, z) = limn→∞Ω
(n)
t (α′, z)

is also weakly increasing in z. It follows that E[Vt+1(α′, z′)∣z] has increasing differences in

(α′, z) as wanted.
We now turn to the limiting behavior of α̃t(α, z) as z grows to infinity. Automation

decisions are guided by Ωt+1(α′, z), which gives the marginal benefit to the firm of automating

tasks up to α′. Suppose that α < α∗t+1, and take any α′ ∈ [α,α∗t+1]. With a CES demand

system, ∂πt(α
′,z′)

∂α is an increasing and unbounded function of z′, unless α′ = α∗t+1, in which case

this is zero. As required in footnote 11, this implies that E [∂πt(α
′,z′)

∂α ∣z] and the right-hand

side of equation (A1) converge to infinity as z → ∞, unless α′ = α∗t+1. Optimal policy thus

sets α′ = α∗t+1.
We conclude by exploring the limiting behavior of α̃t(α, z) as z goes to zero. The con-

ditions in footnote 11 imply that E [∂πt(α
′,z′)

∂α ∣z] and the right-hand side of equation (A1)

converge to zero as z → 0. This implies Ωt+1(α′, z) = 0 for all α′ and optimal policy keeps

α′ = α.
Remark: the above proof shows that automation decisions and productivity levels are
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complementary if yt(α,z)z increases in z. A demand system satisfies this property if the product

of the demand elasticity and the passthrough of marginal costs into prices exceeds 1 for all

firms. This holds with a CES demand (demand elasticity σ and passthrough 1), but does

not hold generically with a log-concave demand system. In any case, the proof above also

shows that this complementarity will only break down for extremely large firms for which

σ approaches 1. These firms reduce their use of labor and capital as their productivity

increases and have no incentives to automate further.

The next Proposition shows that the model admits a stationary equilibrium where all

firms allocate all tasks below a common α∗ to capital and the behavior of aggregates is

identical to that from a model where firms face no fixed costs of automation.

Consider a version of our model where firms face no fixed costs of automation (and so

they set αtf = α∗t ) and capital prices are fixed, so that qt(x) = q(x). This version of our

model is equivalent to a standard Hopenhayn model where firms marginal costs only depend

on their productivity z and are given by

ct(z) =
1

z
⋅min

α
(Γk(α) + Γℓ(α) ⋅w1−η

t )
1

1−η .(A2)

As shown in Hopenhayn (1992), this model has a unique stationary equilibrium. Let w∗

denote the wage in this stationary equilibrium an α∗ the common level of automation that

minimizes marginal costs for this wage level.

Proposition A1 Suppose qt(x) = q(x). The economy admits a unique stationary equilib-

rium with wage w∗. In this stationary equilibrium, αtf ≥ α∗ almost surely (i.e. for all firms

except a set of measure zero) and produce tasks below α∗ with capital and tasks above α∗ with

labor.

Proof. Suppose the wage converges to w and let α denote the level of automation that

minimizes marginal costs for this wage level.

Consider the path for ᾱt. Define

αinf = limT→∞inft≥T{ᾱt}.

We first show that we cannot have αinf < α by way of contradiction.

Suppose αinf < α. For large t, firms alive at t started with a level of automation of at

least αinf almost surely. This follows from the restrictions in footnote 11, which imply that

all firms exit with positive probability, and so the probability that firms alive at time t where

born at T or later converges to 1 as t→∞.
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For these firms, αtf ≥ αinf . Moreover, a positive mass m of these firms received positive

productivity shocks and increased αtf above αinf + δ, for a positive but small δ such that

αinf +δ < α. This follows from Proposition 1 and the restrictions in footnote 11, which imply

that firms reach the requisite size to justify investing in increasing αtf up to αinf + δ with

positive probability. However, This would imply ᾱt ≥ αinf +m ⋅δ, contradicting the definition

of αinf .

This means we must have αmin ≥ α. For large t, firms alive at t started with a level

of automation of at least α almost surely. This means that αtf ≥ α almost surely and the

economy converges to a standard firm-dynamics model where firms costs are given by (A2),

as wanted.

As shown in Hopenhayn (1992), this model features a unique stationary equilibrium,

with wage w∗. In this stationary equilibrium, αtf ≥ α∗ and firms produce all tasks below

α∗ with capital and all tasks above α∗ with labor almost surely. Note that there might be

a measure-zero set of firms with αtf < α∗ that do not exit, and that is why the proposition

claims αtf ≥ α∗ almost surely.

A.2 Effects of q shocks

This subsection proves Propositions 2 and 3. We first provide a technical lemma that helps

characterize the impact of q shocks on real wage levels. This lemma is not central to this

paper, but is proven here for completeness.

Lemma A1 (Effects of q shocks on the stationary equilibrium) Let c denote the

(real) marginal cost for a firm with unit productivity in the stationary equilibrium. The sta-

tionary distribution of firm productivities and c remain unchanged following a q shock.

Proof. The proof is by construction and involves showing that this outcome satisfies the

equilibrium conditions E1–E6.

Let f(z) denote the mass of firms with productivity z in the initial stationary distribution

and c the (real) marginal cost for a firm with unit productivity in this equilibrium. By

construction, this equilibrium satisfies E1–E5.

Consider an arbitrary q shock. We guess and verify that the wage adjusts in the new

equilibrium so as to keep f(z) and c unchanged. In turn, output adjusts as to ensure

labor-market clearing.

We verify this conjecture in steps:

• First, note that the ideal-price index depends on c and the distribution of z, both of

which we conjectured remain unchanged. This shows that our conjecture satisfies E1.

A4



• Second, note that firm entry and exit decisions conditional on z remain unchanged.

This is because the demand faced by firm and their operating costs scale with output

y, while their marginal cost remains constant and equal to (1/z) ⋅ c. This means that

firms value functions will scale with y. Notice that in the initial and final equilibrium,

firms set αt+1,f = αtf (a consequence of Proposition A1). This means that there are no

costs incurred for automating additional tasks in a stationary equilibrium. This shows

that our conjecture satisfies E3 and E4.

• Third, because entry and exit decisions conditional on z remain unchanged, the sta-

tionary distribution of productivity f(z) also remains unchanged. This shows that our

conjecture satisfies E5.

• Finally, the change in output is pinned down by labor market clearing, which shows

that our conjecture satisfies E2.

The same proof applies to any homothetic demand system.

Proof of Proposition 2. Write q(x) = q⋅q0(x) for tasks below α∗ and consider a permanent

increase in q by d ln qint for these tasks. The equilibrium impact of this shock is to change

wages by d lnw and automation decisions by a common amount d lnα∗ (a consequence of

Proposition A1).

We first characterize the effect of this q shock on wages. Lemma A1 shows that wages

adjust so as to keep unit costs unchanged. An application of Shephard’s lemma implies that

d ln c = εℓ ⋅ d lnw − εk ⋅ d ln qint,

where, in addition, the envelope theorem ensures that the effect of changes in α∗ on c are

second order and can be ignored. Because d ln c = 0, we can solve for the change in wages as

d lnw = ε
k

εℓ
⋅ d ln qint.

We now turn to the behavior of cost shares (or equivalently, output elasticities). In steady

state, all firms have the same labor cost share (a consequence of Proposition A1), given by

εℓ = Γℓ(α∗) ⋅w1−η

Γk0(α∗) ⋅ qη−1 + Γℓ(α∗) ⋅w1−η .

This common cost share for labor varies with wages and α∗. Equation (2) implies that the
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change in the optimal threshold α∗ satisfies

d lnα∗ = 1

∂ lnψℓ(α∗)/q(α∗)/∂ lnα
⋅ d lnw.

Using this expression for d lnα∗ and the definition of η∗, we obtain

d ln εℓ = εk ⋅ d ln ε
ℓ

εk

= εk ⋅ (1 − η) ⋅ (d ln qint + d lnw) + εk ⋅
∂ lnΓℓ(α∗)/Γk0(α∗)

∂ lnα
⋅ d lnα∗

= εk ⋅ (1 − η) ⋅ (d ln qint + d lnw) + εk ⋅ (η − η∗) ⋅ d lnw

= εk ⋅ (1 − η∗) ⋅ d lnw + εk ⋅ (1 − η) ⋅ d ln qint.

Along the transition, firms will differ in the extent to which they will automate their

tasks. Let d lnαtf denote the additional tasks automated by firm f at time t. We have that

d ln εℓtf = εk ⋅ (1 − η) ⋅ (d ln qint + d lnwt) + εk ⋅
∂ lnΓℓ(α∗)/Γk0(α∗)

∂ lnα
⋅ d lnαtf .

The expression for incumbents that do not automate follows from taking d lnαtf = 0.
Proof of Proposition 3. Write q(x) = q⋅q0(x) for tasks above α∗ and consider a permanent

increase in q by d ln qext for these tasks. The equilibrium impact of this shock is to change

wages by d lnw and automation decisions by a common amount d lnα∗ (a consequence of

Proposition A1).

We first characterize the effect of this q shock on wages. Lemma A1 shows that wages

adjust so as to keep unit costs unchanged. The envelope theorem ensures that the effect of

changes in α∗ on c are negative but second order, while the effects of changes in α∗ on c

are positive and first order. Because d ln c = 0, wages must increase by a positive but second

order amount, d lnw = O(d ln q2ext) > 0.
We now turn to the behavior of cost shares (or equivalently, output elasticities). In steady

state, all firms have the same labor cost share (a consequence of Proposition A1), given by

εℓ = Γℓ(α∗) ⋅w1−η

Γk0(α∗) + Γℓ(α∗) ⋅w1−η .

This common cost share for labor will vary with prices and α∗. Equation (2) implies that

the change in the optimal threshold α∗ satisfies

d lnα∗ = 1

∂ lnψℓ(α∗)/q(α∗)/∂ lnα
(d lnw + d ln qext).
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Using this expression for d lnα∗ and the definition of η∗, we obtain

d ln εℓ = εk ⋅ d ln ε
ℓ

εk

= εk ⋅ (1 − η) ⋅ d lnw + εk ⋅ ∂ lnΓ
ℓ(α∗)/Γk0(α∗)
∂ lnα

⋅ d lnα∗

= εk ⋅ (1 − η) ⋅ d lnw − εk ⋅ (η∗ − η) ⋅ (d lnw + d ln qext)

= εk ⋅ (1 − η∗) ⋅ d lnw − εk ⋅ (η∗ − η) ⋅ d ln qext.

Along the transition, firms will differ in the extent to which they automate their tasks.

Let d lnαtf denote the additional tasks automated by firm f at time t. We have that

d ln εℓtf = εk ⋅ (1 − η) ⋅ d lnwt + εk ⋅
∂ lnΓℓ(α∗)/Γk0(α∗)

∂ lnα
⋅ d lnαtf .

The expression for incumbents that do not automate follows from taking d lnαtf = 0.

A.3 The induced elasticity of substitution η∗

The text explains that η∗ is the elasticity of substitution that one would estimate from

permanent variation in wages. This subsection formalizes this connection.

The elasticity of substitution is defined as

elasticity of substitution = d lnK/L
d lnw

= 1 − d ln(ε
ℓ/εk)

d lnw
.

Using the expression for cost shares in the text, the definition of η∗t and the fact that

d lnα∗ = 1

∂ lnψℓ(α∗)/q(α∗)/∂ lnα
⋅ d lnw,

we get

elasticity of substitution =1 − (1 − η) − ∂ lnΓ
ℓ(α∗)/Γkt (α∗)
∂ lnα

⋅ d lnα
∗

d lnw

=1 − (1 − η) − (η − η∗t )

=η∗t ,

as wanted.
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B Proofs and derivations for the model with log-concave demand

This section provides the details of the model with a log-concave demand system.

B.1 Micro-foundation for λ

We show that the demand system implied by (4) is isomorphic to one where firms compete

against a growing mass of firms for a given consumer.

Let’s first consider the demand system in the main text. Firm demand is derived from

the following cost minimization problem:

min
ytf
∫
f
ptf ⋅ ytf ⋅ df s.t: ∫

f
λ ⋅H (

ytf
λt ⋅ yt

) ⋅ df = 1.

Let ρt ⋅yt denote the Lagrange multiplier on the constraint. The first-order condition for the

choice of ytf is then

ytf = yt ⋅ λ ⋅D (
ptf
ρt
) ,(A3)

where D is decreasing and given by the inverse function of H ′(x). Plugging the demand for

each variety in the constraint, we obtain

∫
f
λ ⋅H (D (

ptf
ρt
)) ⋅ df = 1.(A4)

Moreover, because the price of the final good is normalized to 1, we must have

1 = ∫
f
λ ⋅ ptf ⋅D (

ptf
ρt
) ⋅ df.(A5)

In sum, the equilibrium for the Kimball demand system is summarized by equations (A3),

(A4), and (A5).

Let’s now show this system is equivalent to one with multiple consumers where firms can

access and compete over a fixed mass of them.

There is a mass 1 of customers with equal incomes indexed by j whose flow utility utj

from consuming a set of varieties Ftj is defined implicitly by

∫
f∈Ftj

H (
ytfj
utj
) ⋅ df = 1.

Consumers maximize their utility utj subject to their budget constraint. As above, consumer
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j demand from firm f ∈ Ftj is

ytfj = yt ⋅D (
ptf
ρtj
) ,

where yt is income per consumer and ρtj satisfies

∫
f∈Ftj

H (D (
ptf
ρtj
)) ⋅ df = 1.

Firms and customers are randomly matched to each other, with each customer matched

to a mass λ of firms. Random matching implies that all consumers face the same distribution

of prices, and so they share a common ρtj = ρt.
As a result, total demand for firm f is

ytf = yt ⋅ λ ⋅D (
ptf
ρt
) ,

which coincides with equation (A3). The equation for ρtj can then be written as

∫
f
λ ⋅H (D (

ptf
ρt
)) ⋅ df = 1,

which coincides with (A4). Finally, adding revenue across firms we get yt = ∫f ytf ⋅ ptf ⋅ df ,
which implies

1 = ∫
f
λ ⋅ ptf ⋅D (

ptf
ρt
) ⋅ df.(A6)

This equation coincides with (A5), establishing the aggregation result.

B.2 Implications for prices, sales, and markups

This subsection shows that Marshall’s second laws imply properties P1–P3 in the text.

The formal assumptions behind Marshall’s second laws are:

• Weak second law: demand elasticity −x ⋅D′(x)/D(x) exceeds 1 and increases in x.

• Strong second law: marginal revenue x +D(x)/D′(x) is positive and log-concave.

Proposition A2 Consider a firm with a constant marginal cost c and denote its optimal

price by p∗(c), markups by µ∗(c), and firm sales by ω∗(c). Under Marshall’s weak second law,

p∗(c) is increasing and µ∗(c) is decreasing. Moreover, under Marshall’s strong second law,
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markups and prices, µ∗(c) and p∗(c), are log-convex functions of costs, which implies lower

passthroughs for more productive firms. Finally, sales ω∗(c) are log-concave and decreasing

functions of costs.

Proof. Prices are given by

p∗(c) = argmax
p

y ⋅ λ ⋅D (p
ρ
) ⋅ (p − c).

This problem has increasing differences in p and c, which implies that p∗(c) increases in c.
Moreover, the first order condition for this problem is

−1
ρ
D′ (p

ρ
) ⋅ (p − c) =D (p

ρ
) ⇒ µ∗(c)

µ∗(c) − 1
= −p

∗(c)
ρ

D′ (p
∗(c)
ρ )

D (p∗(c)ρ )
.

Marshall’s weak second law combined with the fact that p∗(c) increases in c implies that

the right-hand side of the above equation increases in c. The left-hand side is a decreasing

function of µ∗(c), which therefore implies that µ∗(c) is decreasing in c as wanted.

We can rewrite the first-order condition for prices as

p∗(c)
ρ
+ D(p

∗(c)/ρ)
D′(p∗(c)/ρ)

= c
ρ
.

Differentiating this expression yields

∂ lnp∗(c)
∂ ln c

= 1

d (p∗(c)ρ )
,

where

d(x) = ∂ ln (x +D(x)/D
′(x))

∂ lnx

is a decreasing function according to Marshall’s strong second law. It follows that lnp∗(c)
is a convex function in ln c. Moreover, lnµ∗(c) = lnp∗(c) − ln c inherits this convexity.

Turning to sales shares, we have that ω∗(c) can be written as

ω∗(c) = h(p∗(c))/y,

where h(x) = xD(x) is a log-concave and decreasing function of x (from Marshall’s weak

second law). Thus, ω∗(c) is the composition of a log-concave and decreasing function (h(x))
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with a log-convex and increasing function p(c), which results in a log-concave and decreasing

function.

B.3 Effects of rising market access

We now derive the effects of an increase in market access—Properties P4–P5 in the text.

We assume the economy starts from a stationary equilibrium where all firms have the

same degree of automation. We then characterize the immediate effect of a λ shock. By

design, this exercise does not account for any effect of λ shocks through subsequent entry,

exit, or automation decisions. These effects are harder to study analytically, but are explored

in our numerical exercises.

Let µz and pz denote the markup and price charged by a firm of productivity z, and ωz

its sales share.

Proposition A3 An increase in λ has the following immediate effects:

• µz decreases for all z;

• for z > z′, µz/µz′ decreases;

• for z > z′, ωz/ωz′ increases.

Proof. Firms’ marginal cost is (1/z) ⋅ c(w) for some common c(w), which is a function of

the equilibrium wage.

Let cnorm = c/ρ, where ρ is the value of ρt at the initial equilibrium. cnorm is an endogenous

object pinned down by market access and the distribution of productivities, as we show later.

It also summarizes the degree of competition in the economy.

We can rewrite firms’ pricing problem as

max
pnorm

D(pnorm) ⋅ (pnorm −
1

z
⋅ cnorm) ,

where pnorm = p/ρ is a normalized firm price. Optimal firm prices are pz = ρ ⋅ p∗(cnorm/z),
markups are µz = µ∗(cnorm/z), and sale shares are ωz = ω∗(cnorm/z).

We now show that λ increases cnorm. The implicit definition of ρ can be rewritten as

∫
z
λ ⋅H (D (p∗ (cnorm/z))) ⋅mz ⋅ dz = 1.

From this equation we see that λ increases the equilibrium value of cnorm (keep in mind that,

here, mz is maintained constant, as we are characterizing only the immediate impact of a λ

shock).
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We now characterize the effects of the increase in cnorm.

First, for a given z, µz = µ∗(cnorm/z) decreases in cnorm, as wanted.
Second, because µ∗(c) is log-convex, we have that, for z > z′,

lnµz − lnµz′ = lnµ∗ (cnorm/z) − lnµ∗ (cnorm/z′)

is decreasing in cnorm, as wanted.

Third, because the function ω∗(c) is log-concave,

lnωz − lnωz′ = lnω∗ (cnorm/z) − lnω∗ (cnorm/z′)

is increasing in cnorm for z > z′, as wanted.

Proposition A4 Let f(z) denote the mass of firms of productivity z. The aggregate labor

share is sℓ = εℓ/µ, where the aggregate markup µ is a sales weighted harmonic mean of

firm-level markups:

1

µ
= ∫

z

1

µz
⋅ ωz ⋅ f(z) ⋅ dz.

The immediate effect of λ is to increase the aggregate markup if the distribution of produc-

tivity is log-convex (i.e., more convex than Pareto), lower it if the distribution of productivity

is log-concave (i.e., less convex than Pareto), and leave it unchanged if the distribution of

productivity is log-linear (i.e., Pareto).

Proof of Proposition A4. As before, we investigate the implications of an increase in

cnorm holding the distribution of productivities constant at f(z) and without accounting for

subsequent automation decisions.

We can write the aggregate markup as

1

µ
= ∫

z

1

µ∗ (cnorm/z)
⋅ ω∗ (cnorm/z) ⋅ f(z) ⋅ dz.

With the change of variable x = cnorm/z, we can rewrite this as

1

µ
= ∫

x

1

µ∗ (x)
⋅ g(x, cnorm) ⋅ dx,

where g(x, cnorm) is a density function given by

g(x, cnorm) = ω∗ (x) ⋅ f(cnorm/x) ⋅
cnorm
x2
⋅ dx.
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First, suppose that f(z) is log-concave. This implies that

ln g(x, cnorm) = lnω∗ (x) + ln f(cnorm/x) + ln cnorm − 2 lnx

has increasing differences in x and c̄. This is equivalent to the following monotone likelihood

ratio property (MLRP):

g(x, cnorm)
g(x′, cnorm)

increasing in cnorm for x > x′.

The MLRP property implies that an increase in cnorm generates a shift up (in the first-order

stochastic dominance sense) in g(x, cnorm). Because the function 1
µ∗(x) is increasing in x, the

aggregate markup µ decreases in cnorm as wanted.

Second, suppose that f(z) is log-convex. This implies that

ln g(x, cnorm) = lnω∗ (x) + ln f(cnorm/x) + ln cnorm − 2 lnx

has decreasing differences in x and cnorm. This is equivalent to the following monotone

likelihood ratio property (MLRP):

g(x, cnorm)
g(x′, cnorm)

decreasing in cnorm for x > x′.

The MLRP property implies that an increase in cnorm generates a shift down (in the first-

order stochastic dominance sense) in g(x, cnorm). Because the function 1
µ∗(x) is increasing in

x, the aggregate markup µ increases in cnorm as wanted.

Finally, suppose that f(z) is log-linear. This implies that

ln g(x, cnorm) = lnω∗ (x) + ln f(cnorm/x) + ln c̄ − 2 lnx

is a linear function in ln cnorm. Equivalently,

g(x, cnorm)
g(x′, cnorm)

is independent of cnorm.

Thus, the integral defining µ is independent of cnorm.
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B.4 Properties of the Klenow–Willis aggregator

As a functional form for the Kimball (1995) aggregator H we use the specification from

Klenow and Willis (2016), defined as

H(q) ≡ 1 + (σ − 1) ⋅ exp(1
ν
) ⋅ ν σ

ν
−1 ⋅ [Γ(σ

ν
,
1

ν
) − Γ(σ

ν
,
q

ν
σ

ν
)] ,

where Γ(⋅, ⋅) is the upper incomplete Gamma function,

Γ(s, x) ≡ ∫
∞

x
ts−1 ⋅ exp(−t)dt.

This gives rise to the following (relative) demand function D−1 =H ′:

D(x) = (1 − ν ⋅ ln(x ⋅ σ

σ − 1
))

σ
ν

.

The price elasticity of demand is

−x ⋅D
′(x)

D(x)
= σ

1 − ν ⋅ ln (x ⋅ σ
σ−1)

= σ ⋅D(x)− ν
σ ,(A7)

which reduces to the constant σ if ν = 0 (the benchmark case of a CES aggregator). In general,

equation (A7) shows that under this parametrization, the super-elasticity of demand is equal

to the constant − νσ , and that larger firms will face more inelastic demand curves.

To conclude, we show that the Klenow-Willis aggregator satisfies Marshall’s second laws.

Equation (5) shows that the demand elasticity is increasing in the relative price and greater

than 1 (Marshall’s weak second law), imposing the restriction that σ > 1 and ν > 0. To see

that the strong law holds as well, write the logarithm of marginal revenue as

ln(x + D(x)
D′(x)

) = lnx + ln(1 + D(x)
x ⋅D′(x)

)

= lnx + ln
⎛
⎝
σ + ν ⋅ lnx + ν ⋅ ln ( σ

σ−1) − 1
σ

⎞
⎠
,

which is a concave function of lnx as desired.

B.5 Incorporating demand shocks

In our baseline model, firm dynamics are driven by productivity shocks ztf . This subsec-

tion discusses the implications of allowing for firm-specific demand shocks zdtf . It shows that
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demand shocks produce identical responses to a productivity shock on revenue, markups, au-

tomation decisions, labor shares, and profits. The two shocks only differ in their implications

for firm prices.

To introduce demand shocks, we modify the Kimball aggregator in (4) to

∫
f
λ ⋅H (

zdtf ⋅ ytf
λ ⋅ yt

) ⋅ df = 1,

where zdtf is a taste shifter for firm f ’s variety.

The demand curve faced by firms is now given by

ytf = λ ⋅ yt ⋅
1

zdtf
⋅D (

ptf
ρt ⋅ zdtf

) ,

and its profit maximization problem is modified to

πt(αtf , ztf , zdtf) =max
ptf

λ ⋅ yt ⋅
1

zdtf
⋅D (

ptf
ρt ⋅ zdtf

) ⋅ (ptf −
1

ztf
ct(αtf)) ,

where ct(αtf) is the unit cost of a firm with unitary productivity and πt(αtf , ztf , zdtf) the
profit function.

Let pdtf = ptf/zdtf be a taste-adjusted price. We can rewrite profit maximization as

πt(αtf , ztf , zdtf) =max
pd
tf

λ ⋅ yt ⋅D (
pdtf
ρt
) ⋅ (pdtf −

1

ztf ⋅ zdtf
ct(αtf)) .

This shows that firms’ profits and optimal choices are functions of the composite ztf ⋅ zdtf .
This implies that a productivity and a demand shock with the same persistence will generate

the exact same responses in terms of firm profits, exit, and automation decisions, all of which

depend entirely on the profit function.

Moreover, using the notation introduced in the proof of Proposition A2, we can write

optimal taste-adjusted prices as

pdtf = p∗ (
1

ztf ⋅ zdtf
ct(αtf)) ,

prices as

ptf = zdtf ⋅ p∗ (
1

ztf ⋅ zdtf
ct(αtf)) ,
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and markups as

µtf =
ptf

1
ztf
ct(αtf)

=
pdtf

1
ztf ⋅zdtf

ct(αtf)
= µ∗ ( 1

ztf ⋅ zdtf
ct(αtf)) .

This shows that demand and productivity shocks have identical implications for markups

but different implications for prices. Markups increase with both demand and productivity

shocks. Instead, prices increase with demand shocks (since p∗(c) is increasing in c but with

a passthrough below one) and decrease with productivity shocks.
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C Additional numerical exercises and details for manufacturing

C.1 Details of the q-shock:

A more general expression for the q shocks used in our quantitative exploration is

qI,t(x) =
⎧⎪⎪⎨⎪⎪⎩

qint,t if x ≤ α∗0
min{qint,t ⋅

ψℓ(x)/ψℓ(α∗0)
ψk(x)/ψk(α∗0)

, qext,t} if x > α∗0

for some increasing {qint,t, qext,t} converging to {qint, qext}.
The main text normalized baseline wages to 1 and assume that qI0(x) = 1. This implies

ψℓ(α∗0)/ψk(α∗0) = 1, which simplifies the formulation of the shock.

Figure A1 represents the q shock graphically. Tasks are arranged in [0,1] in the horizontal

axis. At time 0, we have qI,t(x) = 1 for all tasks. Over time, the productivity with which

the economy can produce the capital needed for task x rises. In the figure, we depict a case

where capital advances are more pronounced at the extensive margin, as in our calibration.

Figure A1: Representation of q shocks. Tasks are arranged in [0,1] in the horizontal axis. At time
0, we have qI,0(x) = 1 for all tasks. Over time, the productivity with which the economy can produce the
capital needed for task x rises to qI,t(x).

C.2 Shutting down diffusion

Columns (3) and (4) in Table A1 report two counterfactual exercises that assess the signif-

icance of the diffusion of automation assumption. In our baseline experiment (reproduced

in column 2), technology diffuses via entry as entrants’ initial automation level equals the
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unweighted average automation level in use in the economy, αentrant,t = ᾱt. In column (3) we

maintain the diffusion assumption for the initial steady state, such that firms have identical

labor shares in 1982, but then remove it over the transition. I.e., entering firms in any year

t > 1982 are assigned the automation level of the initial steady state α⋆, which is lower than

ᾱt. We do not re-calibrate the inferred aggregate shocks and parameters. The results are

very similar. In fact, the main difference is that in the counterfactual economy, without

diffusion to entrants, the relative adoption gradient naturally increases.

Column (4) explores the implications of shutting down diffusion for the initial steady

state as well. For this experiment, we assume that entrants start with a fraction of the

optimal automation level αtf = m ⋅ α⋆, with m < 1. We calibrate m = 0.5 to match the ratio

of the unweighted mean firm to the aggregate labor share of 1.11 in 1982. This modified

version of the model generates an initial steady state with the same amount of labor share

dispersion by size as in the data. The resulting dynamics in response to q shocks remain

very similar to our baseline findings.

C.3 Calibration with η∗ = 1.45

Columns (5) and (6) in Table A1 report results from an alternative parametrization with

an induced elasticity of η∗ = 1.45, as estimated by Karabarbounis and Neiman (2013) and

Hubmer (2023).

For this parametrization, we normalize initial capital prices to 1 and set

ψk(x) =1, ψℓ(x) =A ⋅ (x
1−η∗

η∗−η − 1)
1

1−η∗

.

Note that this requires η∗ > 1 so that ψℓ(x)/ψk(x) is increasing in x.

With this specification, the cost function of firms in the initial steady state becomes

c0(α, z) =
1

z
⋅
⎛
⎝
α + (1 − α

η∗−1
η∗−η )

η∗−η
η∗−1

⋅ (w0

A
)
1−η⎞
⎠

1
1−η

.

Minimizing with respect to α, we obtain

α∗0 = (
(w0/A)η

∗−1

1 + (w0/A)η∗−1
)

η∗−η
η∗−1
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Table A1: Robustness checks manufacturing: no diffusion and induced elasticity η∗ = 1.45

Induced elasticity η∗ = 1 (baseline) η∗ = 1.45

Data Baseline

No
diffusion

over
transition

No
diffusion
in initial

st st

Both q
shocks

Uniform q
shock

(1) (2) (3) (4) (5) (6)

I. Parameters and inferred aggregate shocks
d ln qint 0.67 0.67 0.67 0.86 1.68
d ln qext 5.48 5.48 5.48 1.63 1.68
ca 0.19 0.19 0.19 0.32 0.35

II. Targeted moments, 1982–2012
∆ aggregate labor share -0.20 -0.20 -0.20 -0.21 -0.20 -0.20
∆ log average capital price -1.08 -1.08 -1.08 -1.09 -1.09 -1.68
Relative adoption 1.71 1.71 4.27 1.67 1.70 1.71
(P99+ vs. P50-75 firms)

III. Concentration 1982–2012 (from Autor et al., 2020; Decker et al., 2020)
∆ log 4 firms’ sales share 0.140 0.105 0.125 0.071 0.055 0.071
∆ log 20 firms’ sales share 0.072 0.104 0.124 0.072 0.054 0.070
∆ log productivity dispersion 0.050 0.061 0.073 0.061 0.041 0.059

IV. Typical firm labor share from Kehrig and Vincent (2021), 1982–2012
∆ median labor share 0.030 -0.005 0.084 -0.005 -0.042 -0.002
∆ unweighted mean -0.017 -0.039 0.004 -0.077 -0.055 -0.023

V. Melitz–Polanec decomposition from Autor et al. (2020), 1982–2012
∆ aggregate labor share -0.185 -0.198 -0.199 -0.197 -0.201 -0.202
∆ unweighted incumbent mean -0.002 -0.015 -0.023 -0.016 -0.029 0.006
Exit -0.055 -0.006 -0.006 -0.005 -0.004 -0.004
Entry 0.059 0.006 0.007 0.006 0.006 0.006
Covariance term -0.187 -0.183 -0.177 -0.183 -0.174 -0.210

VI. Covariance decomposition from Kehrig and Vincent (2021), 1982–2012
Market share dynamics 0.047 0 0 0 0 0
Labor share by size dynamics -0.043 -0.078 -0.077 -0.078 -0.059 -0.069
Cross-cross dynamics -0.232 -0.066 -0.066 -0.064 -0.080 -0.099

Notes: Column (2) reproduces the findings from our baseline CES model. Column (3) features the same initial steady state but
then removes diffusion of technology via entry over the transition. Column (4) in addition removes the diffusion assumption in
the initial steady state. Columns (5-6) feature a higher induced elasticity of η∗ = 1.45. (5) infers the combination of intensive
and extensive margin capital price declines as in the baseline. (6) instead imposes that capital prices decline uniformly.

and

c0(α∗0 , z) =
1

z
⋅ (1 + (w0

A
)
1−η∗

)
1

1−η∗

.

This shows that the induced elasticity of substitution is η∗, as wanted.

As in our baseline, we set η = 0.5, which means that tasks are complements. We also

calibrate A so that the labor share in the initial steady state is 67%.

In column (5) we follow the same inference procedure as in the baseline model. To
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match the manufacturing labor share decline and average capital price decline, we back out

a combination of q shocks that loads relatively less on the extensive margin. This is expected

since with η∗ > 1, even a uniform capital price decline generates an aggregate labor share

decline.

Column (6) demonstrates this point by fitting a uniform q shock to the manufacturing

labor share decline. This column shows that one could also generate the observed labor share

decline as a result of a uniform decline in capital prices of 168 log points. The fact that this

exceeds the decline in capital prices seen in the data highlights the importance of allowing

for differences in capital advances at the intensive and extensive margin, since a uniform

shock would require more technological progress than inferred from capital price data.

C.4 Changing the super-elasticity of demand in the log-concave demand model

In the main text, we calibrated a demand super-elasticity of ν
σ = 0.22 by matching the

ratio of the (unweighted) mean firm labor share to the aggregate sectoral labor share. This

appendix reports results for manufacturing using a lower super-elasticity of 0.16 as estimated

by Edmond, Midrigan and Xu (2022).

For this robustness check, we focus on the exercise in section 3.3. This shows how a

different super-elasticity changes our inference and the effects of q and λ shocks.

First, we re-calibrate the parameters in the initial steady state. The main difference is

that a lower value of the super-elasticity requires less convexity in the productivity distribu-

tion, since the mapping from productivity to firm sales is less log-concave. For manufacturing,

we infer n = 0.91 (instead of n = 0.74 as in Table 3). Thus, the inferred z-distributions are

closer to the log-linear case (Pareto).

Table A2 reports the main results over the transition (1982–2012) for both sectors. Rela-

tive to the results in the main text, the inferred rising competition shock is somewhat larger,

with d lnλ = 0.09 (instead of d lnλ = 0.06 as in Table 4). However, the lower log-convexity

of the z-distribution implies that the λ shock generates a smaller increase in the aggregate

markup, and correspondingly a smaller decrease in the aggregate labor share. The contribu-

tion of falling capital prices to the labor share decline is similar across parametrizations. As

expected, the labor share dynamics across firms are in between those obtained in the main

text with a higher super-elasticity ν
σ = 0.22 and the CES demand case.
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Table A2: Robustness checks manufacturing: lower super-elasticity of ν
σ = 0.16

Results from log-concave demand model

Data Both shocks
Only effects

of d ln q
Only effects

of d lnλ
(1) (2) (3) (4)

I. Parameters and inferred aggregate shocks
d ln qint 0.63 0.63 0
d ln qext 5.29 5.29 0
d lnλ 0.09 0 0.09
ca 0.17 0.17 0.17

II. Targeted moments, 1982–2012
∆ aggregate labor share -0.199 -0.198 -0.206 0.005
∆ log average capital price -1.081 -1.084 -1.031 0
∆ log 4 firms’ sales share 0.140 0.143 0.094 0.056
Relative adoption (P99+ vs. P50-75 firms) 1.71 1.71 1.66 14.23

III. Typical firm labor share and other moments
∆ median labor share 0.030 0.037 0.022 0.011
∆ unweighted mean -0.017 -0.003 -0.017 0.010
∆ log 20 firms’ sales share 0.072 0.139 0.111 0.035
∆ log productivity dispersion 0.050 0.074 0.065 0.000

IV. Melitz–Polanec decomposition from Autor et al. (2020)
∆ aggregate labor share -0.185 -0.195 -0.203 0.005
∆ unweighted incumbent mean -0.002 0.023 0.009 0.012
Exit -0.055 -0.011 -0.013 -0.013
Entry 0.059 0.009 0.011 0.012
Covariance term -0.187 -0.216 -0.210 -0.006

V. Covariance decomposition from Kehrig and Vincent (2021)
Market share dynamics 0.047 0.057 0.056 0.055
Labor share by size dynamics -0.043 -0.042 -0.046 0.054
Cross-cross dynamics -0.232 -0.179 -0.175 -0.115

VI. Change in markups, 1982–2012
∆ log aggregate markup -0.010 0.010 0.011 0.000
Within-firm change in markup -0.075 -0.025 -0.021 -0.010
Reallocation to high-markup firms 0.065 0.035 0.032 0.010

Notes: The table reports the equivalent of Table 4 in the main text but imposes a lower super-elasticity of ν
σ
= 0.16 (instead of

ν
σ
= 0.22 as in the main text). The parameters of the respective economies are re-calibrated, both in the steady state to match

all other targeted moments, as well as in regards to the inferred shocks d ln qint, d ln qext, d lnλ and the automation fixed cost
ca over the transition.
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D Calibration and results for other sectors

This appendix summarizes the results of our decomposition for non-manufacturing sectors.

D.1 Retail

We follow the same calibration approach as in manufacturing, with the calibrated parameters

and targets listed in Table A3. As explained in the text, we lack detailed data for some

of the moments used in retail and so we keep some of the parameters or moments from

manufacturing.

Table A3: Calibration of the log-concave demand model for retail

Parameter Moment Data Model

I. Parameters related to production function

η
Task substitution
elasticity

0.5 From Humlum (2019) 0.5 0.5

γℓ Comparative advantage 0.22
Retail labor share
(BLS/BEA)

0.72 0.72

II. Parameters governing firm dynamics and productivities in 1982 steady state

ν/σ Demand super-elasticity 0.22
Imputed from
manufacturing

σ Demand elasticity 8.95 Aggregate markup 1.15 1.15
ζ Weibull scale 0.0128 Top 20 firms’ sales share 29.9% 29.9%
n Weibull shape 0.47 Top 4 firms’ sales share 15.1% 15.1%
co Scale operating cost 6.9 ⋅10−6 Entry (=exit) rate 0.062 0.062
ξo Tail index operating cost 0.320 Size of exiters 0.490 0.494
µe Entrant productivity 0.855 Size of entrants 0.600 0.600

ρz Productivity persistence 0.86
Revenue TFP persistence
among retail firms

Notes: The table reports the calibrated parameters and targets for our model with log-concave demand in retail. The data on
top firms’ sales share is from Autor et al. (2020)’s estimates for the US retail sector. The annual entry rate, as well as relative
sizes of entrants and exiters, are from Lee and Mukoyama (2015) and imputed from manufacturing.

Table A4 summarizes the results for retail. Column 1 reports the available data. Column

2 reports the effects of the q and λ shocks backed out to match trends in retail’s labor share

and concentration. Columns 3 and 4 report the effects of the increase in q and λ shocks

separately. The decline in capital prices at the extensive margin continues to be the dominant

force in driving the labor share decline. However, the model attributes only a small fraction

of the increase in sales concentration to q shocks.
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Table A4: Effects of lower capital prices and rising competition: Retail 1982–2012

Results from log-concave demand model

Data Both shocks
Only effects of

d ln q
Only effects of

d lnλ
(1) (2) (3) (4)

I. Parameters and inferred aggregate shocks
d ln qint 0.48 0.48 0
d ln qext 3.25 3.25 0
d lnλ 0.30 0 0.30
ca 0.06 0.06 0.06

II. Targeted moments, 1982–2012
∆ aggregate labor share -0.127 -0.127 -0.122 -0.022
∆ log average capital price -0.865 -0.864 -0.689 0.000
∆ log sales concentration 0.546 0.546 0.063 0.480
Relative adoption 1.71 1.71 1.12 2.54
(P99+ vs. P50-75 firms)

III. Typical firm labor share and other moments
∆ median labor share 0.048 -0.036 0.037
∆ unweighted mean 0.028 -0.046 0.035
∆ log productivity dispersion 0.033 0.016 0.001

IV. Change in markups
∆ log aggregate markup 0.045 0.051 0.013 0.038
Within-firm change in markup -0.018 -0.015 -0.010 -0.016
Reallocation to high-markup firms 0.063 0.066 0.023 0.054

Notes: Column (2) reports the findings from our benchmark model. Column (3) shows results when shutting down the market
access shock, and column (4) when shutting down instead the price of capital shock. The data for markups comes from
Compustat estimates and is described in Section 3.3.

D.2 Wholesale and Utilities & transportation

Table A5 summarizes the steady state calibration of the model with log-concave demand for

wholesale as well as the utilities & transportation sector. The calibration strategy is identical

to manufacturing and retail. Here too, we lack detailed data for some of the moments used

and so we keep some of the parameters or moments from manufacturing.

For these two sectors, the log-convexity of the z-distribution is rather mild in these two

sectors (n slightly below 1), more in line with manufacturing than retail.

Table A6 shows the decomposition exercise. In wholesale and in utilities & transportation,

the labor share decline is mild, while the observed increase in sales concentration is moderate.

Consequently, the inferred capital price declines at the extensive margin are smaller than

in manufacturing, while the inferred increases in competition (d lnλ) are weaker than in

retail but stronger than in manufacturing. The inferred automation fixed costs (ca) are

comparable.

Figure A2 summarizes our findings across sectors.
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Table A5: Calibration of the log-concave demand model for Wholesale and Utilities &
Transportation

Parameter Moment Data Model

I. Wholesale: steady state parameters and moments (1982)
γℓ Comparative advantage 0.63 Wholesale labor share 0.53 0.53

ν/σ Demand super-elasticity 0.22
Imputed from
manufacturing

σ Demand elasticity 9.4 Aggregate markup 1.15 1.15
ζ Weibull scale 0.071 Top 20 firms’ sales share 42.9% 42.9%
n Weibull shape 0.75 Top 4 firms’ sales share 22.3% 22.3%
co Scale operating cost 3.2 ⋅10−7 Entry (=exit) rate 0.062 0.062
ξo Tail index operating cost 0.235 Size of exiters 0.490 0.493
µe Entrant productivity 0.889 Size of entrants 0.600 0.601

ρz Productivity persistence 0.86
Revenue TFP persistence
among wholesale firms

II. Utilities & Transportation: steady state parameters and moments (1992)
γℓ Comparative advantage 0.72 Util.&transp. labor share 0.51 0.51

ν/σ Demand super-elasticity 0.22
Imputed from
manufacturing

σ Demand elasticity 10.7 Aggregate markup 1.15 1.15
ζ Weibull scale 0.066 Top 20 firms’ sales share 59.1% 58.0%
n Weibull shape 0.74 Top 4 firms’ sales share 30.4% 31.3%
co Scale operating cost 9.0 ⋅10−8 Entry (=exit) rate 0.062 0.063
ξo Tail index operating cost 0.212 Size of exiters 0.490 0.489
µe Entrant productivity 0.891 Size of entrants 0.600 0.600

ρz Productivity persistence 0.86
Revenue TFP persistence
among ut. & transp. firms

Notes: The table reports the calibrated parameters and targets for our model with log-concave demand in wholesale (panel I)
and utilities and transportation (panel II). The data on top firms’ sales share comes from Autor et al. (2020)’s estimates for
each sector. The annual entry rate, as well as relative sizes of entrants and exiters, are from Lee and Mukoyama (2015) and
imputed from manufacturing.
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Table A6: Effects of lower capital prices and rising competition: Wholesale, Utilities &
Transportation 1982–2012

Results from log-concave demand model

(1)
Data

(2) Benchmark (3) Only d ln q (4) Only d lnλ

A. Wholesale (1982–2012) I. Parameters and inferred aggregate shocks
d ln qint 1.30 1.30 0
d ln qext 2.36 2.36 0
d lnλ 0.19 0 0.19
ca 0.18 0.18 0.18

II. Targeted moments, 1982–2012
∆ aggregate labor share -0.045 -0.045 -0.048 0.005
∆ log average capital price -1.596 -1.593 -1.563 0
∆ log sales concentration 0.202 0.209 0.048 0.163
Relative adoption 1.71 1.71 1.42 3.52
(P99+ vs. P50-75 firms)

III. Typical firm labor share and other moments
∆ median labor share 0.187 0.156 0.033
∆ unweighted mean 0.150 0.122 0.031
∆ log productivity dispersion 0.093 0.076 0.000

IV. Change in markups
∆ log aggregate markup 0.045 0.009 0.006 0.003
Within-firm change in markup -0.018 -0.043 -0.032 -0.015
Reallocation to high-markup firms 0.063 0.052 0.039 0.018

B. Utilities & Transportation (1992–2012) I. Parameters and inferred aggregate shocks
d ln qint 0.62 0.62 0
d ln qext 1.06 1.06 0
d lnλ 0.12 0 0.12
ca 0.10 0.10 0.10

II. Targeted moments, 1982–2012
∆ aggregate labor share -0.028 -0.028 -0.029 0.002
∆ log average capital price -0.684 -0.683 -0.676 0
∆ log sales concentration 0.108 0.104 0.025 0.079
Relative adoption 1.71 1.71 1.47 4.48
(P99+ vs. P50-75 firms)

III. Typical firm labor share and other moments
∆ median labor share 0.101 0.088 0.017
∆ unweighted mean 0.083 0.070 0.016
∆ log productivity dispersion 0.029 0.023 0.000

IV. Change in markups
∆ log aggregate markup 0.045 0.004 0.002 0.001
Within-firm change in markup -0.018 -0.015 -0.010 -0.008
Reallocation to high-markup firms 0.063 0.018 0.012 0.010

Notes: Column (2) contains the benchmark model. Due to data availability, the transition is over 1982–2012 for wholesale,
resp. 1992–2012 for utilities & transportation. Column (3) shuts down the market access shock, and column (4) shuts down
the price of capital shock.
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Figure A2: Model decomposition of labor share and sales concentration changes.

For each sector, the upper panel displays the log change in firm sales concentration (i) in the data Autor
et al. (from 2020), (ii) in the benchmark model with q and λ shocks jointly calibrated, (iii) in a model
counterfactual that keeps only the q shock active, (iv) in a model counterfactual that keeps only the
estimated λ shock active; (v) displays the interaction term, defined as (ii - iii - iv). The lower panel shows
sectoral labor share changes in data (BEA-BLS) and model.
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E Estimating Output Elasticities

E.1 Data description, sample, and definitions

We use data from Compustat for 1960–2016. We use the following variable definitions and

conventions:

• Revenue yRtf : we measure revenue using firm sales—SALES in Compustat.

• Expenditures in variable inputs vtf : we measure these expenditures using the cost of

goods sold— COGS in Compustat.

• Stock of capital ktf : we follow De Loecker, Eeckhout and Unger (2020) and measure

the capital stock using the gross value of property, plants, and equipment—PPEGT

in Compustat. We obtained similar results using an alternative measure of capital

computed using the perpetual inventory method. For this measure, we use the gross

value of property, plants, and equipment as our initial stock. We then measure net

investment as the difference in the net capital stock—PPENT in Compustat—over

consecutive periods and deflate this over time using the investment price deflator to

compute the capital stock over time.

• Investment rate xtf : we measure the investment rate as the percent change in capital;

that is, lnxtf = lnkt+1,f − lnktf

• Industry and firm groupings c(f): we conduct our estimation separately for 23 NAICS

industries, roughly defined at the 2-digit level. When grouping firms into size quintiles,

we do so for each year and within each 3-digit NAICS industry. We also experimented

with the classification of industries based on SIC codes used in Baqaee and Farhi (2020)

and obtained very similar results.

• Sample definition and trimming: following De Loecker, Eeckhout and Unger (2020),

we trim the sample by removing firms in the bottom 5th and top 5th percentiles of

the COGS -to-SALES distribution. In addition, following Baqaee and Farhi (2020), we

exclude firms in farm and agriculture, construction, real estate, finance, and utilities

from our capital elasticity and markup calculations in Figures 3 and 6.

• Winsorizing: we winsorize the obtained revenue elasticities at zero, and take 5-year

moving averages to smooth them. Moreover, following Baqaee and Farhi (2020), we

winsorize our markup estimates at the 5th and 95th percentile of their distribution.
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E.2 Estimation approach and details

Consider a firm that produces output by combining capital, k, and variable inputs, v, such

as labor and materials. This section describes our approach for estimating the output-to-

capital elasticity εktf and the output-to-variable-input elasticity εvtf from firm-level data on

revenue (y), expenditures in variable inputs (v), and capital (k). Following Olley and Pakes

(1996) and Ackerberg, Caves and Frazer (2015), we make the following assumptions:1

A1 Differences across firms in the price of variable inputs reflect quality, which implies

that we can treat expenditures in variable inputs as a measure of their quality-adjusted

quantity.

A2 Revenue yRtf is given by a revenue production function of the form

ln yRtf = zRtf + εRvtc(f) ⋅ ln vtf + εRktc(f) ⋅ lnktf + ϵtf ,

where c(f) denotes groups of firms with the same degree of automation and facing

a common process for their revenue productivity, which only differ in their revenue

productivity, zRtf , and an ex-post shock ϵtf that is orthogonal to ktf and vtf .

A3 Unobserved productivity zRtf evolves according to a Markov process of the form

zRtf = g(zRft−1) + ζtf ,

where ζtf is orthogonal to ktf and vft−1, and the function g is common to all firms in

the same group c(f).

A4 True revenue, ln yR∗tf = ln ytf − ϵtf can be expressed as

ln yR∗tf = h(lnxft, lnktf , ln vtf),

where lnxtf = lnkt+1,f − lnktf denotes the investment rate of a firm and the function h

is common to all firms in the same group c(f).
1An alternative approach to estimating markups assumes constant returns to scale (as we do) and directly

measures the user cost of capital as R = r+δ−πk, where r is a required rate of return inclusive of an industry-
specific risk premium, δ is the depreciation rate, and πk is the expected change over time in capital prices.
One can then compute markups as revenue divided by total cost (= V +RK). The user-cost formula, which
goes back to Hall and Jorgenson (1967) requires common and frictionless capital markets and assumes no
adjustment costs for capital. This strikes us as restrictive when thinking about firms undergoing a costly
automation process. Instead, the approach described below makes no assumptions about the marginal
product of capital across firms, or the importance of adjustment costs.
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A5 The gross output production function exhibits constant returns to scale in capital and

variable inputs, which implies that output elasticities are given by

εvtf =εRvtc(f)/(εRvtc(f) + εRktc(f)) εktf =εRktc(f)/(εRktc(f) + εRktc(f)) .(A8)

Assumptions A1–A4 are standard in the literature. Assumption A4 justifies the use of the

investment rate as a proxy variable. Economically, this assumption requires that all firms

in a given group share the same investment policy function kt+1,f = π(ktf , zRtf), and that

this common policy function is invertible. Under these assumptions, and given a grouping of

firms c(f), we can estimate revenue elasticities following the usual approach from Ackerberg,

Caves and Frazer (2015), which uses the investment rate as a proxy variable to obtain true

revenue and then estimates revenue elasticities by exploiting the orthogonality of ζtf to ktf

and vt−1,f .

Assumption A5 is added to deal with the fact that we do not observe prices, such that

the usual estimation procedure yields revenue elasticities, not the quantity elasticities that

are relevant for computing markups (see Bond et al., 2021). Under Assumption A5 we

can recover output elasticities from revenue elasticities using (A8). Suppose that revenue

is given by yR = p(q) ⋅ q, where p(q) is the inverse demand curve. Quantity elasticities

and revenue elasticities are then linked according to εRv = (p′(q) ⋅ q/p(q) + 1) ⋅ εv and εRk =
(p′(q) ⋅ q/p(q) + 1) ⋅ εk, where 1/µ = (p′(q) ⋅ q/p(q) + 1). Assuming constant returns to scale

implies that εv = εRv/(εRv + εRk), as wanted.
Given a grouping of firms c(f), we can estimate revenue elasticities following the usual

approach from Ackerberg, Caves and Frazer (2015), which uses investment as a proxy variable

for unobserved productivity. This requires a first-stage regression where we first compute

“true” output as

ln yR∗tf = E[ln yRtf ∣ lnxtf , lnktf , ln vtf , t, c(f)] = h(lnxtf , lnktf , ln vtf ; θhtc(f)).

Here θh
tc(f) is a parametrization for a flexible function h that might vary over time and

between groups of firms. For any pair of revenue elasticities εRv
tc(f) and ε

Rk
tc(f), one can then

compute revenue productivity as

zRtf = ln yR∗tf − εRvtc(f) ⋅ ln vtf − εRktc(f) ⋅ lnktf ,

estimate the flexible model

zRtf = g(zRt−1,f ; θ
g
tc(f)) + ζtf ,
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where θg
tc(f) is a parametrization for a flexible function g, and form the following moment

conditions that identify the revenue elasticities:

E [ζtf ⊗ (lnktf , ln vt−1,f)] = 0.

In our baseline approach, we parametrize the functions h and g using quadratic polyno-

mials and conduct our estimation over 10-year rolling windows. More importantly, and in

line with the emphasis in our model that large firms operate different technologies and face

a different demand curve, we group firms by quintiles of sales in each industry. Thus, our

estimation provides output elasticities that vary over time, by industry, and by quintiles of

firm size in each industry. This represents a significant deviation from previous papers which

assume that all firms in a given industry share the same output elasticities.

A byproduct of this estimation procedure are series for revenue TFP, zRtf . The estimated

persistence of revenue TFP is 0.95 for manufacturing and 0.86 for retail, wholesale, utilities

and transportation. These justifies the values of ρz used in our calibration approach.

Besides our main estimation approach, we also explored the following variations:

Estimates parametrizing g and h using cubic polynomials We estimate elasticities

under the same assumptions outlined in the main text, but parametrize g and h using cubic

polynomials. Figure A3 plots the behavior of the resulting output elasticities over time by

firm size quintile. Figure A4 reports the contribution of within-firm changes in markups and

between-firm reallocation to (percent) changes in the labor share.

Estimates assuming there are no ex-post shocks ϵ In the absence of ex-post shocks,

we can treat observed revenue as true revenue and there is no need to use a proxy variable

to recover productivity. Instead, we can compute revenue productivity directly as

zRtf = ln yRtf − εRvtc(f) ⋅ ln vtf − εRktc(f) ⋅ lnktf ,

and proceed with the rest of the estimation in the same way as before.

Figure A5 plots the behavior of the resulting output elasticities over time by firm size

quintile. Figure A6 reports the contribution of within-firm changes in markups and between-

firm reallocation to (percent) changes in the labor share.
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Estimates assuming a linear Markov process for productivity Suppose that pro-

ductivity follows a linear Markov process

zRtf = βzRt−1,f + ζtf .

Define υtf = zRtf + ϵtf . Because ex-post shocks are i.i.d, we have that υtf also follows a linear

Markov process

υtf = βυt−1,f + ζtf + ϵtf − βϵt−1,f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ιtf

.

Estimation proceeds as follows. First, we can compute υtf directly as

υtf = ln yRtf − εRvtc(f) ⋅ ln vtf − εRktc(f) ⋅ lnktf .

Then we estimate the linear model

υtf = βυt−1,f + ιtf ,

and base estimation on the moment conditions

E [ιtf ⊗ (lnktf , ln vt−1,v)] = 0.

Figure A7 plots the behavior of the resulting output elasticities over time by firm size

quintile. Figure A8 reports the contribution of within-firm changes in markups and between-

firm reallocation to (percent) changes in the labor share.
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Figure A3: Output-to-capital elasticities for Compustat firms estimated using a cubic
parametrization of g and h. The left panel presents estimates for Compustat manufacturing firms. The
right panel presents estimates for Compustat non-manufacturing firms. Firm-level elasticities are estimated
using a cubic parametrization for g and h, as explained in Appendix E.
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Figure A4: Decomposition of the contribution of within-firm changes in markups and
between-firm reallocation to (percent) changes in the labor share. See the main text for
details on this decomposition. Firm-level markups are estimated using a cubic parametrization for g and
h, as explained in Appendix E. The left panel provides the decomposition for manufacturing firms in
Compustat. The right panel provides the decomposition for Compustat firms in other economic sectors.
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Figure A5: Output-to-capital elasticities for Compustat firms estimated under the as-
sumption that there are no ex-post shocks. The left panel presents estimates for Compustat man-
ufacturing firms. The right panel presents estimates for Compustat non-manufacturing firms. Firm-level
elasticities are estimated under the assumption of no ex-post shocks, as explained in Appendix E.
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Figure A6: Decomposition of the contribution of within-firm changes in markups and
between-firm reallocation to (percent) changes in the labor share. See the main text for de-
tails on this decomposition. Firm-level markups are estimated under the assumption of no ex-post shocks, as
explained in Appendix E. The left panel provides the decomposition for manufacturing firms in Compustat.
The right panel provides the decomposition for Compustat firms in other economic sectors.
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Figure A7: Output-to-capital elasticities for Compustat firms estimated under the as-
sumption that productivity follows a linear Markov process. The left panel presents estimates
for Compustat manufacturing firms. The right panel presents estimates for Compustat non-manufacturing
firms. Firm-level elasticities are estimated under the assumption that productivity follows a linear Markov
process, as explained in Appendix E.
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Figure A8: Decomposition of the contribution of within-firm changes in markups and
between-firm reallocation to (percent) changes in the labor share. See the main text for
details on this decomposition. Firm-level markups are estimated under the assumption that productivity
follows a linear Markov process, as explained in Appendix E. The left panel provides the decomposition
for manufacturing firms in Compustat. The right panel provides the decomposition for Compustat firms in
other economic sectors.
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E.3 Implications for the average markup in the economy as a whole

Figure A9 plots the implied time series for the economy-wide aggregate markup, computed as

a sales-weighted harmonic mean of firm-level markups. Our estimates for markups suggest

that they have been stable over time at around 1.2. This is in line with our quantitative

exercise, which points to a modest increase in markups.

Our estimates

Common technology

Common technology and
sales weighted

1.1

1.2

1.3

1.4

1.5

1960 1970 1980 1990 2000 2010
year

Markups,
estimated for firms in Compustat

Figure A9: Markups. The figure presents the aggregate markup for firms in Compustat. Our estimates
are obtained as as a sales-weighted harmonic mean of firm-level markups. The figure also reports the
aggregate markup that would result under the assumption of common output elasticities across firms in
the same industry, and a version of these estimates that aggregates firms’ markups using a sales-weighted
arithmetic mean.

For comparison, we provide an alternative estimate of the aggregate markup obtained

under the assumption that all firms in an industry operated technologies with the same

capital intensity (as opposed to letting it vary by size class). This series reveals a mild

secular increase in the aggregate markup from 1.25 in 1960 and 1.2 in 1980 to 1.3 in recent

years, which aligns with the harmonic-mean estimates in Edmond, Midrigan and Xu (2022).

We also provide estimates for an arithmetic mean of sales-weighted markups obtained under

the assumption that all firms in a given industry operate technologies with the same capital

intensity, which coincide with the series in De Loecker, Eeckhout and Unger (2020). Despite

its increasing trend over time, this series is inappropriate for understanding the contribution
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of markups to the decline in the labor share because it ignores differences in technology

across firm-size classes and uses the wrong weights for aggregation.

E.4 Additional evidence from Compustat

This section provides additional descriptive statistics from Compustat that support the no-

tion that large firms operate more capital-intensive technologies. In what follows, we estimate

regression models of the form

ln ytfi = αti + βtc(f) + εtfi,(A9)

where we explain different measures for the capital intensity ytfi of firm f in industry i at

time t as a function of industry and year fixed effects (the αti) and size class dummies (βtc(f))

that are allowed to vary over time. In particular, we estimate different size-class dummies

for the periods of 1960–1980, 1980–2000 and 2000–2016. We treat firms in the smallest size

class of an industry as the excluded category and report estimates weighted by firm sales.

Figure A10 plots estimates of equation (A9) for firms’ investment rates, defined as their

investment (CAPX in Compustat) normalized by variable cost (top panel), employment

(middle panel), and sales (bottom panel). The left panel provides estimates for manufac-

turing firms and the right panel for firms outside of manufacturing. For the 1980–2000 and

2000–2016 period, the largest manufacturing firms in each industry have had investment

rates 60–140 log points higher than those of the smallest firms. Outside of manufacturing,

the difference is less pronounced, with the largest firms having 10–90 log points higher in-

vestment rates than the smallest firms in their industries. In both cases, the gradient by size

has become steeper over time.

Figure A11 plots estimates for firms’ capital intensity, defined as their net capital stock

(PPENT in Compustat) normalized by variable cost (top panel), employment (middle

panel), and sales (bottom panel). For the 1980–2000 and 2000–2016 period, the largest

manufacturing firms in each industry had a 55 log point higher capital to variable cost ratio,

a 120 log point higher capital per worker, and a 45 log point higher capital to sales ratio

than the smaller firms in their industries. Here too, we see some evidence of the gradient by

size becoming steeper over time, though the gradient and its rotation are less pronounced

outside of manufacturing.

Finally, Figure A12 plots estimates for firms’ reliance on capital services. Along a bal-
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anced growth path, the flow value of capital services used by a firm can be computed as2

flow value of capital services = (r − g) ⋅ net capital stock + capital expenditures.

The figure provides estimates normalizing the flow value of capital services by variable costs

(so that we get a measure of capital services relative to variable input services), employment,

and sales (a measure of capital services in sales). In this exercise, we fix r − g = 2.5%, which

aligns with the calibration in Farhi and Gourio (2018). For the 1980–2000 and 2000–2016

period, the largest manufacturing firms in each industry had a 70 log point higher reliance

on capital services vs. variable input services when compared to the smallest firms in their

industries. Here too, we see some evidence of the gradient by size becoming steeper over

time, with the gradient and its rotation being less pronounced outside of manufacturing.

2In particular, suppose the firm faces no adjustment costs. Then the PDV of capital services equal the
PDV of capital costs. The PDV of capital costs are (1+r) ⋅net capital stock+ 1+r

r−g
⋅capital expenditure, which

gives the cost of the initially installed capital and of financing it plus the PDV of capital expenditures. The
flow value of capital services is r−g

1+r
⋅PDV of capital costs and we get the formula in the text.
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Figure A10: Investment rates, Compustat. The figure presents estimates of the relative difference
in investment rates by firm-size class using Compustat. The left panel presents estimates for Compustat
manufacturing firms. The right panel presents estimates for Compustat non-manufacturing firms.
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Figure A11: Capital intensity, Compustat. The figure presents estimates of the relative difference
in capital intensity by firm-size class using Compustat. The left panel presents estimates for Compustat
manufacturing firms. The right panel presents estimates for Compustat non-manufacturing firms.
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Figure A12: Capital services, Compustat. The figure presents estimates of the relative difference
in capital services by firm-size class using Compustat. The left panel presents estimates for Compustat
manufacturing firms. The right panel presents estimates for Compustat non-manufacturing firms.
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F Measurement of capital prices

We create measures of quality-adjusted capital prices at the sectoral level building on DiCecio

(2009), Cummins and Violante (2002), and Gordon (1990).

In the first step, we obtain data on nonresidential asset prices and quantities from the

BEA Fixed Asset Tables. These data cover 39 types of equipment, 32 types of structures,

3 types of software, and 22 types of other intellectual property products. We exclude other

intellectual property products from our analysis since these would be considered part of the

fixed cost of adopting new technologies in our model. The data cover the period from 1947

to 2020 and include information on investment at current nominal prices, investment at

constant 2012 prices, stocks, and depreciation.

Using these series, we construct a price index for each detailed asset a as

pa,t =
investment at current nominal pricesa,t
investment at constant 2012 pricesa,t

.

We let ∆ lnpa,t denote the percent change in asset prices between time t and t + 1.
Our second step involves adjusting the BEA prices for quality. We follow the work by

DiCecio (2009) and Cummins and Violante (2002). These authors use the series for quality-

adjusted investment prices from Gordon (1990), and which covered the postwar period up

to 1983, and extend it from 1947 to 2011. Cummins and Violante (2002) estimate a sta-

tistical model explaining Gordon’s quality-adjusted price indices as a function of those by

the BEA/NIPA, their lags, and time trends. They then extrapolate this model to produce

quality-adjusted price indices for 1947–2000. DiCecio (2009) follows the same procedure and

creates an updated series up to 2011 for equipment and software. We use the estimates from

DiCecio (2009) on the quality adjusted price of equipment and software, obtained via FRED

(variable code PERICD), and denote the percent change in the quality-adjusted price of

software and equipment as ∆ lnp∗t,E&S. We then compute a user-cost weighted price index

for software and equipment from the BEA data using a Törnqvist index

∆ lnpt,E&S = ∑
a∈E&S

1

2
⋅ (sE&S

t+1,a + sE&S
a,t ) ⋅∆lnpa,t,

where sE&S
a,t denotes the share of asset a in equipment and software capital services.3 The

3We compute capital services derived from an asset a as

capital servicesa,t = (r + δa −∆lnpa,t) ⋅ stock asseta,t,

where we take a required rate of return r = 4%, and use the depreciation rate and change in capital prices
from the BEA.
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implied quality adjustment for equipment and software is therefore equal to

∆quality adjustmentE&S,t =∆lnpE&S,t −∆lnp∗E&S,t.

In the BEA data, the price of equipment and software declined by an average of 3.1% per

year in 1980-2011. The quality-adjusted series from DiCecio (2009) shows a decline on 5.7%

per year, which implies an improvement in the quality of equipment and software of 2.6%

per year.

We then compute a quality adjusted series for the detailed equipment and software prod-

ucts in the BEA data as

∆ lnp∗a,t =∆lnpa,t −∆quality adjustmentE&S,t.

This assumes a common quality adjustment for all types of software and equipment. For

structures, we do not perform quality adjustment.

In the third step, we account for changes in taxation using the estimates in Acemoglu,

Manera and Restrepo (2020) of effective taxes on equipment, software, and structures. These

authors estimate that the effective tax on equipment decreased from 12.4% to 4.7% during

1981–2018, the effective tax on software decreased from 14.6% to 4.7% during 1981–2018,

and the effective tax on structures increased from 8.3% to 9% during 1981–2018. These

changes in taxes imply a further reduction in the cost of producing tasks with capital of

close to 10% during the whole 1981–2018 period.

In the fourth step, we compute a measure for the relative price of capital by asset, ∆ lnp∗,ra,t
by taking our quality-adjusted price indices adjusted for taxes and subtracting changes in

the BEA price of consumption expenditures index.

In the final step, we construct a sector-specific measure of capital prices using a user-cost

weighted Törnqvist index

∆ lnpi,t =∑
a

1

2
⋅ (si,ka,t+1 + s

i,k
a,t) ⋅∆lnp∗,ra,t ,

where si,ka,t denotes the share of asset a in total capital services in sector i, computed also from

the industry-level version of the BEA Fixed Asset Tables. This index provides the average

decline in capital prices used in sector i over the 1980–2011 period.

Our resulting sectoral price indices imply that the average price of capital used in manu-

facturing declined by 108 log points from 1980 to 2011. For retail, the average decline was of

86 log points, for utilities 68 log points, and for wholesale of 159 log points. These differences

across sectors reflect the different bundles of capital goods used, with manufacturing and
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wholesale investing more heavily in equipment and software.

F.1 Separating intensive and extensive margins

As discussed in the text, there is no straightforward method for separating advances in

capital at the intensive and extensive margin. The problem is that data on capital prices

are available for coarse categories and do not distinguish between investments to replace old

equipment (intensive margin) and investment in capital used in tasks previously assigned to

labor (extensive margin).

Despite this limitation, the available data does point to a more limited decline in capital

prices at the intensive margin, in line with our inferred q shocks for manufacturing and retail.

There are two ways of illustrating this point. The first is model dependent. Imagine that

all advances in capital take place at the intensive margin. Our model implies that, in this

case, one can compute an aggregate price index as an exact CES index of all capital price

declines with an elasticity of substitution of η, which governs the substitution across the

tasks benefiting from these advances. This is the correct way of aggregating all capital price

declines taking place at the intensive margin. This index can be computed using “exact hat

algebra” as

pCESi,t

pCESi,t0

=
⎛
⎝∑a

si,ka,t0 ⋅ (
p∗a,t
p∗a,t0
)
1−η⎞
⎠

1
1−η

.

Using a value of η = 0.5 from Humlum (2019), we estimate a 76 log point decrease in capital

prices at the intensive margin for manufacturing and a 31 log point decrease in capital prices

at the intensive margin for retail. In both cases, the data points to a minor share of capital

advances at the intensive margin.

The second strategy involves classifying assets into “established” and “new” types of

capital. We classify an asset as “established” in a sector if its net investment rate in the

70s was below the average sectoral rate of capital formation. We view a below-average net

investment rate as an indication of an asset whose stock has already reached a high enough

level. We classify an asset as “new” if its net investment rate in the 70s was above average.

We view this as an indication of an asset whose stock was only being built.

In manufacturing, the price of established assets decreased by 48.6 log points and the

price of new assets decreased by 166 log points. In retail, the price of established assets

decreased by 36 log points and the price of new assets decreased by 117 log points.

The intuitive (but imperfect) idea is that price declines for established assets provide an

indication of the size of advances at the intensive margin, and price declines for new assets
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provide an indication of the potential magnitude of advances at the extensive margin.

This mapping is necessarily imperfect, especially for the extensive margin. For example,

industrial furnaces might have been in use in the 1980s while robots were not. Yet both

would be aggregated into the BEA asset class “Special industrial machinery,” causing us to

mislabel advances in robotics as taking place at the intensive margin. This would cause us

to over-estimate the extent of advances in capital at the intensive margin. Conversely, new

types of capital and assets might be associated with new industries and products and are not

necessarily used to automate tasks as in our model. For example, the stock of solar panels is

a new asset that has nothing to do with automation. This would cause us to over-estimate

the extent of advances in capital at the extensive margin.

For these reasons, our preferred interpretation of these estimates is as a reality check.

The estimates support the idea that capital advances at the intensive margin were relatively

modest. The estimates also point to larger capital advances in “new” types of capital, driven

in part by software and computers. Both facts are necessary if we believe extensive margin

advances in capital were a dominant force during this period. However, the missing pieces

are that we do not know if in practice the “new” types of capital facilitated the substitution

of capital for labor at the extensive margin, as in our model, or if these new types of capital

had other uses. We also do not know if all forms of capital inside an established asset class

operated at the intensive margin, even though this seems more plausible.

Both calculations reflect the fact that the decline in capital prices has been far from

uniform, even across broad asset classes. Figure A13 illustrates this point. It plots the price

decline per year for all non-residential fixed assets in the BEA Fixed Asset Tables. The

figure shows a more pronounced decline for software and computer equipment.
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Figure A13: Capital price declines by BEA fixed asset class. The figure plots the average
annual real quality-adjusted capital price change over 1980–2012, for private nonresidential fixed assets in
the BEA Fixed Asset Tables.
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G Historical behavior of labor shares

This section provides additional motivation for our focus on the 1982–2012 period. As a

starting point, Figure A14 provide data on payroll shares by sector for 1947–1987 and 1987–

2016 from the BEA industry accounts. We split the data into these two periods due to

changes in industry definitions introduced by the BEA in 1987, as it switched from the

Standard Industry Classification to the North American Industry Classification System. As

discussed in the main text, Figure A14 shows that payroll shares were constant or increasing

up to 1982, and then started a sharp decline both in manufacturing, retail and wholesale.

Payroll shares differ from labor shares in that they exclude compensation and self employ-

ment. But looking at payroll shares has the advantage of allowing us to go back further in

time.
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Figure A14: Payroll share in the US for 1947–2016. The figure plots the payroll share of value
added, both for some specific sectors and the economy as a whole. Data from the BEA industry accounts.
Industry definitions based on SIC in left panel, NAICS in right panel.

Labor shares (which also include non-wage compensation) are available starting in 1963

from the BEA-BLS integrated industry-level production account. Figure A15 confirms that

labor shares exhibit the same trend behavior with a flat or slightly increasing trend until 1982

and a subsequent decline. This motivates our focus on the 1982–2012 period and supports

our choice of 1982 as the steady state of the model.
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Figure A15: Labor share in the US for 1963–2016 The figure plots the labor share of value added,
both for some specific sectors and the economy as a whole. Data from the BEA-BLS integrated industry-level
production account.
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